
Specification of RTE Software
AUTOSAR CP Release 4.4.0

Document Title Specification of RTE Software
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 084

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 4.4.0

Document Change History
Date Release Changed by Description

2018-10-31 4.4.0
AUTOSAR
Release
Management

• RTE Implementation Plug-Ins
• Support for optional elements in

structured data types
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Minor corrections / clarifications /
editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Service-based bypass support
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Debugging support marked as
obsolete
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

• Efficient NV data handling
• Introduction of data transformation
• Support for variable-size Arrays of

arbitrary data types
• Various fixes and clarifications

2014-03-31 4.1.3
AUTOSAR
Release
Management

• Various fixes and clarifications

1 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2013-10-31 4.1.2
AUTOSAR
Release
Management

• Various fixes and clarifications

2013-03-15 4.1.1 AUTOSAR
Administration

• Adapted to new version of meta
model
• Bypass support added
• Support for parameter serialization of

client-server communication added
• Support for inter-partition

communication of BSW modules
added
• General consolidation and bug fixes

2011-12-22 4.0.3 AUTOSAR
Administration

• Adapted to new version of meta
model
• Support for mixed compu methods

with categories SCALE_
LINEAR_AND_TEXTTABLE and
SCALE_RATIONAL_AND_
TEXTTABLE added
• Support for compatibility of partial

record types added
• Consolidation of signal invalidation,

data conversion, and out-of-range
handling
• General consolidation and bug fixes

2011-04-15 4.0.2 AUTOSAR
Administration

• Adapted to new version of meta
model
• Backward compatibility to implicit

communication behavior of
AUTOSAR 2.1/3.0/3.1 added
• Support of inter-runnable variables

extended to composite data types
• Clarification which API calls shall be

implemented as macro accesses to
the component data structure in
compatibility mode
• General consolidation and bug fixes

2 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2009-12-18 4.0.1 AUTOSAR
Administration

• Adapted to new version of meta
model
• RTE and Basic Software Scheduler

merged
• Support of multi core architectures

added
• Re-scaling at ports added
• API enhancements added

2009-02-04 3.1.2 AUTOSAR
Administration

• updated VFB-Tracing
• unconnected R-Ports are supported
• incompatible function declarations

fixed
• RTE server mapping updated

2008-02-01 3.0.2 AUTOSAR
Administration • Layout adaptations

2007-12-21 3.0.1 AUTOSAR
Administration

• Adapted to new version of meta
model
• "RTE ECU Configuration" added
• Calibration and measurement

revised
• Document meta information

extended
• Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR
Administration

• "Advice for users" revised
• "Revision Information" added

2006-11-28 2.1 AUTOSAR
Administration

• Adapted to new version of meta
model
• New feature ’debouncing of runnable

activation’
• New feature ’runnable activation

offset’
• ’Measurement and Calibration’

added
• Semantics of implicit communication

enhanced
• Legal disclaimer revised

2006-05-16 2.0 AUTOSAR
Administration Initial release

3 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

4 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Table of Contents

1 Introduction 26

1.1 Scope . 26
1.2 Dependency to other AUTOSAR specifications 27
1.3 Acronyms and Abbreviations . 28
1.4 Technical Terms . 28
1.5 Document Conventions . 35
1.6 Requirements Tracing . 36

2 RTE Overview 73

2.1 The RTE in the Context of AUTOSAR 73
2.2 AUTOSAR Concepts . 73

2.2.1 AUTOSAR Software-components 73
2.2.2 Basic Software Modules . 74
2.2.3 Communication . 75

2.2.3.1 Communication Paradigms 75
2.2.3.2 Communication Modes 75
2.2.3.3 Static Communication 76
2.2.3.4 Multiplicity . 76

2.2.4 Concurrency . 77
2.3 The RTE Generator . 77
2.4 Design Decisions . 78

3 RTE Generation Process 79

3.1 Contract Phase . 85
3.1.1 RTE Contract Phase . 85
3.1.2 Basic Software Scheduler Contract Phase 87

3.2 PreBuild Data Set Contract Phase . 87
3.3 Edit ECU Configuration of the RTE . 88
3.4 Generation Phase . 89

3.4.1 Basic Software Scheduler Generation Phase 89
3.4.2 RTE Generation Phase . 90
3.4.3 Basic Software Module Description generation 92

3.4.3.1 Bsw Module Description 92
3.4.3.2 Bsw Internal Behavior 93
3.4.3.3 Bsw Implementation 94

3.5 PreBuild Data Set Generation Phase 95
3.6 PostBuild Data Set Generation Phase 96
3.7 RTE Configuration interaction with other BSW Modules 97

4 RTE Functional Specification 98

4.1 Architectural concepts . 98
4.1.1 Scope . 98
4.1.2 RTE and Data Types . 99
4.1.3 RTE and AUTOSAR Software-Components 100

5 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.3.1 Hierarchical Structure of Software-Components . . . 101
4.1.3.2 Ports, Interfaces and Connections 102
4.1.3.3 Internal Behavior . 103
4.1.3.4 Implementation . 107

4.1.4 Instantiation . 108
4.1.4.1 Scope and background 108
4.1.4.2 Concepts of instantiation 109
4.1.4.3 Single instantiation 109
4.1.4.4 Multiple instantiation 110

4.1.5 RTE and AUTOSAR Services 111
4.1.6 RTE and ECU Abstraction 112
4.1.7 RTE and Complex Device Driver 112
4.1.8 Basic Software Scheduler and Basic Software Modules . . . 113

4.1.8.1 Description of a Basic Software Module 113
4.1.8.2 Basic Software Interfaces 113
4.1.8.3 Basic Software Internal Behavior 113
4.1.8.4 Basic Software Implementation 114
4.1.8.5 Multiple Instances of Basic Software Modules 114
4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex

Device Drivers . 114
4.2 RTE and Basic Software Scheduler Implementation Aspects 115

4.2.1 Scope . 115
4.2.2 OS . 119

4.2.2.1 OS Objects . 119
4.2.2.2 Basic Software Schedulable Entities 121
4.2.2.3 Runnable Entities . 122
4.2.2.4 RTE Events . 122
4.2.2.5 BswEvents . 124
4.2.2.6 Mapping of Runnable Entities and Basic Software

Schedulable Entities to tasks (informative) 126
4.2.2.7 Monitoring of runnable execution time 132
4.2.2.8 TimingEvent activated runnables 137
4.2.2.9 Synchronization of TimingEvent activated runnables 138
4.2.2.10 BackgroundEvent activated Runnable Entities and

BasicSoftware Scheduleable Entities 139
4.2.2.11 InitEvent activated Runnable Entities 140

4.2.3 Activation and Start of ExecutableEntitys 141
4.2.3.1 Activation by direct function call 148
4.2.3.2 Activation Offset for RunnableEntitys and

BswSchedulableEntitys 150
4.2.3.3 Provide activating RTE event 151

4.2.4 Interrupt decoupling and notifications 153
4.2.4.1 Basic notification principles 153
4.2.4.2 Interrupts . 154
4.2.4.3 Decoupling interrupts on RTE level 154
4.2.4.4 RTE and interrupt categories 155

6 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.4.5 RTE and Basic Software Scheduler and BswExecu-
tionContext . 155

4.2.5 Data Consistency . 156
4.2.5.1 General . 156
4.2.5.2 Communication Patterns 158
4.2.5.3 Concepts . 158
4.2.5.4 Mechanisms to guarantee data consistency 159
4.2.5.5 Exclusive Areas . 161
4.2.5.6 InterRunnableVariables 165

4.2.6 Multiple trigger of Runnable Entities and Basic Software
Schedulable Entities . 167

4.2.7 Implementation of Parameter and Data Elements 169
4.2.7.1 General . 169
4.2.7.2 Compatibility rules 169
4.2.7.3 Implementation of an interface element 170
4.2.7.4 Initialization of VariableDataPrototypes 171
4.2.7.5 Initial value calculation 171

4.2.8 Measurement and Calibration 173
4.2.8.1 General . 173
4.2.8.2 Measurement . 175
4.2.8.3 Calibration . 182
4.2.8.4 Generation of McSupportData 200

4.2.9 Access to NVRAM data . 217
4.2.9.1 General . 217
4.2.9.2 Usage of the NvBlockSwComponentType 218
4.2.9.3 Interface of the NvBlockSwComponentType 223
4.2.9.4 Data Consistency . 231

4.3 Communication Paradigms . 231
4.3.1 Sender-Receiver . 232

4.3.1.1 Introduction . 232
4.3.1.2 Receive Modes . 232
4.3.1.3 Multiple Data Elements 235
4.3.1.4 Multiple Receivers and Senders 236
4.3.1.5 Implicit and Explicit Data Reception and Transmission 237
4.3.1.6 Transmission Acknowledgement 250
4.3.1.7 Communication Time-out 251
4.3.1.8 Data Element Invalidation 254
4.3.1.9 Filters . 259
4.3.1.10 Buffering . 260
4.3.1.11 Operation . 263
4.3.1.12 “Never received status” for Data Element 277
4.3.1.13 “Update flag” for Data Element 277
4.3.1.14 Dynamic data type 278
4.3.1.15 Inter-ECU communication through TP 279
4.3.1.16 Inter-ECU communication of arrays of bytes 280
4.3.1.17 Handling of acknowledgment events 282

7 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.2 Client-Server . 284
4.3.2.1 Introduction . 284
4.3.2.2 Multiplicity . 286
4.3.2.3 Communication Time-out 288
4.3.2.4 Port-Defined argument values 290
4.3.2.5 Buffering . 291
4.3.2.6 Inter-ECU and Inter-Partition Response to Request

Mapping . 292
4.3.2.7 Parameter Serialization 295
4.3.2.8 Operation . 295

4.3.3 SWC internal communication 300
4.3.3.1 Inter Runnable Variables 300

4.3.4 Inter-Partition communication 301
4.3.4.1 Inter partition data communication using IOC 302
4.3.4.2 Inter partition data communication using Basic Soft-

ware Scheduler . 303
4.3.4.3 Accessing Ld(Com) and Det in multicore/multiparti-

tion configuration . 304
4.3.4.4 Signaling and control flow support for inter partition

communication . 305
4.3.4.5 Trusted Functions . 305
4.3.4.6 Memory Protection and Pointer Type Parameters in

RTE API . 306
4.3.5 PortInterface Element Mapping and Data Conversion 307

4.3.5.1 PortInterface Element Mapping 307
4.3.6 Network Representation . 310

4.3.6.1 Network Representation with no data transformation 310
4.3.6.2 Network Representation with data transformation . . 311

4.3.7 Data Conversion . 312
4.3.8 Range Checks during Runtime 318

4.4 Modes . 325
4.4.1 Mode User . 326
4.4.2 Mode Manager . 328
4.4.3 Refinement of the semantics of ModeDeclarations and

ModeDeclarationGroups 330
4.4.4 Order of actions taken by the RTE / Basic Software Scheduler

upon interception of a mode switch notification 330
4.4.5 Assignment of mode machine instances to RTE and Basic

Software Scheduler . 337
4.4.6 Initialization of mode machine instances 338
4.4.7 Notification of mode switches 340
4.4.8 Mode switch acknowledgment 343
4.4.9 Mode switch error handling 344

4.4.9.1 Mode User gets terminated 344
4.4.9.2 Mode Manager gets terminated 347

4.4.10 Mapping of ModeDeclarations 348

8 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4.11 Distributed Shared Mode Queues 350
4.5 External and Internal Trigger . 354

4.5.1 External Trigger Event Communication 354
4.5.1.1 Introduction . 354
4.5.1.2 Trigger Sink . 356
4.5.1.3 Trigger Source . 357
4.5.1.4 Multiplicity . 358
4.5.1.5 Synchronized Trigger 359

4.5.2 Inter Runnable Triggering . 360
4.5.2.1 Multiplicity . 360

4.5.3 Inter Basic Software Module Entity Triggering 361
4.5.4 Inter ECU Trigger Communication 362
4.5.5 Queuing of Triggers . 362
4.5.6 Activation of triggered ExecutableEntities 364

4.6 Initialization and Finalization . 365
4.6.1 Initialization and Finalization of the RTE 365

4.6.1.1 Initialization of the Basic Software Scheduler 366
4.6.1.2 Initialization of the RTE 366
4.6.1.3 Stop and restart of the RTE 367
4.6.1.4 Finalization of the RTE 368
4.6.1.5 Finalization of the Basic Software Scheduler 368

4.6.2 Initialization and Finalization of AUTOSAR Software-
Components . 369

4.7 Variant Handling Support . 370
4.7.1 Overview . 370
4.7.2 Choosing a Variant and Binding Variability 371

4.7.2.1 General impact of Binding Times on RTE generation 371
4.7.2.2 Choosing a particular variant 372
4.7.2.3 SystemDesignTime 373
4.7.2.4 CodeGenerationTime 374
4.7.2.5 PreCompileTime . 374
4.7.2.6 LinkTime . 375
4.7.2.7 PostBuild . 375

4.7.3 Variability affecting the RTE generation 376
4.7.3.1 Software Composition 376
4.7.3.2 Atomic Software Component and its Internal Behavior 378
4.7.3.3 NvBlockComponent and its Internal Behavior 381
4.7.3.4 Parameter Component 382
4.7.3.5 Data Type . 382
4.7.3.6 Constants . 383
4.7.3.7 Basic Software Modules and its Internal Behavior . . 384
4.7.3.8 Flat Instance descriptor 384

4.7.4 Variability affecting the Basic Software Scheduler generation 384
4.7.4.1 Basic Software Scheduler API which is subject to

variability . 384
4.7.4.2 Basic Software Entities 386

9 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7.4.3 API behavior . 386
4.7.5 Variability affecting SWC implementation 386

4.8 Development error . 388
4.8.1 DET Report Identifiers . 388
4.8.2 DET Error Identifiers . 388
4.8.3 DET Error Classification . 390

4.9 Bypass Support . 393
4.9.1 Bypass description . 393
4.9.2 Component wrapper method 393
4.9.3 Direct buffer access method 395
4.9.4 Extended buffer access method 395

4.9.4.1 Global Enable . 396
4.9.4.2 RPT Preparation . 397
4.9.4.3 Level 1 - Post-Build Hooking 398
4.9.4.4 Level 2 - Non Post-Build Hooking 408
4.9.4.5 Level 3 - Extended Non Post-Build Hooking 413
4.9.4.6 Level 2 and 3 - Non Post-Build Hooking and Implicit

Communication . 416
4.9.4.7 Export . 418

4.9.5 Service Based Prototyping 419
4.9.5.1 Rapid Prototyping Scenarios 420
4.9.5.2 Service Functions 422
4.9.5.3 Integration . 424
4.9.5.4 Service Point IDs . 425
4.9.5.5 Conditional RunnableEntity Invocation 426
4.9.5.6 Interaction with RTE-Managed buffers 427
4.9.5.7 Export . 428

4.10 Data Transformation . 429
4.10.1 Execution of Transformer . 430

4.10.1.1 Transformer for inter-ECU communication 430
4.10.1.2 Transformer for intra-ECU communication 431

4.10.2 Transformer Chains . 432
4.10.3 Buffer Handling . 435
4.10.4 Interfaces to Transformer . 437
4.10.5 Error Handling . 437
4.10.6 COM Based Transformer . 439

5 RTE Reference 441

5.1 Scope . 441
5.1.1 Programming Languages . 441
5.1.2 Generator Principles . 442

5.1.2.1 Operating Modes . 442
5.1.2.2 Optimization Modes 444
5.1.2.3 Build support . 444
5.1.2.4 Software Component Namespace 449

5.1.3 Generator external configuration switches 449

10 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2 API Principles . 450
5.2.1 RTE Namespace . 451
5.2.2 Direct API . 451
5.2.3 Indirect API . 452

5.2.3.1 Accessing Port Handles 453
5.2.4 VariableAccess in the dataReadAccess and

dataWriteAccess roles . 453
5.2.5 Per Instance Memory . 454
5.2.6 API Mapping . 458

5.2.6.1 “RTE Contract” Phase 459
5.2.6.2 “RTE Generation” Phase 462
5.2.6.3 Function Elision . 462
5.2.6.4 API Naming Conventions 463
5.2.6.5 API Parameters . 463
5.2.6.6 Return Values . 465
5.2.6.7 Return References 468
5.2.6.8 Error Handling . 469
5.2.6.9 Success Feedback 470

5.2.7 Unconnected Ports . 470
5.2.7.1 Data Elements . 471
5.2.7.2 Mode Switch Ports 473
5.2.7.3 Client-Server . 474
5.2.7.4 External Triggers . 474

5.2.8 Non-identical port interfaces 474
5.3 RTE Modules . 475

5.3.1 RTE Header File . 476
5.3.2 Lifecycle Header File . 476
5.3.3 Application Header File . 477

5.3.3.1 File Name . 477
5.3.3.2 Scope . 478
5.3.3.3 File Contents . 479

5.3.4 RTE Types Header File . 482
5.3.4.1 File Contents . 482
5.3.4.2 Classification of Implementation Data Types 483
5.3.4.3 Primitive Implementation Data Type 484
5.3.4.4 Array Implementation Data Type 485
5.3.4.5 Structure Implementation Data Type 489
5.3.4.6 Union Implementation Data Type 490
5.3.4.7 Implementation Data Type redefinition 495
5.3.4.8 Pointer Implementation Data Type 495
5.3.4.9 ImplementationDataTypes with Variation-

Points . 497
5.3.4.10 Naming of data types 497
5.3.4.11 C/C++ . 499

5.3.5 RTE Data Handle Types Header File 499
5.3.5.1 File Name . 499

11 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.5.2 File Contents . 500
5.3.6 Application Types Header File 500

5.3.6.1 File Name . 500
5.3.6.2 Scope . 501
5.3.6.3 File Contents . 502
5.3.6.4 RTE Modes . 502
5.3.6.5 Enumeration Data Types 502
5.3.6.6 Range Data Types 502
5.3.6.7 Implementation Data Type symbols 502
5.3.6.8 Macros for accessing Availability Information in

Structs for optional Members 502
5.3.7 VFB Tracing Header File . 504

5.3.7.1 C/C++ . 504
5.3.7.2 File Contents . 504

5.3.8 RTE Configuration Header File 506
5.3.8.1 C/C++ . 506
5.3.8.2 File Contents . 506

5.3.9 Generated RTE . 515
5.3.9.1 Header File Usage 515
5.3.9.2 C/C++ . 517
5.3.9.3 File Contents . 517
5.3.9.4 Reentrancy . 519

5.3.10 RTE Post Build Variant Sets 520
5.3.10.1 Example 1: File Contents Rte_PBcfg.h 520
5.3.10.2 Example 2: File Contents Rte_PBcfg.h 521
5.3.10.3 Examples: File Contents Rte_PBcfg.c 521

5.4 RTE Data Structures . 523
5.4.1 Instance Handle . 523
5.4.2 Component Data Structure 525

5.4.2.1 Data Handles Section 527
5.4.2.2 Per-instance Memory Handles Section 532
5.4.2.3 Inter Runnable Variable Handles Section 533
5.4.2.4 Exclusive-area API Section 534
5.4.2.5 Port API Section . 535
5.4.2.6 Calibration Parameter Handles Section 540
5.4.2.7 Inter Runnable Variable API Section 541
5.4.2.8 Inter Runnable Triggering API Section 542
5.4.2.9 Instance Id Section 543
5.4.2.10 RAM Block Data Updated Handles Section 543
5.4.2.11 Vendor Specific Section 544

5.5 API Data Types . 545
5.5.1 Std_ReturnType . 545

5.5.1.1 Infrastructure Errors 546
5.5.1.2 Application Errors . 546
5.5.1.3 Predefined Error Codes 547

5.5.2 Rte_Instance . 553

12 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.5.3 Rte_TransformerError . 554
5.5.4 RTE Modes . 555
5.5.5 Enumeration Data Types . 556
5.5.6 Range Data Types . 560
5.5.7 Data Types with bitfield conversions 561

5.6 API Reference . 563
5.6.1 Rte_Ports . 563
5.6.2 Rte_NPorts . 564
5.6.3 Rte_Port . 565
5.6.4 Rte_Write . 565
5.6.5 Rte_Send . 568
5.6.6 Rte_Switch . 571
5.6.7 Rte_Invalidate . 573
5.6.8 Rte_Feedback . 574
5.6.9 Rte_SwitchAck . 578
5.6.10 Rte_Read . 581
5.6.11 Rte_DRead . 584
5.6.12 Rte_Receive . 585
5.6.13 Rte_Call . 588
5.6.14 Rte_Result . 592
5.6.15 Rte_Pim . 597
5.6.16 Rte_CData . 598
5.6.17 Rte_Prm . 599
5.6.18 Rte_IRead . 600
5.6.19 Rte_IWrite . 601
5.6.20 Rte_IWriteRef . 602
5.6.21 Rte_IInvalidate . 604
5.6.22 Rte_IStatus . 605
5.6.23 Rte_IrvIRead . 608
5.6.24 Rte_IrvIWrite . 609
5.6.25 Rte_IrvIWriteRef . 610
5.6.26 Rte_IrvRead . 611
5.6.27 Rte_IrvWrite . 613
5.6.28 Rte_Enter . 614
5.6.29 Rte_Exit . 615
5.6.30 Rte_Mode . 616
5.6.31 Enhanced Rte_Mode . 619
5.6.32 Rte_Trigger . 622
5.6.33 Rte_IrTrigger . 623
5.6.34 Rte_IFeedback . 624
5.6.35 Rte_IsUpdated . 627
5.6.36 Rte_PBCon . 628
5.6.37 Rte_IsAvailable . 629
5.6.38 Rte_SetAvailable . 630

5.7 Runnable Entity Reference . 630
5.7.1 Signature . 631

13 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.7.2 Entry Point Prototype . 631
5.7.3 Role Parameters . 634
5.7.4 Return Value . 634
5.7.5 Triggering Events . 635

5.7.5.1 TimingEvent . 635
5.7.5.2 BackgroundEvent . 635
5.7.5.3 SwcModeSwitchEvent 636
5.7.5.4 AsynchronousServerCallReturnsEvent 636
5.7.5.5 DataReceiveErrorEvent 636
5.7.5.6 OperationInvokedEvent 636
5.7.5.7 DataReceivedEvent 638
5.7.5.8 DataSendCompletedEvent 639
5.7.5.9 ModeSwitchedAckEvent 639
5.7.5.10 SwcModeManagerErrorEvent 639
5.7.5.11 ExternalTriggerOccurredEvent 640
5.7.5.12 InternalTriggerOccurredEvent 640
5.7.5.13 DataWriteCompletedEvent 640
5.7.5.14 InitEvent . 641
5.7.5.15 TransformerErrorEvent 641

5.7.6 Reentrancy . 641
5.8 RTE Lifecycle API Reference . 642

5.8.1 Rte_Start . 642
5.8.1.1 Signature . 643
5.8.1.2 Existence . 643
5.8.1.3 Description . 643
5.8.1.4 Return Value . 643
5.8.1.5 Notes . 644

5.8.2 Rte_Stop . 644
5.8.2.1 Signature . 644
5.8.2.2 Existence . 644
5.8.2.3 Description . 644
5.8.2.4 Return Value . 645
5.8.2.5 Notes . 645

5.8.3 Rte_PartitionTerminated . 645
5.8.3.1 Signature . 646
5.8.3.2 Existence . 646
5.8.3.3 Description . 646
5.8.3.4 Return Value . 646
5.8.3.5 Notes . 646

5.8.4 Rte_PartitionRestarting . 647
5.8.4.1 Signature . 647
5.8.4.2 Existence . 647
5.8.4.3 Description . 647
5.8.4.4 Return Value . 648
5.8.4.5 Notes . 648

5.8.5 Rte_RestartPartition . 648

14 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.5.1 Signature . 648
5.8.5.2 Existence . 649
5.8.5.3 Description . 649
5.8.5.4 Return Value . 649
5.8.5.5 Notes . 650

5.8.6 Rte_Init . 650
5.8.6.1 Signature . 650
5.8.6.2 Existence . 650
5.8.6.3 Description . 651
5.8.6.4 Return Value . 651
5.8.6.5 Notes . 651

5.8.7 Rte_StartTiming . 651
5.8.7.1 Signature . 652
5.8.7.2 Existence . 652
5.8.7.3 Description . 652
5.8.7.4 Return Value . 652
5.8.7.5 Notes . 652

5.9 RTE Call-backs Reference . 653
5.9.1 RTE-COM Message Naming Conventions 653
5.9.2 Communication Service Call-backs 653

5.9.2.1 Call-backs for communication over AUTOSAR COM 654
5.9.2.2 Call-backs for communication over AUTOSAR LdCom 662

5.9.3 NVM Service Call-backs . 669
5.9.3.1 Rte_SetMirror . 669
5.9.3.2 Rte_GetMirror . 670
5.9.3.3 Rte_NvMNotifyJobFinished 672
5.9.3.4 Rte_NvMNotifyInitBlock 673

5.10 Expected interfaces . 674
5.10.1 Expected Interfaces from Com 674
5.10.2 Expected Interfaces from LdCom 674
5.10.3 Expected Interfaces from Os 675
5.10.4 Expected Interfaces for Data Transformation 675
5.10.5 Expected Interfaces from NvM 675

5.11 VFB Tracing Reference . 676
5.11.1 Principle of Operation . 676
5.11.2 Support for multiple clients 677
5.11.3 Support for Multiple Instantiation 677
5.11.4 Contribution to the Basic Software Module Description 677
5.11.5 Trace Events . 678

5.11.5.1 RTE API Trace Events 678
5.11.5.2 BSW Scheduler API Trace Events 679
5.11.5.3 COM Trace Events 680
5.11.5.4 OS Trace Events . 682
5.11.5.5 Runnable Entity Trace Events 684
5.11.5.6 BSW Schedulable Entities Trace Events 685
5.11.5.7 RPT Trace Events 686

15 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.11.6 Configuration . 687
5.11.7 Interaction with Object-code Software-Components 688

6 Basic Software Scheduler Reference 690

6.1 Scope . 690
6.2 API Principles . 690

6.2.1 Basic Software Scheduler Namespace 690
6.2.2 BSW Scheduler Name Prefix and Section Name Prefix . . . 691
6.2.3 BSW Scheduler API options 695

6.3 Basic Software Scheduler modules . 695
6.3.1 Module Interlink Types Header 695

6.3.1.1 File Name . 696
6.3.1.2 Scope . 697
6.3.1.3 File Contents . 697
6.3.1.4 Basic Software Scheduler Modes 697

6.3.2 Module Interlink Header . 697
6.3.2.1 File Name . 698
6.3.2.2 Scope . 699
6.3.2.3 File Contents . 699

6.4 API Data Types . 703
6.4.1 Predefined Error Codes for Std_ReturnType 703

6.4.1.1 SCHM_E_OK . 704
6.4.1.2 SCHM_E_LIMIT . 704
6.4.1.3 SCHM_E_NO_DATA 704
6.4.1.4 SCHM_E_TRANSMIT_ACK 704
6.4.1.5 SCHM_E_IN_EXCLUSIVE_AREA 704
6.4.1.6 SCHM_E_TIMEOUT 705
6.4.1.7 SCHM_E_LOST_DATA 705

6.4.2 Basic Software Modes . 705
6.4.3 Enumeration Data Types . 707
6.4.4 Range Data Types . 710
6.4.5 Data Types with bitfield conversions 712

6.5 API Reference . 713
6.5.1 SchM_Enter . 714
6.5.2 SchM_Exit . 715
6.5.3 SchM_Call . 716
6.5.4 SchM_Result . 718
6.5.5 SchM_Send . 720
6.5.6 SchM_Receive . 722
6.5.7 SchM_Switch . 723
6.5.8 SchM_Mode . 725
6.5.9 Enhanced SchM_Mode . 726
6.5.10 SchM_SwitchAck . 729
6.5.11 SchM_Trigger . 730
6.5.12 SchM_ActMainFunction . 731
6.5.13 SchM_CData . 733

16 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.5.14 SchM_Pim . 734
6.6 Bsw Module Entity Reference . 735

6.6.1 Signature . 735
6.6.2 Entry Point Prototype . 738
6.6.3 Reentrancy . 740
6.6.4 Provide activating Bsw event 740

6.7 Basic Software Scheduler Lifecycle API Reference 741
6.7.1 SchM_Init . 741
6.7.2 SchM_Start . 742
6.7.3 SchM_StartTiming . 742
6.7.4 SchM_Deinit . 743
6.7.5 SchM_GetVersionInfo . 744

7 RTE Implementation Plug-Ins Reference 746

7.1 Introduction . 746
7.1.1 RTE Implementation Plug-Ins in the AUTOSAR Architecture 746

7.2 Interface between RTE Implementation Plug-Ins and RTE 748
7.2.1 File Structure . 748

7.2.1.1 RTE Global Buffer Declaration File 750
7.2.1.2 RIPS Buffer Declaration Files 751
7.2.1.3 RTE Implementation Plug-In Header File 752
7.2.1.4 RIPS SWC-BSW-Instance Header File 753
7.2.1.5 RTE Implementation Plug-In Implementation File . . 754
7.2.1.6 RTE Header File . 755
7.2.1.7 Application Header File 755
7.2.1.8 Module Interlink Header 755
7.2.1.9 RTE Data Handle Types Header File 755

7.2.2 API principles . 756
7.2.2.1 API name pattern . 756
7.2.2.2 Basic requirements on RTE Implementation

Plug-In Service 758
7.2.2.3 Basic requirements on RTE Implementation 758

7.2.3 API Data Types . 759
7.2.4 API Reference . 759

7.2.4.1 Implicit buffer value access 759
7.2.4.2 Implicit buffer address access 761
7.2.4.3 Implict communication buffer Fill Flush Routines . . 764
7.2.4.4 Explicit access protection 764
7.2.4.5 Explicit data access services 769
7.2.4.6 ExclusiveArea protection 774
7.2.4.7 Mode queue protection functions 776
7.2.4.8 Distributed Shared Mode Queue schedule synchro-

nization functions . 777
7.2.4.9 Invocation functions for Transformers 780
7.2.4.10 Signal notifications for transformer 784
7.2.4.11 RTE Implementation Plug-In Lifecycle API 790

17 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3 RTE Implementation Plug-Ins Functional Specification 792
7.3.1 Specializations of AtomicSwComponentTypes 792
7.3.2 Interaction with VFB Tracing 793
7.3.3 Validation Strategy for RTE Implementation Plug-Ins 793

7.3.3.1 Graduated Validation Strategy 793
7.3.3.2 Validation Implication w.r.t. Exclusive Areas 793
7.3.3.3 Validation Implication w.r.t. Event To Task Mapping . 794

7.3.4 Data Communication . 796
7.3.4.1 Enable RTE Implementation Plug-In support for

communication graphs 796
7.3.4.2 Details on RIPS FlatInstanceDescriptors for

Data Communication Graphs 797
7.3.4.3 Data Communication Graphs involving

NvBlockSwComponents 800
7.3.4.4 Handling of Communication Status and Conversion

with RTE Implementation Plug-Ins 803
7.3.4.5 Instantiation of global copy 809
7.3.4.6 Explicit Communication and RTE Implementation

Plug-Ins . 810
7.3.4.7 Implicit Communication and RTE Implementation

Plug-Ins . 818
7.3.4.8 Inter Runnable Variables and RTE Implementation

Plug-Ins . 828
7.3.4.9 RTE Implementation Plug-Ins and NvBlockSwCom-

ponents . 829
7.3.5 Exclusive Areas . 841

7.3.5.1 Exclusive Areas and RTE Implementation Plug-Ins . 841
7.3.5.2 Enable RTE Implementation Plug-In support for Ex-

clusiveAreas . 843
7.3.5.3 Exclusive Areas in Role canEnterExclusiveArea . . . 843
7.3.5.4 Exclusive Areas in Role runsInsideExclusiveArea . . 845

7.3.6 Modes . 846
7.3.6.1 Modes and RTE Implementation Plug-Ins 846
7.3.6.2 Enable RTE Implementation Plug-In support for

mode machine instances 847
7.3.6.3 Enable RTE Implementation Plug-In support for dis-

tributed shared mode queues 847
7.3.6.4 RTE Implementation Plug-In support for distributed

shared mode queues 848
7.3.7 Compatibility Mode . 852

7.3.7.1 Detection of source code vs. object code software
components . 852

7.3.7.2 Compatibility Mode and RTE Implementation Plug-Ins 852
7.3.8 Transformers . 853

7.3.8.1 Enable RTE Implementation Plug-In support for
client server transformers 853

18 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.8.2 Enable RTE Implementation Plug-In support for trig-
ger transformers . 853

7.3.8.3 Handling of Data Communication Graphs 854
7.3.8.4 Handling of Client Server Communication

Graphs and Trigger Communication Graphs . 855
7.3.9 Measurement . 856
7.3.10 Inter-Partition communication 857
7.3.11 Bypass Support . 858

7.3.11.1 Component wrapper method 858
7.3.11.2 Direct buffer access method 858
7.3.11.3 Extended buffer access method 858

7.3.12 Activation of RTEEvents and BswEvents 859

8 RTE ECU Configuration 861

8.1 RTE Module Configuration . 861
8.1.1 RTE Configuration Version Information 864

8.2 RTE Generation Parameters . 865
8.3 RTE PreBuild configuration . 872
8.4 RTE PostBuild configuration . 874
8.5 Handling of Software Component instances 877

8.5.1 RTE Event to task mapping 879
8.5.1.1 Evaluation and execution order 881
8.5.1.2 Direct function call 881
8.5.1.3 Schedule Points . 883
8.5.1.4 Timeprotection support 884
8.5.1.5 Os Interaction . 885
8.5.1.6 Background activation 886
8.5.1.7 Constraints . 886

8.5.2 Rte Os Interaction . 896
8.5.2.1 Activation using Os features 898
8.5.2.2 Modes and Schedule Tables 900

8.5.3 Exclusive Area implementation 905
8.5.4 NVRam Allocation . 908
8.5.5 SWC Trigger queuing . 913
8.5.6 SWC Mode Machine Instance configuration 917

8.6 Handling of Software Component types 920
8.6.1 Selection of Software-Component Implementation 920
8.6.2 Component Type Calibration 922

8.7 Implicit communication configuration 925
8.8 Communication infrastructure . 928
8.9 Configuration of the BSW Scheduler 928

8.9.1 BSW Scheduler General configuration 929
8.9.2 BSW Module Instance configuration 930

8.9.2.1 BSW ExclusiveArea configuration 933
8.9.2.2 BswEvent to task mapping 937
8.9.2.3 BSW Trigger configuration 945

19 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.9.2.4 BSW ModeDeclarationGroup configuration 950
8.9.2.5 BSW Client Server configuration 953
8.9.2.6 BSW Sender Receiver configuration 955
8.9.2.7 BSW Mode Machine Instance configuration 957

8.10 Configuration of Synchronization Points 959
8.11 Configuration of Initialization . 961
8.12 Configuration of Task Chains . 964
8.13 Configuration of distributed shared mode queues 965
8.14 Configuration of RTE Implementation Plug-Ins 968

8.14.1 General configuration definitions for Uri References . . . 968
8.14.2 General configuration of RTE Implementation Plug-Ins uti-

lization . 969
8.14.3 Configuration of Fill-Flush-Routines of RTE Implementation

Plug-Ins . 973
8.14.4 Configuration of invocation handlers of RTE Implementation

Plug-Ins . 975

A Metamodel Restrictions 977

A.1 Restrictions concerning WaitPoint 977
A.2 Restrictions concerning RTEEvent . 978
A.3 Restrictions concerning queued implementation policy 978
A.4 Restrictions concerning ServerCallPoint 979
A.5 Restriction concerning multiple instantiation of software components . 980
A.6 Restrictions concerning runnable entity 980
A.7 Restrictions concerning runnables with dependencies on modes . . . 981
A.8 Restriction concerning SwcInternalBehavior 984
A.9 Restrictions concerning Initial Value . 984
A.10 Restriction concerning PerInstanceMemory 984
A.11 Restrictions concerning unconnected r-port 985
A.12 Restrictions regarding communication of mode switch notifications . . 985
A.13 Restrictions regarding Measurement and Calibration 986
A.14 Restriction concerning ExclusiveAreaImplMechanism 986
A.15 Restrictions concerning AtomicSwComponentTypes 987
A.16 Restriction concerning the enableUpdate attribute of Nonqueue-

dReceiverComSpecs . 987
A.17 Restrictions concerning the large and dynamic data type 987
A.18 Restriction concerning REFERENCE types 988
A.19 Restriction concerning ModeDeclarationGroup categories and value

attributes . 989
A.20 Restrictions concerning C/S Interfaces 989

B External Requirements 990

C MISRA C Compliance 991

D Referenced Meta Classes 993

20 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

E Referenced ECUC Configuration Parameters 1136

E.1 Com . 1136
E.1.1 ComGroupSignal . 1136
E.1.2 ComIPdu . 1143
E.1.3 ComSignal . 1148
E.1.4 ComSignalGroup . 1161

E.2 LdCom . 1169
E.2.1 LdComConfig . 1169
E.2.2 LdComIPdu . 1169

E.3 EcuC . 1176
E.3.1 EcucPartition . 1176

E.4 NvM . 1178
E.4.1 NvMBlockDescriptor . 1178

E.5 Os . 1194
E.5.1 OsAlarm . 1194
E.5.2 OsApplication . 1196
E.5.3 OsCounter . 1200
E.5.4 OsEvent . 1203
E.5.5 OsScheduleTable . 1204
E.5.6 OsScheduleTableExpiryPoint 1206
E.5.7 OsTask . 1207

F Examples 1211

F.1 ModeDeclarationGroupMapping . 1211
F.2 Stability need for received data . 1217
F.3 CompuMethod with bitfield texttable conversion 1223
F.4 Structure type with self-reference . 1228
F.5 Multiple calibration parameters instances 1231

G Changes History 1240

G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1 1240
G.1.1 Deleted SWS Items . 1240
G.1.2 Changed SWS Items . 1240
G.1.3 Added SWS Items . 1240

G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2 1241
G.2.1 Deleted SWS Items . 1241
G.2.2 Changed SWS Items . 1241
G.2.3 Added SWS Items . 1242

G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3 1243
G.3.1 Renamed SWS Items . 1243
G.3.2 Added constraints . 1245
G.3.3 Deleted SWS Items . 1245
G.3.4 Changed SWS Items . 1245
G.3.5 Added SWS Items . 1247

G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1 1248
G.4.1 Added Traceables in 4.1.2 . 1248

21 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

G.4.2 Changed Traceables in 4.1.2 1248
G.4.3 Deleted Traceables in 4.1.2 1249
G.4.4 Added Constraints in 4.1.2 1249
G.4.5 Changed Constraints in 4.1.2 1249
G.4.6 Deleted Constraints in 4.1.2 1249

G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2 1249
G.5.1 Added Traceables in 4.1.3 . 1249
G.5.2 Changed Traceables in 4.1.3 1250
G.5.3 Deleted Traceables in 4.1.3 1250
G.5.4 Added Constraints in 4.1.3 1250
G.5.5 Changed Constraints in 4.1.3 1250
G.5.6 Deleted Constraints in 4.1.3 1250

G.6 Changes in Rel. 4.2 Rev. 1 compared to Rel. 4.1 Rev. 3 1251
G.6.1 Added Traceables in 4.2.1 . 1251
G.6.2 Changed Traceables in 4.2.1 1252
G.6.3 Deleted Traceables in 4.2.1 1253
G.6.4 Added Constraints in 4.2.1 1253
G.6.5 Changed Constraints in 4.2.1 1253
G.6.6 Deleted Constraints in 4.2.1 1253

G.7 Changes in Rel. 4.2 Rev. 2 compared to Rel. 4.2 Rev. 1 1254
G.7.1 Added Traceables in 4.2.2 . 1254
G.7.2 Changed Traceables in 4.2.2 1254
G.7.3 Deleted Traceables in 4.2.2 1254
G.7.4 Added Constraints in 4.2.2 1255
G.7.5 Changed Constraints in 4.2.2 1255
G.7.6 Deleted Constraints in 4.2.2 1255

G.8 Changes in Rel. 4.3 Rev. 0 compared to Rel. 4.2 Rev. 2 1255
G.8.1 Added Traceables in 4.3.0 . 1255
G.8.2 Changed Traceables in 4.3.0 1256
G.8.3 Deleted Traceables in 4.3.0 1256
G.8.4 Renamed Constraints in 4.3.0 1256
G.8.5 Added Constraints in 4.3.0 1260
G.8.6 Changed Constraints in 4.3.0 1260
G.8.7 Deleted Constraints in 4.3.0 1260

G.9 Changes in Rel. 4.3 Rev. 1 compared to Rel. 4.3 Rev. 0 1260
G.9.1 Added Traceables in 4.3.1 . 1260
G.9.2 Changed Traceables in 4.3.1 1260
G.9.3 Deleted Traceables in 4.3.1 1261
G.9.4 Added Constraints in 4.3.1 1261
G.9.5 Changed Constraints in 4.3.1 1261
G.9.6 Deleted Constraints in 4.3.1 1261

G.10 Changes in Rel. 4.4 Rev. 0 compared to Rel. 4.3 Rev. 1 1261
G.10.1 Added Traceables in 4.4.0 . 1261
G.10.2 Changed Traceables in 4.4.0 1263
G.10.3 Deleted Traceables in 4.4.0 1267
G.10.4 Added Constraints in 4.4.0 1267

22 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

G.10.5 Changed Constraints in 4.4.0 1267
G.10.6 Deleted Constraints in 4.4.0 1267

23 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

References

[1] Virtual Functional Bus
AUTOSAR_EXP_VFB

[2] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[3] Specification of Communication
AUTOSAR_SWS_COM

[4] Specification of Operating System
AUTOSAR_SWS_OS

[5] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[6] Methodology
AUTOSAR_TR_Methodology

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[8] System Template
AUTOSAR_TPS_SystemTemplate

[9] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[10] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[11] Glossary
AUTOSAR_TR_Glossary

[12] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[13] Requirements on Runtime Environment
AUTOSAR_SRS_RTE

[14] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions

[15] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[16] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[17] Specification of I/O Hardware Abstraction
AUTOSAR_SWS_IOHardwareAbstraction

24 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[18] Requirements on Operating System
AUTOSAR_SRS_OS

[19] Requirements on Communication
AUTOSAR_SRS_COM

[20] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[21] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager

[22] Collection of blueprints for AUTOSAR M1 models
AUTOSAR_MOD_GeneralBlueprints

[23] Specification of COM Based Transformer
AUTOSAR_SWS_COMBasedTransformer

[24] Guide to BSW Distribution
AUTOSAR_EXP_BSWDistributionGuide

[25] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer

[26] General Specification on Transformers
AUTOSAR_ASWS_TransformerGeneral

[27] Guidelines for the use of the C language in critical systems, ISBN 978-1-906400-
10-1
MISRA_C_2012.pdf

[28] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[29] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[30] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction

[31] Specification of Standard Types
AUTOSAR_SWS_StandardTypes

[32] Specification of Bit Handling Routines
AUTOSAR_SWS_BFXLibrary

[33] Collection of constraints on AUTOSAR M1 models
AUTOSAR_TR_AutosarModelConstraints

25 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

http://www.asam.net

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note on XML examples

This specification includes examples in XML based on the AUTOSAR metamodel avail-
able at the time of writing. These examples are included as illustrations of configura-
tions and their expected outcome but should not be considered part of the specification.

1 Introduction

This document contains the software specification of the AUTOSAR Run-Time Environ-
ment (RTE) and the Basic Software Scheduler. Basically, the RTE together with the
OS, AUTOSAR COM and other Basic Software Modules is the implementation of the
Virtual Functional Bus concepts (VFB, [1]). The RTE implements the AUTOSAR Virtual
Functional Bus interfaces and thereby realizes the communication between AUTOSAR
software-components.

This document describes how these concepts are realized within the RTE. Further-
more, the Application Programming Interface (API) of the RTE and the interaction of
the RTE with other basic software modules is specified.

The Basic Software Scheduler offers concepts and services to integrate Basic Soft-
ware Modules Hence, the Basic Software Scheduler

• embed Basic Software Module implementations into the AUTOSAR OS context

• trigger main processing functions of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

• to communicate modes between Basic Software Modules

1.1 Scope

This document is intended to be the main reference for developers of an RTE gener-
ator tool or of a concrete RTE implementation respectively. The document is also the
reference for developers of AUTOSAR software-components and basic software mod-
ules that interact with the RTE, since it specifies the application programming interface
of the RTE and therefore the mechanisms for accessing the RTE functionality. Fur-
thermore, this specification should be read by the AUTOSAR working groups that are
closely related to the RTE (see Section 1.2 below), since it describes the interfaces of
the RTE to these modules as well as the behavior / functionality the RTE expects from
them.

This document is structured as follows. After this general introduction, Chapter 2 gives
a more detailed introduction of the concepts of the RTE. Chapter 3 describes how an
RTE is generated in the context of the overall AUTOSAR methodology. Chapter 4 is

26 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the central part of this document. It specifies the RTE functionality in detail. The RTE
API is described in Chapter 5.

The appendix of this document consists of five parts: Appendix A lists the restrictions to
the AUTOSAR metamodel that this version of the RTE specification relies on. Appendix
B explicitly lists all external requirements, i.e. all requirements that are not about the
RTE itself but specify the assumptions on the environment and the input of an RTE
generator. In Appendix C some MISRA-C rules are listed that are likely to be violated
by RTE code, and the rationale why these violations may occur.

Note that Chapters 1 and 2, as well as Appendix C do not contain any requirements
and are thus intended for information only.

Chapters 4 and 5 are probably of most interest for developers of an RTE Generator.
Chapters 2, 3, 5 are important for developers of AUTOSAR software-components and
basic software modules. The most important chapters for related AUTOSAR work
packages would be Chapters 4, 5, as well as Appendix B.

The specifications in this document do not define details of the implementation of a
concrete RTE or RTE generator respectively. Furthermore, aspects of the ECU- and
system-generation process (like e.g. the mapping of SW-Cs to ECUs, or schedulability
analysis) are also not in the scope of this specification. Nevertheless, it is specified
what input the RTE generator expects from these configuration phases.

1.2 Dependency to other AUTOSAR specifications

The main documents that served as input for the specification of the RTE are the spec-
ification of the Virtual Functional Bus [1] and the specification of the Software Com-
ponent Template [2]. Also of primary importance are the specifications of those Basic
Software modules that closely interact with the RTE (or vice versa). These are espe-
cially the communication module [3] and the operating system [4]. The main input of
an RTE generator is described (among others) in the ECU Configuration Description.
Therefore, the corresponding specification [5] is also important for the RTE specifica-
tion. Furthermore, as the process of RTE generation is an important part of the overall
AUTOSAR Methodology, the corresponding document [6] is also considered.

The following list shows the specifications that are closely interdependent to the spec-
ification of the RTE:

• Specification of the Virtual Functional Bus [1]

• Specification of the Software Component Template [2]

• Specification of AUTOSAR COM [3]

• Specification of AUTOSAR OS [4]

• Specification of ECU State Manager and Communication Manager [7]

• Specification of ECU Configuration [5]

27 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• Specification of System Description / Generation [8]

• AUTOSAR Methodology [6]

• Specification of BSW Module Description Template [9]

• AUTOSAR Generic Structure Template [10]

1.3 Acronyms and Abbreviations

All abbreviations used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11].

1.4 Technical Terms

All technical terms used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11] or the Software Component Template
Specification [2].

Term Description

application mode manager

An application mode manager is an AUTOSAR software-
component that provides the service of switching modes. The
modes of an application mode manager do not have to be
standardized.

associated RTE Implementation
Plug-In

The RTE Implementation Plug-In which is assigned to
a communication graph, ExclusiveArea, mode machine
instance or distributed shared mode group and there-
fore handles all accesses via RTE APIs, SchM APIs or RTE in-
ternal code.

AutosarDataPrototype im-
plementation

Definitions and declarations for non automatic1 memory objects
which are allocated by the RTE and implementing AutosarDat-
aPrototypes or their belonging status handling.

BswSchedulableEntity acti-
vation

The activation of a BswSchedulableEntity is defined as the
activation of the task that contains the BswSchedulableEn-
tity and eventually includes setting a flag that tells the glue
code in the task which BswSchedulableEntity is to be exe-
cuted.

BswSchedulableEntity start
A BswSchedulableEntity is started by the calling the C-
function that implements the BswSchedulableEntity from
within a started task.

’C’ typed PerInstanceMem-
ory

’C’ typed PerInstanceMemory is defined with the class PerIn-
stanceMemory. The type of the memory is defined with a ’C’
typedef in the attribute typeDefinition.

1declaration with no static or external specifier defines an automatic variable

28 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

client

A client is defined as one ClientServerOperation in one
RPortPrototype of one Software Component instance. For
the definition of the client neither the number of ServerCall-
Points nor RunnableEntity accesses to the ServerCall-
Point are relevant. A Software Component instance can appear
as several clients to the same server if it defines ServerCall-
Points for several PortPrototypes of the same PortInter-
face’s ClientServerOperation.

CodeGenerationTime variability
Variability defined with an VariationPoint or Attribute-
ValueVariationPoint with latest bindingTime CodeGenera-
tionTime.

coherency group

A set of implicit read accesses and implicit write
accesses for which the RTE cares for data coherency. Please
note that in the context of this specification the definition of co-
herency includes that

• read data values of different VariableDataPrototypes
have to be from the same age, except the values are
changed by implicit write accesses belonging to
the coherency group

• written data values of different VariableDataProto-
types are communicated to readers NOT belonging to the
coherency group after the last implicit write ac-
cess belonging to the coherency group.

coherent implicit data access

An implicit read access or an implicit write ac-
cess which belongs to coherency group. Therefore it is
referenced by a RteVariableReadAccessRef or RteVari-
ableWriteAccessRef belonging to a RteImplicitCommu-
nication container which RteCoherentAccess parameter is
set to true.

coherent implicit read access

An implicit read access which belongs to coherency
group. Therefore it is referenced by a RteVariableReadAc-
cessRef belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set to true.

coherent implicit write access

An implicit write access which belongs to coherency
group. Therefore it is referenced by a RteVariableReadAc-
cessRef or RteVariableWriteAccessRef belonging to
a RteImplicitCommunication container which RteCo-
herentAccess parameter is set to true.

common mode machine in-
stance

A ‘common mode machine instance’ is a special ‘mode machine
instance’ shared by BSW Modules and SW-Cs:
The RTE Generator creates only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated in a
port of a software-component is synchronized (synchronized-
ModeGroup of a SwcBswMapping) with a providedModeGroup
ModeDeclarationGroupPrototype of a Basic Software Module in-
stance. The related mode machine instance is called com-
mon mode machine instance.

29 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Communication Graph

The sum of all AbstractAccessPoints to elements of Port-
Interfaces instantiated in PortPrototypes which are con-
nected to each other, or the sum of all accesses from BswMod-
uleEntitys to interface elements in a BswModuleDescrip-
tions connected to each other.

Data Communication Graph

The sum of all VariableAccesses to DataPrototypes in-
stantiated in PortPrototypes which are connected to each
other, or the sum of all VariableAccesses to DataProto-
types in the InternalBehavior, or the sum of all BswVari-
ableAccesses to DataPrototypes in BswModuleDescrip-
tions connected to each other.

Client Server Communication
Graph

The sum of all ServerCallPoints to operations instantiated
in PortPrototypes which are connected to each other inclu-
sive the belonging server runnable.

Trigger Communication Graph

The sum of all ExternalTriggeringPoints for triggers
instantiated in PortPrototypes which are connected to each
other inclusive the belonging triggered runnable.

copy semantic

Copy semantic means, that the accessing entities are able to
read or write the "copied" data from their execution context in a
non concurrent and non preempting manner. If all accessing en-
tities are in the same preemption area this might not require
a real physical data copy.

core local mode user group

In the case that mode users belong to different partitions which
in turn are scheduled on different micro controller cores the over-
all mode machine instance needs to be distributed cross core.
Thereby some restrictions are only applicable between the mode
users executed on the same micro controller core.
All mode users of the same mode manager which belong to
EcucPartition which in turn belong to OsApplications re-
ferring to the same EcucCoreDefinition are belonging to the
same core local mode user group.

data semantic

When data is distributed, the last received value is of interest
(last-is-best semantics). Therefore the software implementation
policy, stated in the swImplPolicy attribute of the SwDataDef-
Props, shouldn’t be ’queued’.

event semantic

When events are distributed the whole history of received events
is of interest, hence they must be queued on receiver side. There-
fore the software implementation policy, stated in the swIm-
plPolicy attribute of the SwDataDefProps, will have the value
’queued’(corresponding to event distribution with a queue).

execution-instance
An execution-instance of an ExecutableEntity is one in-
stance or call context of an ExecutableEntity with respect
to concurrent execution, see section 4.2.3.

implicit read access VariableAccess aggregated in the role dataReadAccess to
a VariableDataPrototype

implicit write access VariableAccess aggregated in the role dataWriteAccess to
a VariableDataPrototype

30 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

incoherent implicit data access

An implicit read access or an implicit write ac-
cess which does not belong to a coherency group. Therefore
it is NOT referenced by any RteVariableReadAccessRef or
RteVariableWriteAccessRef belonging to a RteImplic-
itCommunication container which RteCoherentAccess pa-
rameter is set to true.

incoherent implicit read access

An implicit read access which does not belong to a co-
herency group. Therefore it is NOT referenced by any Rte-
VariableReadAccessRef belonging to a RteImplicitCom-
munication container which RteCoherentAccess parameter
is set to true.

incoherent implicit write access

An implicit write access which does not belong to a
coherency group. Therefore it is NOT referenced by any
RteVariableWriteAccessRef belonging to a RteImplic-
itCommunication container which RteCoherentAccess pa-
rameter is set to true.

inter-ECU communication The communication between ECUs, typically using COM is called
inter-ECU communication in this document.

inter-partition communication

The communication within one ECU but between different parti-
tions, represented by different OS applications, is called inter-
partition communication in this document. It may involve the
use of OS mechanisms like IOC or trusted function calls. The
partitions can be located on different cores or use different mem-
ory sections of the ECU.

intra-ECU communication

The communication within one ECU is called intra-ECU com-
munication in this document. It is a super set of inter-
partition communication and intra-partition communi-
cation.

intra-partition communication
The communication within one partition of one ECU is called
intra-partition communication. In this case, RTE can make
use of internal buffers and queues for communication.

invalidateable Invalidateable VariableDataPrototypes are Variable-
DataPrototypes that have an invalidValue.

LinkTime variability Variability defined with an VariationPoint or AttributeValue-
VariationPoint with latest bindingTime LinkTime.

mode disabling

When a ‘mode disabling’ is active, RTE and Basic Software
Scheduler disables the start of mode disabling dependent
ExecutableEntitys. The ‘mode disabling’ is active during the
mode that is referenced in the mode disabling dependency and
during the transitions that enter and leave this mode. See also
section 4.4.1.

mode disabling dependency

A RTEEvent (respectively a BswEvent) that starts a
RunnableEntity (respectively a BswSchedulableEntity)
can contain a disabledMode (respectively disabledInMode) as-
sociation which references a ModeDeclaration. This association
is called mode disabling dependency in this document.

mode disabling dependent Exe-
cutableEntity

A mode disabling dependent RunnableEntity or a
BswSchedulableEntity is triggered by an RTEEvent
respectively a BswEvent with a mode disabling depen-
dency. RTE and Basic Software Scheduler prevent the start
of those RunnableEntity or BswSchedulableEntity by
the RTEEvent / BswEvent, when the corresponding mode
disabling is active. See also section 4.4.1.

31 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

mode machine instance

The instances of mode machines or ModeDeclarationGroups are
defined by the ModeDeclarationGroupPrototypes of the mode
managers.
Since a mode switch is not executed instantaneously, The RTE
or Basic Software Scheduler has to maintain it’s own states. For
each mode manager’s ModeDeclarationGroupPrototype, RTE
or Basic Software Scheduler has one state machine. This state
machine is called mode machine instance. For all mode users
of the same mode manager’s ModeDeclarationGroupPrototype,
RTE and Basic Software Scheduler uses the same mode ma-
chine instance. See also section 4.4.2.

mode manager

Entering and leaving modes is initiated by a mode manager. A
mode manager is either a software component that provides a
p-port typed by a ModeSwitchInterface or a BSW module
which defines in its BswModuleDescription a ModeDeclara-
tionGroupPrototype in the role providedModeGroup. See also
section 4.4.2.

ModeSwitchAck ExecutableEn-
tity

A RunnableEntity or a BswSchedulableEntity that is trig-
gered by a ModeSwitchedAckEvent respectively a BswMod-
eSwitchedAckEvent connected to the mode manager’s Mod-
eDeclarationGroupPrototype. It is called ModeSwitchAck
ExecutableEntity. See also section 4.4.1.

mode switch notification

The communication of a mode switch from the mode manager
to the mode user using either the ModeSwitchInterface
or providedModeGroup and requiredModeGroup ModeDeclara-
tionGroupPrototypes is called mode switch notification.

mode switch port
The port for receiving (or sending) a mode switch notification. For
this purpose, a mode switch port is typed by a ModeSwitchIn-
terface.

mode user

An AUTOSAR SW-C or AUTOSAR Basic Software Module
that depends on modes is called a mode user. The depen-
dency can occur through a SwcModeSwitchEvent/BswMod-
eSwitchEvent, a ModeAccessPoint for a provided/re-
quired mode switch port, or a accessedModeGroup for a
providedModeGroup/requiredModeGroup ModeDeclara-
tionGroupPrototype. See also section 4.4.1.

NvBlockSwComponent NvBlockSwComponent is a SwComponentPrototype typed an
NvBlockSwComponentType.

on-entry ExecutableEntity

A RunnableEntity or a BswSchedulableEntity that is trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eSwitchEvent with ModeActivationKind ‘entry’ is triggered on
entering the mode. It is called on-entry ExecutableEntity. See
also section 4.4.1.

on-exit ExecutableEntity

A RunnableEntity or a BswSchedulableEntity that is trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eSwitchEvent with ModeActivationKind ‘exit’ is triggered on
exiting the mode. It is called on-exit ExecutableEntity. See also
section 4.4.1.

on-transition ExecutableEntity

A RunnableEntity or a BswSchedulableEntity that is trig-
gered by a SwcModeSwitchEvent respectively a BswMod-
eSwitchEvent with ModeActivationKind ‘transition’ is triggered
on a transition between the two specified modes. It is called on-
transition ExecutableEntity. See also section 4.4.1.

32 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

post-build variability Variability defined with an VariationPoint having an post-
BuildVariantCriterion

pre-build variability
Variability defined with an VariationPoint or AttributeValue-
VariationPoint with latest bindingTime SystemDesignTime,
CodeGenerationTime, PreCompileTime or LinkTime.

PreCompileTime variability Variability defined with an VariationPoint or AttributeValue-
VariationPoint with latest bindingTime PreCompileTime.

preemption area

A preemption area defines a set of tasks which are sched-
uled cooperatively. Therefore tasks of one preemption area are
preempting each other only at dedicated schedule points. A
schedule point is not allowed to occur during the execution of
a RunnableEntity.

primitive data type
Primitive data types are the types implemented by a boolean,
integer (up to 32 bits), floating point, or opaque type (up to 32
bits).

RIPS FlatInstanceDescriptor FlatInstanceDescriptor with rtePluginProps referenc-
ing a Communication Graph.

hline RP enabler flag A Boolean flag to permit run-time enabling/disabling bypass.

RP event id Identifier for bypassed event; passed as parameter to RP ser-
vice function.

RP global buffer
A buffer read/written by RP. The RP global buffer is con-
ceptually separated from the RTE managed buffer holding the
variable data prototype value.

RP global measurement buffer
A buffer used by RP to store the original variable data prototype
value for subsequent measurement purposes before replace-
ment by the RP generated value.

RP runnable disabler flag
A Boolean flag to permit conditional RunnableEntity execu-
tion. When conditional execution is configured the runnable is
executed if the flag is FALSE.

RP service component An AUTOSAR or vendor specific BSW module providing an RP
service, e.g. “XCP on CAN” or “XCP on Ethernet”.

RP service profile
A definition of a service combining the symbol of the function
providing the service and the permitted range of RP service
point ids.

RP service function An invocation of a function provided by a RP service compo-
nent where data is sampled and/or stimulated.

RP service point A location where one or more RP service functions pro-
vided by a RP service component are invoked.

RP service point id Integer identifier for RP service point.

RP service invocation wrapper

A “wrapper” function created by the RTE that is responsible for in-
voking the RP RP service function(s). The indirection thus
introduced enables a post-build tool to replace the invocation of
the RTE generated function with arbitrary functionality.

RP stimulation enabler flag A Boolean flag to permit conditional RP stimulation.

RTE event identifier Integer identifier used by RP to identify RTE event associated
with an RP service point.

RTE Implementation Plug-In

A RTE Implementation Plug-In is a part of the overall RTE
implementation which is not provided by the RTE Generator but
from an additional source (e.g. a Plug-In Generator or a manually
implemented source code).

RTE Implementation Plug-In
Service

A RTE Implementation Plug-In Service is a single entry
point into the RTE Implementation Plug-In implementing a
low level service for the RTE. For instance access to a specific
buffer.

33 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RIPS The acronym RIPS stands for RTE Implementation Plug-
In Service and the related API infix Rips is derived from this.

RIPS FlatInstanceDescriptor A FlatInstanceDescriptor which assigns the communica-
tion graph with an RTE Implementation Plug-In

runnable activation

The activation of a runnable is linked to the RTEEvent that leads
to the execution of the runnable. It is defined as the incident that
is referred to by the RTEEvent.
E. g., for a timing event, the corresponding runnable is activated,
when the timer expires, and for a data received event, the runn-
able is activated when the data is received by the RTE.

runnable start A runnable is started by the calling the C-function that imple-
ments the runnable from within a started task.

server
A server is defined as one RunnableEntity which is the target
of an OperationInvokedEvent. Call serialization is on activa-
tion of RunnableEntity.

server ExecutableEntity

A server that is triggered either by an OperationInvokedE-
vent or by an BswOperationInvokedEvent. In certain situa-
tions, RTE can implement the client server communication as a
simple function call.

server runnable

A server that is triggered by an OperationInvokedEvent. It
has a mixed behavior between a runnable and a function call. In
certain situations, RTE can implement the client server commu-
nication as a simple function call.

SystemDesignTime variability Variability defined with an VariationPoint or AttributeValue-
VariationPoint with latest bindingTime SystemDesignTime.

trigger emitter

A trigger emitter has the ability to release triggers which in turn
are activating triggered ExecutableEntitys. trigger emit-
ter are described by the meta model with provide trigger
ports, Trigger in role releasedTrigger, InternalTrig-
geringPoints and BswInternalTriggeringPoints.

trigger port A PortPrototype which is typed by an TriggerInterface

trigger sink

A trigger sink relies on the activation of Runnable Entities or Ba-
sic Software Schedulable Entities if a particular Trigger is raised.
A trigger sink has a dedicated require trigger port(s) or /
and requiredTrigger Trigger (s) to communicate to the trigger
source(s).

trigger source

A trigger source administrate the particular Trigger and informs
the RTE or Basic Software Scheduler if the Trigger is raised.
A trigger source has dedicated provide trigger port(s) or /
and releasedTrigger Trigger (s) to communicate to the trigger
sink(s).

triggered BswSchedulableEntity

A BswSchedulableEntity that is triggered at least by one
BswExternalTriggerOccurredEvent or BswInternal-
TriggerOccurredEvent. In particular cases, the Trigger
Event Communication or the Inter Basic Software Schedulable
Entity Triggering is implemented by Basic Software Scheduler as
a direct function call of the triggered ExecutableEntity by the trig-
gering ExecutableEntity.

34 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

triggered ExecutableEntity

A Runnable Entity or a Basic Software Schedulable Entity that
is triggered at least by one ExternalTriggerOccurredE-
vent / BswExternalTriggerOccurredEvent or Internal-
TriggerOccurredEvent / BswInternalTriggerOccurre-
dEvent. In particular cases, the Trigger Event Communication
or the Inter Runnable Triggering is implemented by RTE or Ba-
sic Software Scheduler as a direct function call of the triggered
ExecutableEntity by the triggering ExecutableEntity.

triggered runnable

A Runnable Entity that is triggered at least by one External-
TriggerOccurredEvent or InternalTriggerOccurredE-
vent. In particular cases, the Trigger Event Communication or
the Inter Runnable Triggering is implemented by RTE as a direct
function call of the triggered runnable by the triggering runnable.

unconnected port

An unconnected port is a RPortPrototype or PPortProto-
type referenced by no AssemblySwConnectors and/or Dele-
gationSwConnectors, or with at least no DataMapping of any
of the elements in the port interface. Hint: PRPortPrototypes
are always treated as connected ports. (See [SWS_Rte_06030])

Table 1.1: Technical Terms

1.5 Document Conventions

Requirements in the SRS are referenced using [SRS_Rte_<n>] where <n> is the
requirement id. For example, [SRS_Rte_00098].

Requirements in the SWS are marked with [SWS_Rte_<nnnnn>] as the first text in a
paragraph. The scope of the requirement is marked with the half brackets.

Constraints on the input of the RTE are marked with
[SWS_Rte_CONSTR_<XXXXX>].

Technical terms are typeset in monospace font, e.g. Warp Core.

AUTOSAR Meta Class Names and Attributes are typeset in monospace font, e.g. Ap-
plicationSwComponentType. As a general rule, plural forms of AUTOSAR Meta
Class Names and Attributes are created by adding "s" to the singular form, e.g. Port-
Prototypes. By this means the document resembles terminology used in the AU-
TOSAR XML Schema.

AUTOSAR ECU Configuration Parameters are typeset in monospace font, e.g. Rte-
CodeVendorId. As a general rule, plural forms of ECU Configuration Parameters
are created by adding "s" to the singular form, e.g. RteEventToTaskMappings. By
this means the document resembles terminology used in the ARXML file of AUTOSAR
ECU Configuration Parameter Definition.

API function calls are also marked with monospace font, like Rte_EjectWarpCore.

35 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1.6 Requirements Tracing

The following table references the requirements specified in [12] as well as [13] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00004] All Basic SW Modules shall

perform a pre-processor check
of the versions of all imported
include files

[SWS_Rte_07692]

[SRS_BSW_00007] All Basic SW Modules written in
C language shall conform to the
MISRA C 2012 Standard.

[SWS_Rte_01168] [SWS_Rte_03715]
[SWS_Rte_06804] [SWS_Rte_06805]
[SWS_Rte_06806] [SWS_Rte_06807]
[SWS_Rte_06808] [SWS_Rte_06809]
[SWS_Rte_06810] [SWS_Rte_07086]
[SWS_Rte_07300]

[SRS_BSW_00101] The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

[SWS_Rte_04546] [SWS_Rte_04547]
[SWS_Rte_04548] [SWS_Rte_04549]
[SWS_Rte_04550] [SWS_Rte_04551]
[SWS_Rte_07270] [SWS_Rte_07271]
[SWS_Rte_07273] [SWS_Rte_70047]
[SWS_Rte_80051] [SWS_Rte_80052]
[SWS_Rte_80055]

[SRS_BSW_00161] The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides
a standardized interface to
higher software layers

[SWS_Rte_02734]

[SRS_BSW_00300] All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_Rte_01003] [SWS_Rte_01157]
[SWS_Rte_01158] [SWS_Rte_01161]
[SWS_Rte_01169] [SWS_Rte_01171]
[SWS_Rte_07122] [SWS_Rte_07139]
[SWS_Rte_07284] [SWS_Rte_07288]
[SWS_Rte_07295] [SWS_Rte_07504]
[SWS_Rte_07922]

[SRS_BSW_00305] Data types naming convention [SWS_Rte_01055] [SWS_Rte_01150]
[SWS_Rte_02301] [SWS_Rte_02310]
[SWS_Rte_02311] [SWS_Rte_03731]
[SWS_Rte_03733]

[SRS_BSW_00307] Global variables naming
convention

[SWS_Rte_01171] [SWS_Rte_03712]
[SWS_Rte_07284]

[SRS_BSW_00308] AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_Rte_03786] [SWS_Rte_07121]
[SWS_Rte_07502] [SWS_Rte_07921]

36 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_BSW_00310] API naming convention [SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01083] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01102]
[SWS_Rte_01111] [SWS_Rte_01118]
[SWS_Rte_01120] [SWS_Rte_01123]
[SWS_Rte_01206] [SWS_Rte_01252]
[SWS_Rte_02569] [SWS_Rte_02631]
[SWS_Rte_02725] [SWS_Rte_03550]
[SWS_Rte_03553] [SWS_Rte_03560]
[SWS_Rte_03565] [SWS_Rte_03741]
[SWS_Rte_03744] [SWS_Rte_03800]
[SWS_Rte_03928] [SWS_Rte_03929]
[SWS_Rte_05509] [SWS_Rte_06207]
[SWS_Rte_07367] [SWS_Rte_07390]
[SWS_Rte_07394] [SWS_Rte_07556]

[SRS_BSW_00312] Shared code shall be reentrant [SWS_Rte_01012]
[SRS_BSW_00327] Error values naming convention [SWS_Rte_01058] [SWS_Rte_01060]

[SWS_Rte_01061] [SWS_Rte_01064]
[SWS_Rte_01065] [SWS_Rte_01317]
[SWS_Rte_02312] [SWS_Rte_02571]
[SWS_Rte_02594] [SWS_Rte_02702]
[SWS_Rte_02739] [SWS_Rte_02747]
[SWS_Rte_02757] [SWS_Rte_07054]
[SWS_Rte_07289] [SWS_Rte_07290]
[SWS_Rte_07384] [SWS_Rte_07562]
[SWS_Rte_07563] [SWS_Rte_07655]
[SWS_Rte_08065] [SWS_Rte_08551]
[SWS_Rte_08725] [SWS_Rte_08726]

[SRS_BSW_00330] It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_Rte_01274]

[SRS_BSW_00336] Basic SW module shall be able
to shutdown

[SWS_Rte_07274] [SWS_Rte_07275]
[SWS_Rte_07277] [SWS_Rte_70047]
[SWS_Rte_80053] [SWS_Rte_80054]
[SWS_Rte_80055]

[SRS_BSW_00337] Classification of development
errors

[SWS_Rte_06631] [SWS_Rte_06632]
[SWS_Rte_06633] [SWS_Rte_06634]
[SWS_Rte_06635] [SWS_Rte_06637]
[SWS_Rte_07675] [SWS_Rte_07682]
[SWS_Rte_07683] [SWS_Rte_07684]
[SWS_Rte_07685]

[SRS_BSW_00342] It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_Rte_07511]

[SRS_BSW_00346] All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

[SWS_Rte_06638]

37 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_BSW_00347] A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_Rte_06203] [SWS_Rte_06532]
[SWS_Rte_06535] [SWS_Rte_06536]
[SWS_Rte_07093] [SWS_Rte_07250]
[SWS_Rte_07253] [SWS_Rte_07255]
[SWS_Rte_07260] [SWS_Rte_07263]
[SWS_Rte_07266] [SWS_Rte_07282]
[SWS_Rte_07295] [SWS_Rte_07504]
[SWS_Rte_07528] [SWS_Rte_07694]
[SWS_Rte_08765] [SWS_Rte_08789]
[SWS_Rte_08790]

[SRS_BSW_00351] Encapsulation of compiler
specific methods to map objects

[SWS_Rte_04557]

[SRS_BSW_00353] All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_Rte_01163] [SWS_Rte_01164]
[SWS_Rte_07104] [SWS_Rte_07641]

[SRS_BSW_00384] The Basic Software Module
specifications shall specify at
least in the description which
other modules they require

[SWS_Rte_01412]

[SRS_BSW_00407] Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_Rte_07278] [SWS_Rte_07279]
[SWS_Rte_07280] [SWS_Rte_07281]

[SRS_BSW_00415] Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

[SWS_Rte_07295] [SWS_Rte_07500]
[SWS_Rte_07501] [SWS_Rte_07503]
[SWS_Rte_07504] [SWS_Rte_07505]
[SWS_Rte_07506] [SWS_Rte_07510]

[SRS_BSW_00447] Standardizing Include file
structure of BSW Modules
Implementing Autosar Service

[SWS_Rte_07120]

[SRS_Com_02044] AUTOSAR COM and LargeData
COM shall provide a transmit
confirmation function

[SWS_Rte_01407] [SWS_Rte_01411]

[SRS_Rte_00003] Tracing of sender-receiver
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte_03814]
[SWS_Rte_04531] [SWS_Rte_04532]
[SWS_Rte_07639]

[SRS_Rte_00004] Tracing of client-server
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte_03814]
[SWS_Rte_04531] [SWS_Rte_04532]
[SWS_Rte_07639]

[SRS_Rte_00005] The RTE generator shall support
"trace" builds

[SWS_Rte_01320] [SWS_Rte_01322]
[SWS_Rte_01323] [SWS_Rte_01327]
[SWS_Rte_01328] [SWS_Rte_03607]
[SWS_Rte_05091] [SWS_Rte_05092]
[SWS_Rte_05093] [SWS_Rte_05106]
[SWS_Rte_06031] [SWS_Rte_08000]

38 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00008] VFB tracing configuration [SWS_Rte_01236] [SWS_Rte_01320]
[SWS_Rte_01321] [SWS_Rte_01322]
[SWS_Rte_01323] [SWS_Rte_01324]
[SWS_Rte_01325] [SWS_Rte_03607]
[SWS_Rte_05091] [SWS_Rte_05092]
[SWS_Rte_05093] [SWS_Rte_08000]

[SRS_Rte_00011] Support for multiple Application
Software Component instances.

[SWS_Rte_01012] [SWS_Rte_01013]
[SWS_Rte_01016] [SWS_Rte_01126]
[SWS_Rte_01148] [SWS_Rte_01349]
[SWS_Rte_02001] [SWS_Rte_02002]
[SWS_Rte_02008] [SWS_Rte_02009]
[SWS_Rte_02015] [SWS_Rte_02310]
[SWS_Rte_02311] [SWS_Rte_03015]
[SWS_Rte_03711] [SWS_Rte_03716]
[SWS_Rte_03717] [SWS_Rte_03718]
[SWS_Rte_03719] [SWS_Rte_03720]
[SWS_Rte_03721] [SWS_Rte_03722]
[SWS_Rte_03793] [SWS_Rte_03806]
[SWS_Rte_06031] [SWS_Rte_07194]
[SWS_Rte_07225] [SWS_Rte_07837]
[SWS_Rte_07838] [SWS_Rte_07839]
[SWS_Rte_08091]

[SRS_Rte_00012] Multiple instantiated AUTOSAR
software components delivered
as binary code shall share code

[SWS_Rte_01007] [SWS_Rte_02015]
[SWS_Rte_03015]

[SRS_Rte_00013] Per-instance memory [SWS_Rte_02301] [SWS_Rte_02302]
[SWS_Rte_02303] [SWS_Rte_02304]
[SWS_Rte_02305] [SWS_Rte_03782]
[SWS_Rte_05062] [SWS_Rte_07045]
[SWS_Rte_07133] [SWS_Rte_07134]
[SWS_Rte_07135] [SWS_Rte_07161]
[SWS_Rte_07182] [SWS_Rte_07183]
[SWS_Rte_07184] [SWS_Rte_08303]
[SWS_Rte_08304]

[SRS_Rte_00017] Rejection of inconsistent
component implementations

[SWS_Rte_01004] [SWS_Rte_02751]
[SWS_Rte_07123] [SWS_Rte_07510]

[SRS_Rte_00018] Rejection of invalid
configurations

[SWS_Rte_01287] [SWS_Rte_01313]
[SWS_Rte_01358] [SWS_Rte_01373]
[SWS_Rte_02009] [SWS_Rte_02051]
[SWS_Rte_02204] [SWS_Rte_02254]
[SWS_Rte_02500] [SWS_Rte_02526]
[SWS_Rte_02529] [SWS_Rte_02662]
[SWS_Rte_02663] [SWS_Rte_02664]
[SWS_Rte_02670] [SWS_Rte_02706]
[SWS_Rte_02723] [SWS_Rte_02730]
[SWS_Rte_02733] [SWS_Rte_02738]
[SWS_Rte_02750] [SWS_Rte_03010]
[SWS_Rte_03014] [SWS_Rte_03018]

39 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03019] [SWS_Rte_03526]
[SWS_Rte_03527] [SWS_Rte_03594]
[SWS_Rte_03605] [SWS_Rte_03755]
[SWS_Rte_03764] [SWS_Rte_03813]
[SWS_Rte_03817] [SWS_Rte_03820]
[SWS_Rte_03823] [SWS_Rte_03826]
[SWS_Rte_03831] [SWS_Rte_03851]
[SWS_Rte_03862] [SWS_Rte_03866]
[SWS_Rte_03869] [SWS_Rte_03950]
[SWS_Rte_03951] [SWS_Rte_03970]
[SWS_Rte_03986] [SWS_Rte_03987]
[SWS_Rte_03988] [SWS_Rte_03989]
[SWS_Rte_05149] [SWS_Rte_06502]
[SWS_Rte_06503] [SWS_Rte_06504]
[SWS_Rte_06505] [SWS_Rte_06508]
[SWS_Rte_06509] [SWS_Rte_06511]
[SWS_Rte_06547] [SWS_Rte_06548]
[SWS_Rte_06610] [SWS_Rte_06613]
[SWS_Rte_06719] [SWS_Rte_06724]
[SWS_Rte_06732] [SWS_Rte_06768]
[SWS_Rte_06769] [SWS_Rte_06770]
[SWS_Rte_06801] [SWS_Rte_06802]
[SWS_Rte_06803] [SWS_Rte_06814]
[SWS_Rte_06839] [SWS_Rte_07005]
[SWS_Rte_07006] [SWS_Rte_07007]
[SWS_Rte_07026] [SWS_Rte_07028]
[SWS_Rte_07039] [SWS_Rte_07044]
[SWS_Rte_07057] [SWS_Rte_07075]
[SWS_Rte_07101] [SWS_Rte_07135]
[SWS_Rte_07157] [SWS_Rte_07170]
[SWS_Rte_07175] [SWS_Rte_07181]
[SWS_Rte_07190] [SWS_Rte_07191]
[SWS_Rte_07192] [SWS_Rte_07343]
[SWS_Rte_07347] [SWS_Rte_07353]
[SWS_Rte_07356] [SWS_Rte_07402]
[SWS_Rte_07403] [SWS_Rte_07516]
[SWS_Rte_07524] [SWS_Rte_07545]
[SWS_Rte_07548] [SWS_Rte_07549]
[SWS_Rte_07564] [SWS_Rte_07588]
[SWS_Rte_07610] [SWS_Rte_07621]
[SWS_Rte_07638] [SWS_Rte_07640]
[SWS_Rte_07642] [SWS_Rte_07654]
[SWS_Rte_07662] [SWS_Rte_07667]
[SWS_Rte_07670] [SWS_Rte_07681]
[SWS_Rte_07686] [SWS_Rte_07803]
[SWS_Rte_07808] [SWS_Rte_07809]
[SWS_Rte_07810] [SWS_Rte_07811]
[SWS_Rte_07812] [SWS_Rte_07842]

40 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07845] [SWS_Rte_07927]
[SWS_Rte_08072] [SWS_Rte_08076]
[SWS_Rte_08311] [SWS_Rte_08417]
[SWS_Rte_08423] [SWS_Rte_08603]
[SWS_Rte_08604] [SWS_Rte_08605]
[SWS_Rte_08700] [SWS_Rte_08767]
[SWS_Rte_08768] [SWS_Rte_08788]
[SWS_Rte_08800]

[SRS_Rte_00019] RTE is the communication
infrastructure

[SWS_Rte_01264] [SWS_Rte_02527]
[SWS_Rte_02528] [SWS_Rte_02610]
[SWS_Rte_02611] [SWS_Rte_02612]
[SWS_Rte_03000] [SWS_Rte_03001]
[SWS_Rte_03002] [SWS_Rte_03004]
[SWS_Rte_03005] [SWS_Rte_03007]
[SWS_Rte_03008] [SWS_Rte_03760]
[SWS_Rte_03761] [SWS_Rte_03762]
[SWS_Rte_03769] [SWS_Rte_03775]
[SWS_Rte_03776] [SWS_Rte_03795]
[SWS_Rte_03796] [SWS_Rte_04515]
[SWS_Rte_04516] [SWS_Rte_04520]
[SWS_Rte_04522] [SWS_Rte_04526]
[SWS_Rte_04527] [SWS_Rte_05065]
[SWS_Rte_05084] [SWS_Rte_05085]
[SWS_Rte_05500] [SWS_Rte_06000]
[SWS_Rte_06011] [SWS_Rte_06023]
[SWS_Rte_06024] [SWS_Rte_07662]
[SWS_Rte_08001] [SWS_Rte_08002]
[SWS_Rte_08586] [SWS_Rte_08587]
[SWS_Rte_CONSTR_03873]
[SWS_Rte_CONSTR_03874]

[SRS_Rte_00020] Access to OS [SWS_Rte_02250]
[SRS_Rte_00021] Per-ECU RTE customization [SWS_Rte_01316] [SWS_Rte_05000]
[SRS_Rte_00022] Interaction with call-backs [SWS_Rte_01165]
[SRS_Rte_00023] RTE Overheads [SWS_Rte_05053]
[SRS_Rte_00024] Source-code AUTOSAR

software components
[SWS_Rte_01000] [SWS_Rte_01195]
[SWS_Rte_01315] [SWS_Rte_07120]

[SRS_Rte_00025] Static communication [SWS_Rte_06026]
[SRS_Rte_00027] VFB to RTE mapping shall be

semantic preserving
[SWS_Rte_01274] [SWS_Rte_02200]
[SWS_Rte_02201] [SWS_Rte_02649]
[SWS_Rte_02651] [SWS_Rte_02653]
[SWS_Rte_02654] [SWS_Rte_02657]
[SWS_Rte_04544] [SWS_Rte_07346]
[SWS_Rte_08700] [SWS_Rte_08703]
[SWS_Rte_08705] [SWS_Rte_08707]
[SWS_Rte_08709]

41 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00028] "1:n" Sender-receiver
communication

[SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01082] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01135]
[SWS_Rte_02631] [SWS_Rte_02633]
[SWS_Rte_02635] [SWS_Rte_04526]
[SWS_Rte_06023] [SWS_Rte_06024]
[SWS_Rte_07394] [SWS_Rte_07824]
[SWS_Rte_07825] [SWS_Rte_07826]
[SWS_Rte_07827] [SWS_Rte_08413]
[SWS_Rte_08414] [SWS_Rte_08415]
[SWS_Rte_08586] [SWS_Rte_08587]
[SWS_Rte_08592] [SWS_Rte_08593]
[SWS_Rte_08594] [SWS_Rte_08595]

[SRS_Rte_00029] "n:1" Client-server
communication

[SWS_Rte_01102] [SWS_Rte_01109]
[SWS_Rte_01133] [SWS_Rte_01166]
[SWS_Rte_01359] [SWS_Rte_03763]
[SWS_Rte_03767] [SWS_Rte_03768]
[SWS_Rte_03769] [SWS_Rte_03770]
[SWS_Rte_04517] [SWS_Rte_04519]
[SWS_Rte_06019] [SWS_Rte_07023]
[SWS_Rte_07024] [SWS_Rte_07026]
[SWS_Rte_07027] [SWS_Rte_07845]
[SWS_Rte_08310]

[SRS_Rte_00031] Multiple Runnable Entities [SWS_Rte_01016] [SWS_Rte_01126]
[SWS_Rte_01130] [SWS_Rte_01132]
[SWS_Rte_02202] [SWS_Rte_06713]

[SRS_Rte_00032] Data consistency mechanisms [SWS_Rte_01122] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03500]
[SWS_Rte_03504] [SWS_Rte_03514]
[SWS_Rte_03516] [SWS_Rte_03517]
[SWS_Rte_03519] [SWS_Rte_03595]
[SWS_Rte_03739] [SWS_Rte_03740]
[SWS_Rte_03812] [SWS_Rte_03999]
[SWS_Rte_04545] [SWS_Rte_05164]
[SWS_Rte_07005] [SWS_Rte_08318]
[SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322]
[SWS_Rte_08419]

[SRS_Rte_00033] Serialized execution of Server
Runnable Entities

[SWS_Rte_02527] [SWS_Rte_02528]
[SWS_Rte_02529] [SWS_Rte_02530]
[SWS_Rte_04515] [SWS_Rte_04518]
[SWS_Rte_04522] [SWS_Rte_07008]
[SWS_Rte_08001] [SWS_Rte_08002]
[SWS_Rte_CONSTR_03873]
[SWS_Rte_CONSTR_03874]

[SRS_Rte_00036] Assignment to OS Applications [SWS_Rte_07347]

42 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00045] Standardized VFB tracing
interface

[SWS_Rte_01238] [SWS_Rte_01239]
[SWS_Rte_01240] [SWS_Rte_01241]
[SWS_Rte_01242] [SWS_Rte_01243]
[SWS_Rte_01244] [SWS_Rte_01245]
[SWS_Rte_01246] [SWS_Rte_01247]
[SWS_Rte_01248] [SWS_Rte_01249]
[SWS_Rte_01250] [SWS_Rte_01251]
[SWS_Rte_01319] [SWS_Rte_01321]
[SWS_Rte_01326] [SWS_Rte_03814]
[SWS_Rte_04531] [SWS_Rte_04532]
[SWS_Rte_04533] [SWS_Rte_04534]
[SWS_Rte_06032] [SWS_Rte_06113]
[SWS_Rte_06114] [SWS_Rte_07639]

[SRS_Rte_00046] Support for "Executable Entity
runs inside" Exclusive Areas

[SWS_Rte_01120] [SWS_Rte_01122]
[SWS_Rte_01123] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03500]
[SWS_Rte_03515] [SWS_Rte_07250]
[SWS_Rte_07251] [SWS_Rte_07252]
[SWS_Rte_07253] [SWS_Rte_07254]
[SWS_Rte_07522] [SWS_Rte_07523]
[SWS_Rte_07524] [SWS_Rte_07578]
[SWS_Rte_07579] [SWS_Rte_08318]
[SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322]

[SRS_Rte_00048] RTE Generator input [SWS_Rte_08769] [SWS_Rte_08770]
[SWS_Rte_08771] [SWS_Rte_08772]
[SWS_Rte_08773] [SWS_Rte_08774]
[SWS_Rte_08775] [SWS_Rte_08776]

[SRS_Rte_00049] Construction of task bodies [SWS_Rte_02204] [SWS_Rte_02254]
[SWS_Rte_04557] [SWS_Rte_04558]
[SWS_Rte_04559] [SWS_Rte_06200]
[SWS_Rte_06201] [SWS_Rte_07516]
[SWS_Rte_08417]
[SWS_Rte_CONSTR_04558]
[SWS_Rte_CONSTR_04559]

[SRS_Rte_00051] RTE API mapping [SWS_Rte_01053] [SWS_Rte_01055]
[SWS_Rte_01119] [SWS_Rte_01123]
[SWS_Rte_01132] [SWS_Rte_01146]
[SWS_Rte_01148] [SWS_Rte_01153]
[SWS_Rte_01156] [SWS_Rte_01159]
[SWS_Rte_01197] [SWS_Rte_01266]
[SWS_Rte_01268] [SWS_Rte_01269]
[SWS_Rte_01274] [SWS_Rte_01280]
[SWS_Rte_01281] [SWS_Rte_01282]
[SWS_Rte_01283] [SWS_Rte_01284]
[SWS_Rte_01285] [SWS_Rte_01286]
[SWS_Rte_01287] [SWS_Rte_01288]

43 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01289] [SWS_Rte_01290]
[SWS_Rte_01293] [SWS_Rte_01294]
[SWS_Rte_01296] [SWS_Rte_01297]
[SWS_Rte_01298] [SWS_Rte_01299]
[SWS_Rte_01300] [SWS_Rte_01301]
[SWS_Rte_01302] [SWS_Rte_01303]
[SWS_Rte_01304] [SWS_Rte_01305]
[SWS_Rte_01306] [SWS_Rte_01307]
[SWS_Rte_01308] [SWS_Rte_01309]
[SWS_Rte_01310] [SWS_Rte_01312]
[SWS_Rte_01313] [SWS_Rte_01342]
[SWS_Rte_01343] [SWS_Rte_01349]
[SWS_Rte_01354] [SWS_Rte_01355]
[SWS_Rte_01363] [SWS_Rte_01364]
[SWS_Rte_01365] [SWS_Rte_01366]
[SWS_Rte_02301] [SWS_Rte_02302]
[SWS_Rte_02588] [SWS_Rte_02589]
[SWS_Rte_02607] [SWS_Rte_02608]
[SWS_Rte_02613] [SWS_Rte_02614]
[SWS_Rte_02615] [SWS_Rte_02616]
[SWS_Rte_02617] [SWS_Rte_02618]
[SWS_Rte_02619] [SWS_Rte_02620]
[SWS_Rte_02621] [SWS_Rte_02623]
[SWS_Rte_02632] [SWS_Rte_02666]
[SWS_Rte_02676] [SWS_Rte_02677]
[SWS_Rte_02678] [SWS_Rte_02679]
[SWS_Rte_02730] [SWS_Rte_03014]
[SWS_Rte_03562] [SWS_Rte_03567]
[SWS_Rte_03602] [SWS_Rte_03603]
[SWS_Rte_03605] [SWS_Rte_03706]
[SWS_Rte_03707] [SWS_Rte_03716]
[SWS_Rte_03717] [SWS_Rte_03718]
[SWS_Rte_03719] [SWS_Rte_03720]
[SWS_Rte_03721] [SWS_Rte_03723]
[SWS_Rte_03725] [SWS_Rte_03726]
[SWS_Rte_03730] [SWS_Rte_03731]
[SWS_Rte_03733] [SWS_Rte_03734]
[SWS_Rte_03739] [SWS_Rte_03740]
[SWS_Rte_03746] [SWS_Rte_03752]
[SWS_Rte_03791] [SWS_Rte_03799]
[SWS_Rte_03801] [SWS_Rte_03812]
[SWS_Rte_03835] [SWS_Rte_03837]
[SWS_Rte_03872] [SWS_Rte_03927]
[SWS_Rte_03930] [SWS_Rte_03949]
[SWS_Rte_03952] [SWS_Rte_04545]
[SWS_Rte_05510] [SWS_Rte_05511]
[SWS_Rte_06205] [SWS_Rte_06208]
[SWS_Rte_06209] [SWS_Rte_06639]

44 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06713] [SWS_Rte_06817]
[SWS_Rte_06818] [SWS_Rte_06819]
[SWS_Rte_06820] [SWS_Rte_06821]
[SWS_Rte_06823] [SWS_Rte_06827]
[SWS_Rte_06831] [SWS_Rte_07137]
[SWS_Rte_07138] [SWS_Rte_07170]
[SWS_Rte_07225] [SWS_Rte_07226]
[SWS_Rte_07227] [SWS_Rte_07228]
[SWS_Rte_07291] [SWS_Rte_07395]
[SWS_Rte_07396] [SWS_Rte_07416]
[SWS_Rte_07677] [SWS_Rte_07837]
[SWS_Rte_07838] [SWS_Rte_07839]
[SWS_Rte_07850] [SWS_Rte_07851]
[SWS_Rte_08073] [SWS_Rte_08091]
[SWS_Rte_08092] [SWS_Rte_08093]
[SWS_Rte_08094] [SWS_Rte_08309]
[SWS_Rte_08312] [SWS_Rte_08777]
[SWS_Rte_08778] [SWS_Rte_08779]
[SWS_Rte_08780] [SWS_Rte_08782]
[SWS_Rte_08783] [SWS_Rte_08784]
[SWS_Rte_08785] [SWS_Rte_08786]

[SRS_Rte_00052] Initialization and finalization of
components

[SWS_Rte_02503] [SWS_Rte_02562]
[SWS_Rte_02564] [SWS_Rte_02707]
[SWS_Rte_03852] [SWS_Rte_07046]

[SRS_Rte_00055] RTE use of global namespace [SWS_Rte_01171] [SWS_Rte_03609]
[SWS_Rte_03610] [SWS_Rte_06706]
[SWS_Rte_06707] [SWS_Rte_06708]
[SWS_Rte_06812] [SWS_Rte_06813]
[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte_07104] [SWS_Rte_07109]
[SWS_Rte_07110] [SWS_Rte_07111]
[SWS_Rte_07114] [SWS_Rte_07115]
[SWS_Rte_07116] [SWS_Rte_07117]
[SWS_Rte_07118] [SWS_Rte_07119]
[SWS_Rte_07144] [SWS_Rte_07145]
[SWS_Rte_07146] [SWS_Rte_07148]
[SWS_Rte_07149] [SWS_Rte_07162]
[SWS_Rte_07163] [SWS_Rte_07166]
[SWS_Rte_07284]

[SRS_Rte_00059] RTE API shall pass "in" primitive
data types by value

[SWS_Rte_01017] [SWS_Rte_01020]
[SWS_Rte_06805] [SWS_Rte_06807]
[SWS_Rte_07069] [SWS_Rte_07070]
[SWS_Rte_07071] [SWS_Rte_07072]
[SWS_Rte_07073] [SWS_Rte_07074]
[SWS_Rte_07076] [SWS_Rte_07077]
[SWS_Rte_07078] [SWS_Rte_07079]
[SWS_Rte_07080] [SWS_Rte_07081]
[SWS_Rte_07083] [SWS_Rte_07084]
[SWS_Rte_07661] [SWS_Rte_08300]

[SRS_Rte_00060] RTE API shall pass "in"
composite data types by
reference

[SWS_Rte_01018] [SWS_Rte_05107]
[SWS_Rte_05108] [SWS_Rte_06804]
[SWS_Rte_06807] [SWS_Rte_07082]
[SWS_Rte_07084] [SWS_Rte_07086]

45 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00061] "in/out" and "out" parameters [SWS_Rte_01017] [SWS_Rte_01018]
[SWS_Rte_01019] [SWS_Rte_01020]
[SWS_Rte_05107] [SWS_Rte_05108]
[SWS_Rte_05109] [SWS_Rte_06806]
[SWS_Rte_07082] [SWS_Rte_07083]
[SWS_Rte_07084] [SWS_Rte_07661]

[SRS_Rte_00062] Local access to basic software
components

[SWS_Rte_02051]

[SRS_Rte_00065] Deterministic generation [SWS_Rte_02514] [SWS_Rte_05150]
[SRS_Rte_00068] Signal initial values [SWS_Rte_02517] [SWS_Rte_03852]

[SWS_Rte_05078] [SWS_Rte_07046]
[SWS_Rte_07642] [SWS_Rte_07668]
[SWS_Rte_08311]

[SRS_Rte_00069] Communication timeouts [SWS_Rte_01064] [SWS_Rte_01095]
[SWS_Rte_01107] [SWS_Rte_01114]
[SWS_Rte_03754] [SWS_Rte_03758]
[SWS_Rte_03759] [SWS_Rte_03763]
[SWS_Rte_03767] [SWS_Rte_03768]
[SWS_Rte_03770] [SWS_Rte_03771]
[SWS_Rte_03772] [SWS_Rte_06002]
[SWS_Rte_06013] [SWS_Rte_07056]
[SWS_Rte_07059] [SWS_Rte_07060]
[SWS_Rte_08310]

[SRS_Rte_00070] Invocation order of Runnable
Entities

[SWS_Rte_02207]

[SRS_Rte_00072] Activation of Runnable Entities [SWS_Rte_01131] [SWS_Rte_01133]
[SWS_Rte_01135] [SWS_Rte_01137]
[SWS_Rte_01166] [SWS_Rte_01292]
[SWS_Rte_01359] [SWS_Rte_02203]
[SWS_Rte_02512] [SWS_Rte_02697]
[SWS_Rte_02758] [SWS_Rte_03520]
[SWS_Rte_03523] [SWS_Rte_03524]
[SWS_Rte_03526] [SWS_Rte_03527]
[SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte_03532] [SWS_Rte_06748]
[SWS_Rte_06759] [SWS_Rte_06760]
[SWS_Rte_06771] [SWS_Rte_07023]
[SWS_Rte_07024] [SWS_Rte_07026]
[SWS_Rte_07027] [SWS_Rte_07061]
[SWS_Rte_07177] [SWS_Rte_07178]
[SWS_Rte_07207] [SWS_Rte_07208]
[SWS_Rte_07379] [SWS_Rte_07403]
[SWS_Rte_07515] [SWS_Rte_07575]
[SWS_Rte_08791]

[SRS_Rte_00073] Atomic transport of Data
Elements

[SWS_Rte_04527]

[SRS_Rte_00075] API for accessing per-instance
memory

[SWS_Rte_01118] [SWS_Rte_01119]
[SWS_Rte_06203] [SWS_Rte_06204]
[SWS_Rte_06205]

46 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00077] Instantiation of per-instance
memory

[SWS_Rte_02303] [SWS_Rte_02304]
[SWS_Rte_02305] [SWS_Rte_03782]
[SWS_Rte_05062] [SWS_Rte_07045]
[SWS_Rte_07133] [SWS_Rte_07161]
[SWS_Rte_07182] [SWS_Rte_07183]
[SWS_Rte_07184] [SWS_Rte_08303]
[SWS_Rte_08304]

[SRS_Rte_00078] Support for Data Element
Invalidation

[SWS_Rte_01206] [SWS_Rte_01282]
[SWS_Rte_02309] [SWS_Rte_02589]
[SWS_Rte_02590] [SWS_Rte_02594]
[SWS_Rte_02599] [SWS_Rte_02600]
[SWS_Rte_02603] [SWS_Rte_02607]
[SWS_Rte_02609] [SWS_Rte_02626]
[SWS_Rte_02629] [SWS_Rte_02666]
[SWS_Rte_02702] [SWS_Rte_03778]
[SWS_Rte_03800] [SWS_Rte_03801]
[SWS_Rte_03802] [SWS_Rte_05024]
[SWS_Rte_05025] [SWS_Rte_05026]
[SWS_Rte_05030] [SWS_Rte_05032]
[SWS_Rte_05048] [SWS_Rte_05049]
[SWS_Rte_05064] [SWS_Rte_06727]
[SWS_Rte_06820] [SWS_Rte_06821]
[SWS_Rte_06822] [SWS_Rte_06823]
[SWS_Rte_06824] [SWS_Rte_06825]
[SWS_Rte_06829] [SWS_Rte_07031]
[SWS_Rte_07032] [SWS_Rte_08004]
[SWS_Rte_08005] [SWS_Rte_08007]
[SWS_Rte_08008] [SWS_Rte_08009]
[SWS_Rte_08046] [SWS_Rte_08047]
[SWS_Rte_08048] [SWS_Rte_08049]
[SWS_Rte_08050] [SWS_Rte_08096]
[SWS_Rte_08097] [SWS_Rte_08098]
[SWS_Rte_08099] [SWS_Rte_08100]
[SWS_Rte_08101] [SWS_Rte_08102]
[SWS_Rte_08405] [SWS_Rte_08406]
[SWS_Rte_08407] [SWS_Rte_08501]

[SRS_Rte_00079] Single asynchronous
client-server interaction

[SWS_Rte_01105] [SWS_Rte_01109]
[SWS_Rte_01133] [SWS_Rte_01166]
[SWS_Rte_01359] [SWS_Rte_02658]
[SWS_Rte_03765] [SWS_Rte_03766]
[SWS_Rte_03771] [SWS_Rte_03772]
[SWS_Rte_07023] [SWS_Rte_07024]
[SWS_Rte_07026] [SWS_Rte_07027]
[SWS_Rte_08800]

[SRS_Rte_00080] Multiple requests of servers [SWS_Rte_03769] [SWS_Rte_04516]
[SWS_Rte_04520]

[SRS_Rte_00082] Standardized communication
protocol

[SWS_Rte_02649] [SWS_Rte_02651]
[SWS_Rte_02653] [SWS_Rte_02654]
[SWS_Rte_02655] [SWS_Rte_02656]
[SWS_Rte_02657] [SWS_Rte_04544]
[SWS_Rte_07346] [SWS_Rte_07413]
[SWS_Rte_08700] [SWS_Rte_08703]
[SWS_Rte_08705] [SWS_Rte_08707]
[SWS_Rte_08709] [SWS_Rte_08711]
[SWS_Rte_08712]

47 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00083] Optimization for source-code
components

[SWS_Rte_01152] [SWS_Rte_01274]

[SRS_Rte_00084] Support infrastructural errors [SWS_Rte_01318] [SWS_Rte_02593]
[SRS_Rte_00087] Software Module Header File

generation
[SWS_Rte_01000] [SWS_Rte_01004]
[SWS_Rte_01006] [SWS_Rte_01132]
[SWS_Rte_01274] [SWS_Rte_03786]
[SWS_Rte_05078] [SWS_Rte_06703]
[SWS_Rte_06704] [SWS_Rte_06705]
[SWS_Rte_06713] [SWS_Rte_07127]
[SWS_Rte_07131] [SWS_Rte_07924]

[SRS_Rte_00089] Independent access to interface
elements

[SWS_Rte_06008]

[SRS_Rte_00091] Inter-ECU Marshalling [SWS_Rte_02557] [SWS_Rte_03863]
[SWS_Rte_03864] [SWS_Rte_03865]
[SWS_Rte_04504] [SWS_Rte_04505]
[SWS_Rte_04508] [SWS_Rte_04527]
[SWS_Rte_05081] [SWS_Rte_05173]
[SWS_Rte_07413] [SWS_Rte_08546]
[SWS_Rte_08547] [SWS_Rte_08548]
[SWS_Rte_08549] [SWS_Rte_08551]
[SWS_Rte_08552] [SWS_Rte_08553]
[SWS_Rte_08554] [SWS_Rte_08555]
[SWS_Rte_08556] [SWS_Rte_08557]
[SWS_Rte_08572] [SWS_Rte_08573]
[SWS_Rte_08576] [SWS_Rte_08577]
[SWS_Rte_08578] [SWS_Rte_08579]
[SWS_Rte_08580] [SWS_Rte_08581]
[SWS_Rte_08591] [SWS_Rte_08700]
[SWS_Rte_08703] [SWS_Rte_08705]
[SWS_Rte_08707] [SWS_Rte_08709]
[SWS_Rte_08711] [SWS_Rte_08712]
[SWS_Rte_08725] [SWS_Rte_08726]
[SWS_Rte_08727] [SWS_Rte_08728]
[SWS_Rte_08729] [SWS_Rte_08731]
[SWS_Rte_08793] [SWS_Rte_70054]
[SWS_Rte_70055] [SWS_Rte_70060]
[SWS_Rte_70061] [SWS_Rte_70066]
[SWS_Rte_70067] [SWS_Rte_70068]
[SWS_Rte_70069] [SWS_Rte_70073]
[SWS_Rte_70074] [SWS_Rte_70075]
[SWS_Rte_70076]

[SRS_Rte_00092] Implementation of VFB model
"waitpoints"

[SWS_Rte_01358] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03010]
[SWS_Rte_03018] [SWS_Rte_07402]
[SWS_Rte_07846] [SWS_Rte_07847]
[SWS_Rte_08318] [SWS_Rte_08319]
[SWS_Rte_08320] [SWS_Rte_08321]
[SWS_Rte_08322]

48 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00094] Communication and Resource
Errors

[SWS_Rte_01034] [SWS_Rte_01084]
[SWS_Rte_01086] [SWS_Rte_01093]
[SWS_Rte_01094] [SWS_Rte_01095]
[SWS_Rte_01103] [SWS_Rte_01104]
[SWS_Rte_01105] [SWS_Rte_01106]
[SWS_Rte_01107] [SWS_Rte_01112]
[SWS_Rte_01113] [SWS_Rte_01114]
[SWS_Rte_01207] [SWS_Rte_01259]
[SWS_Rte_01260] [SWS_Rte_01261]
[SWS_Rte_01262] [SWS_Rte_01318]
[SWS_Rte_01330] [SWS_Rte_01331]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_01339] [SWS_Rte_01344]
[SWS_Rte_02312] [SWS_Rte_02313]
[SWS_Rte_02524] [SWS_Rte_02525]
[SWS_Rte_02571] [SWS_Rte_02572]
[SWS_Rte_02578] [SWS_Rte_02598]
[SWS_Rte_02602] [SWS_Rte_02674]
[SWS_Rte_02721] [SWS_Rte_02727]
[SWS_Rte_02728] [SWS_Rte_02729]
[SWS_Rte_03606] [SWS_Rte_03774]
[SWS_Rte_03785] [SWS_Rte_03853]
[SWS_Rte_04530] [SWS_Rte_06210]
[SWS_Rte_06828] [SWS_Rte_06830]
[SWS_Rte_07258] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07392] [SWS_Rte_07393]
[SWS_Rte_07636] [SWS_Rte_07637]
[SWS_Rte_07650] [SWS_Rte_07651]
[SWS_Rte_07652] [SWS_Rte_07659]
[SWS_Rte_07660] [SWS_Rte_07673]
[SWS_Rte_07820] [SWS_Rte_07821]
[SWS_Rte_07822] [SWS_Rte_07823]
[SWS_Rte_07848] [SWS_Rte_07849]
[SWS_Rte_08301] [SWS_Rte_08302]
[SWS_Rte_08546] [SWS_Rte_08547]
[SWS_Rte_08548] [SWS_Rte_08549]
[SWS_Rte_08552] [SWS_Rte_08553]
[SWS_Rte_08554] [SWS_Rte_08555]
[SWS_Rte_08556] [SWS_Rte_08557]
[SWS_Rte_08572] [SWS_Rte_08573]
[SWS_Rte_08576] [SWS_Rte_08577]
[SWS_Rte_08578] [SWS_Rte_08579]
[SWS_Rte_08580] [SWS_Rte_08581]
[SWS_Rte_08591] [SWS_Rte_08727]
[SWS_Rte_08728] [SWS_Rte_08729]
[SWS_Rte_70053] [SWS_Rte_70054]
[SWS_Rte_70055] [SWS_Rte_70059]
[SWS_Rte_70060] [SWS_Rte_70061]
[SWS_Rte_70065] [SWS_Rte_70066]
[SWS_Rte_70067] [SWS_Rte_70068]
[SWS_Rte_70069] [SWS_Rte_70072]
[SWS_Rte_70073] [SWS_Rte_70074]
[SWS_Rte_70075] [SWS_Rte_70076]
[SWS_Rte_70100] [SWS_Rte_70101]

49 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00098] Explicit Sending [SWS_Rte_01071] [SWS_Rte_06011]
[SWS_Rte_06016]

[SRS_Rte_00099] Decoupling of interrupts [SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte_03532] [SWS_Rte_03594]
[SWS_Rte_03600]

[SRS_Rte_00100] Compiler independent API [SWS_Rte_01314]
[SRS_Rte_00107] Support for

INFORMATION_TYPE attribute
[SWS_Rte_01135] [SWS_Rte_01137]
[SWS_Rte_01331] [SWS_Rte_02312]
[SWS_Rte_02313] [SWS_Rte_02516]
[SWS_Rte_02518] [SWS_Rte_02520]
[SWS_Rte_02521] [SWS_Rte_02522]
[SWS_Rte_02523] [SWS_Rte_02524]
[SWS_Rte_02525] [SWS_Rte_02571]
[SWS_Rte_02572] [SWS_Rte_02718]
[SWS_Rte_02719] [SWS_Rte_02720]
[SWS_Rte_02721] [SWS_Rte_02758]
[SWS_Rte_04500] [SWS_Rte_06010]
[SWS_Rte_06771] [SWS_Rte_70101]

[SRS_Rte_00108] Support for INIT_VALUE
attribute

[SWS_Rte_01268] [SWS_Rte_02517]
[SWS_Rte_04501] [SWS_Rte_04502]
[SWS_Rte_05078] [SWS_Rte_06009]
[SWS_Rte_07642] [SWS_Rte_07668]
[SWS_Rte_07680] [SWS_Rte_07681]
[SWS_Rte_08311]

[SRS_Rte_00109] Support for RECEIVE_MODE
attribute

[SWS_Rte_02519] [SWS_Rte_03018]
[SWS_Rte_06002] [SWS_Rte_06012]

[SRS_Rte_00110] Support for BUFFERING
attribute

[SWS_Rte_01331] [SWS_Rte_02312]
[SWS_Rte_02313] [SWS_Rte_02515]
[SWS_Rte_02522] [SWS_Rte_02523]
[SWS_Rte_02524] [SWS_Rte_02525]
[SWS_Rte_02526] [SWS_Rte_02527]
[SWS_Rte_02529] [SWS_Rte_02530]
[SWS_Rte_02571] [SWS_Rte_02572]
[SWS_Rte_02719] [SWS_Rte_02720]
[SWS_Rte_02721] [SWS_Rte_02723]
[SWS_Rte_07008] [SWS_Rte_70101]

[SRS_Rte_00111] Support for CLIENT_MODE
attribute

[SWS_Rte_01293] [SWS_Rte_01294]
[SWS_Rte_06639]

[SRS_Rte_00115] API for data consistency
mechanism

[SWS_Rte_01120] [SWS_Rte_01122]
[SWS_Rte_01307] [SWS_Rte_01308]

[SRS_Rte_00116] RTE Initialization and finalization [SWS_Rte_02535] [SWS_Rte_02536]
[SWS_Rte_02538] [SWS_Rte_02544]
[SWS_Rte_02569] [SWS_Rte_02570]
[SWS_Rte_02584] [SWS_Rte_02585]
[SWS_Rte_03852] [SWS_Rte_04552]
[SWS_Rte_06766] [SWS_Rte_06767]
[SWS_Rte_07046] [SWS_Rte_07270]
[SWS_Rte_07586]

[SRS_Rte_00121] Support for FILTER attribute [SWS_Rte_05500] [SWS_Rte_05501]
[SWS_Rte_05503] [SWS_Rte_08077]
[SWS_Rte_08078] [SWS_Rte_08079]

50 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00122] Support for Transmission
Acknowledgement

[SWS_Rte_01080] [SWS_Rte_01083]
[SWS_Rte_01084] [SWS_Rte_01086]
[SWS_Rte_01137] [SWS_Rte_01283]
[SWS_Rte_01284] [SWS_Rte_01285]
[SWS_Rte_01286] [SWS_Rte_01287]
[SWS_Rte_01344] [SWS_Rte_02612]
[SWS_Rte_02676] [SWS_Rte_02677]
[SWS_Rte_02678] [SWS_Rte_02725]
[SWS_Rte_02727] [SWS_Rte_02729]
[SWS_Rte_02758] [SWS_Rte_03002]
[SWS_Rte_03005] [SWS_Rte_03604]
[SWS_Rte_03754] [SWS_Rte_03756]
[SWS_Rte_03757] [SWS_Rte_03758]
[SWS_Rte_03774] [SWS_Rte_03775]
[SWS_Rte_03776] [SWS_Rte_05065]
[SWS_Rte_05084] [SWS_Rte_05085]
[SWS_Rte_05504] [SWS_Rte_06771]
[SWS_Rte_07055] [SWS_Rte_07286]
[SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07379] [SWS_Rte_07557]
[SWS_Rte_07558] [SWS_Rte_07560]
[SWS_Rte_07561] [SWS_Rte_07634]
[SWS_Rte_07635] [SWS_Rte_07636]
[SWS_Rte_07637] [SWS_Rte_07646]
[SWS_Rte_07647] [SWS_Rte_07648]
[SWS_Rte_07650] [SWS_Rte_07651]
[SWS_Rte_07652] [SWS_Rte_07659]
[SWS_Rte_07660] [SWS_Rte_07846]
[SWS_Rte_07847] [SWS_Rte_07848]
[SWS_Rte_07849] [SWS_Rte_07850]
[SWS_Rte_07851] [SWS_Rte_07927]
[SWS_Rte_08017] [SWS_Rte_08018]
[SWS_Rte_08020] [SWS_Rte_08021]
[SWS_Rte_08022] [SWS_Rte_08023]
[SWS_Rte_08043] [SWS_Rte_08044]
[SWS_Rte_08045] [SWS_Rte_08074]
[SWS_Rte_08075] [SWS_Rte_08076]
[SWS_Rte_08583]

[SRS_Rte_00123] The RTE shall forward
application level errors from
server to client

[SWS_Rte_01103] [SWS_Rte_02576]
[SWS_Rte_02577] [SWS_Rte_02578]
[SWS_Rte_02593] [SWS_Rte_07925]
[SWS_Rte_07926] [SWS_Rte_08705]
[SWS_Rte_08709]

[SRS_Rte_00124] API for application level errors
during Client Server
communication

[SWS_Rte_01103] [SWS_Rte_01130]
[SWS_Rte_02573] [SWS_Rte_02575]

51 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00126] C language support [SWS_Rte_01005] [SWS_Rte_01162]
[SWS_Rte_01167] [SWS_Rte_01169]
[SWS_Rte_03709] [SWS_Rte_03710]
[SWS_Rte_03724] [SWS_Rte_07124]
[SWS_Rte_07125] [SWS_Rte_07126]
[SWS_Rte_07297] [SWS_Rte_07298]
[SWS_Rte_07299] [SWS_Rte_07507]
[SWS_Rte_07508] [SWS_Rte_07509]
[SWS_Rte_07678] [SWS_Rte_07923]

[SRS_Rte_00128] Implicit Reception [SWS_Rte_01268] [SWS_Rte_03598]
[SWS_Rte_03599] [SWS_Rte_03741]
[SWS_Rte_03954] [SWS_Rte_03955]
[SWS_Rte_03956] [SWS_Rte_06000]
[SWS_Rte_06001] [SWS_Rte_06004]
[SWS_Rte_06011] [SWS_Rte_07007]
[SWS_Rte_07020] [SWS_Rte_07062]
[SWS_Rte_07063] [SWS_Rte_07064]
[SWS_Rte_07652] [SWS_Rte_08408]

[SRS_Rte_00129] Implicit Sending [SWS_Rte_03570] [SWS_Rte_03571]
[SWS_Rte_03572] [SWS_Rte_03573]
[SWS_Rte_03574] [SWS_Rte_03598]
[SWS_Rte_03744] [SWS_Rte_03746]
[SWS_Rte_03953] [SWS_Rte_03954]
[SWS_Rte_03955] [SWS_Rte_03957]
[SWS_Rte_05509] [SWS_Rte_06011]
[SWS_Rte_07007] [SWS_Rte_07021]
[SWS_Rte_07041] [SWS_Rte_07062]
[SWS_Rte_07065] [SWS_Rte_07066]
[SWS_Rte_07067] [SWS_Rte_07068]
[SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07646] [SWS_Rte_07647]
[SWS_Rte_07648] [SWS_Rte_07650]
[SWS_Rte_07651] [SWS_Rte_07660]
[SWS_Rte_08408] [SWS_Rte_08418]

[SRS_Rte_00131] "n:1" Sender-receiver
communication

[SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01091] [SWS_Rte_01092]
[SWS_Rte_01135] [SWS_Rte_02631]
[SWS_Rte_02633] [SWS_Rte_02635]
[SWS_Rte_02670] [SWS_Rte_03760]
[SWS_Rte_03761] [SWS_Rte_03762]
[SWS_Rte_07394] [SWS_Rte_07824]
[SWS_Rte_07825] [SWS_Rte_07826]
[SWS_Rte_07827] [SWS_Rte_08788]

[SRS_Rte_00133] Concurrent invocation of
Runnable Entities

[SWS_Rte_02697] [SWS_Rte_03523]
[SWS_Rte_07007]

[SRS_Rte_00134] Runnable Entity categories
supported by the RTE

[SWS_Rte_03574] [SWS_Rte_03954]
[SWS_Rte_06003] [SWS_Rte_06007]
[SWS_Rte_07062]

[SRS_Rte_00137] API for mismatched ports [SWS_Rte_01368] [SWS_Rte_01369]
[SWS_Rte_01370]

52 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00138] C++ language support [SWS_Rte_01005] [SWS_Rte_01011]
[SWS_Rte_03709] [SWS_Rte_03710]
[SWS_Rte_07124] [SWS_Rte_07125]
[SWS_Rte_07126] [SWS_Rte_07297]
[SWS_Rte_07298] [SWS_Rte_07299]
[SWS_Rte_07507] [SWS_Rte_07508]
[SWS_Rte_07509]

[SRS_Rte_00139] Support for unconnected ports [SWS_Rte_01329] [SWS_Rte_01330]
[SWS_Rte_01331] [SWS_Rte_01332]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_01344] [SWS_Rte_01346]
[SWS_Rte_01347] [SWS_Rte_01375]
[SWS_Rte_02638] [SWS_Rte_02639]
[SWS_Rte_02640] [SWS_Rte_02641]
[SWS_Rte_02642] [SWS_Rte_02749]
[SWS_Rte_02750] [SWS_Rte_03019]
[SWS_Rte_03783] [SWS_Rte_03784]
[SWS_Rte_03785] [SWS_Rte_03978]
[SWS_Rte_03980] [SWS_Rte_04530]
[SWS_Rte_05099] [SWS_Rte_05101]
[SWS_Rte_05102] [SWS_Rte_05170]
[SWS_Rte_06030] [SWS_Rte_06210]
[SWS_Rte_07378] [SWS_Rte_07655]
[SWS_Rte_07659] [SWS_Rte_07660]
[SWS_Rte_07663] [SWS_Rte_07667]
[SWS_Rte_07668] [SWS_Rte_07669]
[SWS_Rte_07847]

[SRS_Rte_00140] Binary-code AUTOSAR software
components

[SWS_Rte_01000] [SWS_Rte_01195]
[SWS_Rte_01315] [SWS_Rte_07120]

[SRS_Rte_00141] Explicit Reception [SWS_Rte_01072] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_06011]
[SWS_Rte_07394] [SWS_Rte_07673]

[SRS_Rte_00142] Support for InterRunnable
Variables

[SWS_Rte_01303] [SWS_Rte_01304]
[SWS_Rte_01305] [SWS_Rte_01306]
[SWS_Rte_01350] [SWS_Rte_01351]
[SWS_Rte_02636] [SWS_Rte_03516]
[SWS_Rte_03517] [SWS_Rte_03519]
[SWS_Rte_03550] [SWS_Rte_03553]
[SWS_Rte_03560] [SWS_Rte_03562]
[SWS_Rte_03565] [SWS_Rte_03567]
[SWS_Rte_03580] [SWS_Rte_03582]
[SWS_Rte_03583] [SWS_Rte_03584]
[SWS_Rte_03589] [SWS_Rte_06207]
[SWS_Rte_06208] [SWS_Rte_07007]
[SWS_Rte_07022] [SWS_Rte_07187]

53 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00143] Mode Switches [SWS_Rte_02500] [SWS_Rte_02503]
[SWS_Rte_02504] [SWS_Rte_02512]
[SWS_Rte_02544] [SWS_Rte_02546]
[SWS_Rte_02562] [SWS_Rte_02563]
[SWS_Rte_02564] [SWS_Rte_02587]
[SWS_Rte_02630] [SWS_Rte_02631]
[SWS_Rte_02634] [SWS_Rte_02661]
[SWS_Rte_02662] [SWS_Rte_02663]
[SWS_Rte_02664] [SWS_Rte_02665]
[SWS_Rte_02667] [SWS_Rte_02668]
[SWS_Rte_02669] [SWS_Rte_02675]
[SWS_Rte_02679] [SWS_Rte_02706]
[SWS_Rte_02707] [SWS_Rte_02708]
[SWS_Rte_02730] [SWS_Rte_03869]
[SWS_Rte_06766] [SWS_Rte_06767]
[SWS_Rte_06768] [SWS_Rte_06769]
[SWS_Rte_06770] [SWS_Rte_06772]
[SWS_Rte_06773] [SWS_Rte_06774]
[SWS_Rte_06775] [SWS_Rte_06776]
[SWS_Rte_06777] [SWS_Rte_06778]
[SWS_Rte_06779] [SWS_Rte_06780]
[SWS_Rte_06785] [SWS_Rte_06786]
[SWS_Rte_06787] [SWS_Rte_06788]
[SWS_Rte_06789] [SWS_Rte_06790]
[SWS_Rte_06791] [SWS_Rte_06792]
[SWS_Rte_06793] [SWS_Rte_06794]
[SWS_Rte_06795] [SWS_Rte_06796]
[SWS_Rte_06797] [SWS_Rte_06832]
[SWS_Rte_06833] [SWS_Rte_06834]
[SWS_Rte_06835] [SWS_Rte_06836]
[SWS_Rte_06837] [SWS_Rte_06838]
[SWS_Rte_06839] [SWS_Rte_06840]
[SWS_Rte_07056] [SWS_Rte_07057]
[SWS_Rte_07058] [SWS_Rte_07059]
[SWS_Rte_07060] [SWS_Rte_07150]
[SWS_Rte_07151] [SWS_Rte_07152]
[SWS_Rte_07153] [SWS_Rte_07154]
[SWS_Rte_07155] [SWS_Rte_07157]
[SWS_Rte_07173] [SWS_Rte_07259]
[SWS_Rte_07533] [SWS_Rte_07535]
[SWS_Rte_07559] [SWS_Rte_07564]
[SWS_Rte_70102]

[SRS_Rte_00144] RTE shall support the
notification of mode switches via
AUTOSAR interfaces

[SWS_Rte_02508] [SWS_Rte_02544]
[SWS_Rte_02546] [SWS_Rte_02549]
[SWS_Rte_02566] [SWS_Rte_02567]
[SWS_Rte_02568] [SWS_Rte_02624]
[SWS_Rte_02628] [SWS_Rte_02659]
[SWS_Rte_02660] [SWS_Rte_02732]
[SWS_Rte_02738] [SWS_Rte_03858]
[SWS_Rte_03859] [SWS_Rte_06742]
[SWS_Rte_06743] [SWS_Rte_06744]
[SWS_Rte_06745] [SWS_Rte_06746]
[SWS_Rte_06747] [SWS_Rte_06766]
[SWS_Rte_06767] [SWS_Rte_06772]

54 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06773] [SWS_Rte_06774]
[SWS_Rte_06775] [SWS_Rte_06776]
[SWS_Rte_06777] [SWS_Rte_06778]
[SWS_Rte_06779] [SWS_Rte_06780]
[SWS_Rte_06781] [SWS_Rte_06782]
[SWS_Rte_06783] [SWS_Rte_06784]
[SWS_Rte_06785] [SWS_Rte_06786]
[SWS_Rte_06787] [SWS_Rte_06788]
[SWS_Rte_06789] [SWS_Rte_06790]
[SWS_Rte_06791] [SWS_Rte_06792]
[SWS_Rte_06793] [SWS_Rte_06794]
[SWS_Rte_06795] [SWS_Rte_06796]
[SWS_Rte_06797] [SWS_Rte_07155]
[SWS_Rte_07262] [SWS_Rte_07540]
[SWS_Rte_07640] [SWS_Rte_07666]
[SWS_Rte_08500] [SWS_Rte_08504]
[SWS_Rte_08505] [SWS_Rte_08506]
[SWS_Rte_08509] [SWS_Rte_08510]

[SRS_Rte_00145] Compatibility mode [SWS_Rte_01151] [SWS_Rte_01216]
[SWS_Rte_01234] [SWS_Rte_01257]
[SWS_Rte_01277] [SWS_Rte_01279]
[SWS_Rte_01326] [SWS_Rte_03794]
[SWS_Rte_03871]

[SRS_Rte_00146] Vendor mode [SWS_Rte_01234]
[SRS_Rte_00147] Support for communication

infrastructure time-out
notification

[SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte_02599] [SWS_Rte_02600]
[SWS_Rte_02604] [SWS_Rte_02607]
[SWS_Rte_02609] [SWS_Rte_02610]
[SWS_Rte_02611] [SWS_Rte_02629]
[SWS_Rte_02666] [SWS_Rte_02703]
[SWS_Rte_02710] [SWS_Rte_03759]
[SWS_Rte_05021] [SWS_Rte_06820]
[SWS_Rte_06821] [SWS_Rte_06822]
[SWS_Rte_06823] [SWS_Rte_06824]
[SWS_Rte_06825] [SWS_Rte_06829]
[SWS_Rte_08004] [SWS_Rte_08061]
[SWS_Rte_08062] [SWS_Rte_08103]
[SWS_Rte_08104] [SWS_Rte_08501]

[SRS_Rte_00148] Support "Specification of
Memory Mapping"

[SWS_Rte_03788] [SWS_Rte_03868]
[SWS_Rte_05088] [SWS_Rte_05089]
[SWS_Rte_06741] [SWS_Rte_07047]
[SWS_Rte_07048] [SWS_Rte_07049]
[SWS_Rte_07050] [SWS_Rte_07051]
[SWS_Rte_07052] [SWS_Rte_07053]
[SWS_Rte_07194] [SWS_Rte_07195]
[SWS_Rte_07421] [SWS_Rte_07422]
[SWS_Rte_07423] [SWS_Rte_07424]
[SWS_Rte_07425] [SWS_Rte_07426]
[SWS_Rte_07427] [SWS_Rte_07589]
[SWS_Rte_07590] [SWS_Rte_07591]
[SWS_Rte_07592] [SWS_Rte_07593]
[SWS_Rte_07594] [SWS_Rte_07595]
[SWS_Rte_07596] [SWS_Rte_07830]
[SWS_Rte_07831] [SWS_Rte_07832]
[SWS_Rte_08787]

55 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00149] Support "Specification of
Compiler Abstraction"

[SWS_Rte_01164] [SWS_Rte_03787]
[SWS_Rte_07194] [SWS_Rte_07195]
[SWS_Rte_07593] [SWS_Rte_07594]
[SWS_Rte_07595] [SWS_Rte_07596]
[SWS_Rte_07641]

[SRS_Rte_00150] Support "Specification of
Platform Types"

[SWS_Rte_01164] [SWS_Rte_07641]

[SRS_Rte_00152] Support for port-defined
argument values

[SWS_Rte_01166] [SWS_Rte_01360]

[SRS_Rte_00153] Support for Measurement [SWS_Rte_03900] [SWS_Rte_03901]
[SWS_Rte_03902] [SWS_Rte_03903]
[SWS_Rte_03904] [SWS_Rte_03950]
[SWS_Rte_03951] [SWS_Rte_03972]
[SWS_Rte_03973] [SWS_Rte_03974]
[SWS_Rte_03975] [SWS_Rte_03976]
[SWS_Rte_03977] [SWS_Rte_03978]
[SWS_Rte_03979] [SWS_Rte_03980]
[SWS_Rte_03981] [SWS_Rte_03982]
[SWS_Rte_05087] [SWS_Rte_05101]
[SWS_Rte_05102] [SWS_Rte_05120]
[SWS_Rte_05121] [SWS_Rte_05122]
[SWS_Rte_05123] [SWS_Rte_05124]
[SWS_Rte_05125] [SWS_Rte_05136]
[SWS_Rte_05168] [SWS_Rte_05169]
[SWS_Rte_05170] [SWS_Rte_05172]
[SWS_Rte_05174] [SWS_Rte_05175]
[SWS_Rte_05176] [SWS_Rte_06206]
[SWS_Rte_06700] [SWS_Rte_06701]
[SWS_Rte_06702] [SWS_Rte_06726]
[SWS_Rte_07160] [SWS_Rte_07174]
[SWS_Rte_07197] [SWS_Rte_07198]
[SWS_Rte_07344] [SWS_Rte_07349]
[SWS_Rte_70086] [SWS_Rte_80073]

[SRS_Rte_00154] Support for Calibration [SWS_Rte_03835] [SWS_Rte_03905]
[SWS_Rte_03906] [SWS_Rte_03907]
[SWS_Rte_03908] [SWS_Rte_03909]
[SWS_Rte_03910] [SWS_Rte_03911]
[SWS_Rte_03912] [SWS_Rte_03913]
[SWS_Rte_03914] [SWS_Rte_03915]
[SWS_Rte_03916] [SWS_Rte_03922]
[SWS_Rte_03932] [SWS_Rte_03933]
[SWS_Rte_03934] [SWS_Rte_03935]
[SWS_Rte_03936] [SWS_Rte_03942]
[SWS_Rte_03943] [SWS_Rte_03947]
[SWS_Rte_03948] [SWS_Rte_03949]

56 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03958] [SWS_Rte_03959]
[SWS_Rte_03960] [SWS_Rte_03961]
[SWS_Rte_03962] [SWS_Rte_03963]
[SWS_Rte_03964] [SWS_Rte_03965]
[SWS_Rte_03968] [SWS_Rte_03970]
[SWS_Rte_03971] [SWS_Rte_05112]
[SWS_Rte_05145] [SWS_Rte_05194]
[SWS_Rte_06815] [SWS_Rte_06816]
[SWS_Rte_07029] [SWS_Rte_07030]
[SWS_Rte_07033] [SWS_Rte_07034]
[SWS_Rte_07035] [SWS_Rte_07096]
[SWS_Rte_07185] [SWS_Rte_07186]
[SWS_Rte_07693]

[SRS_Rte_00155] API to access calibration
parameters

[SWS_Rte_01252] [SWS_Rte_01300]
[SWS_Rte_03835] [SWS_Rte_03927]
[SWS_Rte_03928] [SWS_Rte_03929]
[SWS_Rte_03930] [SWS_Rte_03949]
[SWS_Rte_03952] [SWS_Rte_07093]
[SWS_Rte_07094] [SWS_Rte_07095]

[SRS_Rte_00156] Support for different calibration
data emulation methods

[SWS_Rte_03905] [SWS_Rte_03906]
[SWS_Rte_03908] [SWS_Rte_03909]
[SWS_Rte_03910] [SWS_Rte_03911]
[SWS_Rte_03913] [SWS_Rte_03914]
[SWS_Rte_03915] [SWS_Rte_03916]
[SWS_Rte_03922] [SWS_Rte_03932]
[SWS_Rte_03933] [SWS_Rte_03934]
[SWS_Rte_03935] [SWS_Rte_03936]
[SWS_Rte_03942] [SWS_Rte_03943]
[SWS_Rte_03947] [SWS_Rte_03948]
[SWS_Rte_03960] [SWS_Rte_03961]
[SWS_Rte_03962] [SWS_Rte_03963]
[SWS_Rte_03964] [SWS_Rte_03965]
[SWS_Rte_03968] [SWS_Rte_03970]
[SWS_Rte_03971] [SWS_Rte_05145]
[SWS_Rte_06816]

[SRS_Rte_00157] Support for calibration
parameters in NVRAM

[SWS_Rte_03936]

[SRS_Rte_00158] Support separation of calibration
parameters

[SWS_Rte_03907] [SWS_Rte_03908]
[SWS_Rte_03911] [SWS_Rte_03912]
[SWS_Rte_03959] [SWS_Rte_05145]
[SWS_Rte_05194] [SWS_Rte_07096]

[SRS_Rte_00159] Sharing of calibration
parameters

[SWS_Rte_02749] [SWS_Rte_02750]
[SWS_Rte_03958] [SWS_Rte_05112]
[SWS_Rte_07186]

[SRS_Rte_00160] Debounced start of Runnable
Entities

[SWS_Rte_02697]

[SRS_Rte_00161] Activation offset of Runnable
Entities

[SWS_Rte_07000]

[SRS_Rte_00162] "1:n" External Trigger
communication

[SWS_Rte_06210] [SWS_Rte_07200]
[SWS_Rte_07201] [SWS_Rte_07207]
[SWS_Rte_07212] [SWS_Rte_07213]
[SWS_Rte_07214] [SWS_Rte_07215]
[SWS_Rte_07216] [SWS_Rte_07218]
[SWS_Rte_07229] [SWS_Rte_07543]

57 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00163] Support for InterRunnable
Triggering

[SWS_Rte_07203] [SWS_Rte_07204]
[SWS_Rte_07208] [SWS_Rte_07220]
[SWS_Rte_07221] [SWS_Rte_07223]
[SWS_Rte_07224] [SWS_Rte_07226]
[SWS_Rte_07227] [SWS_Rte_07228]
[SWS_Rte_07229] [SWS_Rte_07555]

[SRS_Rte_00164] Ensure a unique naming of
generated types visible in the
global namespace

[SWS_Rte_03609] [SWS_Rte_03610]
[SWS_Rte_06706] [SWS_Rte_06707]
[SWS_Rte_06708] [SWS_Rte_06812]
[SWS_Rte_06813] [SWS_Rte_07110]
[SWS_Rte_07111] [SWS_Rte_07114]
[SWS_Rte_07115] [SWS_Rte_07116]
[SWS_Rte_07117] [SWS_Rte_07118]
[SWS_Rte_07119] [SWS_Rte_07144]
[SWS_Rte_07145] [SWS_Rte_07146]

[SRS_Rte_00165] Suppress identical "C" type
re-definitions

[SWS_Rte_07105] [SWS_Rte_07107]
[SWS_Rte_07112] [SWS_Rte_07113]
[SWS_Rte_07134] [SWS_Rte_07143]
[SWS_Rte_07167] [SWS_Rte_07169]

[SRS_Rte_00166] Use the AUTOSAR Standard
Types in the global namespace if
the AUTOSAR data type is
mapped to an AUTOSAR
Standard Type

[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte_07104] [SWS_Rte_07109]
[SWS_Rte_07148] [SWS_Rte_07149]
[SWS_Rte_07162] [SWS_Rte_07163]
[SWS_Rte_07166]

[SRS_Rte_00167] Encapsulate a Software
Component local name space

[SWS_Rte_01004] [SWS_Rte_02310]
[SWS_Rte_02311] [SWS_Rte_02575]
[SWS_Rte_03809] [SWS_Rte_03810]
[SWS_Rte_03854] [SWS_Rte_05051]
[SWS_Rte_05052] [SWS_Rte_06513]
[SWS_Rte_06515] [SWS_Rte_06518]
[SWS_Rte_06519] [SWS_Rte_06520]
[SWS_Rte_06530] [SWS_Rte_06541]
[SWS_Rte_06542] [SWS_Rte_06551]
[SWS_Rte_06552] [SWS_Rte_06716]
[SWS_Rte_06717] [SWS_Rte_06718]
[SWS_Rte_07122] [SWS_Rte_07123]
[SWS_Rte_07140] [SWS_Rte_07410]
[SWS_Rte_07411] [SWS_Rte_07412]
[SWS_Rte_07414] [SWS_Rte_08401]
[SWS_Rte_08402] [SWS_Rte_08416]

[SRS_Rte_00168] Typing of RTE API. [SWS_Rte_07104]
[SRS_Rte_00169] Map code and memory allocated

by the RTE to memory sections
[SWS_Rte_03868] [SWS_Rte_05088]
[SWS_Rte_05089] [SWS_Rte_06741]
[SWS_Rte_07047] [SWS_Rte_07048]
[SWS_Rte_07049] [SWS_Rte_07050]
[SWS_Rte_07051] [SWS_Rte_07052]
[SWS_Rte_07053] [SWS_Rte_07421]
[SWS_Rte_07422] [SWS_Rte_07423]
[SWS_Rte_07424] [SWS_Rte_07425]
[SWS_Rte_07426] [SWS_Rte_07427]
[SWS_Rte_07589] [SWS_Rte_07590]
[SWS_Rte_07591] [SWS_Rte_07592]
[SWS_Rte_08787]

58 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00170] Provide used memory sections
description

[SWS_Rte_05086] [SWS_Rte_05089]
[SWS_Rte_06725]

[SRS_Rte_00171] Support for fixed and constant
data

[SWS_Rte_03930]

[SRS_Rte_00176] Sharing of NVRAM data [SWS_Rte_07301]
[SRS_Rte_00177] Support of NvBlockComponent

Type
[SWS_Rte_04535] [SWS_Rte_06211]
[SWS_Rte_06212] [SWS_Rte_07303]
[SWS_Rte_07312] [SWS_Rte_07317]
[SWS_Rte_07343] [SWS_Rte_07353]
[SWS_Rte_07355] [SWS_Rte_07398]
[SWS_Rte_07399] [SWS_Rte_07632]
[SWS_Rte_07633] [SWS_Rte_08063]
[SWS_Rte_08064] [SWS_Rte_08080]
[SWS_Rte_08081] [SWS_Rte_08082]
[SWS_Rte_08083] [SWS_Rte_08084]
[SWS_Rte_08085] [SWS_Rte_08086]
[SWS_Rte_08087] [SWS_Rte_08088]
[SWS_Rte_08089] [SWS_Rte_08090]
[SWS_Rte_08111]

[SRS_Rte_00178] Data consistency of NvBlock
ComponentType

[SWS_Rte_07310] [SWS_Rte_07311]
[SWS_Rte_07315] [SWS_Rte_07316]
[SWS_Rte_07319] [SWS_Rte_07350]
[SWS_Rte_07601] [SWS_Rte_07602]
[SWS_Rte_07613] [SWS_Rte_07614]

[SRS_Rte_00179] Support of Update Flag for Data
Reception

[SWS_Rte_01413] [SWS_Rte_04528]
[SWS_Rte_07385] [SWS_Rte_07386]
[SWS_Rte_07387] [SWS_Rte_07390]
[SWS_Rte_07391] [SWS_Rte_07392]
[SWS_Rte_07393] [SWS_Rte_07654]
[SWS_Rte_07689]

[SRS_Rte_00180] DataSemantics range check
during runtime

[SWS_Rte_01371] [SWS_Rte_01372]
[SWS_Rte_01374] [SWS_Rte_03839]
[SWS_Rte_03840] [SWS_Rte_03841]
[SWS_Rte_03842] [SWS_Rte_03843]
[SWS_Rte_03845] [SWS_Rte_03846]
[SWS_Rte_03847] [SWS_Rte_03848]
[SWS_Rte_03849] [SWS_Rte_03861]
[SWS_Rte_06829] [SWS_Rte_07038]
[SWS_Rte_08016] [SWS_Rte_08024]
[SWS_Rte_08025] [SWS_Rte_08026]
[SWS_Rte_08027] [SWS_Rte_08028]
[SWS_Rte_08029] [SWS_Rte_08030]
[SWS_Rte_08031] [SWS_Rte_08032]
[SWS_Rte_08033] [SWS_Rte_08034]
[SWS_Rte_08035] [SWS_Rte_08036]
[SWS_Rte_08037] [SWS_Rte_08038]
[SWS_Rte_08039] [SWS_Rte_08040]
[SWS_Rte_08041] [SWS_Rte_08042]
[SWS_Rte_08065]

59 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00181] Conversion between internal
and network data types

[SWS_Rte_03827] [SWS_Rte_03828]
[SWS_Rte_04536] [SWS_Rte_04537]
[SWS_Rte_04538] [SWS_Rte_04539]
[SWS_Rte_06737] [SWS_Rte_06738]
[SWS_Rte_07828] [SWS_Rte_07829]
[SWS_Rte_07844]

[SRS_Rte_00182] Self Scaling Signals at Port
Interfaces

[SWS_Rte_01374] [SWS_Rte_03815]
[SWS_Rte_03816] [SWS_Rte_03817]
[SWS_Rte_03818] [SWS_Rte_03819]
[SWS_Rte_03820] [SWS_Rte_03821]
[SWS_Rte_03822] [SWS_Rte_03823]
[SWS_Rte_03829] [SWS_Rte_03830]
[SWS_Rte_03831] [SWS_Rte_03832]
[SWS_Rte_03833] [SWS_Rte_03855]
[SWS_Rte_03856] [SWS_Rte_03857]
[SWS_Rte_03860] [SWS_Rte_07038]
[SWS_Rte_07091] [SWS_Rte_07092]
[SWS_Rte_07099] [SWS_Rte_07925]
[SWS_Rte_07926] [SWS_Rte_07928]
[SWS_Rte_08801]

[SRS_Rte_00183] RTE Read API returning the
dataElement value

[SWS_Rte_07394] [SWS_Rte_07395]
[SWS_Rte_07396]

[SRS_Rte_00184] RTE Status "Never Received" [SWS_Rte_04529] [SWS_Rte_06829]
[SWS_Rte_07381] [SWS_Rte_07382]
[SWS_Rte_07383] [SWS_Rte_07384]
[SWS_Rte_07643] [SWS_Rte_07644]
[SWS_Rte_07645] [SWS_Rte_08005]
[SWS_Rte_08008] [SWS_Rte_08009]
[SWS_Rte_08046] [SWS_Rte_08047]
[SWS_Rte_08048] [SWS_Rte_08096]
[SWS_Rte_08097] [SWS_Rte_08098]

[SRS_Rte_00185] RTE API with Rte_IFeedback [SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte_02608] [SWS_Rte_02666]
[SWS_Rte_03836] [SWS_Rte_06820]
[SWS_Rte_06821] [SWS_Rte_06822]
[SWS_Rte_06823] [SWS_Rte_06824]
[SWS_Rte_06826] [SWS_Rte_06827]
[SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07378] [SWS_Rte_07379]
[SWS_Rte_07646] [SWS_Rte_07647]
[SWS_Rte_07648] [SWS_Rte_07650]
[SWS_Rte_07651] [SWS_Rte_07652]
[SWS_Rte_07660]

60 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00189] A2L Generation Support [SWS_Rte_03998] [SWS_Rte_05087]
[SWS_Rte_05118] [SWS_Rte_05119]
[SWS_Rte_05120] [SWS_Rte_05121]
[SWS_Rte_05122] [SWS_Rte_05123]
[SWS_Rte_05124] [SWS_Rte_05125]
[SWS_Rte_05126] [SWS_Rte_05127]
[SWS_Rte_05128] [SWS_Rte_05129]
[SWS_Rte_05130] [SWS_Rte_05131]
[SWS_Rte_05132] [SWS_Rte_05133]
[SWS_Rte_05135] [SWS_Rte_05136]
[SWS_Rte_05137] [SWS_Rte_05138]
[SWS_Rte_05139] [SWS_Rte_05140]
[SWS_Rte_05141] [SWS_Rte_05142]
[SWS_Rte_05143] [SWS_Rte_05144]
[SWS_Rte_05152] [SWS_Rte_05153]
[SWS_Rte_05154] [SWS_Rte_05155]
[SWS_Rte_05156] [SWS_Rte_05157]
[SWS_Rte_05158] [SWS_Rte_05159]
[SWS_Rte_05160] [SWS_Rte_05161]
[SWS_Rte_05162] [SWS_Rte_06702]
[SWS_Rte_06726] [SWS_Rte_07097]
[SWS_Rte_08313] [SWS_Rte_08314]
[SWS_Rte_08315] [SWS_Rte_08316]
[SWS_Rte_08317]

[SRS_Rte_00191] Support for Variant Handling [SWS_Rte_05168] [SWS_Rte_05169]
[SWS_Rte_05174] [SWS_Rte_05175]
[SWS_Rte_05176] [SWS_Rte_06500]
[SWS_Rte_06501] [SWS_Rte_06507]
[SWS_Rte_06509] [SWS_Rte_06510]
[SWS_Rte_06512] [SWS_Rte_06543]
[SWS_Rte_06546] [SWS_Rte_06547]
[SWS_Rte_06549] [SWS_Rte_06550]
[SWS_Rte_06553] [SWS_Rte_06611]
[SWS_Rte_06612] [SWS_Rte_06613]
[SWS_Rte_06814] [SWS_Rte_06815]
[SWS_Rte_06816] [SWS_Rte_08066]
[SWS_Rte_08067] [SWS_Rte_08068]
[SWS_Rte_08069] [SWS_Rte_08070]

[SRS_Rte_00192] Support multiple trace clients [SWS_Rte_05086] [SWS_Rte_05091]
[SWS_Rte_05092] [SWS_Rte_05093]
[SWS_Rte_05106] [SWS_Rte_06725]

[SRS_Rte_00193] Support for Runnable Entity
execution chaining

[SWS_Rte_07800] [SWS_Rte_07802]

[SRS_Rte_00195] No activation of Runnable
Entities in terminated or
restarting partitions

[SWS_Rte_07604] [SWS_Rte_07606]

[SRS_Rte_00196] Inter-partition communication
consistency

[SWS_Rte_02761] [SWS_Rte_05147]
[SWS_Rte_07610]

[SRS_Rte_00200] Support of unconnected R-Ports [SWS_Rte_01330] [SWS_Rte_01331]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_03785] [SWS_Rte_04530]
[SWS_Rte_06210] [SWS_Rte_07655]
[SWS_Rte_07663]

61 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00201] Contract Phase with Variant
Handling support

[SWS_Rte_06500] [SWS_Rte_06502]
[SWS_Rte_06505] [SWS_Rte_06514]
[SWS_Rte_06515] [SWS_Rte_06516]
[SWS_Rte_06518] [SWS_Rte_06519]
[SWS_Rte_06520] [SWS_Rte_06521]
[SWS_Rte_06522] [SWS_Rte_06523]
[SWS_Rte_06524] [SWS_Rte_06525]
[SWS_Rte_06526] [SWS_Rte_06527]
[SWS_Rte_06528] [SWS_Rte_06529]
[SWS_Rte_06530] [SWS_Rte_06531]
[SWS_Rte_06539] [SWS_Rte_06540]
[SWS_Rte_06541] [SWS_Rte_06542]
[SWS_Rte_06543] [SWS_Rte_06546]
[SWS_Rte_06551] [SWS_Rte_06552]
[SWS_Rte_06620] [SWS_Rte_06638]
[SWS_Rte_08095]

[SRS_Rte_00202] Support for array size variants [SWS_Rte_06500] [SWS_Rte_06505]
[SWS_Rte_06543] [SWS_Rte_06546]

[SRS_Rte_00203] API to read system constant [SWS_Rte_03854] [SWS_Rte_06513]
[SWS_Rte_06514] [SWS_Rte_06517]

[SRS_Rte_00204] Support the selection /
de-selection of SWC prototypes

[SWS_Rte_06601]

[SRS_Rte_00206] Support the selection of a signal
provider

[SWS_Rte_06601] [SWS_Rte_06602]
[SWS_Rte_06603] [SWS_Rte_06604]
[SWS_Rte_06605] [SWS_Rte_06606]

[SRS_Rte_00207] Support N to M communication
patterns while unresolved
variations are affecting these
communications

[SWS_Rte_06601] [SWS_Rte_06602]
[SWS_Rte_06603] [SWS_Rte_06604]
[SWS_Rte_06605] [SWS_Rte_06606]

[SRS_Rte_00210] Support for inter OS application
communication

[SWS_Rte_02728] [SWS_Rte_02732]
[SWS_Rte_02752] [SWS_Rte_02753]
[SWS_Rte_02754] [SWS_Rte_02755]
[SWS_Rte_02756] [SWS_Rte_03853]
[SWS_Rte_07606] [SWS_Rte_08400]
[SWS_Rte_08504] [SWS_Rte_08506]

[SRS_Rte_00211] Cyclic time based scheduling of
BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_04542]
[SWS_Rte_04543] [SWS_Rte_07282]
[SWS_Rte_07514] [SWS_Rte_07574]
[SWS_Rte_07584]

[SRS_Rte_00212] Activation Offset of BSW
Schedulable Entities

[SWS_Rte_07520]

[SRS_Rte_00213] Mode Switches for BSW
Modules

[SWS_Rte_02500] [SWS_Rte_02562]
[SWS_Rte_02563] [SWS_Rte_02564]
[SWS_Rte_02587] [SWS_Rte_02630]
[SWS_Rte_02661] [SWS_Rte_02662]
[SWS_Rte_02663] [SWS_Rte_02664]
[SWS_Rte_02665] [SWS_Rte_02667]
[SWS_Rte_02668] [SWS_Rte_02669]
[SWS_Rte_02707] [SWS_Rte_02708]
[SWS_Rte_04542] [SWS_Rte_04543]
[SWS_Rte_06839] [SWS_Rte_07055]
[SWS_Rte_07150] [SWS_Rte_07151]
[SWS_Rte_07152] [SWS_Rte_07153]

62 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07154] [SWS_Rte_07157]
[SWS_Rte_07173] [SWS_Rte_07258]
[SWS_Rte_07259] [SWS_Rte_07260]
[SWS_Rte_07282] [SWS_Rte_07286]
[SWS_Rte_07293] [SWS_Rte_07294]
[SWS_Rte_07514] [SWS_Rte_07530]
[SWS_Rte_07531] [SWS_Rte_07532]
[SWS_Rte_07534] [SWS_Rte_07535]
[SWS_Rte_07538] [SWS_Rte_07539]
[SWS_Rte_07540] [SWS_Rte_07541]
[SWS_Rte_07556] [SWS_Rte_07557]
[SWS_Rte_07558] [SWS_Rte_07559]
[SWS_Rte_07560] [SWS_Rte_07561]
[SWS_Rte_07564] [SWS_Rte_07694]
[SWS_Rte_08600] [SWS_Rte_08601]

[SRS_Rte_00214] Common Mode handling for
Basic SW and Application SW

[SWS_Rte_02697] [SWS_Rte_07258]
[SWS_Rte_07259] [SWS_Rte_07286]
[SWS_Rte_07535] [SWS_Rte_07564]
[SWS_Rte_07582] [SWS_Rte_07583]

[SRS_Rte_00215] API for Mode switch notification
to the SchM

[SWS_Rte_07255] [SWS_Rte_07256]
[SWS_Rte_07261] [SWS_Rte_08507]

[SRS_Rte_00216] Triggering of BSW Schedulable
Entities by occurrence of
External Trigger

[SWS_Rte_04542] [SWS_Rte_04543]
[SWS_Rte_07213] [SWS_Rte_07214]
[SWS_Rte_07216] [SWS_Rte_07218]
[SWS_Rte_07282] [SWS_Rte_07514]
[SWS_Rte_07542] [SWS_Rte_07544]
[SWS_Rte_07545] [SWS_Rte_07546]
[SWS_Rte_07548] [SWS_Rte_07549]

[SRS_Rte_00217] Synchronized activation of
Runnable Entities and BSW
Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07218]
[SWS_Rte_07549]

[SRS_Rte_00218] API for Triggering BSW modules
by Triggered Events

[SWS_Rte_07263] [SWS_Rte_07264]
[SWS_Rte_07266] [SWS_Rte_07267]

[SRS_Rte_00219] Support for interlaced execution
sequences of Runnable Entities
and BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07517]
[SWS_Rte_07518]

[SRS_Rte_00220] ECU life cycle dependent
scheduling

[SWS_Rte_02538] [SWS_Rte_07580]

[SRS_Rte_00221] Support for "BSW integration"
builds

[SWS_Rte_07569] [SWS_Rte_07585]

[SRS_Rte_00222] Support shared exclusive areas
in BSW Service Modules and
the corresponding Service
Component

[SWS_Rte_07250] [SWS_Rte_07251]
[SWS_Rte_07252] [SWS_Rte_07253]
[SWS_Rte_07254] [SWS_Rte_07522]
[SWS_Rte_07523] [SWS_Rte_07524]
[SWS_Rte_07578] [SWS_Rte_07579]

[SRS_Rte_00223] Callout for partition termination
notification

[SWS_Rte_07330] [SWS_Rte_07331]
[SWS_Rte_07334] [SWS_Rte_07335]
[SWS_Rte_07617] [SWS_Rte_07619]
[SWS_Rte_07620] [SWS_Rte_07622]

[SRS_Rte_00224] Callout for partition restart
request

[SWS_Rte_07188] [SWS_Rte_07336]
[SWS_Rte_07338] [SWS_Rte_07339]
[SWS_Rte_07340] [SWS_Rte_07341]
[SWS_Rte_07342] [SWS_Rte_07643]
[SWS_Rte_07644] [SWS_Rte_07645]

63 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00228] Fan-out NvBlock callback
function

[SWS_Rte_07623] [SWS_Rte_07624]
[SWS_Rte_07625] [SWS_Rte_07626]
[SWS_Rte_07627] [SWS_Rte_07628]
[SWS_Rte_07629] [SWS_Rte_07630]
[SWS_Rte_07631] [SWS_Rte_07671]
[SWS_Rte_07672]

[SRS_Rte_00229] Support for Variant Handling of
BSW Modules

[SWS_Rte_06500] [SWS_Rte_06503]
[SWS_Rte_06504] [SWS_Rte_06507]
[SWS_Rte_06508] [SWS_Rte_06532]
[SWS_Rte_06533] [SWS_Rte_06534]
[SWS_Rte_06535] [SWS_Rte_06536]
[SWS_Rte_06537] [SWS_Rte_06543]
[SWS_Rte_06546] [SWS_Rte_06548]
[SWS_Rte_08789] [SWS_Rte_08790]

[SRS_Rte_00230] Triggering of BSW Schedulable
Entities by occurrence of
Internal Trigger

[SWS_Rte_07229] [SWS_Rte_07551]
[SWS_Rte_07552] [SWS_Rte_07553]
[SWS_Rte_07554]

[SRS_Rte_00231] Support native interface
between Rte and Com for
Strings and uint8 arrays

[SWS_Rte_01377] [SWS_Rte_01378]
[SWS_Rte_07408] [SWS_Rte_07817]

[SRS_Rte_00232] Synchronization of runnable
entities

[SWS_Rte_07804] [SWS_Rte_07805]
[SWS_Rte_07806] [SWS_Rte_07807]

[SRS_Rte_00233] Generation of the Basic
Software Module Description

[SWS_Rte_05086] [SWS_Rte_05165]
[SWS_Rte_05166] [SWS_Rte_05167]
[SWS_Rte_05177] [SWS_Rte_05179]
[SWS_Rte_05180] [SWS_Rte_05181]
[SWS_Rte_05182] [SWS_Rte_05183]
[SWS_Rte_05184] [SWS_Rte_05185]
[SWS_Rte_05186] [SWS_Rte_05187]
[SWS_Rte_05188] [SWS_Rte_05189]
[SWS_Rte_05190] [SWS_Rte_05191]
[SWS_Rte_05192] [SWS_Rte_06725]
[SWS_Rte_07085] [SWS_Rte_08305]
[SWS_Rte_08404]

[SRS_Rte_00234] Support for Record Type
sub-setting

[SWS_Rte_07091] [SWS_Rte_07092]
[SWS_Rte_07099]

[SRS_Rte_00235] Support queued triggers [SWS_Rte_06720] [SWS_Rte_06721]
[SWS_Rte_06722] [SWS_Rte_06723]
[SWS_Rte_07087] [SWS_Rte_07088]
[SWS_Rte_07089] [SWS_Rte_07090]

[SRS_Rte_00236] Support for ModeInterface
Mapping

[SWS_Rte_08511] [SWS_Rte_08512]
[SWS_Rte_08513] [SWS_Rte_08514]

[SRS_Rte_00237] Time recurrent activation of
Runnable Entities

[SWS_Rte_06728] [SWS_Rte_06729]
[SWS_Rte_06730]

[SRS_Rte_00238] Allow enabling of RTE-Feature
to get the activating Event of
Executable Entity

[SWS_Rte_01126] [SWS_Rte_07194]
[SWS_Rte_07195] [SWS_Rte_07282]
[SWS_Rte_08051] [SWS_Rte_08052]
[SWS_Rte_08053] [SWS_Rte_08054]
[SWS_Rte_08055] [SWS_Rte_08056]
[SWS_Rte_08057] [SWS_Rte_08058]
[SWS_Rte_08059] [SWS_Rte_08060]
[SWS_Rte_08071]

64 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00239] Support rule-based initialization
of composite DataPrototypes
and compound primitive Data
Prototypes

[SWS_Rte_06733] [SWS_Rte_06734]
[SWS_Rte_06735] [SWS_Rte_06736]
[SWS_Rte_06764] [SWS_Rte_06765]
[SWS_Rte_08542] [SWS_Rte_08792]

[SRS_Rte_00240] Support of init runnables for
initialization purposes

[SWS_Rte_06748] [SWS_Rte_06749]
[SWS_Rte_06750] [SWS_Rte_06751]
[SWS_Rte_06752] [SWS_Rte_06753]
[SWS_Rte_06754] [SWS_Rte_06755]
[SWS_Rte_06756] [SWS_Rte_06757]
[SWS_Rte_06758] [SWS_Rte_06759]
[SWS_Rte_06760] [SWS_Rte_06761]
[SWS_Rte_06762] [SWS_Rte_06767]
[SWS_Rte_06768] [SWS_Rte_06769]
[SWS_Rte_06770]

[SRS_Rte_00241] Support for Local or Remote
Handling of BSW Service Calls
on Partitioned Systems

[SWS_Rte_08765]

[SRS_Rte_00243] Support for inter-partition
communication of BSW modules

[SWS_Rte_08420] [SWS_Rte_08421]
[SWS_Rte_08422] [SWS_Rte_08733]
[SWS_Rte_08734] [SWS_Rte_08735]
[SWS_Rte_08736] [SWS_Rte_08737]
[SWS_Rte_08738] [SWS_Rte_08739]
[SWS_Rte_08743] [SWS_Rte_08744]
[SWS_Rte_08747] [SWS_Rte_08748]
[SWS_Rte_08751] [SWS_Rte_08752]
[SWS_Rte_08753] [SWS_Rte_08754]
[SWS_Rte_08755] [SWS_Rte_08756]
[SWS_Rte_08763] [SWS_Rte_08764]
[SWS_Rte_08765] [SWS_Rte_08766]

[SRS_Rte_00244] Support for bypass [SWS_Rte_06033] [SWS_Rte_06034]
[SWS_Rte_06035] [SWS_Rte_06036]
[SWS_Rte_06037] [SWS_Rte_06038]
[SWS_Rte_06039] [SWS_Rte_06040]
[SWS_Rte_06041] [SWS_Rte_06042]
[SWS_Rte_06043] [SWS_Rte_06044]
[SWS_Rte_06045] [SWS_Rte_06046]
[SWS_Rte_06047] [SWS_Rte_06048]
[SWS_Rte_06049] [SWS_Rte_06050]
[SWS_Rte_06051] [SWS_Rte_06052]
[SWS_Rte_06053] [SWS_Rte_06054]
[SWS_Rte_06055] [SWS_Rte_06056]
[SWS_Rte_06057] [SWS_Rte_06058]
[SWS_Rte_06059] [SWS_Rte_06060]
[SWS_Rte_06061] [SWS_Rte_06064]
[SWS_Rte_06065] [SWS_Rte_06066]
[SWS_Rte_06067] [SWS_Rte_06068]
[SWS_Rte_06069] [SWS_Rte_06073]
[SWS_Rte_06074] [SWS_Rte_06075]
[SWS_Rte_06076] [SWS_Rte_06077]
[SWS_Rte_06079] [SWS_Rte_06080]
[SWS_Rte_06081] [SWS_Rte_06082]
[SWS_Rte_06083] [SWS_Rte_06084]
[SWS_Rte_06085] [SWS_Rte_06086]

65 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06087] [SWS_Rte_06088]
[SWS_Rte_06089] [SWS_Rte_06090]
[SWS_Rte_06091] [SWS_Rte_06092]
[SWS_Rte_06093] [SWS_Rte_06094]
[SWS_Rte_06095] [SWS_Rte_06096]
[SWS_Rte_06097] [SWS_Rte_06098]
[SWS_Rte_06099] [SWS_Rte_06100]
[SWS_Rte_06101] [SWS_Rte_06102]
[SWS_Rte_06103] [SWS_Rte_06104]
[SWS_Rte_06105] [SWS_Rte_06106]
[SWS_Rte_06107] [SWS_Rte_06108]
[SWS_Rte_06109] [SWS_Rte_06110]
[SWS_Rte_06111] [SWS_Rte_06112]
[SWS_Rte_06113] [SWS_Rte_06114]
[SWS_Rte_06115] [SWS_Rte_06120]
[SWS_Rte_07833] [SWS_Rte_07834]
[SWS_Rte_07835] [SWS_Rte_07836]
[SWS_Rte_07837] [SWS_Rte_07838]
[SWS_Rte_07839] [SWS_Rte_07840]
[SWS_Rte_07841] [SWS_Rte_70094]
[SWS_Rte_70095]
[SWS_Rte_CONSTR_80011]

[SRS_Rte_00245] Support of Writing Strategies for
NV data

[SWS_Rte_07416] [SWS_Rte_08080]
[SWS_Rte_08081] [SWS_Rte_08082]
[SWS_Rte_08083] [SWS_Rte_08084]
[SWS_Rte_08085] [SWS_Rte_08086]
[SWS_Rte_08087] [SWS_Rte_08088]
[SWS_Rte_08089] [SWS_Rte_08090]
[SWS_Rte_08091] [SWS_Rte_08092]
[SWS_Rte_08093] [SWS_Rte_08094]
[SWS_Rte_08111]

[SRS_Rte_00246] Support of Efficient COM for
large data

[SWS_Rte_01376] [SWS_Rte_01379]
[SWS_Rte_01380] [SWS_Rte_01381]
[SWS_Rte_01382] [SWS_Rte_01383]
[SWS_Rte_01384] [SWS_Rte_01385]
[SWS_Rte_01386] [SWS_Rte_01387]
[SWS_Rte_01388] [SWS_Rte_01389]
[SWS_Rte_01390] [SWS_Rte_01391]
[SWS_Rte_01392] [SWS_Rte_01393]
[SWS_Rte_01394] [SWS_Rte_01395]
[SWS_Rte_01396] [SWS_Rte_01397]
[SWS_Rte_01398] [SWS_Rte_01399]
[SWS_Rte_01400] [SWS_Rte_01401]
[SWS_Rte_01402] [SWS_Rte_01403]
[SWS_Rte_01404] [SWS_Rte_01405]
[SWS_Rte_01406] [SWS_Rte_01407]
[SWS_Rte_01408] [SWS_Rte_01409]
[SWS_Rte_01410] [SWS_Rte_01411]

66 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00247] The Rte shall execute
transformer chains for SWC
communication

[SWS_Rte_04540] [SWS_Rte_04541]
[SWS_Rte_06023] [SWS_Rte_08110]
[SWS_Rte_08515] [SWS_Rte_08516]
[SWS_Rte_08517] [SWS_Rte_08518]
[SWS_Rte_08519] [SWS_Rte_08520]
[SWS_Rte_08521] [SWS_Rte_08522]
[SWS_Rte_08523] [SWS_Rte_08524]
[SWS_Rte_08525] [SWS_Rte_08526]
[SWS_Rte_08527] [SWS_Rte_08528]
[SWS_Rte_08529] [SWS_Rte_08530]
[SWS_Rte_08538] [SWS_Rte_08570]
[SWS_Rte_08571] [SWS_Rte_08587]
[SWS_Rte_08588] [SWS_Rte_08589]
[SWS_Rte_08590] [SWS_Rte_08596]
[SWS_Rte_08597] [SWS_Rte_08598]
[SWS_Rte_08599] [SWS_Rte_08793]
[SWS_Rte_08794] [SWS_Rte_08795]
[SWS_Rte_08796] [SWS_Rte_08797]
[SWS_Rte_08798] [SWS_Rte_08799]

[SRS_Rte_00248] The Rte shall provide the buffer
for the data transformation

[SWS_Rte_03867] [SWS_Rte_08531]
[SWS_Rte_08532] [SWS_Rte_08534]
[SWS_Rte_08535] [SWS_Rte_08536]
[SWS_Rte_08537] [SWS_Rte_08550]

[SRS_Rte_00249] The Rte shall provide
transformation errors to the
SWCs

[SWS_Rte_03608] [SWS_Rte_05300]
[SWS_Rte_05301] [SWS_Rte_07417]
[SWS_Rte_07418] [SWS_Rte_07419]
[SWS_Rte_07420] [SWS_Rte_08424]
[SWS_Rte_08539] [SWS_Rte_08540]
[SWS_Rte_08541] [SWS_Rte_08543]
[SWS_Rte_08544] [SWS_Rte_08545]
[SWS_Rte_08558] [SWS_Rte_08559]
[SWS_Rte_08560] [SWS_Rte_08561]
[SWS_Rte_08562] [SWS_Rte_08563]
[SWS_Rte_08564] [SWS_Rte_08565]
[SWS_Rte_08566] [SWS_Rte_08567]
[SWS_Rte_08568] [SWS_Rte_08569]
[SWS_Rte_08574] [SWS_Rte_08575]
[SWS_Rte_08582] [SWS_Rte_08584]
[SWS_Rte_08585] [SWS_Rte_08791]

[SRS_Rte_00251] Array based signal group
handling with Com

[SWS_Rte_08586]

[SRS_Rte_00252] Encapsulate a BSW Module
local name space

[SWS_Rte_03983] [SWS_Rte_03984]
[SWS_Rte_03985] [SWS_Rte_03990]
[SWS_Rte_03991] [SWS_Rte_03992]
[SWS_Rte_03994] [SWS_Rte_03995]
[SWS_Rte_03996] [SWS_Rte_03997]
[SWS_Rte_07415]

[SRS_Rte_00253] The RTE shall execute data
transformation for SWC/BSW
communication within one ECU

[SWS_Rte_08105] [SWS_Rte_08107]
[SWS_Rte_08108] [SWS_Rte_08109]

[SRS_Rte_00261] The RTE shall support optional
struct members.

[SWS_Rte_03611] [SWS_Rte_03612]
[SWS_Rte_03613] [SWS_Rte_03614]
[SWS_Rte_03615] [SWS_Rte_03616]
[SWS_Rte_03617] [SWS_Rte_03618]

67 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00300] RTE Implementation Plug-Ins for
explicit communication

[SWS_Rte_70019] [SWS_Rte_70020]
[SWS_Rte_70021] [SWS_Rte_70022]
[SWS_Rte_70023] [SWS_Rte_70024]
[SWS_Rte_70025] [SWS_Rte_70026]
[SWS_Rte_70032] [SWS_Rte_70039]
[SWS_Rte_70042] [SWS_Rte_70043]
[SWS_Rte_70044] [SWS_Rte_70045]
[SWS_Rte_70048] [SWS_Rte_70049]
[SWS_Rte_70050] [SWS_Rte_70051]
[SWS_Rte_70052] [SWS_Rte_70053]
[SWS_Rte_70054] [SWS_Rte_70055]
[SWS_Rte_70056] [SWS_Rte_70057]
[SWS_Rte_70058] [SWS_Rte_70059]
[SWS_Rte_70060] [SWS_Rte_70061]
[SWS_Rte_70082] [SWS_Rte_70083]
[SWS_Rte_70084] [SWS_Rte_70085]
[SWS_Rte_70087] [SWS_Rte_70088]
[SWS_Rte_70090] [SWS_Rte_70091]
[SWS_Rte_70100] [SWS_Rte_70101]
[SWS_Rte_70102] [SWS_Rte_70107]
[SWS_Rte_70110] [SWS_Rte_70111]
[SWS_Rte_70112] [SWS_Rte_70113]
[SWS_Rte_70114] [SWS_Rte_80016]
[SWS_Rte_80017] [SWS_Rte_80018]
[SWS_Rte_80019] [SWS_Rte_80031]
[SWS_Rte_80032] [SWS_Rte_80033]
[SWS_Rte_80034] [SWS_Rte_80035]
[SWS_Rte_80036] [SWS_Rte_80037]
[SWS_Rte_80038] [SWS_Rte_80039]
[SWS_Rte_80040] [SWS_Rte_80041]
[SWS_Rte_80043] [SWS_Rte_80057]
[SWS_Rte_80058] [SWS_Rte_80059]
[SWS_Rte_80060] [SWS_Rte_80061]
[SWS_Rte_80063] [SWS_Rte_80064]
[SWS_Rte_80065] [SWS_Rte_80066]
[SWS_Rte_80075] [SWS_Rte_80100]
[SWS_Rte_80101] [SWS_Rte_80103]
[SWS_Rte_80104] [SWS_Rte_80105]
[SWS_Rte_CONSTR_80002]
[SWS_Rte_CONSTR_80003]

[SRS_Rte_00301] RTE Implementation Plug-Ins for
implicit communication

[SWS_Rte_70003] [SWS_Rte_70004]
[SWS_Rte_70013] [SWS_Rte_70015]
[SWS_Rte_70016] [SWS_Rte_70017]
[SWS_Rte_70018] [SWS_Rte_70032]
[SWS_Rte_70039] [SWS_Rte_70042]
[SWS_Rte_70043] [SWS_Rte_70046]
[SWS_Rte_70048] [SWS_Rte_70049]
[SWS_Rte_70078] [SWS_Rte_70082]
[SWS_Rte_70083] [SWS_Rte_70084]
[SWS_Rte_70085] [SWS_Rte_70087]
[SWS_Rte_70088] [SWS_Rte_70108]
[SWS_Rte_80010] [SWS_Rte_80011]

68 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80012] [SWS_Rte_80013]
[SWS_Rte_80014] [SWS_Rte_80015]
[SWS_Rte_80031] [SWS_Rte_80032]
[SWS_Rte_80033] [SWS_Rte_80034]
[SWS_Rte_80035] [SWS_Rte_80036]
[SWS_Rte_80037] [SWS_Rte_80038]
[SWS_Rte_80039] [SWS_Rte_80040]
[SWS_Rte_80041] [SWS_Rte_80044]
[SWS_Rte_80046] [SWS_Rte_80047]
[SWS_Rte_80048] [SWS_Rte_80049]
[SWS_Rte_80050] [SWS_Rte_80056]
[SWS_Rte_80057] [SWS_Rte_80058]
[SWS_Rte_80059] [SWS_Rte_80060]
[SWS_Rte_80061] [SWS_Rte_80063]
[SWS_Rte_80064] [SWS_Rte_80076]
[SWS_Rte_80079] [SWS_Rte_80084]
[SWS_Rte_80103] [SWS_Rte_80104]
[SWS_Rte_80105]
[SWS_Rte_CONSTR_80002]
[SWS_Rte_CONSTR_80003]

[SRS_Rte_00302] RTE Implementation Plug-Ins for
exclusive areas

[SWS_Rte_70007] [SWS_Rte_70027]
[SWS_Rte_70028] [SWS_Rte_70032]
[SWS_Rte_70039] [SWS_Rte_80020]
[SWS_Rte_80021] [SWS_Rte_80022]
[SWS_Rte_80023] [SWS_Rte_80024]
[SWS_Rte_80079]
[SWS_Rte_CONSTR_80000]
[SWS_Rte_CONSTR_80001]

[SRS_Rte_00303] RTE Implementation Plug-Ins for
global copy instantiation

[SWS_Rte_70043] [SWS_Rte_70050]
[SWS_Rte_70051] [SWS_Rte_70056]
[SWS_Rte_70057] [SWS_Rte_70085]
[SWS_Rte_70086] [SWS_Rte_80065]
[SWS_Rte_80066] [SWS_Rte_80073]

[SRS_Rte_00304] Multiple RTE Plug-Ins [SWS_Rte_70027] [SWS_Rte_70028]
[SWS_Rte_70047] [SWS_Rte_70062]
[SWS_Rte_70063] [SWS_Rte_70070]
[SWS_Rte_70071] [SWS_Rte_70077]
[SWS_Rte_80020] [SWS_Rte_80021]
[SWS_Rte_80051] [SWS_Rte_80052]
[SWS_Rte_80053] [SWS_Rte_80054]
[SWS_Rte_80055] [SWS_Rte_80071]
[SWS_Rte_80072]

[SRS_Rte_00305] Graduated validation strategy [SWS_Rte_70040] [SWS_Rte_80029]
[SWS_Rte_80030]
[SWS_Rte_CONSTR_80013]

69 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00306] Standardized interfaces for RTE
Implementation Plug-Ins

[SWS_Rte_70000] [SWS_Rte_70001]
[SWS_Rte_70002] [SWS_Rte_70003]
[SWS_Rte_70004] [SWS_Rte_70005]
[SWS_Rte_70006] [SWS_Rte_70007]
[SWS_Rte_70008] [SWS_Rte_70009]
[SWS_Rte_70010] [SWS_Rte_70011]
[SWS_Rte_70012] [SWS_Rte_70013]
[SWS_Rte_70015] [SWS_Rte_70016]
[SWS_Rte_70017] [SWS_Rte_70018]
[SWS_Rte_70019] [SWS_Rte_70020]
[SWS_Rte_70021] [SWS_Rte_70022]
[SWS_Rte_70023] [SWS_Rte_70024]
[SWS_Rte_70025] [SWS_Rte_70026]
[SWS_Rte_70027] [SWS_Rte_70028]
[SWS_Rte_70029] [SWS_Rte_70030]
[SWS_Rte_70031] [SWS_Rte_70032]
[SWS_Rte_70033] [SWS_Rte_70034]
[SWS_Rte_70035] [SWS_Rte_70036]
[SWS_Rte_70037] [SWS_Rte_70038]
[SWS_Rte_70039] [SWS_Rte_70046]
[SWS_Rte_70047] [SWS_Rte_70050]
[SWS_Rte_70051] [SWS_Rte_70052]
[SWS_Rte_70053] [SWS_Rte_70054]
[SWS_Rte_70055] [SWS_Rte_70056]
[SWS_Rte_70057] [SWS_Rte_70058]
[SWS_Rte_70059] [SWS_Rte_70060]
[SWS_Rte_70061] [SWS_Rte_70062]
[SWS_Rte_70063] [SWS_Rte_70064]
[SWS_Rte_70070] [SWS_Rte_70071]
[SWS_Rte_70077] [SWS_Rte_70078]
[SWS_Rte_70087] [SWS_Rte_70088]
[SWS_Rte_70090] [SWS_Rte_70091]
[SWS_Rte_70098] [SWS_Rte_70099]
[SWS_Rte_70100] [SWS_Rte_70101]
[SWS_Rte_70102] [SWS_Rte_70107]
[SWS_Rte_70108] [SWS_Rte_80000]
[SWS_Rte_80001] [SWS_Rte_80002]
[SWS_Rte_80003] [SWS_Rte_80005]
[SWS_Rte_80006] [SWS_Rte_80007]
[SWS_Rte_80008] [SWS_Rte_80009]
[SWS_Rte_80010] [SWS_Rte_80011]
[SWS_Rte_80012] [SWS_Rte_80013]
[SWS_Rte_80014] [SWS_Rte_80015]
[SWS_Rte_80016] [SWS_Rte_80017]
[SWS_Rte_80018] [SWS_Rte_80019]
[SWS_Rte_80020] [SWS_Rte_80021]
[SWS_Rte_80025] [SWS_Rte_80026]
[SWS_Rte_80027] [SWS_Rte_80028]
[SWS_Rte_80051] [SWS_Rte_80052]
[SWS_Rte_80053] [SWS_Rte_80054]
[SWS_Rte_80055] [SWS_Rte_80065]
[SWS_Rte_80066] [SWS_Rte_80071]
[SWS_Rte_80072] [SWS_Rte_80075]
[SWS_Rte_80078] [SWS_Rte_80079]
[SWS_Rte_80100] [SWS_Rte_80101]

70 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00307] RTE Implementation Plug-Ins for
cross core communication

[SWS_Rte_70093] [SWS_Rte_80077]
[SWS_Rte_CONSTR_80010]

[SRS_Rte_00309] RTE Implementation Plug-Ins for
cross safety partition
communication

[SWS_Rte_70093] [SWS_Rte_80077]
[SWS_Rte_CONSTR_80010]

[SRS_Rte_00310] Shared mode queue [SWS_Rte_06832] [SWS_Rte_06833]
[SWS_Rte_06834] [SWS_Rte_06835]
[SWS_Rte_06836] [SWS_Rte_06837]
[SWS_Rte_06838] [SWS_Rte_06839]
[SWS_Rte_06840] [SWS_Rte_70032]
[SWS_Rte_70039] [SWS_Rte_70098]
[SWS_Rte_80083]
[SWS_Rte_CONSTR_80012]

[SRS_Rte_00311] Core synchronous transitions for
mode switches

[SWS_Rte_80111] [SWS_Rte_80112]
[SWS_Rte_80113] [SWS_Rte_80114]
[SWS_Rte_80115] [SWS_Rte_80116]
[SWS_Rte_80117] [SWS_Rte_80118]
[SWS_Rte_80119] [SWS_Rte_80120]
[SWS_Rte_80121] [SWS_Rte_80122]
[SWS_Rte_80123] [SWS_Rte_80124]
[SWS_Rte_80125]

[SRS_Rte_00312] RTE Implementation Plug-Ins for
transformers in client server
communication

[SWS_Rte_70032] [SWS_Rte_70039]
[SWS_Rte_70062] [SWS_Rte_70063]
[SWS_Rte_70064] [SWS_Rte_70070]
[SWS_Rte_70071] [SWS_Rte_70077]
[SWS_Rte_70079] [SWS_Rte_70080]
[SWS_Rte_70081] [SWS_Rte_70089]
[SWS_Rte_70110] [SWS_Rte_70111]
[SWS_Rte_70112] [SWS_Rte_70113]
[SWS_Rte_70114] [SWS_Rte_80067]
[SWS_Rte_80068] [SWS_Rte_80069]
[SWS_Rte_80070] [SWS_Rte_80071]
[SWS_Rte_80072] [SWS_Rte_80074]
[SWS_Rte_80106] [SWS_Rte_80107]
[SWS_Rte_80108] [SWS_Rte_80109]
[SWS_Rte_80110]
[SWS_Rte_CONSTR_80004]
[SWS_Rte_CONSTR_80005]
[SWS_Rte_CONSTR_80006]
[SWS_Rte_CONSTR_80007]
[SWS_Rte_CONSTR_80009]

[SRS_Rte_00313] Description of RTE
Implementation Plug-in
properties

[SWS_Rte_70092]

[SRS_Rte_00314] Avoid nesting of critical sections [SWS_Rte_80025]
[SRS_Rte_00315] Protection of mode machine

instance access
[SWS_Rte_70032] [SWS_Rte_70039]
[SWS_Rte_70096] [SWS_Rte_70097]
[SWS_Rte_70098] [SWS_Rte_70103]
[SWS_Rte_70104] [SWS_Rte_70105]
[SWS_Rte_70106] [SWS_Rte_70109]
[SWS_Rte_70115] [SWS_Rte_80080]
[SWS_Rte_80081] [SWS_Rte_80082]
[SWS_Rte_80085]

71 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SRS_Rte_00316] RTE Implementation Plug-Ins for
compatibility mode

[SWS_Rte_80044] [SWS_Rte_80045]

[SRS_Rte_00317] RTE Implementation Plug-Ins for
transformers in trigger
communication

[SWS_Rte_70079] [SWS_Rte_70080]
[SWS_Rte_70081] [SWS_Rte_70110]
[SWS_Rte_70111] [SWS_Rte_70112]
[SWS_Rte_70113] [SWS_Rte_70114]
[SWS_Rte_80068] [SWS_Rte_80069]
[SWS_Rte_80070] [SWS_Rte_80102]
[SWS_Rte_CONSTR_80009]
[SWS_Rte_CONSTR_80014]
[SWS_Rte_CONSTR_80015]
[SWS_Rte_CONSTR_80016]
[SWS_Rte_CONSTR_80017]

Table 1.2: Requirements tracing

72 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2 RTE Overview

2.1 The RTE in the Context of AUTOSAR

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB). The RTE provides the infrastructure services that enable
communication to occur between AUTOSAR software-components as well as acting as
the means by which AUTOSAR software-components access basic software modules
including the OS and communication service.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized RTE
services.

In principle the RTE can be logically divided into two sub-parts realizing:

• the communication between software components

• the scheduling of the software components

To fully describe the concept of the RTE, the Basic Software Scheduler has to be
considered as well. The Basic Software Scheduler schedules the schedulable entities
of the basic software modules. In some documents the schedulable entities are also
called main processing functions.

Due to the situation that the same OS Task might be used for the scheduling of software
components and basic software modules the scheduling part of the RTE is strongly
linked with the Basic Software Scheduler and can not be clearly separated.

The RTE and the Basic Software Scheduler is generated1 for each ECU to ensure that
the RTE and Basic Software Scheduler is optimal for the ECU [SRS_Rte_00023].

2.2 AUTOSAR Concepts

This section introduces some important AUTOSAR concepts and how they are imple-
mented within the context of the RTE.

2.2.1 AUTOSAR Software-components

In AUTOSAR, “application” software is conceptually located above the AUTOSAR RTE
and consists of “AUTOSAR application software-components” that are ECU and loca-

1An implementation is free to configure rather than generate the RTE and Basic Software Sched-
uler. The remainder of this specification refers to generation for reasons of simplicity only and these
references should not be interpreted as ruling out either a wholly configured, or partially generated and
partially configured, RTE and Basic Software Scheduler implementation.

73 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

tion independent and “AUTOSAR sensor-actuator components” that are dependent on
ECU hardware and thus not readily relocatable for reasons of performance/efficiency.
This means that, subject to constraints imposed by the system designer, an AUTOSAR
software-component can be deployed to any available ECU during system configura-
tion. The RTE is then responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
deployed. Considering sensor/actuator software components, they may only directly
address the local ECU abstraction. Therefore, access to remote ECU abstraction shall
be done through an intermediate sensor/actuator software component which broad-
casts the information on the remote ECU. Hence, moving the sensor/actuator software
components on different ECUs, may then imply to also move connected devices (sen-
sor/actuator) to the same ECU (provided that efficient access is needed).

An AUTOSAR software-component is defined by a type definition that defines the com-
ponent’s interfaces. A component type is instantiated when the component is deployed
to an ECU. A component type can be instantiated more than once on the same ECU in
which case the component type is said to be “multiple instantiated”. The RTE supports
per-instance memory sections that enable each component instance to have private
states.

The RTE supports both AUTOSAR software-components where the source is available
(“source-code software-components”) [SRS_Rte_00024] and AUTOSAR software-
components where only the object code (“object-code software components”) is avail-
able [SRS_Rte_00140].

Details of AUTOSAR software-components in relation to the RTE are presented in
Section 4.1.3.

2.2.2 Basic Software Modules

As well as “AUTOSAR software-components” an AUTOSAR ECU includes basic soft-
ware modules. Basic software modules can access the ECU abstraction layer as well
as other basic software modules directly and are thus neither ECU nor location inde-
pendent 2.

An “AUTOSAR software-component” cannot directly access basic software modules –
all communication is via AUTOSAR interfaces and therefore under the control of the
RTE. The requirement to not have direct access applies to all Basic Software Modules
including the operating system [SRS_Rte_00020] and the communication service.

2The functionality provided by a basic software module cannot be relocated in another ECU. However,
the source of some basic software modules can be reused on other ECUs.

74 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2.2.3 Communication

The communication interface of an AUTOSAR software-component consists of several
ports (which are characterized by port-interfaces). An AUTOSAR software-component
can communicate through its interfaces with other AUTOSAR software-components
(whether that component is located on the same ECU or on a different ECU) or
with basic software modules that have ports and runnables (i.e ServiceSwCompo-
nents, EcuAbstractionSwComponents and ComplexDeviceDriverSwCompo-
nents) and are located on the same ECU. This communication can only occur via
the component’s ports. A port can be categorized by either a sender-receiver or client-
server port-interface. A sender-receiver interface provides a message passing facility
whereas a client-server interface provides function invocation.

2.2.3.1 Communication Paradigms

The RTE provides different paradigms for the communication between software-
component instances: sender-receiver (signal passing), client-server (function invo-
cation), mode switch, and NvBlockSwComponentType interaction.

Each communication paradigm can be applied to intra-partition software-component
distribution (which includes both intra-task and inter-task distribution, within the same
Partition), inter-Partition software-component distribution, and inter-ECU software-
component distribution. Intra-task communication occurs between runnable entities
that are mapped to the same OS task whereas inter-task communication occurs be-
tween runnable entities mapped to different tasks of the same Partition and can there-
fore involve a context switch. Inter-Partition communication occurs between runnable
entities in components mapped to different partitions of the same ECU and therefore in-
volve a context switch and crossing a protection boundary (memory protection, timing
protection, isolation on a core). Inter-ECU communication occurs between runnable
entities in components that have been mapped to different ECUs and so is inherently
concurrent and involves potentially unreliable communication.

Details of the communication paradigms that are supported by the RTE are contained
in Section 4.3.

2.2.3.2 Communication Modes

The RTE supports two modes for sender-receiver communication:

• Explicit — A component uses explicit RTE API calls to send and receive data
elements [SRS_Rte_00098].

• Implicit — The RTE automatically reads a specified set of data elements before
a runnable is invoked and automatically writes (a different) set of data elements
after the runnable entity has terminated [SRS_Rte_00128] [SRS_Rte_00129].

75 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The term “implicit” is used here since the runnable does not actively initiate the
reception or transmission of data.

Implicit and explicit communication is considered in greater detail in Section 4.3.1.5.

2.2.3.3 Static Communication

[SWS_Rte_06026] d The RTE shall support static communication only. c
(SRS_Rte_00025)

Static communication includes only those communication connections where the
source(s) and destination(s) of all communication is known at the point the RTE is
generated. [SRS_Rte_00025]. This includes also connections which are subject to
variability because the variant handling concept of AUTOSAR does only support the
selection of connectors from a superset of possible connectors to define a particular
variant.
Dynamic reconfiguration of communication is not supported due to the run-time and
code overhead which would therefore limit the range of devices for which the RTE is
suitable.

2.2.3.4 Multiplicity

As well as point to point communication (i.e. “1:1”) the RTE supports communication
connections with multiple providers or requires:

• When using sender-receiver communication, the RTE supports both “1:n” (single
sender with multiple receivers) [SRS_Rte_00028] and “n:1” (multiple senders and
a single receiver) [SRS_Rte_00131] communication with the restriction that mul-
tiple senders are not allowed for mode switch notifications, see meta-
model restrictions [SWS_Rte_02670].

The execution of the multiple senders or receivers is not coordinated by the RTE.
This means that the actions of different software-components are independent –
the RTE does not ensure that different senders transmit data simultaneously and
does not ensure that all receivers read data or receive events simultaneously.

• When using client-server communication, the RTE supports “n:1” (multiple clients
and a single server) [SRS_Rte_00029] communication. The RTE does not sup-
port “1:n” (single client with multiple servers) client-server communication.

Irrespective of whether “1:1”, “n:1” or “1:n” communication is used, the RTE is respon-
sible for implementing the communication connections and therefore the AUTOSAR
software-component is unaware of the configuration. This permits an AUTOSAR
software-component to be redeployed in a different configuration without modification.

76 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2.2.4 Concurrency

AUTOSAR software-components have no direct access to the OS and hence there are
no “tasks” in an AUTOSAR application. Instead, concurrent activity within AUTOSAR
is based around RunnableEntitys within components that are invoked by the RTE.

The AUTOSAR VFB specification [1] defines a runnable entity as a “sequence of in-
structions that can be started by the Run-Time Environment”. A component provides
usually one3 or more runnable entities [SRS_Rte_00031] and each runnable entity
has exactly one entry point. An entry point defines the symbol within the software-
component’s code that provides the implementation of a runnable entity.

The RTE is responsible for invoking runnable entities – AUTOSAR software-
components are not able to (dynamically) create private threads of control. Hence,
all activity within an AUTOSAR application is initiated by the triggering of runnable en-
tities by the RTE as a result of RTEEvents.

An RTEEvent encompasses all possible situations that can trigger execution of a runn-
able entity by the RTE. The different classes of RTEEvent are defined in Section 5.7.5.

The RTE supports runnable entities in any component that has an AUTOSAR interface
- this includes AUTOSAR software-components and basic software modules.4

Runnable entities are divided into multiple categories with each category supporting
different facilities. The categories supported by the RTE are described in Section
4.2.2.3.

2.3 The RTE Generator

The RTE generator is one of a set of tools5 that create the realization of the AUTOSAR
virtual function bus for an ECU based on information in the ECU Configuration De-
scription. The RTE Generator is responsible for creating the AUTOSAR software-
component API functions that link AUTOSAR software-components to the OS and
manage communication between AUTOSAR software-components and between AU-
TOSAR software-components and basic software modules.

Additionally the RTE Generator creates both the Basic Software Scheduler and the Ba-
sic Software Scheduler API functions for each particular instance of a Basic Software
Module.

The RTE generation process for SWCs has two main phases:
3There are use cases where a SWC might exist without any RunnableEntity.
4The OS and COM are basic software modules but present a standardized interface to the RTE and

have no AUTOSAR interface. The OS and COM therefore do not have runnable entities.
5The RTE generator works in conjunction with other tools, for example, the OS and COM generators,

to fully realize the AUTOSAR VFB.

77 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• RTE Contract phase – a limited set of information about a component, principally
the AUTOSAR interface definitions, is used to create an application header file
for a component type. The application header file defines the “contract” between
component and RTE.

• RTE Generation phase - all relevant information about components, their de-
ployment to ECUs and communication connections is used to generate the RTE
and optionally the Ioc configuration [4]. One RTE is generated for each ECU in
the system.

The two-phase development model ensures that the RTE generated application header
files are available for use for source-code AUTOSAR software-components as well
as object-code AUTOSAR software-components with both types of component having
access to all definitions created as part of the RTE generation process.

The RTE generation process, and the necessary inputs in each phase, are considered
in more detail in chapter 3.

2.4 Design Decisions

This section details decisions that affect both the general direction that has been taken
as well as the actual content of this document.

1. The role of this document is to specify RTE behavior, not RTE implementation.
Implementation details should not be considered to be part of the RTE software
specification unless they are explicitly marked as RTE requirements.

2. An AUTOSAR system consists of multiple ECUs each of which contains an RTE
that may have been generated by different RTE generators. Consequently, the
specification of how RTEs from multiple vendors interoperate is considered to be
within the scope of this document.

3. The RTE does not have sufficient information to be able to derive a mapping from
runnable entity to OS task. The decision was therefore taken to require that the
mapping be specified as part of the RTE input.

4. Support for C++ is provided by making the C RTE API available for C++ com-
ponents rather than specifying a completely separate object-oriented API. This
decision was taken for two reasons; firstly the same interface for the C and C++

simplifies the learning curve and secondly a single interface greatly simplifies
both the specification and any subsequent implementations.

5. There is no support within the specification for Java.

6. The AUTOSAR meta-model is a highly expressive language for defining sys-
tems however for reasons of practicality certain restrictions and constraints have
been placed on the use of the meta-model. The restrictions are described in
Appendix A.

78 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3 RTE Generation Process

This chapter describes the methodology of the RTE and Basic Software Scheduler
generation. For a detailed description of the overall AUTOSAR methodology refer to
methodology document [6].

[SWS_Rte_02514] d The RTE generator shall produce the same RTE API, RTE code,
SchM API and SchM code when the input information is the same. c(SRS_Rte_00065)

The RTE Generator gets involved in the AUTOSAR Methodology several times in dif-
ferent roles. Technically the RTE Generator can be implemented as one tool which
is invoked with options to switch between the different roles. Or the RTE Generator
could be a set of separate tools. In the following section the individual applications of
the RTE Generator are described based on the roles that are take, not necessarily the
actual tools.

The RTE Generator is used in different roles for the following phases:

• RTE Contract Phase

• Basic Software Scheduler Contract Phase

• PreBuild Data Set Contract Phase

• Basic Software Scheduler Generation Phase

• RTE Generation Phase

• PreBuild Data Set Generation Phase

• PostBuild Data Set Generation Phase

RTE Generator for Software-Components

In Figure 3.1 the overall AUTOSAR Methodology wrt. Application SW-Components
and the RTE Generator.

79 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Collection of Available
SWC Implementations
[XML]

System Configuration Description
[XML]

Configure
System

Extract ECU-specific
Information

ECU Extract of System Configuration
[XML]

Generate Base ECU
Configuration

ECU Configuration Values
[XML]

Edit ECU
Configuration

AUTOSAR ECU Configuration
Editors

RTE Code
[C]

RTE Header
[H]

Generate
RTE

AUTOSAR RTE
Generator

Compile
RTE

Compiled BSW
[OBJ]

Compiled RTE
[OBJ]

Compiled SWC Implementations
[OBJ]

Generate
Executable

ECU Executable
[EXE]

«input»

«input»

«input»

«input»

«impacted
by»

«output»

«used
tool»

«input»

«output»

«output»

«input»

«output»

«used
tool»

«input»

«output»

«output»

«output»

«input»

«input»

«output»

«output»

«input»

Figure 3.1: System Build Methodology

The whole vehicle functionality is described with means of CompositionSwCom-
ponents, SwComponentPrototypes and AtomicSwComponents [2]. In the
CompositionSwComponent descriptions the connections between the software-

80 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

components’ ports are also defined. Such a collection of software-components con-
nected to each other, without the mapping on actual ECUs, is called the VFB view.

During the ’Configure System’ step the needed software-components, the available
ECUs and the System Constraints are resolved into a System Configuration Descrip-
tion. Now the SwComponentPrototypes and thus the associated AtomicSwCompo-
nents are mapped on the available ECUs.

Since in the VFB view the communication relationships between the AtomicSwCom-
ponents have been described and the mapping of each SwComponentPrototypes
and AtomicSwComponents to a specific ECU has been fixed, the communication ma-
trix can be generated. In the SwComponentType Description (using the format of
the AUTOSAR Software Component Template [2]) the data that is exchanged through
ports is defined in an abstract way. Now the ’System Configuration Generator’ needs to
define system signals (including the actual signal length and the frames in which they
will be transmitted) to be able to transmit the application data over the network. COM
signals that correspond to the system signals will be later used by the ’RTE Generator’
to actually transmit the application data.

In the next step the ’System Configuration Description’ is split into descriptions for
each individual ECU. During the generation of the Ecu Extract also the hierarchical
structure of the CompositionSwComponents of the VFB view is flattened and the
SwComponentPrototypes of the ECU Extract represent actual instances. The Ecu
Extract only contains information necessary to configure one ECU individually and it is
fed into the ECU Configuration for each ECU.

[SWS_Rte_05000] d The RTE is configured and generated for each ECU instance
individually. c(SRS_Rte_00021)

The ’ECU Configuration Editors’ (see also Section 3.3) are working iteratively on the
’ECU Configuration Values’ until all configuration issues are resolved. There will be
the need for several configuration editors, each specialized on a specific part of ECU
Configuration. So one editor might be configuring the COM stack (not the communica-
tion matrix but the interaction of the individual modules) while another editor is used to
configure the RTE.

Since the configuration of a specific Basic-SW module is not entirely independent from
other modules there is the need to apply the editors several times to the ’ECU Config-
uration Values’ to ensure all configuration parameters are consistent.

Only when the configuration issues are resolved the ’RTE Generator’ will be used to
generate the actual RTE code (see also Section 3.4.2) which will then be compiled and
linked together with the other Basic-SW modules and the software-components code.

The ’RTE Generator’ needs to cope with many sources of information since the nec-
essary information for the RTE Generator is based on the ’ECU Configuration Values’
which might be distributed over several files and itself references to multiple other AU-
TOSAR descriptions.

81 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08769] d RTE Generator shall support for reading single files and of sets
of files that are stored in a file system. The tool shall provide a mechanism to select a
specific file and sets of files in the file system. c(SRS_Rte_00048)

An AUTOSAR XML description can be shipped in several files. Some files could con-
tain data types others could contain interfaces, etc.

[SWS_Rte_08770] d An RTE Generator tools SHALL support the merging of AU-
TOSAR models that have been split up and stored in multiple partial models while
reading an set of files. Thereby the to be supported minimum granularity of an AU-
TOSAR model is defined by �atpSplitable�. The Merging of a model also in-
cludes the resolution of references. The RTE Generator SHALL be able to read the
submodels in any order. There is no preference. c(SRS_Rte_00048)

[SWS_Rte_08771] d RTE Generator SHALL support the interpretation and creation of
AUTOSAR XML descriptions. These descriptions SHALL be ’well-formed’ and ’valid’
as defined by the XML recommendation, W3C XML 1.1 Specification, whether used
with or without the document’s corresponding AUTOSAR XML schema(s). In other
words: Even if the tool does not use standard XML mechanisms for validating the XML
descriptions it SHALL ensure that the XML descriptions can be successfully validated
against the AUTOSAR XML schema. c(SRS_Rte_00048)

[SWS_Rte_08772] d If an RTE Generator wants to validate an AUTOSAR XML de-
scription against an AUTOSAR schema, it SHALL provide the necessary schema files
in its own resources.

An RTE Generator shall use the SYSTEM-Identifier in the xsi:schemaLocation to iden-
tify an appropriate schema file. c(SRS_Rte_00048)

[SWS_Rte_08773] d RTE Generator shall provide a serialization for XML. c
(SRS_Rte_00048)

[SWS_Rte_08774] d RTE Generator shall not change model content passed to the
Generator c(SRS_Rte_00048)

[SWS_Rte_08775] d An RTE Generator MAY support the AUTOSAR extension mech-
anism SDGs if applicable.

If the RTE Generator does not need the additional information for its intended purpose
it SHALL ignore the irrelevant extensions SDGs. c(SRS_Rte_00048)

[SWS_Rte_08776] d An RTE Generator may use well structured error messages. c
(SRS_Rte_00048)

The following list is a collection of proposed information items in particular applicable
to log files used for exchanging information about errors.

• ErrorCode – A symbolic name for the message text

• StandardErrorCode – The reference to the AUTOSAR error code

82 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• ConstraintCode – Reference to the semantic constraint mentioned in the AU-
TOSAR template specification.

• Signature – Signature of the message for duplicate checks

• Timestamp – A time stamp for the message

• ShortName – A unique identification which allows to refer to particular error mes-
sages
This can also be used to establish references between error messages, e.g. for
screening and also to trace back to root cause

• Desc – The human readable message text

• Component – Such information item may help the user to locate the problem in
the model

• BaseUrl – An url for a base directory which can be used as basis for file refer-
ences in a log file. This is typically the root direactory of a project structure.

• ColumNumber – The column of the error position

• LineNumber – The line number of the error position

• LongName – The title of the error message

• ObjectCategory – The category of for example the involved ApplicationPrimitve-
DataType (e.g.VALUE)

• PrimaryErrorReference – Reference to the root cause if applicable

• ScopeEntryReference – Reference to a scoping message if applicable

• Object – The shortName based reference to the AUTOSAR element which
caused the error

• ToolName – The name of the tool which reported the error

• ToolVersion – The version of the tools which reported the error

• IncidentUrl – The Url which refers to the artifact in which the error occurs

• Value – The actual found value which caused the problem

This is just a rough sketch of the main steps necessary to build an ECU with AUTOSAR
and how the RTE is involved in this methodology. For a more detailed description of
the AUTOSAR Methodology please refer to the methodology document [6]. In the next
sections the steps with RTE interaction are explained in more detail.

RTE Generator for Basic Software Scheduler

In Figure 3.2 the overall AUTOSAR Methodology wrt. Basis Software Scheduler and
the RTE Generator interaction.

83 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ECU Configuration Values
[XML]

Edit ECU
Configuration

AUTOSAR ECU Configuration
Editors

AUTOSAR RTE
Generator

Generate
SchM

RTE Code
[C]

SchM Bsw Header
[H]

Compile
SchM

Compiled RTE
[OBJ]

Compiled BSW
[OBJ]

Generate
Executable

ECU Executable
[EXE]

«input»

«output»

«output»

«output»

«input»

«impacted
by»

«output»

«output»

«output»

«input»

«input»

«input»

«used
tool»

«used
tool»

«input»

Figure 3.2: Basic Software Scheduler Methodology

The ECU Configuration phase is the start of the Basic Software Scheduler configura-
tion where all the requirements of the different Basic Software Modules are collected.
The Input information is provided in the Basic Software Module Descriptions [9] of the
individual Basic Software Modules.

The Basic Software Scheduler configuration is then generated into the Basic Software
Scheduler code which is compiled and built into the Ecu executable.

84 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3.1 Contract Phase

3.1.1 RTE Contract Phase

To be able to support the AUTOSAR software-component development with RTE-
specific APIs the ’Component API’ (application header file) is generated from the
’software-component Internal Behavior Description’ (see Figure 3.1) by the RTE Gen-
erator in the so called ’RTE Contract Phase’ (see Figure 3.3).

In the software-component Interface description – which is using the AUTOSAR
Software Component Template – at least the AUTOSAR Interfaces of the particular
software-component have to be described. This means the software-component Types
with Ports and their Interfaces. In the software-component Internal Behavior descrip-
tion additionally the Runnable Entities and the RTE Events are defined. From this
information the RTE Generator can generate specific APIs to access the Ports and
send and receive data.

85 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AUTOSAR Component API
Generator

Implement
Component

Generate Component
API

Component API
[H]

Software Component Internal
Behavior Description (API
Generation) [XML]

Software Component Type
Description [XML]

Software Component
Implementation [C]

Compile
Component

Measure
Resource

Software Component
Implementation Description
[XML]

Compiled Software
Component
Implementation [OBJ]

Software Component
Implementation Description (for
Object Code) [XML]

«input»

«used
tool»

«output»

«output»

«input»«input»

«output»

«output»

«output»

«input»

«input»

«input»

«input»

Figure 3.3: RTE Contract Phase

With the generated ’Component API’ (application header file) the Software Compo-
nent developer can provide the Software Component’s source code without being con-
cerned as to whether the communication will later be local or using some network(s).

It has to be considered that the AUTOSAR software-component development process
is iterative and that the AUTOSAR software-component description might be changed
during the development of the AUTOSAR software-component. This requires the ap-
plication header file to be regenerated to reflect the changes done in the software-
component description.

86 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When the software-component has been compiled successfully the ’Component Im-
plementation Description Generation’ tool will analyze the resulting object files and
enhance the software-component description with the information from the specific im-
plementation. This includes information about the actual memory needs for ROM as
well as for RAM and goes into the ’Component Implementation Description’ section of
the AUTOSAR Software Component Template.

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
software component.

So when a software-component is delivered it will consist of the following parts:

• SW-Component Type Description

• SW-Component Internal Behavior Description

• The actual SW-Component implementation and/or compiled SW-Component

• SW-Component Implementation Description

The above listed information will be needed to provide enough information for the Sys-
tem Generation steps when the whole system is assembled.

3.1.2 Basic Software Scheduler Contract Phase

To be able to support the Basic Software Module development with Basic Software
Scheduler specific APIs the Module Interlink Header (6.3.2) and Module Interlink
Types Header (6.3.1) containing the definitions and declaration for the Basic Soft-
ware Scheduler API related to the single Basic Software Module instance is generated
by the RTE Generator in the so called ’Basic Software Scheduler Contract Phase’.

The required input is

• Basic Software Module Description and

• Basic Software Module Internal Behavior and

• Basic Software Module Implementation

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
Basic Software Module.

3.2 PreBuild Data Set Contract Phase

In the RTE PreBuild Data Set Contract Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented pre-build
variability of a particular software component or Basic Software Module.

87 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The particular values are defined via PredefinedVariants. These Predefined-
Variant elements containing definition of SwSystemconstValues for SwSystem-
consts which shall be applied when resolving the variability during ECU Configuration.

The output of this phase is the RTE Configuration Header File 5.3.8. This file is re-
quired to compile a particular variant of a software component using PreCompile-
Time variability. The Condition Value Macros are used for the implementation
of PreCompileTime variability with preprocessor statements and therefore are
needed to run the C preprocessor resolving the implemented variability.

3.3 Edit ECU Configuration of the RTE

During the configuration of an ECU the RTE also needs to be configured. This is
divided into several steps which have to be performed iteratively: The configuration of
the RTE and the configuration of other modules.

So first the ’RTE Configuration Editor’ needs to collect all the information needed to
establish an operational RTE. This gathering includes information on the software-
component instances and their communication relationships, the Runnable Entities and
the involved RTE-Events and so on. The main source for all this information is the ’ECU
Configuration Values’, which might provide references to further descriptions like the
software-component description or the System Configuration description.

An additional input source is the Specification of Timing Extensions [14]. This template
can be used to specify the execution order of runnable entities (see section ’Execution
order constraint’). An ’RTE Configuration Editor’ can use the information to create and
check the configuration of the Rte Event to Os task mapping (see section 8.5.1).

The usage of ’ECU Configuration Editors’ covering different parts of the ’ECU Con-
figuration Values’ will – if there are no cyclic dependencies which do not converge –
converge to a stable configuration and then the ECU Configuration process is finished.
A detailed description of the ECU Configuration can be found in [5]. The next phase is
the generation of the actual RTE code.

88 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3.4 Generation Phase

After the ECU has been entirely configured the generation of the actual RTE inclusive
the Basic Software Scheduler part can be performed. Since all the relationships to
and from the other Basic-SW modules have been already resolved during the ECU
Configuration phase, the generation can be performed in parallel for all modules (see
Figure 3.4).

Generate
RTE

Compile
RTE

Compiled RTE
[OBJ]

RTE Code
[C]

RTE Header
[H]

AUTOSAR RTE
Generator

ECU Configuration Values
[XML]

MC-Support
[XML]

IOC-Configuration
[XML]

BSW Module Description
[XML]

«output»

«output»

«input»

«output»

«output»

«output»

«output»

«input»

«input»
«used
tool»

Figure 3.4: RTE Generation Phase

The Basic Software Scheduler is a part of the Rte and therefore not explicitly shown in
figure 3.4.

3.4.1 Basic Software Scheduler Generation Phase

Depending on the complexity of the ECU and the cooperation model of the different
software vendors it might be required to integrate the Basic Software stand alone with-
out software components.

Therefore the RTE Generator has to support the generation of the Basic Software
Scheduler without software component related RTE fragments. The Basic Software
Scheduler Generation Phase is only applicable for software builds which are not con-
taining any kind of software components.

89 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07569] d In the Basic Software Scheduler Generation Phase the RTE Gen-
erator shall generate the Basic Software Scheduler without the RTE functionality. c
(SRS_Rte_00221)

In this case the RTE Generator generates the API for Basic Software Modules and the
Basic Software Scheduling code only. When the input contains software component
related information this information raises an error.

For instance:

• Application Header Files are not generated for the software components con-
tained in the ECU extract.

• Mapped RTEEvents are not permitted and the runnable calls are not generated
into the OS task bodies. Nevertheless all OS task bodies related to the Basic
Software Scheduler configuration are generated.

• Mode machine instances mapped to the RTE are not supported.

[SWS_Rte_07585] d In the Basic Software Scheduler Generation Phase the RTE Gen-
erator shall reject input configuration containing software component related informa-
tion. c(SRS_Rte_00221)

The RTE Generator in the Basic Software Scheduler Generation Phase is also respon-
sible to generate additional artifacts which contribute to the further build, deployment
and calibration of the ECU’s software.

[SWS_Rte_06725] d The RTE Generator in Basic Software Scheduler Genera-
tion Phase shall provide its Basic Software Module Description in order to cap-
ture the generated RTE’s / Basic Software Scheduler attributes. c(SRS_Rte_00170,
SRS_Rte_00192, SRS_Rte_00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_06726] d The RTE Generator in Basic Software Scheduler Generation
Phase shall provide an MC-Support (Measurement and Calibration) description as part
of the Basic Software Module Description. c(SRS_Rte_00153, SRS_Rte_00189)

Details about the MC-Support can be found in section 4.2.8.4.

For software builds which are containing software components the RTE Generation
Phase 3.4.2 is applicable where the Basic Software Scheduler part of the RTE is gen-
erated as well.

3.4.2 RTE Generation Phase

The actual AUTOSAR software-components and Basic-SW modules code will be linked
together with the RTE and Basic Software Scheduler code to build the entire ECU
software.

90 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that in case of implemented PreCompileTime variability addition-
ally the PreBuild Data Set Generation Phase is required (see section 3.5) to be able to
compile the ECU software. Further on in case of implemented post-build vari-
ability PostBuild Data Set Generation Phase is required (see section 3.6) to be able
to link the full ECU software.

The RTE Generator in the Generation Phase is also responsible to generate additional
artifacts which contribute to the further build, deployment and calibration of the ECU’s
software.

[SWS_Rte_05086] d The RTE Generator in Generation Phase shall provide its Basic
Software Module Description in order to capture the generated RTE’s attributes. c
(SRS_Rte_00170, SRS_Rte_00192, SRS_Rte_00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_05087] d The RTE Generator in Generation Phase shall provide an MC-
Support (Measurement and Calibration) description as part of the Basic Software Mod-
ule Description. c(SRS_Rte_00153, SRS_Rte_00189)

Details about the MC-Support can be found in section 4.2.8.4.

[SWS_Rte_05147] d The RTE Generator in Generation Phase shall provide the con-
figuration for the Ioc module [4] if the Ioc module is used. c(SRS_Rte_00196)

The RTE generates the IOC configurations and uses an implementation specific deter-
ministic generation scheme. This generation scheme can be used by implementations
to reuse these IOC configurations (e.g. if the configuration switch strictConfigu-
rationCheck is used).

[SWS_Rte_08400] d The RTE Generator in Generation Phase shall generate internal
ImplementationDataTypes types used for IOC configuration, if the IOC module is used.
c(SRS_Rte_00210)

The corresponding C data types will be generated into the Rte_Type.h. This
Rte_Type.h header file will be used by the IOC to get the types for the IOC API.

Changing the RTE generator will require a new IOC configuration generation.

Details about the Ioc module can be found in section 4.3.4.1.

[SWS_Rte_08305] d The RTE Generator in Generation Phase shall ignore XML-
Content categorized as ICS. c(SRS_Rte_00233)

ARPackage with category ICS describes an Implementation Conformance Statement.
(See TPS Basic Software Module Description [9] for more details.)

91 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3.4.3 Basic Software Module Description generation

The Basic Software Module Description [9] generated by the RTE Generator in gen-
eration phase describes features of the actual RTE code. The following requirements
specify which elements of the Basic Software Module Description are mandatory to be
generated by the RTE Generator.

3.4.3.1 Bsw Module Description

[SWS_Rte_05165] d The RTE Generator in Generation Phase shall provide the
BswModuleDescription element of the Basic Software Module Description for the
generated RTE. c(SRS_Rte_00233)

[SWS_Rte_08404] d The RTE BswModuleDescription shall be provided in
ARPackage AUTOSAR_Rte according to AUTOSAR Generic Structure Template [10]
(chapter "Identifying M1 elements in packages"). c(SRS_Rte_00233)

[SWS_Rte_05177] d The RTE Generator in Generation Phase shall provide the
BswModuleEntry and a reference to it from the BswModuleDescription in the role
providedEntry for each Standardized Interface provided by the RTE (see Layered
Software Architecture [15] page tz76a and page 94ju5). The provided Standardized
Interfaces are the Rte Lifecycle API (section 5.8) and the SchM Lifecycle API (sec-
tion 6.7). c(SRS_Rte_00233)

[SWS_Rte_05179] d The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each callback API provided by the RTE and called by the re-
spective Basic Software Module. The reference from the BswModuleDependency to
the BswModuleEntry shall be in the role expectedCallback. The calling Basic
Software Module is specified in the attribute targetModuleId of the BswModuleDe-
pendency. c(SRS_Rte_00233)

For all the APIs the RTE code is invoking in other Basic Software Modules the depen-
dencies are described via requirement [SWS_Rte_05180].

[SWS_Rte_05180] d The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each API called by the RTE in another Basic Software Module.
The reference from the BswModuleDependency to the BswModuleEntry shall be
in the role requiredEntry. The called Basic Software Module is specified in the
attribute targetModuleId of the BswModuleDependency. c(SRS_Rte_00233)

[SWS_Rte_07085] d If the Basic Software Module Description for the generated RTE
depends from elements in Basic Software Module Descriptions of other Basic Software
Modules the RTE Generator shall use the full qualified path name to this elements ac-
cording the rules in "Identifying M1 elements in packages" of the document AUTOSAR
Generic Structure Template [10]. c(SRS_Rte_00233)

92 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

For instance the description of the the hook function
1 void Rte_Dlt_Task_Activate(TaskType task)

for the Dlt needs the ImplementationDataType "TaskType" from the OS in order to
describe the data type of the SwServiceArg "task" in the description of the related
BswModuleEntry.

In this case the full qualified path name to the ImplementationDataType "Task-
Type" shall be

1 AUTOSAR_OS/ImplementationDataTypes/TaskType

The full example about the description is given below:
<AR-PACKAGE>

<SHORT-NAME>AUTOSAR_RTE</SHORT-NAME>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>BswModuleEntrys</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-ENTRY>
<SHORT-NAME>Rte_Dlt_Task_Activate</SHORT-NAME>
<ARGUMENTS>

<SW-SERVICE-ARG>
<SHORT-NAME>task</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-
DATA-TYPE">AUTOSAR_OS/ImplementationDataTypes/
TaskType</IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</SW-SERVICE-ARG>

</ARGUMENTS>
</BSW-MODULE-ENTRY>

</ELEMENTS>
</AR-PACKAGE>

3.4.3.2 Bsw Internal Behavior

[SWS_Rte_05166] d The RTE Generator in Generation Phase shall provide the
BswInternalBehavior element in the BswModuleDescription of the Basic Soft-
ware Module Description for the generated RTE. c(SRS_Rte_00233)

[SWS_Rte_05181] d The RTE Generator in Generation Phase shall provide the
BswCalledEntity element in the BswInternalBehavior for each C-function im-
plementing the lifecycle APIs (section 5.8) and the SchM Lifecycle API (section 6.7).
The BswCalledEntity shall have a reference to the respective BswModuleEntry
([SWS_Rte_05177]) in the role implementedEntry. c(SRS_Rte_00233)

93 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_05182] d The RTE Generator in Generation Phase shall provide the Vari-
ableDataPrototype element in the BswInternalBehavior in the role stat-
icMemory for each variable memory object the RTE allocates. c(SRS_Rte_00233)

[SWS_Rte_05183] d The RTE Generator in Generation Phase shall provide
the ParameterDataPrototype element in the BswInternalBehavior in the
role constantMemory for each constant memory object the RTE allocates. c
(SRS_Rte_00233)

3.4.3.3 Bsw Implementation

[SWS_Rte_05167] d The RTE Generator in Generation Phase shall provide the
BswImplementation element and a reference to the BswInternalBehavior of
the Basic Software Module Description in the role behavior. c(SRS_Rte_00233)

[SWS_Rte_05187] d The RTE Generator in Generation Phase shall provide the pro-
grammingLanguage element in the BswImplementation element according to the
actual RTE implementation. c(SRS_Rte_00233)

[SWS_Rte_05186] d The RTE Generator in Generation Phase shall provide the
swVersion element in the BswImplementation element according to the input in-
formation from the RTE Ecu configuration ([SWS_Rte_05184], [SWS_Rte_05185]). c
(SRS_Rte_00233)

[SWS_Rte_05190] d The RTE Generator in Generation Phase shall provide the ar-
ReleaseVersion element in the BswImplementation element according to AU-
TOSAR release version the RTE Generator is based on. c(SRS_Rte_00233)

[SWS_Rte_05188] d The RTE Generator in Generation Phase shall provide the used-
CodeGenerator element in the BswImplementation element according to the ac-
tual RTE implementation. c(SRS_Rte_00233)

[SWS_Rte_05189] d The RTE Generator in Generation Phase shall provide the ven-
dorId element in the BswImplementation element according to the input informa-
tion from the RTE Ecu configuration (RteCodeVendorId). c(SRS_Rte_00233)

The RteCodeVendorId specifies the vendor id of the actual user of the RTE Gener-
ator, not the id of the RTE Vendor itself.

[SWS_Rte_05191] d If the generated RTE code is hardware specific (due to ven-
dor specific optimizations of the RTE Generator) then the reference to the applicable
HwElements from the ECU Resource Description [16] shall be provided in the BswIm-
plementation element with the role hwElement. c(SRS_Rte_00233)

[SWS_Rte_05192] d The RTE Generator in Generation Phase shall provide the De-
pendencyOnArtifact element in the BswImplementation with the role gener-
atedArtifact for all c- and header-files which are required to compile the Rte
code. This does not include other Basic Software modules or Application Software.
c(SRS_Rte_00233)

94 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: The use case is the support of the build-environment (automatic or manual).

Attributes shall be used in this context as follow:

• category shall be used as defined in Generic Structure Template [10] (e.g.
SWSRC, SWOBJ, SWHDR)

• domain is optional and can be chosen freely

• revisionLabel shall contain the revision label out of RTE Configuration

• shortLabel is the name of artifact

Details on the description of DependencyOnArtifact can be found in the Generic
Structure Template [10].

Additional elements of the Basic Software Module Description which shall be exported
are specified in later requirements e.g. in section 4.2.8.4.

3.5 PreBuild Data Set Generation Phase

During the PreBuild Data Set Generation Phase are the Condition Value Macros
(see 5.3.8.2.2) generated which are required to resolve the implemented pre-build
variability of the software components, generated RTE and Basic Software
Scheduler.

The particular values are defined via the EcucVariationResolver configuration
selecting PredefinedVariants. These PredefinedVariant elements containing
definition of SwSystemconstValues for SwSystemconsts which shall be applied
when resolving the variability during ECU Configuration.

The values of the Condition Value Macros are the results of evaluated Condition-
ByFormulas of the related VariationPoints. These ConditionByFormulas ref-
erencing SwSystemconsts in the formula expressions. It is supported that the as-
signed SwSystemconstValue might contain again a formula expressions referenc-
ing SwSystemconsts. Therefore the input might be a tree of formula expressions
and SwSystemconstValues but the leaf SwSystemconstValues are required to
be values which are not dependent from other SwSystemconsts to ensure that the
evaluation of the tree results in a unique number.

[SWS_Rte_06610] d The RTE generator shall validate the resolved pre-build variants
and check the integrity with regards to the meta model. Any meta model violation shall
result in the rejection of the input configuration. c(SRS_Rte_00018)

The output of this phase is the RTE Configuration Header File 5.3.8.This file is required
to compile a particular variant of ECU software including software component code and
RTE code using PreCompileTime variability. The Condition Value Macros are
used for the implementation of PreCompileTime variability with preprocessor
statements and therefore are needed to run the C preprocessor resolving the imple-
mented variability.

95 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3.6 PostBuild Data Set Generation Phase

In the optional PostBuild Data Set Generation Phase the PredefinedVariant values
are generated which are required to resolve the implemented post-build vari-
ability of the software components and generated RTE.

The output of this phase are the RTE Post Build Variant Sets 5.3.10. This file is required
to link the ECU software and to select a particular PostBuild variant in the generated
RTE code during start up when the Basic Software Scheduler is initialized.

[SWS_Rte_06611] d If the DET is enabled then the RTE shall generate validation code
which at runtime (i.e. during initialization) validates the resolved post-build variants and
check the integrity with regards to the active variants. If a violation is detected the RTE
shall report a development error to the DET. To execute this validation RTE initialization
will get a pointer to the RtePostBuildVariantConfiguration instance to allow it
to validate the selected variant. c(SRS_Rte_00191)

[SWS_Rte_06612] d The RTE generator shall create an RTE Post Build Data Set con-
figuration (i.e. Rte_PBcfg.c) representing the collection of PredefinedVariant defi-
nitions (typically for each subsystem and/or system configuration) providing and defin-
ing the post build variants of the RTE. c(SRS_Rte_00191)

Note that the Rte_PBcfg.h is generated during the Rte Generation phase. An
Rte_PBcfg.c may also have to be generated at that time to reserve memory (with de-
fault values).

Additional details about these configuration files are described in section 5.3.10.

An RTE variant can consist of a collection of PredefinedVariants. Each Pre-
definedVariant contains a collection of PostBuildVariantCriterionValues
which assigns a value to a specific PostBuildVariantCriterion which in turn is
used to resolve the variability at runtime by evaluating a PostBuildVariantCon-
dition. Different PredefinedVariants could assign different values to the same
PostBuildVariantCriterion and as such create conflicts for a specific Post-
BuildVariantCriterionValueSet. It is allowed to have different assignments if
these assignment assign the same value.

[SWS_Rte_06613] d The RTE Generator shall reject configurations where dif-
ferent PredefinedVariants assign different values to the same PostBuild-
VariantCriterion for the same RtePostBuildVariantConfiguration. c
(SRS_Rte_00018, SRS_Rte_00191)

[SWS_Rte_06814] d The RTE Generator shall reject configurations where multiple
post build variant instances of ParameterDataPrototypes are used but where not
exactly one instance in one RtePostBuildVariantConfiguration is selected. c
(SRS_Rte_00018, SRS_Rte_00191)

Further information can be found in section 4.2.8.3.7.

96 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3.7 RTE Configuration interaction with other BSW Modules

The generated RTE interacts heavily with other AUTOSAR Basic Software Modules
like Com and Os. The configuration values for the different BSW Modules are stored
in individual structures of ECU Configuration it is however essential that the common
used values are synchronized between the different BSW Module’s configurations. AU-
TOSAR does not provide a standardized way how the individual configurations can be
synchronized, it is assumed that during the generation of the BSW Modules the input
information provided to the individual BSW Module is in sync with the input information
provided to other (dependent) BSW Modules.

The AUTOSAR BSW Module code-generation methodology is heavily relying on the
logical distinction between Configuration editors and configuration generators. These
tools do not necessarily have to be implemented as two separate tools, it just shall
be possible to distinguish the different roles the tools take during a certain step in the
methodology.

For the RTE it is assumed that tool support for the resolution of interactions between
the Rte and other BSW Modules is needed to allow an efficient configuration of the Rte.
It is however not specified how and in which tools this support shall be implemented.

The RTE Generator in Generation Phase needs information about other BSW Module’s
configurations based on the configuration input of the Rte itself (there are references in
the configuration of the Rte which point to configuration values of other BSW Modules).
If during RTE Generation Phase the provided input information is inconsistent wrt. the
Rte input the Rte Generator will have to consider the input as invalid configuration.

[SWS_Rte_05149] d The RTE Generator in Generation Phase shall consider errors in
the Rte configuration input information as invalid configuration. c(SRS_Rte_00018)

Due to implementation freedom of the RTE Generator it is possible to correct / update
provided input configurations of other BSW Modules based on the RTE configuration
requirements. But to allow a stable build process it is also possible to disallow such an
update behavior.

[SWS_Rte_05150] d If the external configuration switch strictConfigura-
tionCheck is set to true the Rte Generator shall not create or modify any configuration
input. c(SRS_Rte_00065)

If the external configuration switch strictConfigurationCheck
(see [SWS_Rte_05148]) is set to false the Rte Generator may update the input
configuration information of the Rte and other BSW Modules.

Example: If the Rte configuration is referencing an OsTask which is not configured in
the provided Os configuration, the RTE Generator would behave like:

• In case [SWS_Rte_05150] applies: Only show an error message.

• Otherwise: Possible behavior: Show a warning message and modify the Os con-
figuration to contain the OsTask which is referred to by the Rte configuration (Of
course the Os configuration of this new OsTask needs to be refined afterwards).

97 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4 RTE Functional Specification

4.1 Architectural concepts

4.1.1 Scope

In this section the concept of an AUTOSAR software-component and its usage within
the RTE is introduced.

The AUTOSAR Software Component Template [2] defines the kinds of software-
components within the AUTOSAR context. These are shown in Figure 4.1. The ab-
stract SwComponentType can not be instantiated, so there can only be either a Com-
positionSwComponentType, a ParameterSwComponentType, or a specialized
class ApplicationSwComponentType, ServiceProxySwComponentType, Sen-
sorActuatorSwComponentType, NvBlockSwComponentType, ServiceSwCom-
ponentType, ComplexDeviceDriverSwComponentType, or EcuAbstraction-
SwComponentType of the abstract class AtomicSwComponentType.

In the following document the term AtomicSwComponentType is used as collective
term for all the mentioned non-abstract derived meta-classes.

The SwComponentType is defining the type of an AUTOSAR software-component
which is independent of any usage and can be potentially re-used several times in
different scenarios. In a composition the types are occurring in specific roles which are
called SwComponentPrototypes. The prototype is the utilization of a type within a
certain scenario. In AUTOSAR any SwComponentType can be used as a type for a
prototype.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType CompositionSwComponentType

AtpPrototype

SwComponentPrototype

SensorActuatorSwComponentType

ParameterSwComponentType

ApplicationSwComponentType

EcuAbstractionSwComponentType

ComplexDeviceDriverSwComponentTypeNvBlockSwComponentType

ServiceProxySwComponentType

ServiceSwComponentType

������������	
 ����

�����������	��	���� �

���������

+component 0..*

«atpVariation,atpSplitable»

«isOfType»

+type

1
{redefines
atpType}

Figure 4.1: AUTOSAR software-component classification

The AUTOSAR software-components shown in Figure 4.1 are located above and below
the RTE in the architectural Figure 4.2.

98 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Below the RTE there are also software entities that have an AUTOSAR Interface.
These are the AUTOSAR services, the ECU Abstraction and the Complex Device
Drivers. For these software not only the AUTOSAR Interface will be described but
also information about their internal structure will be available in the Basic Software
Module Description.

Figure 4.2: AUTOSAR ECU architecture diagram

In the next sections the different AUTOSAR software-components kinds will be de-
scribed in detail with respect to their influence on the RTE.

4.1.2 RTE and Data Types

The AUTOSAR Meta Model defines ApplicationDataTypes and Implementa-
tionDataTypes. A AutosarDataPrototype can be typed by an Application-
DataType or an ImplementationDataType. But the RTE Generator only imple-
ments ImplementationDataTypes as C data types and uses these C data types
to type the RTE API which is related to DataPrototypes. Therefore it is required
in the input configuration that every ApplicationDataType used for the typing of a

99 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

DataPrototype which is relevant for RTE generation is mapped to an Implemen-
tationDataType with a DataTypeMap. Which DataTypeMap is applicable for an
particular software component respectively Basic Software Module is defined by
the DataTypeMappingSets referenced by the InternalBehavior.

[SWS_Rte_07028] d The RTE Generator shall reject input configurations containing
a AutosarDataPrototype which influences the generated RTE and which is typed
by an ApplicationDataType not mapped to an ImplementationDataType. c
(SRS_Rte_00018)

Nevertheless a subset of the attributes given by the ApplicationDataTypes are
relevant for the RTE generator for instance

• to create the McSupportData (see section 4.2.8.4) information

• to calculate the conversion formula in case of Data Conversion (see section 4.3.5
and 4.3.7)

• to calculate numerical representation of values required for the RTE code but
defined in the physical representation (e.g. initialValues and invalid-
Values).

[SWS_Rte_01374] dWhen a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is an applicable ConstantSpecifi-
cationMapping then the RTE Generator shall use the ValueSpecification ref-
erenced by its implConstant as the definitive numerical representation of the value
regardless of any compuMethod. c(SRS_Rte_00180, SRS_Rte_00182)

[SWS_Rte_07038] dWhen a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is no applicable ConstantSpecifi-
cationMapping then the RTE Generator shall calculate the numerical representation
according to the conversion defined by an compuMethod. This shall be supported for
categorys VALUE, VAL_BLK, STRUCTURE, ARRAY, and BOOLEAN. In case of category
VAL_BLK, STRUCTURE and ARRAY, this applies only for the primitive leaf elements. If
there is no CompuMethod provided the conversion is treated like an CompuMethod of
category IDENTICAL. c(SRS_Rte_00180, SRS_Rte_00182)

In [SWS_Rte_01374] and [SWS_Rte_07038], an "applicable ConstantSpecifica-
tionMapping" is one that is aggregated by the relevant SwComponentType and
which references the ApplicationValueSpecification in its applConstant.

4.1.3 RTE and AUTOSAR Software-Components

The description of an AUTOSAR software-component is divided into the sections

• hierarchical structure

• ports and interfaces

• internal behavior

100 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• implementation

which will be addressed separately in the following sections.

[SWS_Rte_07196] d The RTE Generator shall respect the precedence of data prop-
erties defined via SwDataDefProps as defined in the Software Component Template
[2]. c()

Requirement [SWS_Rte_07196] means that:

1. SwDataDefProps defined on ApplicationDataType which may be overwrit-
ten by

2. SwDataDefProps defined on ImplementationDataType which may be over-
written by

3. SwDataDefProps defined on AutosarDataPrototype which may be over-
written by

4. SwDataDefProps defined on InstantiationDataDefProps which may be
overwritten by

5. SwDataDefProps defined on AccessPoint respectively Argument which may
be overwritten by

6. SwDataDefProps defined on FlatInstanceDescriptor which may be over-
written by

7. SwDataDefProps defined on McDataInstance

The SwDataDefProps defined on McDataInstance are not relevant for the RTE
generation but rather the documentation of the generated RTE.

Especially the attributes swAddrMethod, swCalibrationAccess, swImplPolicy
and dataConstr do have an impact on the generated RTE. In the following document
only the attribute names are mentioned with the semantic that this refers to the most
significant one.

4.1.3.1 Hierarchical Structure of Software-Components

In AUTOSAR the structure of an E/E-system is described using the AUTOSAR Soft-
ware Component Template and especially the mechanism of compositions. Such a
Top Level Composition assembles subsystems and connects their ports.

Of course such a composition utilizes a lot of hierarchical levels where compositions
instantiate other composition types and so on. But at some low hierarchical level each
composition only consists of AtomicSwComponentType instances. And those in-
stances of AtomicSwComponentTypes are what the RTE is going to be working with.

101 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.3.2 Ports, Interfaces and Connections

Each AUTOSAR software-component (SwComponentType) can have ports (Port-
Prototype). An AUTOSAR software-component has provide ports (PPortProto-
type) and/or has require ports (RPortPrototype) to communicate with other AU-
TOSAR software-components. The requiredInterface or providedInterface
(PortInterface) determines if the port is a sender/receiver or a client/server port.
The attribute isService is used with AUTOSAR Services (see section 4.1.5).

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype PPortPrototype

������������	
 ����

�����������	��	���� �

��������������

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

PRPortPrototype

AbstractProvidedPortPrototypeAbstractRequiredPortPrototype

«isOfType»

+requiredInterface

1
{redefines
atpType}

«isOfType»

+providedRequiredInterface

1
{redefines
atpType}

«isOfType»

+providedInterface

1
{redefines
atpType}

+port

0..*«atpVariation,atpSplitable»

Figure 4.3: Software-Components and Ports

When compositions are built of instances the ports can be connected either within the
composition or made accessible to the outside of the composition. For the connections
inside a composition the AssemblySwConnector is used, while the Delegation-
SwConnector is used to connect ports from the inside of a composition to the outside.
Ports not connected will be handled according to the requirement [SRS_Rte_00139].

The next step is to map the SW-C instances on ECUs and to establish the communi-
cation relationships. From this step the actual communication is derived, so it is now

102 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

fixed if a connection between two instance’s ports is going to be over a communication
bus or locally within one ECU.

[SWS_Rte_02200] d The RTE shall implement the communication paths specified by
the ECU Configuration description. c(SRS_Rte_00027)

[SWS_Rte_02201] d The RTE shall implement the semantic of the communication at-
tributes given by the AUTOSAR software-component description. The semantic of the
given communication mechanism shall not change regardless of whether the commu-
nication partner is located on the same partition, on another partition of the same ECU
or on a remote ECU, or whether the communication is done by the RTE itself or by the
RTE calling COM or IOC. c(SRS_Rte_00027)

E.g., according to [SWS_Rte_02200] and [SWS_Rte_02201] the RTE is not permitted
to change the semantic of an asynchronous client to synchronous because both client
and server are mapped to the very same ECU.

4.1.3.3 Internal Behavior

Only for AtomicSwComponentTypes the internal structure is exposed in the SwcIn-
ternalBehavior description. Here the definition of the RunnableEntitys and
used RTEEvents is done (see Figure 4.4).

The AUTOSAR MetaModel enforces that there is at most one SwcInternalBehav-
ior per AtomicSwComponentType

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractEvent
AtpStructureElement

RTEEvent

Identifiable

ExclusiveArea

AtpStructureElement
Identifiable

PerInstanceMemory

PortAPIOption

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

AtpStructureElement

InternalBehavior

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

+sharedParameter *

«atpVariation,atpSplitable»

+portAPIOption 0..*

«atpVariation,atpSplitable»

+event *

«atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+staticMemory

0..*

«atpVariation,atpSplitable»

+exclusiveArea

0..*

+perInstanceParameter *

«atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+constantMemory

0..*

+implicitInterRunnableVariable

* «atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+arTypedPerInstanceMemory

* «atpVariation,atpSplitable»

+perInstanceMemory *

«atpVariation,atpSplitable»

+explicitInterRunnableVariable

* «atpVariation,atpSplitable»

Figure 4.4: Software-component internal behavior

103 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RunnableEntitys (also abbreviated simply as Runnable) are the smallest code frag-
ments that are provided by AUTOSAR software-components and those basic software
modules that implement AUTOSAR Interfaces. They are represented by the meta-
class RunnableEntity, see Figure 4.5.

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

Identifiable

RTEEvents::WaitPoint

+ timeout: TimeValue

AbstractEvent
AtpStructureElement

RTEEvents::RTEEvent

������������	
 ����

�����������	��	���� �

��������������

+trigger 1

+startOnEvent

0..1

+event *

«atpVariation,atpSplitable»

+waitPoint

*

+runnable 0..*

«atpVariation,atpSplitable»

Figure 4.5: Software-component runnable entity, wait points and RTE Events

In general, software components are composed of multiple RunnableEntitys in or-
der to accomplish servers, receivers, feedback, etc.

[SWS_Rte_02202] d The RTE shall support multiple RunnableEntitys in AUTOSAR
software-components. c(SRS_Rte_00031)

RunnableEntitys are executed in the context of an OS task, their execution is
triggered by RTEEvents. Section 4.2.2.3 gives a more detailed description of the
concept of RunnableEntitys, Section 4.2.2.6 discusses the problem of mapping
RunnableEntitys to OS tasks. RTEEvents and the activation of RunnableEn-
titys by RTEEvents is treated in Section 4.2.2.4.

[SWS_Rte_02203] d The RTE shall trigger the execution of RunnableEntitys in
accordance with the connected RTEEvent. c(SRS_Rte_00072)

[SWS_Rte_02204] d The RTE Generator shall reject configurations where an RTE-
Event instance which can start a RunnableEntity is not mapped to an OS task.
The only exceptions are RunnableEntitys that are invoked by a direct function call.
c(SRS_Rte_00049, SRS_Rte_00018)

104 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07347] d The RTE Generator shall reject configurations where
RunnableEntitys of a SW-C are mapped to tasks of different partitions. c
(SRS_Rte_00036, SRS_Rte_00018)

[SWS_Rte_02207] d The RTE shall respect the configured execution order of
RunnableEntitys within one OS task. c(SRS_Rte_00070)

[SWS_Rte_08768] d The RTE generator shall reject configuration where the scope
of a VariableAccess is violated by the system and/or ECU configuration. c
(SRS_Rte_00018)

[SWS_Rte_CONSTR_09081] Mapping to partition vs the value of VariableAc-
cess.scope d For every connection between SwComponentPrototypes mapped to
different partitions the value of VariableAccess.scope shall not be set to Vari-
ableAccessScopeEnum.communicationIntraPartition. c()

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

AbstractAccessPoint
AtpStructureElement

Identifiable

DataElements::VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

AbstractAccessPoint
AtpStructureElement

Identifiable

DataElements::ParameterAccess

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+dataWriteAccess

0..*

«atpVariation,atpSplitable»

+dataReceivePointByValue

0..*

«atpVariation,atpSplitable»

+dataReceivePointByArgument

0..*

«atpVariation,atpSplitable»

+readLocalVariable

0..*

«atpVariation,atpSplitable»

+dataSendPoint

0..*

+runnable 0..*

«atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+parameterAccess

0..*

«atpVariation,atpSplitable»

+dataReadAccess

0..*

«atpVariation,atpSplitable»

+writtenLocalVariable

0..*

Figure 4.6: Software-component runnable entity and data accesses

105 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCall::ServerCallPoint

+ timeout: TimeValue

AbstractAccessPoint
AtpStructureElement

Identifiable

ServerCall::
AsynchronousServerCallResultPoint

Trigger::ExternalTriggeringPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

Trigger::InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

ModeDeclarationGroup::ModeAccessPoint

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeDeclarationGroup::ModeSwitchPoint

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

+modeSwitchPoint

*«atpVariation,atpSplitable»

+modeAccessPoint

*«atpVariation,atpSplitable»

+asynchronousServerCallResultPoint

0..*
«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»

+externalTriggeringPoint

0..*«atpVariation,atpSplitable»

+internalTriggeringPoint

0..*«atpVariation,atpSplitable»

+serverCallPoint

*«atpVariation,atpSplitable»

Figure 4.7: Software-component runnable entity and server invocation, trigger, and
mode switches

106 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

With the information from SwcInternalBehavior a part of the setup of the AU-
TOSAR software-component within the RTE and the OS can already be configured.
Furthermore, the information (description) of the structure (ports, interfaces) and the
internal behavior of an AUTOSAR software component are sufficient for the RTE Con-
tract Phase.

However, some detailed information is still missing and this is part of the Implementa-
tion description.

4.1.3.4 Implementation

In the Implementation description an actual implementation of an AUTOSAR software-
component is described including the memory consumption (see Figure 4.8).

ARElement

Implementation

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

Identifiable

StackUsage

A

Identifiable

HeapUsage

Identifiable

MemorySection

Identifiable

ExecutableEntity

������������	
 ����

�����������	��	����

� ��������������

+executableEntity

0..1

+executionTime 0..*

«atpVariation,atpSplitable»

+stackUsage 0..*

«atpVariation,atpSplitable»

+executableEntity

0..*

+executableEntity

0..1

«atpVariation,atpSplitable»

+memorySection 0..* +heapUsage 0..*

«atpVariation,atpSplitable»

+resourceConsumption 1

«atpSplitable»

Figure 4.8: Software-component resource consumption

Note that the information from the Implementation part are only required for the RTE
Generation Phase, if at all.

107 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.4 Instantiation

4.1.4.1 Scope and background

Generally spoken, the term instantiation refers to the process of deriving specific in-
stances from a model or template. But, this process can be accomplished on different
levels of abstraction. Therefore, the instance of the one level can be the model for the
next.

With respect to AUTOSAR four modeling levels are distinguished. They are referred to
as the levels M3 to M0.

The level M3 describes the concepts used to derive an AUTOSAR meta model of level
M2. This meta model at level M2 defines a language in order to be able to describe
specific attributes of a model at level M1, e.g., to be able to describe an specific type
of an AUTOSAR software component. E.g., one part of the AUTOSAR meta model is
called Software Component Template or SW-C-T for short and specified in [2]. It is
discussed more detailed in section 4.1.3.

At level M1 engineers will use the defined language in order to design components or
interfaces or compositions, say to describe an specific type of a LightManager. Hereby,
e.g., the descriptions of the (atomic) software components will also contain an internal
behavior as well as an implementation part as mentioned in section 4.1.3.

Those descriptions are input for the RTE Generator in the so-called ’Contract Phase’
(see section 3.1.1). Out of this information specific APIs (in a programming language)
to access ports and interfaces will be generated.

Software components generally consist of a set of Runnable Entities. They can now
specifically be described in a programming language which can be refered to as “im-
plementation”. As one can see in section 4.1.3 this “implementation” then corresponds
exactly to one implementation description as well as to one internal behavior descrip-
tion.

M0 refers to a specific running instance on a specific car.

Objects derived from those specified component types can only be executed in a spe-
cific run time environment (on a specific target). The objects embody the real and
running implementation and shall therefore be referred to as software component in-
stances (on modeling level M0). E.g., there could be two component instances derived
from the same component type LightManager on a specific light controller ECU each
responsible for different lights. Making instances means that it should be possible to
distinguish them even though the objects are descended from the same model.

With respect to this more narrative description the RTE as the run time environment
shall enable the process of instantiation. Thereby the term instantiation throughout
the document shall refer to the process of deriving and providing explicit particular
descriptions of all occuring instances of all types. Therefore, this section will address
the problems which can arise out of the instantiation process and will specify the needs
for AUTOSAR components and the AUTOSAR RTE respectively.

108 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.4.2 Concepts of instantiation

Regardless of the fact that the (aforementioned) instantiation of AUTOSAR software
components can be generally achieved on a per-system basis, the RTE Generator
restricts its view to a per-ECU customization (see [SWS_Rte_05000]).

Generally, there are two different kinds of instantiations possible:

• single instantiation – which refers to the case where only one object or AUTOSAR
software component instance will be derived out of the AUTOSAR software com-
ponent description

• multiple instantiation – which refers to the case where multiple objects or AU-
TOSAR software component instances will be derived out of the AUTOSAR soft-
ware component description

[SWS_Rte_02001] d The RTE Generator shall be able to instantiate one or more AU-
TOSAR software component instances out of a single AUTOSAR software component
description. c(SRS_Rte_00011)

[SWS_Rte_02008] d The RTE Generator shall evaluate the attribute supportsMultiple-
Instantiation of the SwcInternalBehavior of an AUTOSAR software component descrip-
tion. c(SRS_Rte_00011)

[SWS_Rte_02009] d The RTE Generator shall reject configurations where multiple
instantiation is required, but the value of the attribute supportsMultipleInstantiation of
the SwcInternalBehavior of an AUTOSAR software component description is set to
FALSE. c(SRS_Rte_00011, SRS_Rte_00018)

4.1.4.3 Single instantiation

Single instantiation refers to the easiest case of instantiation.

To be instantiated merely means that the code and the corresponding data of a particu-
lar RunnableEntity are embedded in a runtime context. In general, this is achieved
by the context of an OS task (see example 4.1).

Example 4.1

Runnable entity R1 called out of a task context:
1 TASK(Task1){
2 ...
3 R1();
4 ...
5 }

Since the single instance of the software component is unambigous per se no addi-
tional concepts have to be added.

109 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.4.4 Multiple instantiation

[SWS_Rte_02002] d Multiple objects instantiated from a single AUTOSAR software
component (type) shall be identifiable without ambiguity. c(SRS_Rte_00011)

There are two principle ways to achieve this goal –

• by code duplication (of runnable entities)

• by code sharing (of reentrant runnable entities)

For now it was decided to solely concentrate on code sharing and not to support code
duplication.

[SWS_Rte_03015] d The RTE only supports multiple objects instantiated from a sin-
gle AUTOSAR software component by code sharing, the RTE doesn’t support code
duplication. c(SRS_Rte_00011, SRS_Rte_00012)

Multiple instances can share the same code, if the code is reentrant. For a multi core
controller, the possibility to share code between the cores depends on the hardware.

Example 4.2 is similar to the example 4.1, but for a software-component that sup-
port multiple instantiations, and where two instances have their R1 RunnableEntity
mapped to the same task.

Example 4.2

Runnable entity R1 called for two instances out of the same task context:
1 TASK(Task1){
2 ...
3 R1(instance1);
4 R1(instance2);
5 ...
6 }

The same code for R1 is shared by the different instances.

4.1.4.4.1 Reentrant code

In general, side effects can appear if the same code entity is invoked by different
threads of execution running, namely tasks. This holds particularly true, if the invoked
code entity inherits a state or memory by the means of static variables which are vis-
ible to all instances. That would mean that all instances are coupled by those static
variables.

Thus, they affect each other. This would lead to data consistency problems on one
hand. On the other – and that is even more important – it would introduce a new
communication mechanism to AUTOSAR and this is forbidden. AUTOSAR software
components can only communicate via ports.

110 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

To be complete, it shall be noted that a calling code entity also inherits the reentrancy
problems of its callee. This holds especially true in case of recursive calls.

4.1.4.4.2 Unambiguous object identification

[SWS_Rte_02015] d The instantiated AUTOSAR software component objects shall be
unambiguously identifiable by an instance handle, if multiple instantiation by sharing
code is required. c(SRS_Rte_00011, SRS_Rte_00012)

4.1.4.4.3 Multiple instantiation and Per-instance memory

An AUTOSAR SW-C can define internal memory only accessible by a SW-C instance
itself. This concept is called PerInstanceMemory. The memory can only be accessed
by the runnable entities of this particular instance. That means in turn, other instances
don’t have the possibility to access this memory.

PerInstanceMemory API principles are explained in Section 5.2.5.

The API for PerInstanceMemory is specified in Section 5.6.15.

4.1.5 RTE and AUTOSAR Services

According to the AUTOSAR glossary [11] “an AUTOSAR service is a logical entity of the
Basic Software offering general functionality to be used by various AUTOSAR software
components. The functionality is accessed via standardized AUTOSAR interfaces”.

Therefore, AUTOSAR services provide standardized AUTOSAR Interfaces: ports
typed by standardized PortInterfaces.

When connecting AUTOSAR service ports to ports of AUTOSAR software components
the RTE maps standard RTE API calls to the symbols defined in the RTE input (i.e.
XML) for the AUTOSAR service runnables of the BSW. The key technique to distin-
guish ECU dependent identifiers for the AUTOSAR services is called “port-defined
argument values”, which is described in Section 4.3.2.4. Currently “port-defined argu-
ment values” are only supported for client-server communication. It is not possible to
use a pre-defined symbol for sending or receiving data.

The RTE does not pass an instance handle to the C-based API of AUTOSAR services
since the latter are single-instantiatable (see [SWS_Rte_03806]).

As displayed on figure 4.2, there can be direct interactions between the RTE and some
Basic Software Modules. This is the case of the Operating System, the AUTOSAR
Communication, and the NVRAM Manager.

111 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.6 RTE and ECU Abstraction

The ECU Abstraction provides an interface to physical values for AUTOSAR software
components. It abstracts the physical origin of signals (their pathes to the ECU hard-
ware ports) and normalizes the signals with respect to their physical appearance (like
specific values of current or voltage).

See the AUTOSAR ECU architecture in figure 4.2. From an architectural point of view
the ECU Abstraction is part of the Basic Software layer and offers AUTOSAR interfaces
to AUTOSAR software components.

Seen from the perspective of an RTE, regular AUTOSAR ports are connected. With-
out any restrictions all communication paradigms specified by the AUTOSAR Virtual
Functional Bus (VFB) shall be applicable to the ports, interfaces and connections –
sender-receiver just as well as client-server mechanisms.

However, ports of the ECU Abstraction shall always only be connected to ports of
specific AUTOSAR software components: sensor or actuator software components. In
this sense they are tightly coupled to a particular ECU Abstraction.

Furthermore, it must not be possible (by an RTE) to connect AUTOSAR ports of the
ECU Abstraction to AUTOSAR ports of any AUTOSAR component located on a remote
ECU (see [SWS_Rte_02051].

This means, e.g., that sensor-related signals coming from the ECU Abstraction are
always received by an AUTOSAR sensor component located on the same ECU. The
AUTOSAR sensor component will then process the received signal and deploy it to
other AUTOSAR components regardless of whether they are located on the same or
any remote ECU. This applies to actuator-related signals accordingly, however, the
opposite way around.

[SWS_Rte_02050] d The RTE Generator shall generate a communication path be-
tween connected ports of AUTOSAR sensor or actuator software components and the
ECU Abstraction in the exact same manner like for connected ports of AUTOSAR soft-
ware components. c()

[SWS_Rte_02051] d The RTE Generator shall reject configurations which require a
communication path from a AUTOSAR software component to an ECU Abstraction
located on a remote ECU. c(SRS_Rte_00062, SRS_Rte_00018)

Further information about the ECU Abstraction can be found in the corresponding
specification document [17].

4.1.7 RTE and Complex Device Driver

A Complex Device Driver has an AUTOSAR Interface, therefore the RTE can deal with
the communication on the Complex Device Drivers ports. The Complex Device Driver
is allowed to have code entities that are not under control of the RTE but yet still may
use the RTE API (e.g. ISR2, BSW main processing functions).

112 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.8 Basic Software Scheduler and Basic Software Modules

4.1.8.1 Description of a Basic Software Module

The description of a Basic Software Module is divided into the sections

• interfaces

• internal behavior

• implementation

For further details see document [9].

4.1.8.2 Basic Software Interfaces

The interface of a Basic Software Module is described with Basic Software Module
Entries (BswModuleEntry). For the functionality of the Basic Software Scheduler only
BswModuleEntrys from BswCallType SCHEDULED are relevant. Nevertheless for op-
timization purpose the analysis of the full call tree might be required which requires the
consideration of all BswModuleEntry ’s

4.1.8.3 Basic Software Internal Behavior

The Basic Software Internal Behavior specifies the behavior of a BSW module or a
BSW cluster w.r.t. the code entities visible by the BSW Scheduler. For the Basic Soft-
ware Scheduler mainly Basic Software Schedulable Entities (BswSchedulableEntity ’s)
are relevant. These are Basic Software Module Entities, which are designed for control
by the Basic Software Scheduler. Basic Software Schedulable Entities are implement-
ing main processing functions. Furthermore all Basic Software Schedulable Entities
are allowed to use exclusive areas and for call tree analysis all Basic Software Module
Entities are relevant.

[SWS_Rte_07514] d The Basic Software Scheduler shall support multiple Basic Soft-
ware Module Entities in AUTOSAR Basic Software Modules. c(SRS_Rte_00211,
SRS_Rte_00213, SRS_Rte_00216)

[SWS_Rte_07515] d The Basic Software Scheduler shall trigger the execution of
Schedulable Entity ’s in accordance with the connected BswEvent. c(SRS_Rte_00072)

[SWS_Rte_07516] d The RTE Generator shall reject configurations where an Bsw-
Event which can start a Schedulable Entity is not mapped to an OS task. The excep-
tions are BswEvent that are implemented by a direct function call. c(SRS_Rte_00049,
SRS_Rte_00018)

[SWS_Rte_07517] d The RTE Generator shall respect the configured execution order
of Schedulable Entities within one OS task. c(SRS_Rte_00219)

113 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07518] d The RTE shall support the execution sequences of Runnable
Entities and Schedulable Entities within the same OS task in an arbitrarily configurable
order. c(SRS_Rte_00219)

4.1.8.4 Basic Software Implementation

The implementation defines further details of the implantation of the Basic Software
Module. The vendorApiInfix attribute is of particular interest, because it defines the
name space extension for multiple instances of the same basic software module. Fur-
ther on the category of the codeDescriptor specifies if the Basic Software Module
is delivered as source code or as object.

4.1.8.5 Multiple Instances of Basic Software Modules

In difference to the multiple instantiation concept of software components, where the
same component code is used for all component instances, basic software modules are
multiple instantiated by creation of own code per instance in a different name space.
The attribute vendorApiInfix allows to define name expansions required for global sym-
bols.

4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

AUTOSAR Services, ECU Abstraction and Complex Device Drivers are hybrid of AU-
TOSAR software-component and Basic Software Module. These kinds of modules
might use AUTOSAR Interfaces to communicate via RTE as well as C-API to directly
access other Basic Software Modules. Caused by the structure of the AUTOSAR Meta
Model some entities of the ’C’ implementation have to be described twice; on the one
hand by the means of the Software Component Template [2] and on the other hand by
the means of the Basic Software Module Description Template [9]. Further on the du-
alism of port based communication between software component and non-port based
communication between Basic Software Modules requires in some cases the coordi-
nation and synchronization between both principles. The information about elements
belonging together is provided by the so called SwcBswMapping.

4.1.8.6.1 RunnableEntity / BswModuleEntity mapping

A Runnable Entity which is mapped to a Basic Software Module Entity has to be treated
as one common entity. This means it describes an entity which can use the features of
a Runnable Entity and a Basic Software Module Entity as well. For instance it supports
to use the port based API as well as Basic Software Scheduler API in one C function.

114 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.1.8.6.2 Synchronized ModeDeclarationGroupPrototype

Two synchronized ModeDeclarationGroupPrototype are resulting in the implementation
of one common mode machine instance. Consequently the call of the belonging
Rte_Switch API and the SchM_Switch API are having the same effect. For opti-
mization purpose the Rte_Switch API might just refer to the SchM_Switch API.

4.1.8.6.3 Synchronized Trigger

Two synchronized Trigger are behaving like one common Trigger. Consequently the
call of the belonging Rte_Trigger API and the SchM_Trigger API are having the
same effect. For optimization purpose the Rte_Trigger API might just refer to the
SchM_Trigger API.

4.2 RTE and Basic Software Scheduler Implementation Aspects

4.2.1 Scope

This section describes some specific implementation aspects of an AUTOSAR RTE
and the Basic Software Scheduler. It will mainly address

• the mapping of logical concepts (e.g., Runnable Entities, BSW Schedulable Enti-
ties) to technical architectures (namely, the AUTOSAR OS)

• the decoupling of pending interrupts (in the Basic Software) and the notification
of AUTOSAR software components

• data consistency problems to be solved by the RTE

Therefore this section will also refer to aspects of the interaction of the AUTOSAR RTE
and Basic Software Scheduler and the two modules of the AUTOSAR Basic Software
with standardized interfaces (see Figure 4.9):

• the module AUTOSAR Operating System [18, 4]

• the module AUTOSAR COM [19, 3]

115 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.9: Scope of the section on Basic Software modules

Having a standardized interface means first that the modules do not provide or request
services for/of the AUTOSAR software components located above the RTE. They do
not have ports and therefore cannot be connected to the aforementioned AUTOSAR
software components. AUTOSAR OS as well as AUTOSAR COM are simply invisible
for them.

Secondly AUTOSAR OS and AUTOSAR COM are used by the RTE in order to achieve
the functionality requested by the AUTOSAR software components. The AUTOSAR
COM module is used by the RTE to route a signal over ECU boundaries, but this
mechanism is hidden to the sending as well as to the receiving AUTOSAR software
component. The AUTOSAR OS module is used for two main purposes. First, OS is
used by the RTE to route a signal over core and partition boundaries. Secondly, the
AUTOSAR OS module is used by the RTE in order to properly schedule the single
Runnables in the sense that the RTE Generator generates Task-bodies which contain
then the calls to appropriate Runnables.

In this sense the RTE shall also use the available means to convert interrupts to notifi-
cations in a task context or to guarantee data consistency.

116 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

With respect to this view, the RTE is thirdly not a generic abstraction layer for AU-
TOSAR OS and AUTOSAR COM. It is generated for a specific ECU and offers the
same interface to the AUTOSAR Software Components as the VFB. It implements the
functionality of the VFB using modules of the Basic Software, including a specific im-
plementation of AUTOSAR OS and AUTOSAR COM.

The Basic Software Scheduler offers services to integrate Basic Software Modules for
all modules of all layers. Hence, the Basic Software Scheduler provides the following
functions:

• embed Basic Software Modules implementations into the AUTOSAR OS context

• trigger BswSchedulableEntitys of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

The integrator’s task is to apply given means (of the AUTOSAR OS) in order to assem-
ble BSW modules in a well-defined and efficient manner in a project specific context.

This also means that the BSW Scheduler only uses the AUTOSAR OS. It is not in the
least a competing entity for the AUTOSAR OS scheduler.

[SWS_Rte_02250] d The RTE shall only use the AUTOSAR OS, AUTOSAR COM, AU-
TOSAR Efficient COM for Large Data, AUTOSAR Transformer and AUTOSAR NVRAM
Manager in order to provide the RTE functionality to the AUTOSAR components. c
(SRS_Rte_00020)

[SWS_Rte_07519] d The Basic Software Scheduler shall only use the AUTOSAR OS
in order to provide the Basic Software Scheduler functionality to the Basic Software
Modules. c()

[SWS_Rte_06200] d The RTE Generator shall construct task bodies for those tasks
which contain RunnableEntitys. c(SRS_Rte_00049)

[SWS_Rte_06201] d The RTE Generator shall construct task bodies for those tasks
which contain Basic Software Schedulable Entities. c(SRS_Rte_00049)

The information for the construction of task bodies has to be given by the ECU Con-
figuration description. The mapping of Runnable Entities to tasks is given as an input
by the ECU Configuration description. The RTE Generator does not decide on the
mapping of RunnableEntitys to tasks.

[SWS_Rte_04557] d The RTE Generator shall wrap each each definition of a task body
with the Memory Mapping.

1 #define OS_START_SEC_<sadm>
2 #include "Os_MemMap.h"
3

4 <task body definition>
5

6 #define OS_STOP_SEC_<sadm>
7 #include "Os_MemMap.h"

117 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <sadm> is the shortName of the SwAddrMethod, if configured in OsMemo-
ryMappingCodeLocationRef of the according OsTask. If OsMemoryMappingCodeLo-
cationRef is not defined , <sadm> shall be CODE_<Taskname>. c(SRS_Rte_00049,
SRS_BSW_00351)

Note: Requirement [SWS_Rte_04557] is an exception to [SWS_Rte_05088].

[SWS_Rte_02254] d The RTE Generator shall reject configurations where input infor-
mation is missing regarding the mapping of BswEvents to OS tasks and RTEEvents
(which trigger runnables) to OS tasks. c(SRS_Rte_00049, SRS_Rte_00018)

Note: Not in all cases an event to task mapping is required. For example runnables
which shall be called via direct function call need no event to task mapping.

[SWS_Rte_08417] d The RTE Generator shall reject configurations where input in-
formation is missing regarding the construction of tasks bodies. c(SRS_Rte_00049,
SRS_Rte_00018)

There are use cases (e.g. a set of tasks with defined call order on different partitions)
where another task needs to be explicitly activated when the current task terminates.

With the configuration of RteOsTaskChains it’s possible to configure the intended
task chain behavior for such cases.

[SWS_Rte_04558] d In case an OsTask is referenced by an RtePredeces-
sorOsTaskRef the RTE shall emit in the according task body a ChainTask call to the
OsTask given as RteSuccessorOsTaskRef at the location in the task body where
the task terminates. c(SRS_Rte_00049)

[SWS_Rte_04559] d The RTE shall activate the chaining OsTask (defined
by RtePredecessorOsTaskRef) instead the chained OsTask (RteSucces-
sorOsTaskRef) if the RTE needs to activate an OsTask to activate ExecutableEn-
titys. c(SRS_Rte_00049)

Example 4.3

1 ...
2 TASK(Task_Core1_10ms)
3 {
4

5 /../
6

7 ChainTask(Task_Core2_10ms)
8 }
9 ...

[SWS_Rte_CONSTR_04558] d An OsTask shall be part of at most one task chain.
Hence, an OsTask shall be referenced by at most one RtePredecessorOsTaskRef
and by at most one RteSuccessorOsTaskRef. c(SRS_Rte_00049)

[SWS_Rte_CONSTR_04559] d The configuration of RteOsTaskChains shall not de-
fine circular chains. c(SRS_Rte_00049)

118 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: For instance a configuration where T1 chains T2 and T2 chains T1 is not permit-
ted.

4.2.2 OS

This section describes the interaction between the RTE + Basic Software Scheduler
and the AUTOSAR OS. The interaction is realized via the standardized interface of the
OS - the AUTOSAR OS API. See Figure 4.9.

The OS is statically configured by the ECU Configuration. The RTE generator however
may be allowed to create tasks and other OS objects, which are necessary for the run-
time environment (see [SWS_Rte_05150]). The mapping of RunnableEntitys and
BSW Schedulable Entities to OS tasks is not the job of the RTE generator. This map-
ping has to be done in a configuration step before, in the RTE-Configuration phase. The
RTE generator is responsible for the generation of OS task bodies, which contain the
calls for the RunnableEntitys and BSW Schedulable Entities. The RunnableEn-
titys and BSW Schedulable Entities themselves are OS independent and are not
allowed to use OS service calls. The RTE and Basic Software Scheduler have to en-
capsulate such calls via the standardized RTE API respectively Basic Software Sched-
uler API.

4.2.2.1 OS Objects

Tasks

• The RTE generator has to create the task bodies, which contain the calls of the
RunnableEntitys and BswSchedulableEntitys. Note that the term task
body is used here to describe a piece of code, while the term task describes a
configuration object of the OS.

• The RTE and Basic Software Scheduler controls the task activation/resumption
either directly by calling OS services like SetEvent() or ActivateTask() or
indirectly by initializing OS alarms or starting Schedule-Tables for time-based ac-
tivation of RunnableEntitys. If the task terminates, the generated taskbody
also contains the calls of TerminateTask() or ChainTask().

• The RTE generator does not create tasks. The mapping of RunnableEntitys
and BswSchedulableEntitys to tasks is the input to the RTE generator and
is therefore part of the RTE Configuration.

• The RTE configurator has to allocate the necessary tasks in the OS configuration.

OS applications

• AUTOSAR OS has in R4.0 a new feature called Inter-OS-Application Commu-
nication (IOC). IOC is generated by the OS based on the configuration partially

119 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

generated by the RTE. The appropriate objects (OS-Applications) are generated
by the OS, and are used by RTE to for task/runnable mapping.

Events

• The RTE and Basic Software Scheduler may use OS Events for the implementa-
tion of the abstract RTEEvents and BswEvents.

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions SetEvent(), WaitEvent(), GetEvent() and ClearEvent().

• The used OS Events are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary events in the OS configura-
tion.

Resources

• The RTE and Basic Software Scheduler may use OS Resources (standard or
internal) e.g. to implement data consistency mechanisms.

• The RTE and Basic Software Scheduler may call the OS services GetRe-
source() and ReleaseResource().

• The used Resources are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary resources (all types of re-
sources) in the OS configuration.

Interrupt Processing

• An alternative mechanism to get consistent data access is disabling/enabling of
interrupts. The AUTOSAR OS provides different service functions to handle in-
terrupt enabling/disabling. The RTE may use these functions and must not use
compiler/processor dependent functions for the same purpose.

Alarms

• The RTE may use Alarms for timeout monitoring of asynchronous client/server
calls. The RTE is responsible for Timeout handling.

• The RTE and Basic Software Scheduler may setup cyclic alarms for periodic trig-
gering of RunnableEntitys and BswSchedulableEntitys (RunnableEn-
tity activation via RTEEvent TimingEvent respectively BswSchedula-
bleEntity activation via BswEvent BswTimingEvent)

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions GetAlarmBase(), GetAlarm(), SetRelAlarm(), SetAbsAlarm()
and CancelAlarm().

• The used Alarms are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary alarms in the OS configura-
tion.

120 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Schedule Tables

• The RTE and Basic Software Scheduler may setup schedule tables for cyclic task
activation (e.g. RunnableEntity activation via RTEEvent TimingEvent)

• The used schedule tables are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary schedule tables in the OS
configuration.

Common OS features

Depending on the global scheduling strategy of the OS, the RTE can make decisions
about the necessary data consistency mechanisms. E.g. in an ECU, where all tasks
are non-preemptive - and as the result also the global scheduling strategy of the com-
plete ECU is non-preemptive - the RTE may optimize the generated code regarding
the mechanisms for data consistency.

Hook functions

The AUTOSAR OS Specification defines hook functions as follows:

A Hook function is implemented by the user and invoked by the operating system in
the case of certain incidents. In order to react to these on system or application level,
there are two kinds of hook functions.

• application-specific: Hook functions within the scope of an individual OS Appli-
cation.

• system-specific: Hook functions within the scope of the complete ECU (in gen-
eral provided by the integrator).

If no memory protection is used (scalability classes SCC1 and SCC2) only the system-
specific hook functions are available.

In the SRS the requirements to implement the system-specific hook functions were
rejected [RTE00001], [RTE00101], [RTE00102] and [RTE00105], as well as the
application-specific hook functions [RTE00198]. The reason for the rejection is the
system (ECU) global scope of those functions. The RTE is not the only user of those
functions. Other BSW modules might have requirements to use hook functions as well.
This is the reason why the RTE is not able to generate these functions without the
necessary information of the BSW configuration.

It is intended that the implementation of the hook functions is done by the system
integrator and NOT by the RTE generator.

4.2.2.2 Basic Software Schedulable Entities

BswSchedulableEntitys are Basic Software Module Entities, which are designed
for control by the BSW Scheduler. BswSchedulableEntitys are implementing main

121 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

processing functions. The configuration of the Basic Software Scheduler allows map-
ping of BswSchedulableEntitys to both types; basic tasks and extended tasks.

BswSchedulableEntitys not mapped to a RunnableEntity are not allowed
to enter a wait state. Therefore such BswSchedulableEntitys are compara-
ble to RunnableEntitys of category 1. BswSchedulableEntitys mapped to
a RunnableEntity can enter wait states by usage of the RTE API and such
BswSchedulableEntitys have to be treated according the classification of the
mapped RunnableEntity. The mapping of BswSchedulableEntitys to a
RunnableEntitys is typically used for AUTOSAR Services, ECU Abstraction and
Complex Device Drivers. See sections 4.1.8.6.

4.2.2.3 Runnable Entities

The following section describes the RunnableEntitys, their categories and their
task-mapping aspects. The prototypes of the functions implementing RunnableEn-
titys are described in section 5.7

Runnable Entities are the schedulable parts of SW-Cs. Runnable Entities are either
mapped to tasks or activated by direct function calls in the context of other Rte APIs,
for instance server runnables that are invoked via direct function calls.

The mapping must be described in the ECU Configuration Description. This configura-
tion - or just the RTE relevant parts of it - is the input of the RTE generator.

All RunnableEntitys are activated by the RTE as a result of an RTEEvent. Possi-
ble activation events are described in the meta-model by using RTEEvents (see sec-
tion 4.2.2.4).

If no RTEEvent specifies a particular RunnableEntity in the role startOn-
Event then the RunnableEntity is never activated by the RTE. Please note that
a RunnableEntity may be mapped to a BswSchedulableEntity as described in
section 4.2.2.2 which may lead to activations by the BSW Scheduler.

The categories of RunnableEntitys are described in [2].

RunnableEntitys and BswSchedulableEntitys are generalized by Exe-
cutableEntitys.

4.2.2.4 RTE Events

The meta model describes the following RTE events:

Abbreviation Name
T TimingEvent
BG BackgroundEvent
DR DataReceivedEvent (S/R Communication only)
DRE DataReceiveErrorEvent (S/R Communication only)

122 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

DSC DataSendCompletedEvent (explicit S/R Communication only)
DWC DataWriteCompletedEvent (implicit S/R Communication only)
OI OperationInvokedEvent (C/S Communication only)
ASCR AsynchronousServerCallReturnsEvent (C/S communication only)
MS SwcModeSwitchEvent
MSA ModeSwitchedAckEvent
MME SwcModeManagerErrorEvent
ETO ExternalTriggerOccurredEvent
ITO InternalTriggerOccurredEvent
I InitEvent
THE TransformerHardErrorEvent

Table 4.1: Abbreviations of RTEEvents

According to the meta model each kind of RTEEvent can either

ACT activate a RunnableEntity, or

WUP wakeup a RunnableEntity at its WaitPoints

The meta model makes no restrictions which kind of RTEEvents are referred by Wait-
Points. As a consequence RTE API functions would be necessary to set up the
WaitPoints for each kind of RTEEvent.

Nevertheless in some cases it seems to make no sense to implement all possible com-
binations of the general meta model. E.g. setting up a WaitPoint, which should be
resolved by a cyclic TimingEvent . Therefore the RTE SWS defines some restric-
tions, which are also described in section A.

The meta model also allows, that the same RunnableEntity can be triggered by
several RTEEvents. For the current approach of the RTE and restrictions see sec-
tion 4.2.6.

T BG DR DRE DSC DWC OI ASCR
ACT x x x x x x x x
WUP x x x

MS MSA MME ETO ITO I THE
ACT x x x x x x x
WUP x

Table 4.2: activation of RunnableEntity depended on the kind of RTEEvent

The table 4.2 shows, that activation of RunnableEntity is possible for each kind of
RTEEvent. For RunnableEntity activation, no explicit RTE API in the to be activated
RunnableEntity is necessary. The RTE itself is responsible for the activation of the
RunnableEntity depending on the configuration in the SW-C Description.

If the RunnableEntity contains a WaitPoint, it can be resolved by the assigned
RTEEvent(s). Entering the WaitPoint requires an explicit call of a RTE API function.
The RTE (together with the OS) has to implement the WaitPoint inside this RTE API.

123 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The following list shows which RTE API function has to be called to set up Wait-
Points.

• DataReceivedEvent: Rte_Receive()

• DataSendCompletedEvent: Rte_Feedback()

• ModeSwitchedAckEvent: Rte_SwitchAck()

• AsynchronousServerCallReturnsEvent: Rte_Result()

[SWS_Rte_01292] d When a DataReceivedEvent references a RunnableEn-
tity and a required VariableDataPrototype and no WaitPoint references the
DataReceivedEvent, the RunnableEntity shall be activated when the data is re-
ceived. [SWS_Rte_01135]. c(SRS_Rte_00072)

Requirement [SWS_Rte_01292] merely affects when the runnable is activated –
an API call should still be created, according to requirement [SWS_Rte_01288],
[SWS_Rte_01289], and [SWS_Rte_07395] as appropriate, to actually read the data.

4.2.2.5 BswEvents

The meta model describes the following BswEvents.

124 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AbstractEvent

BswBehavior::BswEvent

BswBehavior::BswTimingEvent

+ period: TimeValue

BswBehavior::BswInternalTriggerOccurredEvent

BswBehavior::
BswSchedulableEntity

BswBehavior::BswModeSwitchEvent

+ activation: ModeActivationKind

BswBehavior::BswExternalTriggerOccurredEvent

ExecutableEntity

BswBehavior::BswModuleEntity

BswBehavior::BswModeSwitchedAckEvent

BswBehavior::BswBackgroundEvent

BswBehavior::
BswOperationInvokedEvent

BswBehavior::BswDataReceivedEvent

BswBehavior::
BswAsynchronousServerCallReturnsEvent

BswBehavior::
BswScheduleEvent

BswBehavior::
BswCalledEntity

BswBehavior::BswModeManagerErrorEvent

+startsOnEvent

1

Figure 4.10: Different kinds of BswEvents

125 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Similar to RTEEvents the activation of Basic Software Schedulable Entities is possi-
ble for each kind of BswEvent. For of BswSchedulableEntitys activation, no ex-
plicit Basic Software Scheduler API in the to be activated BswSchedulableEntity
is necessary. The Basic Software Scheduler itself is responsible for the activation of
the BswSchedulableEntity depending on the configuration in the Basic Software
Module Description. In difference to RTEEvents, none of the BswEvents support
WaitPoints. For more details see document [9].

4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities
to tasks (informative)

One of the main requirements of the RTE generator is "Construction of task bod-
ies" [SRS_Rte_00049]. The necessary input information e.g. the mapping of
RunnableEntitys and BswSchedulableEntity to tasks must be provided by the
ECU configuration description.

The ECU configuration description (or an extract of it) is the input for the RTE Generator
(see Figure 3.4). It is also the purpose of this document to define the necessary input
information. Therefore the following scenarios may help to derive requirements for the
ECU Configuration Template as well as for the RTE-generator itself.
Note: The scenarios do not cover all possible combinations.

The RTE-Configurator uses parts of the ECU Configuration of other BSW Modules,
e.g. the mapping of RunnableEntitys to OsTasks. In this configuration process the
RTE-Configurator expects OS objects (e.g. Tasks, Events, Alarms...) which are used
in the generated RTE and Basic Software Scheduler.

Some figures for better understanding use the following conventions:

Figure 4.11: Element description

Note: The following examples are only showing RunnableEntitys. But taking the
categorization of BswSchedulableEntitys defined in section 4.2.2.2 into account,
the scenarios are applicable for BswSchedulableEntitys as well.

Note: The implementations described in this section are examples only and are pre-
sented for information only. The examples must not be viewed as specification of

126 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

implementation. The intention is to serve as examples of one possible implementation
and not as specification of the only permitted implementation.

4.2.2.6.1 Scenario for mapping of RunnableEntitys to tasks

The different properties of RunnableEntitys with respect to data access and termi-
nation have to be taken into account when discussing possible scenarios of mapping
RunnableEntitys to tasks.

• RunnableEntitys using VariableAccesses in the dataReadAccess or
dataWriteAccess roles (implicit read and send) have to terminate.

• RunnableEntitys of category 1 can be mapped either to basic or extended
tasks. (see next subsection).

• RunnableEntitys using at least one WaitPoint are of category 2.

• RunnableEntitys of category 2 that contain WaitPoints will be typically
mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint generally
have to be mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if no timeout monitoring is required and the server runn-
able is on the same partition.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if the server runnable is invoked directly and is itself of
category 1.

Note that the runnable to task mapping scenarios supported by a particular RTE im-
plementation might be restricted.

4.2.2.6.1.1 Scenario 1

Runnable entity category 1A: "runnable1"

• Ports: only S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: TimingEvent

• no sequence of RunnableEntitys specified

• no VariableAccess in the dataSendPoint role

• no WaitPoint

Possible mappings of "runnable1" to tasks:

127 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Basic Task
If only one of those kinds of RunnableEntitys is mapped to a task (task contains only
one RunnableEntity), or if multiple RunnableEntitys with the same activation
period are mapped to the same task, a basic task can be used. In this case, the
execution order of the RunnableEntitys within the task is necessary. In case the
RunnableEntitys have different activation periods, the RTE has to provide the glue-
code to guarantee the correct call cycle of each RunnableEntity.

The ECU Configuration-Template has to provide the sequence of RunnableEntitys
mapped to the same task, see RtePositionInTask.

Figure 4.12 shows the possible mappings of RunnableEntitys into a basic task. If
and only if a sequence order is specified, more than one RunnableEntity can be
mapped into a basic task.

Figure 4.12: Mapping of Category 1 RunnableEntitys to Basic Tasks

Extended Task

If more than one RunnableEntity is mapped to the same task and the special con-
dition (same activation period) does not fit, an extended task is used.

If an extended task is used, the entry points to the different RunnableEntitys might
be distinguished by evaluation of different OS events. In the scenario above, the differ-
ent activation periods may be provided by different OS alarms. The corresponding OS
events have to be handled inside the task body. Therefore the RTE-generator needs
for each task the number of assigned OS Events and their names.

128 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The ECU Configuration has to provide the OS events assigned to the RTEEvents
triggering the RunnableEntitys that are mapped to an extended task, see RteUse-
dOsEventRef.

Figure 4.13 shows the possible mapping of the multiple RunnableEntitys of cate-
gory 1 into an Extended Task. Note: The Task does not terminate.

Figure 4.13: Mapping of Category 1 RunnableEntitys to Extended Tasks

For both, basic tasks and extended tasks, the ECU Configuration must provide the
name of the task.

The ECU Configuration has to provide the name of the task, see OsTask.

The ECU Configuration has to provide the task type (BASIC or EXTENDED), which
can be determined from the presence or absence of OS Events associated with that
task, see OsTask.

4.2.2.6.1.2 Scenario 2

Runnable entity category 1B: "runnable2"

• Ports: S/R with VariableAccesses in the dataSendPoint role.

• RTEEvents: TimingEvent

• no WaitPoint

Possible mappings of "runnable2" to tasks:

The following figure shows the different mappings:

• One category 1B runnable

• More than one category 1B runnable mapped to the same basic task with a spec-
ified sequence order

• More than one category 1B runnable mapped into an extended task

129 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The gluecode to realize the VariableAccessin the dataReadAccess and
dataWriteAccess roles respectively before entering the runnable and after exiting is
not necessary.

Figure 4.14: Mapping of Category 1 RunnableEntitys using no VariableAccesses in
the dataReadAccess or dataWriteAccess role

4.2.2.6.1.3 Scenario 3

Runnable entity category 1A: "runnable3"

• Ports: S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: Runnable is activated by a DataReceivedEvent

• no VariableAccess in the dataSendPoint role

• no WaitPoint

There is no difference between Scenario 1 and 3. Only the RTEEvent that activates
the RunnableEntity is different.

4.2.2.6.1.4 Scenario 4

Runnable entity category 2: "runnable4"

• Ports: S/R with VariableAccesses in the dataReceivePointByValue or
dataReceivePointByArgument role and WaitPoint (blocking read)

• RTEEvents: WaitPoint referencing a DataReceivedEvent

Runnable is activated by an arbitrary RTEEvent (e.g. by a TimingEvent). When
the RunnableEntity has entered the WaitPoint and the DataReceivedEvent
occurs, the RunnableEntity resumes execution.

The runnable has to be mapped to an extended task. Normally each category 2 runn-
able has to be mapped to its own task. Nevertheless it is not forbidden to map multiple
category 2 RunnableEntitys to the same task, though this might be restricted by an

130 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE generator. Mapping multiple category 2 RunnableEntitys to the same task can
lead to big delay times if e.g. a WaitPoint is resolved by the incoming RTEEvent,
but the task is still waiting at a different WaitPoint.

Figure 4.15: Mapping of Category 2 RunnableEntitys to Extended Tasks

4.2.2.6.1.5 Scenario 5

There are two RunnableEntitys implementing a client (category 2) and a server
for synchronous C/S communication and the timeout attribute of the ServerCall-
Point is 0.

On a single core, there are two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and if the server runnable
is of category 1. In that case the server runnable is executed in the same task
context (same stack) as the client runnable that has invoked the server. The client
runnable can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the synchronous server invocation does not use OS
events, the client runnable can be mapped to a basic task and the task of the
server runnable must have higher priority than the task of the client runnable.
Furthermore, the task to which the client runnable is mapped must be preempt-
able. This has to be checked by the RTE generator. Activation of the server
runnable can be done by ActivateTask() for a basic task or by SetEvent()
for an extended task. In both cases, the task to be activated must have higher
priority than the task of the client runnable to enforce a task switch (necessary,
because the server invocation is synchronous).

4.2.2.6.1.6 Scenario 6

There are two RunnableEntitys implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint
is greater than 0.

131 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

There are again two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and the server is of cat-
egory 1. In that case the server runnable is executed in the same task context
(same stack) as the client runnable that has invoked the server and no timeout
monitoring is performed (see [SWS_Rte_03768]). In this case the client runnable
can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the timeout monitoring uses OS events, the task of the
server runnable must have lower priority than the task of the client runnable and
the client runnable must be mapped to an extended task. Furthermore, both
tasks must be preemptable1. This has to be checked by the RTE generator. The
notification that a timeout occurred is then notified to the client runnable by using
an OS Event. In order for the client runnable to immediately react to the timeout,
a task switch to the client task must be possible when the timeout occurs.

4.2.2.6.1.7 Scenario 7

Runnable entity category 2: "runnable7"

• Ports: only C/S with AsynchronousServerCallPoint and WaitPoint

• RTEEvents: AsynchronousServerCallReturnsEvent (C/S communication
only)

The mapping scenario for "runnable7", the client runnable that collects the result of the
asynchronous server invocation, is similar to Scenario 4.

4.2.2.7 Monitoring of runnable execution time

This section describes how the monitoring of RunnableEntity execution time can
be done.

The RTE doesn’t directly support monitoring of RunnableEntitys execution time but
the AUTOSAR OS support for monitoring of OsTasks execution time can be used for
this purpose.

1Strictly speaking, this restriction is not necessary for the task to which the client runnable is mapped.
If OS events are used to implement the timeout monitoring and the notification that the server is finished,
the RTE API implementation generally uses the OS service WaitEvent, which is a point of reschedul-
ing.

132 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

If execution time monitoring of a RunnableEntity is required a possible solution is
to map the RunnableEntity alone to an OsTask and to configure the OS to monitor
the execution time of the OsTask.

This solution can lead to dispatch to individual OsTasks RunnableEntitys that
should be initially mapped to the same OsTask because of for example:

• requirements on execution order of the RunnableEntitys and/or

• requirements on evaluation order of the RTEEvents that activate the
RunnableEntitys and

• constraints to have no preemption between the RunnableEntitys

In order to keep the control on the execution order of the RunnableEntitys, the eval-
uation order of the RTEEvents and the non-preemption between the RunnableEn-
titys when then RunnableEntitys are individually mapped to several OsTasks
for the purpose of monitoring, a possible solution is to replace the calls to the C-
functions of the RunnableEntitys by activations of the OsTasks to which the moni-
tored RunnableEntitys are mapped.

Figure 4.16: Inter task activation and mapping of runnable to individual task for monitor-
ing purpose

This behavior of the RTE can be configured with the attributes RteVirtual-
lyMappedToTaskRef of the RteEventToTaskMapping. RteVirtuallyMapped-
ToTaskRef references the OsTask in which the execution order of the RunnableEn-
titys and/or the evaluation order of the RTEEvents are controlled. RteMapped-
ToTaskRef references the individual OsTasks to which the RunnableEntitys are
mapped for the purpose of monitoring.

[SWS_Rte_07800] d The RTE Generator shall respect the configured virtual runn-
able to task mapping (RteVirtuallyMappedToTaskRef) in the RTE configuration.
c(SRS_Rte_00193)

133 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Of course this solution requires that the task priorities and scheduling properties are
well configured in the OS to allow immediate preemption by the OsTasks to which the
monitored RunnableEntitys are mapped. A possible solution is:

• Priority of the OsTask to which the RunnableEntity is mapped is higher than
the priority of the OsTask to which the RunnableEntity is virtually mapped
and

• the OsTask to which the RunnableEntity is virtually mapped have a full pre-
emptive scheduling or

• the RTE call the OS service Schedule() just after activation of the OsTask to
which the RunnableEntity is mapped

Example 1: Without OsEvent

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
Execution order of the RunnableEntitys shall be R1, R2 then R3.
RE2 shall be monitored.

Possible RTE configuration:
RE1/T1 is mapped to OsTask TaskA with RtePositionInTask equal to 1.
RE2/T2 is mapped to OsTask TaskB but virtually mapped to TaskA with RtePosi-
tionInTask equal to 2.
RE3/T3 is mapped to OsTask TaskA with RtePositionInTask equal to 3.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to activate TaskA.
Non preemptive scheduling is configured for Task A.
TaskB priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 RE1();
4 ActivateTask(TaskB);
5 Schedule();
6 RE3();
7 TerminateTask();
8 }
9

10 void TaskB(void)
11 {
12 RE2();
13 TerminateTask();
14 }

Example 2: With OsEvent

134 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description of the example:
RunnableEntity RE1 is activated by DataReceivedEvent DR1.
RunnableEntity RE2 is activated by DataReceivedEvent DR2.
RunnableEntity RE3 is activated by DataReceivedEvent DR3.
Evaluation order of the RTEEvents shall be DR1, DR2 then DR3.
All the runnables shall be monitored.

Possible RTE configuration:
RE1 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 1.
RE2 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtB and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskD but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 3.

Possible RTE implementation:
RTE set EvtA, EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskD priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 ActivateTask(TaskB);
13 }
14 else if (Event & EvtB)
15 {
16 ClearEvent(EvtB);
17 ActivateTask(TaskC);
18 }
19 else if (Event & EvtC)
20 {
21 ClearEvent(EvtC);
22 ActivateTask(TaskD);
23 }
24 }
25 }
26

27 void TaskB(void)
28 {
29 RE1();
30 TerminateTask();
31 }
32

33 void TaskC(void)
34 {

135 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

35 RE2();
36 TerminateTask();
37 }
38

39 void TaskD(void)
40 {
41 RE3();
42 TerminateTask();
43 }

It is also possible to configure the RTE for the monitoring of group of runnable = moni-
toring of the sum of the runnable execution times.

Example 3: Monitoring of group of runnables

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
RunnableEntity RE4 is activated by DataReceivedEvent DR1.
RunnableEntity RE5 is activated by DataReceivedEvent DR2.
RunnableEntity RE6 is activated by DataReceivedEvent DR3.
RunnableEntity RE7 is activated by DataReceivedEvent DR4.
DataReceivedEvent DR2, DR3 and DR4 references the same dataElement. Eval-
uation order of the RTEEvents shall be T1, T2, T3, DR1, DR2, DR3 then DR4.
RE2 and RE3 shall be monitored as a group.
RE6 and RE7 shall be monitored as a group.

Possible RTE configuration:
RE1 is mapped to OsTask TaskA with a reference to OsEvent EvtA and RtePosi-
tionInTask equal to 1.
RE2 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 3.
RE4 is mapped to OsTask TaskA with a reference to OsEvent EvtB and RtePosi-
tionInTask equal to 4.
RE5 is mapped to OsTask TaskA with a reference to OsEvent EvtC and RtePosi-
tionInTask equal to 5.
RE6 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 6.
RE7 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 7.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to set EvtA.
RTE set EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskA priority + 1

136 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 RE1();
13 ActivateTask(TaskB);
14 }
15 else if (Event & EvtB)
16 {
17 ClearEvent(EvtB);
18 RE4();
19 }
20 else if (Event & EvtC)
21 {
22 ClearEvent(EvtC);
23 RE5();
24 ActivateTask(TaskC);
25 }
26 }
27 }
28

29 void TaskB(void)
30 {
31 RE2();
32 RE3();
33 TerminateTask();
34 }
35

36 void TaskC(void)
37 {
38 RE6();
39 RE7():
40 TerminateTask();
41 }

4.2.2.8 TimingEvent activated runnables

A TimingEvent / BswTimingEvent is a recurring RTEEvent / BswEvent which is
used to perform recurrent activities in RunnableEntitys or BswSchedulableEn-
titys.

[SWS_Rte_06728] d The RTE shall activate RunnableEntitys triggered by a
TimingEvent recurring with the effective period time of an TimingEvent for the
component instance. c(SRS_Rte_00237)

137 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06729] d The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the TimingEvent if no Instantia-
tionRTEEventProps are defined for the TimingEvent of the component instance.
c(SRS_Rte_00237)

[SWS_Rte_06730] d The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the InstantiationRTEEventProps if
InstantiationRTEEventProps are defined for the TimingEvent of the compo-
nent instance. c(SRS_Rte_00237)

Please note the component instance is defined by RteSoftwareComponentIn-
stanceRef of RteSwComponentInstance referring to the SwComponentProto-
type. See figure 8.2.

4.2.2.9 Synchronization of TimingEvent activated runnables

This section describes how the synchronization of TimingEvent activated
RunnableEntitys can be done.

The following cases have to be distinguished:

• the RunnableEntitys are mapped to the same OsTask

• the RunnableEntitys are mapped to different OsTasks in the same OsAp-
plication

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on the same core

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different cores on the same microcontroler

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different microcontrolers within the same ECU

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different microcontrolers within different ECUs

As OsAlarms and OsScheduleTableExpiryPoints are used to implement
TimingEvents the following different possible solutions exist to synchronize the
RunnableEntitys according to the different cases:

• use the same OsAlarm or OsScheduleTableExpiryPoint to implement all
the TimingEvents

• use different OsAlarms or OsScheduleTableExpiryPoints in different Os-
ScheduleTables based on the same OsCounter and start them with absolute
start offset to control the synchronization between them

138 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• use different OsScheduleTableExpiryPoints in different explicitely synchro-
nized OsScheduleTables based on different OsCounters but with same pe-
riod and max value

The choice of the OsAlarms or OsScheduleTableExpiryPoints used to imple-
ment the TimingEvents can be configured in the RTE with RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef in the RteEventToTaskMapping.

[SWS_Rte_07804] d The RTE Generator shall respect the configured Os-
Alarms (RteUsedOsAlarmRef) and OsScheduleTableExpiryPoints (RteUse-
dOsSchTblExpiryPointRef) for the implementation of the TimingEvents. c
(SRS_Rte_00232)

The choice of the absolute start offset of the OsAlarms and OsScheduleTables can
be configured in the RTE with RteExpectedActivationOffset in the RteUse-
dOsActivation.

[SWS_Rte_07805] d The RTE Generator shall respect the configured absolute
start offset (RteExpectedActivationOffset) when it starts the OsAlarms and
OsScheduleTables used for the implementation of the TimingEvents. c
(SRS_Rte_00232)

The RTE / Basic Software Scheduler is not responsible to synchronize/desynchronize
the explicitly synchronized OsScheduleTables. The RTE / Basic Software Scheduler
is only responsible to start the explicitly synchronized OsScheduleTables. In this
case no RteExpectedActivationOffset has to be configured.

4.2.2.10 BackgroundEvent activated Runnable Entities and BasicSoftware
Scheduleable Entities

A BackgroundEvent is a recurring RTEEvent / BswEvent which is used to perform
background activities in RunnableEntitys or BswSchedulableEntitys. It is sim-
ilar to a TimingEvent but has no fixed time period and is typically activated only with
lowest priority.

A BackgroundEvent triggering can be implemented in two principle ways by the
RTE Generator. Either the background activation is done by a real background
OS task; or the BackgroundEvents are activated like TimingEvents on a fixed
recurrence which is defined by the ECU integrator (see [SWS_Rte_07179] and
[SWS_Rte_07180]). The second way might be required to overcome the limitation of a
single real background OS task if BackgroundEvents are used in several partitions.

If the background activation is done by a real background OS task, the OS Task has
to have the lowest priority on the CPU core (see [SWS_Rte_07181]). If a implemen-
tation is used where the OS Task terminates (BasicTask) the background OS Task is
immediately reactivated after its termination, e.g. by usage of ChainTask call of the
OS.

139 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.2.11 InitEvent activated Runnable Entities

An InitEvent which is used to activate RunnableEntitys for initialization purpose
in case of start of the RTE or restart of a partition.

[SWS_Rte_06761] d The RTE shall activate RunnableEntitys triggered by an
InitEvent once when Rte_Start is executed. c(SRS_Rte_00240)

[SWS_Rte_06762] d The RTE shall activate RunnableEntitys triggered by
an InitEvent once when Rte_RestartPartition is executed for those
RunnableEntitys belonging to the restarted partition. c(SRS_Rte_00240)

The activation of RunnableEntitys for initialization purpose can basically imple-
mented in two ways. Either the InitEvent is mapped to an OsTask or the
InitEvent is mapped to an RteInitializationRunnableBatch.

In case of an OsTask the RunnableEntitys are scheduled once when the related
task gets active. In this case the RtePositionInTask decides in which order the
RunnableEntitys are scheduled in the whole task. For instance if the InitEvent
is mapped after an TimingEvent ans the TimingEvent is already triggered when
the OsTask gets active the initialization runnable is called after time periodic runn-
able. Therefore its in the responsibility of the ECU integrator to ensure the correct and
intended order.

In the case the InitEvent is mapped to an RteInitializationRunnableBatch
the RunnableEntitys are scheduled when the related Rte_Init function is called.
In this case the RtePositionInTask decides in which order in which order the
RunnableEntitys are scheduled in the same Rte_Init function.

The triggering of the recurrent RTEEvents is released with the call of
Rte_StartTiming.

140 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.3 Activation and Start of ExecutableEntitys

This section defines the activation of ExecutableEntity execution-instances
by using a state machine (Fig. 4.17).

ExecutableEntity execution-instance is schedulable

- activations: int = 0

«continuously increasing timer»
- debounceTimer: float = minimumStartInterval

Main Activation

started

suspended

debounce
activation

running

waiting

preempted

activated

not
activated

to be started

corresponds to task state "ready"

ModeDisabling

enabled

disabled

disabled
not

activated

disabled
debounce
activation

disabled
activated

[RTE / SchM of the partition is running]

[Activation in
state activated]

[debounceTimer >=
minimumStartInterval]

wait

preempt

release

resume

activate
/activations += (activations <= queue length) 1:0

start
/activations -= 1;
debounceTimer = 0

/debounceTimer =
minimumStartInterval

terminate

[RTE / SchM of the partition is stopped]

[ModeDisabling
in state enabled]

[activations == 0]

activate
/activations =
1

[activations > 0]

activate
/activations +=
(activations <=
queue length) 1:0

entersDisablingMode
exitsDisablingMode[ModeDisabling

in state disabled]
[ModeDisabling
in state enabled]

[ModeDisabling in
state disabled]

[ModeDisabling in
state enabled]

[ModeDisabling in
state disabled]

start

Figure 4.17: General state machine of an ExecutableEntity execution-instance.

An ExecutableEntity execution-instance is one execution-instance of an Ex-
ecutableEntity (RunnableEntity or BswSchedulableEntity) with respect to
concurrent execution.

For a RunnableEntity with canBeInvokedConcurrently = false or for a
BswSchedulableEntity whose referenced BswModuleEntry in the role im-
plementedEntry has a isReentrant attribute set to false, there is only one
execution-instance. For a RunnableEntity with canBeInvokedConcurrently =
true or for a BswSchedulableEntity whose referenced BswModuleEntry in the
role implementedEntry has its isReentrant attribute set to true, there is a well
defined number of execution-instances.

E.g., for a server runnable that is executed as direct function call, each Server-
CallPoint relates to exactly one ExecutableEntity execution-instance.

The main principles for the activation of runnables are:

• RunnableEntitys are activated by RTEEvents

• BswSchedulableEntitys are activated by BswEvents

• only server runnables (RunnableEntitys activated by an OperationIn-
vokedEvent) are queued. All other ExecutableEntitys are unqueued.

141 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

If a RunnableEntity is activated due to several DataReceivedEvents of
dataElements with swImplPolicy = queued, it is the responsibility of the
RunnableEntity to dequeue all queued data.

• A minimumStartInterval will delay the activation of RunnableEntitys
and BswSchedulableEntitys to prevent that a RunnableEntity or a
BswSchedulableEntity is started more than once within the minimum-
StartInterval.

Each ExecutableEntity execution-instance has its own state machine. The
full state machine is shown in Fig. 4.17.

Note on Figure 4.17: the debounce timer debounceTimer is an increasing timer. It
is local to the ExecutableEntity execution-instance. The activation counter
activations is a local integer to count the pending activations. The runnable de-
bounce timer and the activation counter are like the whole state machine just concepts
for the specification of the behavior, not for the implementation.

142 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The pending activations are only counted for server runnables when RTE im-
plements a call serialization of their invocation. In all other cases, RTE does not
queue activations and the state machine for the activation of ExecutableEntity
execution-instances simplifies as shown in Figure 4.18.

sm state machine for an EcexutableEntity execution-instance w ith unqueued activation

ExecutableEntity execution-instance is schedulable

continuously increasing timer

- debounceTimer: float = minimumStartInterval

constraints

{queue length == 0}

Main Activ ation

started

suspended

debounce

activ ation

running

waiting

preempted activated

not

activated

to be started

corresponds to task state "ready"

[Activation in

state activated]

[debounceTimer >=

minimumStartInterval]

wait

preempt

terminate

resume

start

/debounceTimer = 0

activate

/debounceTimer =

minimumStartInterval

start

[RTE / SchM of the partition is stopped]

[RTE / SchM of the partition is running]

release

Figure 4.18: Statemachine of an unqueued execution-instance (not a server runnable)

If RTE implements an ExecutableEntity execution-instance by direct func-
tion call, as described in section 4.2.3.1, the simplified state machine is shown in Fig-
ure 4.21.

The state machine of an ExecutableEntity execution-instance is not identical
to that of the task containing the ExecutableEntity execution-instance, but
there are dependencies between them. E.g., the ExecutableEntity execution-
instance can only be ‘running’ when the corresponding task is ‘running’.

Table 4.3 describes all ExecutableEntity execution-instance states in de-
tail. The ExecutableEntity execution-instance state machine is split in
two threads. The Main states describe the real state of the ExecutableEntity
execution-instance and the transitions between a suspended and a running Ex-
ecutableEntity execution-instance, while the supporting Activation states de-
scribe the state of the pending activations by RTEEvents or BswEvents.

143 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ExecutableEntity
execution-instance state

description

ExecutableEntity execution-
instance is schedulable

This super state describes the life time of the state machine.
Only when RTE or the SchM that runs the ExecutableEntity
execution-instance is started in the corresponding partition, this
state machine is active.

ExecutableEntity execution-instance Main states
suspended The ExecutableEntity execution-instance is not started and

there is no pending request to start the ExecutableEntity
execution-instance.

to be started The ExecutableEntity execution-instance is activated but
not yet started. Entering the to be started state, usually im-
plies the activation of a task that starts the ExecutableEn-
tity execution-instance. The ExecutableEntity execution-
instance stays in the ‘to be started’ state, when the task is already
running until the gluecode of the task actually calls the function
implementing the ExecutableEntity.

running The function, implementing the ExecutableEntity code is be-
ing executed. The task that contains the ExecutableEntity
execution-instance is running.

waiting A task containing the ExecutableEntity execution-instance is
waiting at a WaitPoint within the ExecutableEntity.

preempted A task containing the ExecutableEntity execution-instance is
preempted from executing the function that implements the Ex-
ecutableEntity.

started ‘started’ is the super state of ‘running’, ‘waiting’ and ‘pre-
empted’ between start and termination of the ExecutableEn-
tity execution-instance.

ExecutableEntity execution-instance Activation states
not activated No RTEEvent / BswEvent requires the activation of the Exe-

cutableEntity execution-instance.
debounce activation One or more RTEEvents with a startOnEvent relation to the

ExecutableEntity execution-instance have occurred 2, but
the debounce timer has not yet exceeded the minimumStart-
Interval. The activation will automatically advance to acti-
vated, when the debounce timer reaches the minimumStart-
Interval.

activated One or more RTEEvents or BswEvents with a startOnEvent
relation to the ExecutableEntity have occurred, and the
debounce timer has exceeded the minimumStartInterval.
While the activated state is active, the Main state of the Ex-
ecutableEntity execution-instance automatically advances
from the suspended to the ’to be started’ state.
For a server runnable where RTE implements a serialization
of server calls, an activation counter counts the number of acti-
vations.
When the ExecutableEntity execution-instance starts, the
activation counter will be decremented. When there is still a
pending activation, the Activation state will turn to debounce ac-
tivation and otherwise to no activation.

2Note that, e.g., the same OperationInvokedEvent may lead to the activation of different Exe-
cutableEntity execution-instances, depending on the client that caused the event.

144 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Table 4.3: States defined for each ExecutableEntity execution-instance.

Note: For tasks, the equivalent state machine does not distinguish between preempted
and to be started. They are subsumed as ‘ready’.

ExecutableEntity
execution-instance transi-
tion

description of event and actions

initial transition to ‘Exe-
cutableEntity execution-instance
is schedulable’

RTE or the SchM that runs the ExecutableEntity execution-
instance is being started in the corresponding partition.

termination transition from ‘Exe-
cutableEntity execution-instance
is schedulable’

RTE or the SchM that runs the ExecutableEntity execution-
instance gets stopped in the corresponding partition.

transitions to ExecutableEntity execution-instance Main states
initial transition to suspended the suspended state is the initial state of the ExecutableEn-

tity execution-instance Main states.
from started to suspended The ExecutableEntity execution-instance has run to comple-

tion.
from suspended to ‘to be
started’

This transition is automatically executed, while the Activation
state is ’activated’.

from ‘to be started’ to running The function implementing the ExecutableEntity is called
from the context of this execution-instance.

from preempted to running A task that is preempted from executing the ExecutableEn-
tity execution-instance changes state from preempted to run-
ning.

from running to waiting The runnable enters a WaitPoint.
from waiting to preempted The task that contains a runnable waiting at a wait point changes

from waiting to preempted.
from running to preempted A task containing the ExecutableEntity execution-instance

gets preempted from executing the function that implements the
ExecutableEntity.

transitions to ExecutableEntity execution-instance Activation states
initial transition to ‘not activated’ The ‘not activated’ state is the initial state of the ExecutableEn-

tity execution-instance Activation states.
The debounce timer is set to the minimumStartInterval
value, to prevent a delay for the first activation of the Exe-
cutableEntity execution-instance.

from activated to ‘not activated’ The function implementing the ExecutableEntity is called
from the context of this execution-instance and no further acti-
vations are pending.
The debounce timer is reset to 0.

from ‘not activated’ to ‘debounce
activation’

The occurrence of an RTEEvent or BswEvent requires the acti-
vation of the ExecutableEntity execution-instance.
A local activation counter is set to 1. If no minimumStartIn-
terval is configured, or the debounce timer has already ex-
ceeded the minimumStartInterval, the ‘debounce activation’
state will be omitted and the transition leads directly to the acti-
vated state.

145 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

from activated to ‘debounce ac-
tivation’

The function implementing the ExecutableEntity is called
from the context of this execution-instance (start), and another
activation is pending (only for server runnable).
The activation counter is decremented and the debounce timer
reset to 0.
If no minimumStartInterval is configured, the ‘debounce ac-
tivation’ state will be omitted and the transition returns directly at
the activated state.

from ‘debounce activation’ to
‘debounce activation’

If RTE implements server call serialization for a server runn-
able, and an OperationInvokedEvent occurs for the server
runnable.
The activation counter is incremented (at most to the queue
length).

from ’debounce activation’ to ac-
tivated

The debounce timer is expired,
debounce timer > minimumStartInterval.

from activated to activated If RTE implements server call serialization for a server runn-
able, and an OperationInvokedEvent occurs for the server
runnable.
The activation counter is incremented (at most to the queue
length).

Table 4.4: States defined for each ExecutableEntity execution-instance.

[SWS_Rte_02697] d The activation of ExecutableEntity execution-instances
shall behave as described by the state machine in Fig. 4.17, Table 4.3, and Ta-
ble 4.4. c(SRS_Rte_00072, SRS_Rte_00160, SRS_Rte_00133, SRS_Rte_00211,
SRS_Rte_00214, SRS_Rte_00217, SRS_Rte_00219)

The RTE will not activate, start or release ExecutableEntity execution-
instances of a terminated or restarting partition (see [SWS_Rte_07604]), or when
RTE is stopped in that partition (see [SWS_Rte_02538]).

The following examples in Fig. 4.19 and Fig. 4.20 show the different timing situations
of the ExecutableEntity execution-instances with or without a minimum-
StartInterval. The minimumStartInterval can reduce the number of activa-
tions by collecting more activating RTEEvents / BswEvents within that interval. No
activation will be lost. The activations are just delayed and combined to keep the min-
imumStartInterval. The started state of the ExecutableEntity execution-
instance Main states and the activated state of the Activation states are shown in the
figures. Each flash indicates the occurrence of an RTEEvent or BswEvent.

146 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.19: Activation of an ExecutableEntity execution-instance without minimum-
StartInterval

Figure 4.19 illustrates the activation of an ExecutableEntity execution-
instance without minimumStartInterval. The execution-instance can only
be activated once (does not apply for server runnables). The activation is not
queued. The execution-instance can already be activated again when it is still
started (see Figure 4.17).

With configuration of the RteEventToTaskMapping such activation can even be
used for an immediately restart of the ExecutableEntity before other Exe-
cutableEntitys which are mapped subsequently in the task are getting started.

[SWS_Rte_07061] d When the parameter RteImmediateRestart / RteBswImme-
diateRestart is TRUE the RTE shall immediately restart the ExecutableEntity
after termination if the ExecutableEntity was activated by this RTEEvent / Bsw-
Event while it was already started. c(SRS_Rte_00072)

This can be utilized to spread a long-lasting calculation in several smaller slices with
the aim to reduce the maximum blocking time of Tasks in a Cooperative Environment.
Typically between each iteration one Schedule Point has to be placed and the num-
ber of iteration might depend on operating conditions of the ECU. Further on in a
calculation chain the long-lasting calculation shall be completed before consecutive
ExecutableEntitys are called.

Example 4.4

Example of RunnableEntity code:
1 LongLastingRunnable()
2 {
3 /* the very long calculation */
4 if(!finished)
5 {
6 /* further call is required to complete the calculation*/
7 Rte_IrTrigger_LongLastingCalculation_ProceedCalculation();
8 }
9 }

147 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Therefore the ExecutableEntity with a long lasting calculation issues a trigger as
long as the calculation is not finished. These trigger activates the ExecutableEntity
again. The first activation of the ExecutableEntity might be triggered by another
RTEEvent / BswEvent.

Figure 4.20: Activation of an ExecutableEntity with a minimumStartInterval

Figure 4.20 illustrates the activation of an ExecutableEntity with a minimum-
StartInterval. (Here no execution-instances have to be distinguished, there
is only one.) The red arrows in this figure indicate the minimumStartInterval af-
ter each start of the ExecutableEntity. An RTEEvent or BswEventwithin this
minimumStartInterval leads to the debounce activation state. When the min-
imumStartInterval ends, the debounce activation state changes to the activated
state.

When a data received event activates a runnable when it is still running, it might be
that the data is already dequeued during the current execution of the runnable. Still,
the runnable will be started again. So, it is possible that a runnable that is activated by
a data received event finds an empty receive queue.

4.2.3.1 Activation by direct function call

In many cases, ExecutableEntity execution-instances can be implemented
by RTE by a direct function call if allowed by the canBeInvokedConcurrently.
In these cases, the activation and start of the ExecutableEntity execution-
instance collapse to one event. The states ‘to be started’, ‘debounce activation’,
and ‘activated’ are passed immediately.

Obviously, debounce activation is not possible (see meta model restriction
[SWS_Rte_02733]).

There is one ExecutableEntity execution-instance per call point, trigger
point, mode switch point, etc.. The state chart simplifies as shown in Figure 4.21.

148 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

sm statemachine for direct function calls of an ExecutableEntity execution-instance

ExecutableEntity execution-instance is schedulable

constraints

{queue length == 0}

{debounceTimer == 0}

{canBeInvocecConcurrently == true}

{runnable not mapped to task}

Main

started

suspended

running

waiting

preempted

corresponds to task state "ready"

activate

[RTE / SchM of the partition is running]

[RTE / SchM of the partition is stopped]

resume

release

preempt

wait

terminate

Figure 4.21: State machine of an ExecutableEntity execution-instance that is imple-
mented by direct function calls.

A triggered ExecutableEntity is activated at least by one ExternalTrig-
gerOccurredEvent or InternalTriggerOccurredEvent. In some cases, the
Trigger Event Communication or the Inter Runnable Triggering is implemented by RTE
generator as a direct function call of the triggered ExecutableEntity by the trig-
gering ExecutableEntity.

An on-entry ExecutableEntity, on-transition ExecutableEntity, on-
exit ExecutableEntity or a ModeSwitchAck ExecutableEntity might be
executed in the context of the Rte_Switch API if an asynchronous mode switch pro-
cedure is implemented.

A server runnable is exclusively activated by OperationInvokedEvents and
implements the server in client server communication. In some cases, the client server
communication is implemented by RTE as a direct function call of the server by the
client.

149 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys

In order to allow optimizations (smooth cpu load, mapping of RunnableEntitys and
BswSchedulableEntitys with different periods in the same task to avoid data shar-
ing, etc.), the RTE has to handle the activation offset information from a task shared
reference point only for time trigger RunnableEntitys and BswSchedulableEn-
titys. The maximum period of a task can be calculated automatically as the great-
est common divisor (GCD) of all runnables period and offset.It is assumed that the
runnables worst case execution is less than the GCD. In case of the worst case execu-
tion is greater than the GCD, the behavior becomes undefined.

[SWS_Rte_07000] d The RTE shall respect the configured activation offset of
RunnableEntitys mapped within one OS task. c(SRS_Rte_00161)

[SWS_Rte_07520] d The Basic Software Scheduler shall respect the configured
activation offset of BswSchedulableEntitys mapped within one OS task. c
(SRS_Rte_00212)

[SWS_Rte_CONSTR_09010] Worst case execution time shall be less than the
GCD d The RunnableEntitys or BswSchedulableEntitys worst case execution
time shall be less than the GCD of all BswSchedulableEntitys and RunnableEn-
titys period and offset in activation offset context for RunnableEntitys and
BswSchedulableEntitys. c()

Note: The following examples are showing RunnableEntitys only. Nevertheless it
is applicable for BswSchedulableEntitys or a mixture of RunnableEntitys and
BswSchedulableEntitys as well.

Example 1:
This example describes 3 runnables mapped in one task with an activation offset de-
fined for each runnables.

Runnable Period Activation Offset
R1 100ms 20ms
R2 100ms 60ms
R3 100ms 100ms

Table 4.5: Runnables timings

The runnables R1, R2 and R3 are mapped in the task T1 at 20 ms which is the GCD
of all runnables period and activation offset.

150 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.22: Example of activation offset for runnables

Example 2:
This example describes 4 runnables mapped in one task with an activation offset and
position in task defined for each runnables.

Runnable Period Position in task Activation Offset
R1 50ms 1 0ms
R2 100ms 2 0ms
R3 100ms 3 70ms
R4 50ms 4 20ms

Table 4.6: Runnables timings with position in task

The runnables R1, R2, R3 and R4 are mapped in the task T1 at 10 ms which is the
GCD of all runnables period and activation offset.

Figure 4.23: Example of activation offset for runnables with position in task

4.2.3.3 Provide activating RTE event

It is possible to define the activation of one runnable entity by several RTE events. But
when the runnable entity is invoked by the RTE it is shall be possible to query which of
the RTE events actually triggered the execution of this runnable entity run.

151 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Contract Phase:

The provide activating event feature is enabled if the runnable entity has at least one
activationReason defined.

[SWS_Rte_08051] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the runnable entity signature according to
[SWS_Rte_01126] and [SWS_Rte_08071]. c(SRS_Rte_00238)

[SWS_Rte_08052] d If the provide activating event feature is enabled, the RTE genera-
tor in contract phase shall generate the type Rte_ActivatingEvent_<name> (ac-
tivation vector), where <name> is the symbol describing the runnable entity’s
entry point, to store the activation bits. Based on the highest value of ExecutableEn-
tityActivationReason.bitPosition for this runnable entity the type shall be ei-
ther uint8, uint16, or uint32 so that the highest value of bitPosition fits into
the data type. c(SRS_Rte_00238)

Note that it is considered an invalid configuration if ExecutableEntityActiva-
tionReason.bitPosition has a value higher than 31 (see [constr_1226] in soft-
ware component template [2])

[SWS_Rte_08053] d If the provide activating RTE event feature is enabled, the RTE
generator in contract phase shall generate for each ExecutableEntityActiva-
tionReason of one executable entity a definition to provide the specific bit position in
the Rte_ActivatingEvent_<name> data type:

#define Rte_ActivatingEvent_<name>_<activation> xxU

The value of xx is defined by the bitPosition xx = 2∧bitPosition. c(SRS_Rte_00238)

Example: runnable entity symbol = "greek" and has 3 ExecutableEntityActiva-
tionReasons aggregated. Those are referenced by 4 RTE events:

• RTEEvent: "alpha" symbol: aleph

• RTEEvent: "beta" symbol: beth

• RTEEvent: "gamma" symbol: gimel

• RTEEvent: "delta" symbol: gimel

This will result in a unit8 Rte_ActivatingEvent_<name> data type: typedef
uint8 Rte_ActivatingEvent_greek and 3 definitions:

• #define Rte_ActivatingEvent_greek_aleph 01U

• #define Rte_ActivatingEvent_greek_beth 02U

• #define Rte_ActivatingEvent_greek_gimel 04U

Generation Phase:

152 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08054] d If the provide activating RTE event feature is enabled, the RTE
shall collect the activating RTE events, which have the activationReasonRep-
resentation reference defined, in the context of the OS task the runnable entity
is mapped to in an activation vector at the corresponding bit position as defined in
[SWS_Rte_08053]. c(SRS_Rte_00238)

[SWS_Rte_08055] d If the provide activating RTE event feature is enabled, the RTE
shall provide the collected activating RTE events (activation vector) to the runnable
entity API when the runnable entity is "started". The activation vector shall be reset
immediately after it has been provided. c(SRS_Rte_00238)

Since it is possible that there is a time gap between the activation and the execution
(start) of a runnable entity the subsequent activations are summed up and provided
with the start of the runnable entity.

Activations during the execution of a runnable entity are collected for the next start of
that runnable entity.

4.2.4 Interrupt decoupling and notifications

4.2.4.1 Basic notification principles

Several BSW modules exist which contain functionality which is not directly activated,
triggered or called by AUTOSAR software-components but by other circumstances, like
digital input port level changes, complex driver actions, CAN signal reception, etc. In
most cases interrupts are a result of those circumstances. For a definition of interrupts,
see the VFB [1].

Several of these BSW functionalities create situations, signalled by an interrupt, when
AUTOSAR SW-Cs have to be involved. To inform AUTOSAR software components of
those situations, runnables in AUTOSAR software components are activated by no-
tifications. So interrupts that occur in the basic software have to be transformed into
notifications of the AUTOSAR software components. Such a transformation has to take
place at RTE level at the latest! Which interrupt is connected to which notification is
decided either during system configuration/generation time or as part of the design of
Complex Device Drivers or the Microcontroller Abstraction Layer.

This means that runnables in AUTOSAR SW-Cs have to be activated or "waiting" cat2
runnables in extended tasks have to be set to "ready to run" again. In addition some
event specific data may have to be passed.

There are two different mechanisms to implement these notifications, depending on
the kind of BSW interfaces.

1. BSW with Standardized interface. Used with COM and OS.
Basic-SW modules with Standardized interfaces cannot create RTEEvents. So
another mechanism must be chosen: "callbacks"
The typical callback realization in a C/C++ environment is a function call.

153 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2. BSW with AUTOSAR interface: Used in all the other BSW modules.
Basic-SW modules with AUTOSAR-Interfaces have their interface specified in an
AUTOSAR BSW description XML file which contains signal specifications accord-
ing to the AUTOSAR specification. The BSW modules can employ RTE API calls
like Rte_Send – see 5.6.5). RTEEvents may be connected with the RTE API
calls, so realizing AUTOSAR SW-C activation.

Note that an AUTOSAR software component can send a notification to another AU-
TOSAR software component or a BSW module only via an AUTOSAR interface.

4.2.4.2 Interrupts

The AUTOSAR concept as stated in the VFB specification [1] does not allow AUTOSAR
software components to run in interrupt context. Only the Microcontroller Abstraction
Layer, Complex Device Drivers and the OS are allowed to directly interact with inter-
rupts and implement interrupt service routines (see Requirement [SRS_BSW_00164].
This ensures hardware independence and determinism.

If AUTOSAR software components were allowed to run in interrupt context, one AU-
TOSAR software component could block the entire system schedule for an unaccept-
ably long period of time. But the main reason is that AUTOSAR software components
are supposed to be independent of the underlying hardware so that exchangeability
between ECUs can be ensured. The schedule of an ECU is more predictable and bet-
ter testable if the timing effects of interrupts are restricted to the basic software of that
ECU.

Furthermore, AUTOSAR software components are not allowed to explicitly block inter-
rupts as a means to ensure data consistency. They have to use RTE functions for this
purpose instead, see Section 4.2.5.

4.2.4.3 Decoupling interrupts on RTE level

Runnables in AUTOSAR SW-Cs may be running as a consequence of an interrupt but
not in interrupt context, which means not within an interrupt service routine! Between
the interrupt service routine and an AUTOSAR SW-C activation there must always be
a decoupling instance. AUTOSAR SW-C runnables are only executed in the context of
tasks.

The decoupling instance is latest in the RTE. For the RTE there are several options to
realize the decoupling of interrupts. Which option is the best depends on the configu-
ration and implementation of the RTE, so only examples are given here.

Example 1:

Situation:

• An interrupt routine calls an RTE callback function

154 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Intention:

• Start a runnable

RTE job:

• RTE starts a task containing the runnable activation code by using the Acti-
vateTask()" OS service call.

• Other more sophisticated solutions are possible, e.g. if the task containing the
runnable is activated periodically.

Example 2:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Make a runnable wake up from a wait point

RTE job:

• RTE sets an OS event

These scenarios described in the examples above not only hold for RTE callback func-
tions but for other RTE API functions as well.

[SWS_Rte_03600] d The RTE shall prevent runnable entities of AUTOSAR software-
components to run in interrupt context. c(SRS_Rte_00099)

4.2.4.4 RTE and interrupt categories

Since category 1 interrupts are not under OS control the RTE has absolutely no pos-
sibility to influence their execution behavior. So no category 1 interrupt is allowed to
reach RTE. This is different for interrupt of category 2.

[SWS_Rte_03594] d The RTE Generator shall reject the configuration if a SwcB-
swRunnableMapping associates a BswInterruptEntity with a RunnableEn-
tity and the attribute interruptCategory of the BswInterruptEntity is equal
to cat 1. c(SRS_Rte_00018, SRS_Rte_00099)

[SWS_Rte_CONSTR_09012] Category 1 interrupts shall not access the RTE. d
Category 1 interrupts shall not access the RTE. c()

4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

The RTE and Basic Software Scheduler do support the invocation triggered Exe-
cutableEntity via direct function call in some special cases. Nevertheless it shall

155 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

be prevented that an ExecutableEntity from a particular execution context calls
a triggered ExecutableEntity witch requires an execution context with more
permissions.

The constraint [constr_4086] in document [9] describes the possible invocation of Ex-
ecutableEntitys by direct function call dependent from BswExecutionContext.

This applies to the invocation of a triggered ExecutableEntity by the
SchM_Trigger, SchM_ActMain or Rte_Trigger APIs, or to the invocation
of an on-entry ExecutableEntity, on-transition ExecutableEntity,
on-exit ExecutableEntity or ModeSwitchAck ExecutableEntity by the
SchM_Switch or Rte_Switch APIs.

4.2.4.5.1 Interrupt decoupling for COM

COM callbacks are used to inform the RTE about something that happened indepen-
dently of any RTE action. This is often interrupt driven, e.g. when a data item has been
received from another ECU or when a S/R transmission is completed.
It is the RTE’s job e.g. to create RTEEvents from the interrupt.

[SWS_Rte_03530] d The RTE shall provide callback functions to allow COM to signal
COM events to the RTE. c(SRS_Rte_00072, SRS_Rte_00099)

[SWS_Rte_03531] d The RTE shall support runnable activation by COM callbacks. c
(SRS_Rte_00072, SRS_Rte_00099)

[SWS_Rte_03532] d The RTE shall support category 2 runnables to wake up from a
wait point as a result of COM callbacks. c(SRS_Rte_00072, SRS_Rte_00099)

See RTE callback API in chapter 5.9.

4.2.5 Data Consistency

4.2.5.1 General

Concurrent accesses to shared data memory can cause data inconsistencies. In gen-
eral this must be taken into account when several code entities accessing the same
data memory are running in different contexts - in other words when systems using
parallel (multicore) or concurrent (singlecore) execution of code are designed. More
general: Whenever task context-switches occur and data is shared between tasks,
data consistency is an issue.

AUTOSAR systems use operating systems according to the AUTOSAR-OS specifica-
tion which is derived from the OSEK-OS specification. The Autosar OS specification
defines a priority based scheduling to allow event driven systems. This means that

156 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

tasks with higher priority levels are able to interrupt (preempt) tasks with lower priority
level.

The "lost update" example in Figure 4.24 illustrates the problem for concurrent read-
modify-write accesses:

Task B

Task A

Data X

X

1) X*=5
2) X*++ => X*=6

3) X = X* => X=6

Time

1) Get X‘=5

2) X‘+=2

3) X = X‘

1) X*=5

5 5 5 5 5 5 5 5 5 7 7 7 7 7 6 6 6 6 6 6 6 6

Figure 4.24: Data inconsistency example - lost update

There are two tasks. Task A has higher priority than task B. A increments the commonly
accessed counter X by 2, B increments X by 1. So in both tasks there is a read
(step1) – modify (step2) – write (step3) sequence. If there are no atomic accesses (fully
completed read-modify-write accesses without interruption) the following can happen:

1. Assume X=5.

2. B makes read (step1) access to X and stores value 5 in an intermediate store
(e.g. on stack or in a CPU register).

3. B cannot continue because it is preempted by A.

4. A does its read (step1) – modify (step2) – write (step3) sequence, which means
that A reads the actual value of X, which is 5, increments it by 2 and writes the
new value for X, which is 7. (X=5+2)

5. A is suspended again.

6. B continues where it has been preempted: with its modify (step2) and write
(step3) job. This means that it takes the value 5 form its internal store, incre-
ments it by one to 6 and writes the value 6 to X (X=5+1).

7. B is suspended again.

The correct result after both Tasks A and B are completed should be X=8, but the
update of X performed by task A has been lost.

157 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.5.2 Communication Patterns

In AUTOSAR systems the RTE has to take care that a lot of the communication is not
corrupted by data consistency problems. RTE Generator has to apply suitable means
if required.

The following communication mechanisms can be distinguished:

• Communication within one atomic AUTOSAR SW-C:
Communication between Runnables of one atomic AUTOSAR SW-C running in
different task contexts where communication between these Runnables takes
place via commonly accessed data. If the need to support data consistency by
the RTE exists, it must be specified by using the concepts of "ExclusiveAreas" or
"InterRunnableVariables" only.

• Intra-partition communication between AUTOSAR SW-Cs:
Sender/Receiver (S/R) communication between Runnables of different AU-
TOSAR SW-Cs using implicit or explicit data exchange can be realized by the
RTE through commonly accessed RAM memory areas. Data consistency in
Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. The RTE is re-
sponsible for guaranteeing data consistency.

• Inter-Partition communication
The RTE has to guarantee data consistency. The different possibilities pro-
vided to the RTE for the communication between partitions are discussed in sec-
tion 4.3.4.

• Intra-ECU communication between AUTOSAR SW-Cs and BSW modules with
AUTOSAR interfaces:
This is a special case of the above two.

• Inter ECU communication
COM has to guarantee data consistency for communication between ECUs on
complete path between the COM modules of different ECUs. The RTE on each
ECU has to guarantee that no data inconsistency might occur when it invokes
COM send respectively receive calls supplying respectively receiving data items
which are concurrently accessed by application via RTE API call, especially when
queueing is used since the queues are provided by the RTE and not by COM.

[SWS_Rte_03514] d The RTE has to guarantee data consistency for communication
via AUTOSAR interfaces. c(SRS_Rte_00032)

4.2.5.3 Concepts

In the AUTOSAR SW-C Template [2] chapter "Interaction between runnables within
one component", the concepts of

1. ExclusiveAreas (see section 4.2.5.5 below)

158 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2. InterRunnableVariables (see section 4.2.5.6 below)

are introduced to allow the user (SW-Designer) to specify where the RTE shall guar-
antee data consistency for AUTOSAR SW-C internal communication and execution
circumstances. This is discussed in more detail in next sections.

Additionally exclusive areas are also available for Basic Software Modules to protect
access to module internal data. See [9]. The exclusive areas for Basic Software Mod-
ules are handled by the Basic Software Scheduler.

The AUTOSAR SW-C template specification [2] also states that AUTOSAR SW-Cs may
define PerInstanceMemory or arTypedPerInstanceMemory, allowing reserva-
tion of static (permanent) need of global RAM for the SW-C. Nothing is specified about
the way Runnables might access this memory. RTE only provides a reference to this
memory (see section 5.6) but doesn’t guarantee data consistency for it.

The implementer of an AUTOSAR SW-C has to take care by himself that accesses
to RAM reserved as PerInstanceMemory out of Runnables running in different task
contexts don’t cause data inconsistencies. On the other hand this provides more
freedom in using the memory.

4.2.5.4 Mechanisms to guarantee data consistency

ExclusiveAreas and InterRunnableVariables are only mentioned in association with
AUTOSAR SW-C internal communication. Nevertheless the data consistency mecha-
nisms behind can be applied to communication between AUTOSAR SW-Cs or between
AUTOSAR SW-Cs and BSW modules too. Everywhere where the RTE has to guaran-
tee data consistency.

The data consistency guaranteeing mechanisms listed here are derived from AU-
TOSAR SW-C Template and from further discussions. There might be more (see sec-
tion 4.3.4 for the mechanisms involved for inter-partition communication).
The RTE has the responsibility to apply such mechanisms if required. The details how
to apply the mechanisms are left open to the RTE supplier.

Mechanisms:

• Sequential scheduling strategy
The activation code of Runnables is sequentially placed in one task so that no
interference between them is possible because one Runnable is only activated
after the termination of the other. Data consistency is guaranteed.

• Interrupt blocking strategy
Interrupt blocking can be an appropriate means if collision avoidance is required
for a very short amount of time. This might be done by disabling respectively
suspending all interrupts, Os interrupts only or - if hardware supports it - only
of some interrupt levels. In general this mechanism must be applied with care

159 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

because it might influence SW in tasks with higher priority too and the timing of
the complete system.

• Usage of OS resources
Usage of OS resources. Advantage in comparison to Interrupt blocking strat-
egy is that less SW parts with higher priority are blocked. Disadvantage is that
implementation might consume more resources (code, runtime) due to the more
sophisticated mechanism. Appropriateness of this mechanism may vary depend-
ing on the number of OSs/cores and/or the number of available resources.

• Task blocking strategy
Mutual task preemption is prohibited. This might be reached e.g. by assigning
same priorities to affected tasks, by assigning same internal OS resource to af-
fected tasks or by configuring the tasks to be non-preemptive. This mechanism
may be inappropriate in multi-partitioned systems.

• Copy strategy
Idea: The RTE creates copies of data items so that concurrent accesses in dif-
ferent task contexts cannot collide because some of the accesses are redirected
to the copies.

How it can work:

– Application for read conflicts:
For all readers with lower priority than the writer a read copy is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and a copy data
item X*. When Runnable R1 is running in higher priority task context than
R2, and R1 is the only one writing X and R2 is reading X it is possible to
guarantee data consistency by making a copy of data item X to variable X*
before activation of R2 and redirecting write access from X to X* or the read
access from X to X* for R2.

– Application for write conflicts:
If one or more data item receiver with a higher priority than the sender exist,
a write copy for the sender is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and copy data item X*.
When Runnable R1 (running in lower priority task context than R2) is
writing X and R2 is reading X, it is possible to guarantee data consistency
by making a copy of data item X to data item X* before activation of R1
together with redirecting the write access from X to X* for R1 or the read
access from X to X* for R2.

Usage of this copy mechanism may make sense if one or more of the following
conditions hold:

160 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

– This copy mechanism can handle those cases when only one instance does
the data write access.

– R2 is accessing X several times.

– More than one Runnable R2 has read (resp. write) access to X.

– To save runtime is more important than to save code and RAM.

– Additional RAM requirements to hold the copies is acceptable.

Further issues to be taken into account:

– AUTOSAR SW-Cs provided as source code and AUTOSAR SW-Cs pro-
vided as object code may or have to be handled in different ways. The
redirecting mechanism for source code could use macros for C and C++
very efficiently whereas object-code AUTOSAR SW-Cs most likely are
forced to use references.

Note that the copy strategy is used to guarantee data consistency for implicit
sender-receiver communication (VariableAccesses in the dataReadAccess
or dataWriteAccess role) and for AUTOSAR SW-C internal communication
using InterRunnableVariables with implicit behavior.

4.2.5.5 Exclusive Areas

The concept of ExclusiveArea is more a working model. It’s not a concrete imple-
mentation approach, although concrete possible mechanisms are listed in AUTOSAR
SW-C template specification [2].

Focus of the ExclusiveArea concept is to block potential concurrent accesses
to get data consistency. ExclusiveAreas implement critical section

ExclusiveAreas are associated with RunnableEntitys. The RTE is forced to guar-
antee data consistency when the RunnableEntity runs in an ExclusiveArea. A
RunnableEntity can run inside one or several ExclusiveAreas completely or can
enter one or several ExclusiveAreas during their execution for one or several times
.

• If an AUTOSAR SW-C requests the RTE to look for data consistency for it’s inter-
nally used data (for a part of it or the complete one) using the ExclusiveArea
concept, the SW designer can use the API calls "Rte_Enter()" in 5.6.28 and
"Rte_Exit()" in 5.6.29 to specify where he wants to have the protection by RTE
applied.
"Rte_Enter()" defines the begin and "Rte_Exit()" defines the end of the code se-
quence containing data accesses the RTE has to guarantee data consistency
for.

161 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• If the SW designer wants to have the mutual exclusion for complete
RunnableEntitys he can specify this by using the ExclusiveArea in the role
"runsInsideExclusiveArea" in the AUTOSAR SW-C description.

In principle the ExclusiveArea concept can handle the access to single data items
as well as the access to several data items realized by a group of instructions. It
also doesn’t matter if one Runnable is completely running in an ExclusiveArea and
another Runnable only temporarily enters the same ExclusiveArea. The RTE has
to guarantee data consistency.

[SWS_Rte_03500] d The RTE has to guarantee data consistency for arbitrary ac-
cesses to data items accessed by Runnables marked with the same ExclusiveArea.
c(SRS_Rte_00032, SRS_Rte_00046)

[SWS_Rte_03515] d RTE has to provide an API enabling the SW-Cs to access and
leave ExclusiveAreas. c(SRS_Rte_00046)

If Runnables accessing same ExclusiveArea are assigned to be executing in dif-
ferent task contexts, the RTE can apply suitable mechanisms, e.g. task blocking, to
guarantee data consistency for data accesses in the common ExclusiveArea. How-
ever, specials attributes can be set that require certain data consistency mechanisms
in which case the RTE generator is forced to apply the selected mechanism.

The Basic Software Scheduler provides ExclusiveAreas for the Basic Software
Modules. Basic Software Modules have to use the API calls SchM_Enter()" in 6.5.1
and SchM_Exit()" in 6.5.2 to specify where the protection by Basic Software Sched-
uler has to be applied.

[SWS_Rte_07522] d The Basic Software Scheduler has to guarantee data consistency
for arbitrary accesses to data items accessed by BswModuleEntitys marked with the
same ExclusiveArea. c(SRS_Rte_00222, SRS_Rte_00046)

[SWS_Rte_07523] d Basic Software Scheduler has to provide an API enabling the
Basic Software Module to access and leave ExclusiveAreas. c(SRS_Rte_00222,
SRS_Rte_00046)

It is not supported, that a BswModuleEntity which is not a BswSchedulableEn-
tity uses an ExclusiveArea in the role runsInsideExclusiveArea This is not
possible, because such BswSchedulableEntity might be called directly by other
Basic Software Modules and therefore the Basic Software Scheduler is not able to
enter and exit the ExclusiveArea automatically.

[SWS_Rte_07524] d The RTE generator shall reject a configuration where a BswMod-
uleEntity which is not a BswSchedulableEntity uses an ExclusiveArea
in the role runsInsideExclusiveArea. c(SRS_Rte_00222, SRS_Rte_00046,
SRS_Rte_00018)

162 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.5.5.1 Assignment of data consistency mechanisms

The data consistency mechanism that has to be applied to anExclusiveArea might
be domain, ECU or even project specific. The decision which mechanism has to be
applied by RTE / Basic Software Scheduler is taken during ECU integration by set-
ting the ExclusiveArea configuration parameter RteExclusiveAreaImplMecha-
nism. This parameter is an input for RTE generator.

As stated in section 4.2.5.4 there might be more mechanisms to realize Exclu-
siveAreas as mentioned in this specification. So RTE implementations might provide
other mechanisms in plus by a vendor specific solutions. This allows further optimiza-
tions.

Actually following values for configuration parameter RteExclusiveAreaIm-
plMechanism must be supported:

• ALL_INTERRUPT_BLOCKING
This value requests enabling and disabling of all Interrupts and is based on the
Interrupt blocking strategy.

• OS_INTERRUPT_BLOCKING
This value requests enabling and disabling of Os Interrupts and is based on the
Interrupt blocking strategy.

• OS_RESOURCE
This value requests to apply the Usage of OS resources mechanism.

• OS_SPINLOCK
This value is used to co-ordinate concurrent access by TASKs/ISR2s on different
cores to a shared resource.

• NONE
RTE generator shall not apply any mechanisms for data consistency. Data con-
sistency will be ensured by methods outside of RTE implementation control.

• RTE_PLUGIN
This value requests to apply the RTE Implementation Plug-In mechanism.

The strategies / mechanisms are described in general in section 4.2.5.4.

[SWS_Rte_03504] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value ALL_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking all interrupts) to guar-
antee data consistency if data inconsistency could occur. c(SRS_Rte_00032)

[SWS_Rte_05164] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value OS_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking Os interrupts only)
to guarantee data consistency if data inconsistency could occur. c(SRS_Rte_00032)

163 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03595] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value OS_RESOURCE the RTE generator shall
use OS resources to guarantee data consistency if data inconsistency could occur. c
(SRS_Rte_00032)

The requirements above have the limitation "if data inconsistency could occur"
because it makes no sense to apply a data consistency mechanism if no potential
data inconsistency can occur. This can be relevant if e.g. the "Sequential scheduling
strategy" (described in section 4.2.5.4) still has solved the item by the ECU integrator
defining an appropriate runnable-to-task mapping.

[SWS_Rte_08419] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveAreais set to value OS_SPINLOCK the RTE generator shall
use OS spinlocks to guarantee data consistency if data inconsistency could occur. c
(SRS_Rte_00032)

[SWS_Rte_03999] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value NONE then the RTE generator shall create
functionally empty implementations for all required APIs. c(SRS_Rte_00032)

Note: The implementation of ExclusiveAreas via RTE Implementation Plug-
In mechanism (RteExclusiveAreaImplMechanism set to RTE_PLUGIN) is
described in section 7.3.5. Note:
The configuration parameter RteExclusiveAreaImplMechanism can be specified
for each SWC instance and therefore the implementation for each API may differ.
The description "functionally empty" implies no code to lock/unlock the exclusive
area however other code, such as VFB trace, may be present. If all SWC instances
result in identical implementations, e.g. empty, then an RTE generator can provide a
function-like macro within the RTE API mappings to further optimize the generated
API. Such optimization is not possible when implementations differ since the API
mappings are generated per-type.

In a SWC code, it is not allowed to use WaitPoints inside an ExclusiveArea:
The RTE generator might use OSEK services to implement ExclusiveAreas and
waiting for an OS event is not allowed when an OSEK resource has been taken for
example. For RunnableEntityEntersExclusiveArea, the RTE generator cannot check if
WaitPoints are inside an ExclusiveArea. Therefore, it is the responsibility of the
SWC Code writer to ensure that no WaitPoints are used inside an exclusive area.
But for RunnableEntitys running inside an ExclusiveArea, the RTE generator is
able to do the following check.

[SWS_Rte_07005] d The RTE generator shall reject a configuration with a WaitPoint
applied to a RunnableEntity which is using the ExclusiveArea in the role run-
sInsideExclusiveArea c(SRS_Rte_00032, SRS_Rte_00018)

164 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.5.6 InterRunnableVariables

AtomicSwComponents (except for NvBlockComponents) can reserve InterRunnable-
Variables which can be accessed by the Runnables of this one AtomicSwComponent
(also see section 4.3.3.1). Read and write accesses are possible. There is a separate
set of those variables per AUTOSAR SW-C instance.

Again the RTE has to guarantee data consistency. Appropriate means will depend on
Runnable placement decisions which are taken during ECU configuration.

[SWS_Rte_03516] d The RTE has to guarantee data consistency for communication
between Runnables of one AUTOSAR software-component instance using the same
InterRunnableVariable. c(SRS_Rte_00142, SRS_Rte_00032)

Next the two kinds of InterRunnableVariables are treated:

1. InterRunnableVariables with implicit behavior

(implicitInterRunnableVariable)

2. InterRunnableVariables with explicit behavior

(explicitInterRunnableVariable)

4.2.5.6.1 InterRunnableVariables with implicit behavior

In applications with very high SW-C communication needs and much real time con-
straints (like in powertrain domain) the usage of a copy mechanism to get data con-
sistency might be a good choice because during RunnableEntity execution no data
consistency overhead in form of concurrent access blocking code and runtime during
its execution exists - independent of the number of data item accesses.
Costs are code overhead in the RunnableEntity prologue and epilogue which is
often be minimal compared to other solutions. Additional RAM need for the copies
comes in plus.

When InterRunnableVariables with implicit behavior are used the RTE is required to
make the data available to the Runnable using the semantics of a copy operation
but is not necessarily required to use a unique copy for each RunnableEntity.

Focus of InterRunnableVariable with implicit behavior is to avoid concurrent ac-
cesses by redirecting second, third, .. accesses to data item copies.

[SWS_Rte_03517] d The RTE shall guarantee data consistency for InterRunnableVari-
ables with implicit behavior by avoiding concurrent accesses to data items specified by
implicitInterRunnableVariable using one or more copies and redirecting ac-
cesses to the copies.
c(SRS_Rte_00142, SRS_Rte_00032)

Compared with Sender/Receiver communication

165 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable IN data is stable during Runnable execution, which
means that during an Runnable execution several read accesses to an implic-
itInterRunnableVariable always deliver the same data item value.

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable OUT data is forwarded to other Runnables not before
Runnable execution has terminated, which means that during an Runnable ex-
ecution write accesses to implicitInterRunnableVariable are not visible
to other Runnables.

This behavior requires that Runnable execution terminates.

[SWS_Rte_03582] d The value of several read accesses to implicitInter-
RunnableVariable during a RunnableEntity execution shall only change for
write accesses performed within this RunnableEntity to the implicitInter-
RunnableVariable c(SRS_Rte_00142)

[SWS_Rte_03583] d Several write accesses to implicitInterRunnableVari-
able during a RunnableEntity execution shall result in only one update of the im-
plicitInterRunnableVariable content visible to other RunnableEntitys with
the last written value.
c(SRS_Rte_00142)

[SWS_Rte_03584] d The update of implicitInterRunnableVariable done dur-
ing a RunnableEntity execution shall be made available to other RunnableEn-
titys after the RunnableEntity execution has terminated.
c(SRS_Rte_00142)

[SWS_Rte_07022] d If a RunnableEntity has both read and write access to an
implicitInterRunnableVariable the result of the write access shall be imme-
diately visible to subsequent read accesses from within the same runnable entity. c
(SRS_Rte_00142)

The usage of implicitInterRunnableVariables is permitted for all categories of
runnable entities. For runnable entities of category 2, the behavior is guaranteed only
if it has a finite execution time. A category 2 runnable that runs forever will not have its
data updated.

For API of implicitInterRunnableVariable see sections 5.6.23 and 5.6.24.

For more details how this mechanism could work see "Copy strategy" in section 4.2.5.4.

4.2.5.6.2 InterRunnableVariables with explicit behavior

In many applications saving RAM is more important than saving runtime. Also some
application require to have access to the newest data item value without any delay,
even several times during execution of a Runnable.

166 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Both requirements can be fulfilled when RTE supports data consistency by blocking
second/third/.. concurrent accesses to a signal buffer if data consistency is jeopar-
dized. (Most likely RTE has nothing to do if SW is running on a 16bit machine and
making an access to an 16bit value when a 16bit data bus is present.)

Focus of InterRunnableVariables with explicit behavior is to block potential con-
current accesses to get data consistency.

The mechanism behind is the same as in the ExclusiveArea concept (see section
4.2.5.5). But although ExclusiveAreas can handle single data item accesses too, their
API is made to make the RTE to apply data consistency means for a group of in-
structions accessing several data items as well. So when using an ExclusiveArea to
protect accesses to one single common used data item each time two RTE API calls
grouped around are needed. This is very inconvenient and might lead to faults if the
calls grouped around might be forgotten.
The solution is to support InterRunnableVariables with explicit behavior.

[SWS_Rte_03519] d The RTE shall guarantee data consistency for InterRunnableVari-
ables with explicit behavior by blocking concurrent accesses to data items specified by
explicitInterRunnableVariable.
c(SRS_Rte_00142, SRS_Rte_00032)

The RTE generator is not free to select on it’s own if implicit or explicit behavior shall
be applied. Behavior must be known at AUTOSAR SW-C design time because in case
of InterRunnableVariables with implicit behavior the AUTOSAR SW-C designer might
rely on the fact that several read accesses always deliver same data item value.

[SWS_Rte_03580] d The RTE shall supply different APIs for InterRunnableVariables
with implicit behavior and InterRunnableVariables with explicit behavior.
c(SRS_Rte_00142)

For API of InterRunnableVariables with explicit behavior see sections 5.6.26 and
5.6.27.

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable En-
tities

Concurrent activation

The AUTOSAR SW-C template specification [2] states that runnable entities (further
called "runnables") might be invoked concurrently several times if the Runnables at-
tribute canBeInvokedConcurrently is set. It’s then in the responsibility of the AU-
TOSAR SW-C designer that no data might be corrupted when the Runnable is activated
several times in parallel.

If a SW-C has multiple instances, they have distinct runnables. Two runnables that
use the same RunnableEntity description of the same SwcInternalBehavior
description but are instantiated with two different SW-C instances are treated as two
distinct runnables in the following. This kind of concurrency is always allowed between

167 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SW-Cs, even if the runnables have their canBeInvokedConcurrently attribute set
to false.

[SWS_Rte_03523] d The RTE shall support concurrent activation of the same instance
of a runnable entity if the associative attribute canBeInvokedConcurrently is set
to TRUE. This includes concurrent activation in several tasks. If the attribute is not
set resp. set to FALSE, concurrent activation of the runnable entity is forbidden. (see
requirement [SWS_Rte_05083]) c(SRS_Rte_00072, SRS_Rte_00133)

The Basic Software Module Description Template [9] specifies the possible concurrent
activation of BswModuleEntitys by the attribute isReentrant.

[SWS_Rte_07525] d The Basic Software Scheduler shall support concurrent activation
of the same instance of a BswSchedulableEntity if the attribute isReentrant of
the referenced BswModuleEntry in the role implementedEntry is set to true.
This includes concurrent activation in several tasks. If the attribute is set to false
concurrent activation of the BswSchedulableEntity is forbidden. (see requirement
[SWS_Rte_07588]) c()

Concurrent activation of the same instance of an ExecutableEntity results in mul-
tiple ExecutableEntity execution-instances. One for each context of activa-
tion.

Activation by several RTEEvents and BswEvents

Nevertheless a Runnable whose attribute canBeInvokedConcurrently is NOT set
might be still activated by several RTEEvents if activation configuration guarantees
that concurrent activation can never occur and the minimumStartInterval condi-
tion is kept. This includes activation in different tasks. In this case, the runnable is
still considered to have only one ExecutableEntity execution-instances. A
standard use case is the activation of same instance of a runnable in different modes.

[SWS_Rte_03520] d The RTE shall support activation of same instance of a runnable
entity by multiple RTEEvents. c(SRS_Rte_00072)

RTEEvents are triggering runnable activation and may supply 0..several role param-
eters, see section 5.7.3. Role parameters are not visible in the runnables signature -
except in those triggered by an OperationInvokedEvent. With the exception of the
RTEEvent OperationInvokedEvent all role parameters can be accessed by user
with implicit or explicit Receiver API.

[SWS_Rte_03524] d The RTE shall support activation of same instance of a runnable
entity by RTEEvents of different kinds. c(SRS_Rte_00072)

The RTE does NOT support a runnable entity triggered by an RTEEvent Opera-
tionInvokedEvent to be triggered by any other RTEEvent except for other Opera-
tionInvokedEvents of compatible operations. This limitation is stated in appendix
in section A.2 ([SWS_Rte_03526]).

168 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The similar configuration as mentioned for the RunnableEntitys might be used for
BswSchedulableEntitys. Therefore even a BswSchedulableEntity whose ref-
erenced BswModuleEntry in the role implementedEntry has its isReentrant
attribute set to false can be activated by several BswEvents.

[SWS_Rte_07526] d The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by multiple BswEvents. c()

[SWS_Rte_07527] d The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by BswEvents of different kinds. c()

4.2.7 Implementation of Parameter and Data Elements

4.2.7.1 General

A SWC communicates with other SWCs through ports. A port is characterized by a
PortInterface and there are several kinds of PortInterfaces. In this section,
we focus on the ParameterInterface, the SenderReceiverInterface, and the
NvDataInterface. These three kinds of PortInterfaces aggregate some specific
interface elements. For example, a ParameterInterface aggregates 0..* Parame-
terDataPrototypes.

4.2.7.2 Compatibility rules

A receiver port can only be connected to a compatible provider port. The compatibility
rules are explained in the AUTOSAR Software Component Template [2]. The compat-
ibility mainly depends on the attribute swImplPolicy attached to the element of the
interface. The table 4.7 below gives an overview of compatibility rules.

Provide Port Require Port
Port Interface Prm S/R NvD

Interface Element PDP VDP VDP
swImplPolicy fixed const standard standard queued standard

fixed yes yes yes yes no yes
Prm PDP const no yes yes yes no yes

standard no no yes yes no yes
S/R VDP standard no no no yes no yes

queued no no no no yes no
NvD VDP standard no no no yes no yes

Table 4.7: Overview of compatibility of ParameterDataPrototype and VariableDataProto-
types

Interface Element
PDP : ParameterDataPrototype
VDP : VariableDataPrototype

169 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Port Interface
Prm : ParameterInterface
S/R : SenderReceiverInterface
NvD : NvDataInterface

Table 4.8: Key to table 4.7

For examples, a Require Port that expects a fixed parameter - i.e produced by a macro
#define - can only be connected to a Port that provides a fixed Parameter. This is be-
cause this fixed data may be used in a compilation directive like #IF and only macro
#define (fixed data) can be compiled in this case. On the other hand, this provided fixed
parameter can be connected to almost every require port, except a queued Sender/re-
ceiver interface.

The RTE doesn’t have to check the compatibility between ports since this task is per-
formed at the VFB level. But it shall provide the right implementation of interface el-
ement and API according the attribute swImplPolicy attached to the interface ele-
ment.

4.2.7.3 Implementation of an interface element

The implementation of an interface element depends on the attribute swImplPolicy.
The attribute swCalibrationAccess determines how the interface element can be
accessed by e.g. an external calibration tool. The table 4.9 defines the supported
combinations of swImplPolicy and swCalibrationAccess attribute setting and
gives the corresponding implementation by the RTE.

swImplPolicy SwCalibrationAccess
not Accessi-
ble

readOnly readWrite Implementation

fixed yes not sup-
ported

not supported macro defini-
tion or c const
declaration de-
pendent from
RTE optimiza-
tion

const yes yes not supported c const declara-
tion

standard yes yes yes standard im-
plementation
i.e. a variable
for Variable-
DataPrototype
in RAM or a
calibration pa-
rameter in ROM
3

3calibration parameter have to be allocated in RAM if data emulation with SW support is required,
see 4.2.8.3.5

170 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

queued yes not sup-
ported

not supported FIFO Queue

measurement
Point

not sup-
ported

yes not supported Variable

Table 4.9: Data implementation according swImplPolicy

4.2.7.4 Initialization of VariableDataPrototypes

Basically the need for initialization of any VariableDataPrototypes is specified by
the Software Component Descriptions defining the VariableDataPrototypes. This
information is basically defined by the existence of an initValue, the sectionIni-
tializationPolicy of the related SwAddrMethod. As described in section 8.11
additionally the initialization strategy can be adjusted by the integrator of the RTE to
adjust the behavior to the start-up code.

[SWS_Rte_07046] d Variables implementing VariableDataPrototypes shall be
initialized if

• an initValue is defined

AND

• no SwAddrMethod is defined for VariableDataPrototype.

c(SRS_Rte_00052, SRS_Rte_00068, SRS_Rte_00116)

[SWS_Rte_03852] d Variables implementing VariableDataPrototypes shall be
initialized if

• an initValue is defined

AND

• a SwAddrMethod is defined for VariableDataPrototype

AND

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

c(SRS_Rte_00052, SRS_Rte_00068, SRS_Rte_00116)

4.2.7.5 Initial value calculation

Basically the Meta Model defines two different flavors of rule based value specifica-
tions:

• ApplicationRuleBasedValueSpecification

171 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• NumericalRuleBasedValueSpecification

The ApplicationRuleBasedValueSpecification defines the values in the
physical representation whereas the NumericalRuleBasedValueSpecification
defines the values in the numerical representation. (See document [2], section Data
Description) But both are using the RuleBasedValueSpecification to define a
set of values based on a rule and arguments for the rule.

Especially in case of large arrays an high amount of initial values are required. But
many arrays are initialized with identical values or at least filled up to the end with iden-
tical values. For such use case the RuleBasedValueSpecification of category
FILL_UNTIL_END can be used to avoid the creation and maintenance of redundant
ValueSpecifications.

[SWS_Rte_06764] d The RTE Generator shall support ApplicationRuleBased-
ValueSpecifications for DataPrototypes typed by ApplicationArray-
DataTypes. c(SRS_Rte_00239)

[SWS_Rte_06765] d The RTE Generator shall support NumericalRuleBasedVal-
ueSpecifications for DataPrototypes typed by ImplementationDataTypes
of category ARRAY and for Compound Primitive Data Types which are
mapped to ImplementationDataTypes of category ARRAY. c(SRS_Rte_00239)

[SWS_Rte_06733] d The RTE Generator shall support RuleBasedValueSpecifi-
cations with the rule FILL_UNTIL_END. c(SRS_Rte_00239)

[SWS_Rte_08542] d The RTE Generator shall support RuleBasedValueSpecifi-
cations with the rule FILL_UNTIL_MAX_SIZE. c(SRS_Rte_00239)

[SWS_Rte_06734] d The RTE shall initialize the elements of the array ac-
cording the values defined by RuleBasedValueSpecification.arguments
if a RuleBasedValueSpecification with the rule FILL_UNTIL_END or
FILL_UNTIL_MAX_SIZE is applicable.
Thereby the order of arguments corresponds to the order of elements in the array, i.e.
the first argument corresponds to the first element of the array, the second argument
corresponds to the second element of the array, and so on. c(SRS_Rte_00239)

AUTOSAR defines a standardized behavior of RuleBasedValueSpecifications
only for the rules FILL_UNTIL_END and FILL_UNTIL_MAX_SIZE. RTE vendors are
free to add additional, non-standardized rules (see [TPS_SWCT_01495]).

[SWS_Rte_06735] d The RTE Generator shall apply the value of the last RuleBased-
ValueSpecification argument to any following element of the array until the last
element of the array if the rule is set to FILL_UNTIL_END and the number of ar-
guments is smaller than the number of elements of the array to which it is applied. c
(SRS_Rte_00239)

[SWS_Rte_08792] d The RTE Generator shall apply the value of the last Rule-
BasedValueSpecification argument to so many following elements of the ar-
ray until first maxSizeToFill elements of the array are filled if the rule is set to

172 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

FILL_UNTIL_MAX_SIZE and the number of arguments is smaller than the number of
elements of the array to which it is applied. c(SRS_Rte_00239)

[SWS_Rte_06736] d The RTE Generator shall ignore arguments that go beyond the
last element of the array if the number of arguments exceeds the number of elements
of the array to which it is applied. c(SRS_Rte_00239)

4.2.8 Measurement and Calibration

4.2.8.1 General

Calibration is the process of adjusting an ECU SW to fulfill its tasks to control physical
processes respectively to fit it to special project needs or environments. To do this two
different mechanisms are required and have to be distinguished:

1. Measurement
Measure what’s going on in the ECU e.g. by monitoring communication data
(Inter-ECU, Inter-Partition, Intra-partition, Intra-SWC). There are several ways to
get the monitor data out of the ECU onto external visualization and interpretation
tools.

2. Calibration
Based on the measurement data the ECU behavior is modified by changing
parameters like runtime SW switches, process controlling data of primitive or
composite data type, interpolation curves or interpolation fields. In the following
for such parameters the term calibration parameter is used.

With AUTOSAR, a calibration parameter is instantiated with a ParameterDataPro-
totype class that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard.

Nevertheless it is supported, that VariableDataPrototype is instantiated that
aggregates a SwDataDefProps with properties swCalibrationAccess = read-
Write and swImplPolicy = standard. But in this case the implementation of such
VariableDataPrototype is treated identical to swCalibrationAccess = read-
Only and the RTE Generator has not to implement further measures (for instance
"Data emulation with SW support" 4.2.8.3.5).

It’s possible that different SwDataDefProps settings are specified for a Variable-
DataPrototype and its referenced AutosarDataType. In this case the rules spec-
ified in the SWC-T shall be applied. See as well [SWS_Rte_07196].

SwDataDefProps contain more information how measurement values or characteris-
tics are to be interpreted and presented by external calibration tools. This information
is needed for the ASAM2 respectively A2L file generation. Afterwards the A2L file is
used by ECU-external measurement and calibration tools so that these tools know e.g.
how to interpret raw data received from ECU and how to get them.

173 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.8.1.1 Definition of Calibration Parameters

Calibration parameters can be defined in AUTOSAR SW as well as in Basic-SW. In
the AUTOSAR Architecture there are two possibilities to define calibration parameters.
Which one to choose is not in the focus of this RTE specification.

1. RTE provides the calibration parameter access if they are specified via a Param-
eterSwComponentType. A ParameterSwComponentType can be defined
in order to provide ParameterDataPrototypes (via ports) to other Software
Components.

2. Calibration parameter access invisible for RTE
Since multiple instantiation with code sharing is not allowed for Basic-SW and
multiple instantiation is not always required for software components it’s possi-
ble for these software to define own methods how calibration parameters are
allocated. Nevertheless these calibration parameters shall be described in the
belonging Basic Software Module Description respectively Software Component
Description. In case data emulation with SW-support is used, the whole software
and tool chain for calibration and measurement, e.g. Basic-SW (respectively XCP
driver) which handles emulation details and data exchange with external calibra-
tion tools then has to deal with several emulation methods at once: The one
the RTE uses and the other ones each Basic-SW or SWC using local calibration
parameters practices.

4.2.8.1.2 Online and offline calibration

The way how measurement and calibration is performed is company, domain and
project specific. Nevertheless two different basic situations can be distinguished and
are important for understanding:

1. Offline calibration
Measure when ECU is running, change calibration data when ECU is off.
Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target (actual or emulated) environment

(c) Measure running ECU behavior - log or monitor via external tooling

(d) Switch off ECU

(e) Change calibration parameters and create a new flashable program file (hex-
file) e.g. by performing a new SW make run

(f) Back to (a).

Do loop as long as a need for calibration parameter change exists or the Flash
survives.

174 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2. Online calibration

Do measurement and calibration in parallel.
In this case in principle all steps mentioned in "Offline calibration" above have
to be performed in parallel. So other mechanisms are introduced avoiding ECU
flashing when modifying ECU parameters. ECU works temporarily with changed
data and when the calibration process is over the result is an updated set of
calibration data. In next step this new data set might be merged into the existing
program file or the new data set might be an input for a new SW make run. In
both cases the output is a new program file to flash into the ECU.

Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target environment

(c) Measure running ECU behavior and temporarily modify calibration parame-
ters. Store set of updated calibration parameters (not on the ECU but on the
calibration tool computer). Actions in step c) may be done iteratively.

(d) Switch off ECU

(e) Create a new flashable program file (hex-file) containing the new calibration
parameters

Procedure over

4.2.8.2 Measurement

4.2.8.2.1 What can be measured

The AUTOSAR SW-C template specification [2] explains to which AUTOSAR proto-
types a measurement pattern can be applied.

RTE provides measurement support for

1. communication between Ports
Measurable are

• VariableDataPrototypes of a SenderReceiverInterface used in
a PortPrototype (of a SwComponentPrototype) to capture sender-
receiver communication or between SwComponentPrototypes

• VariableDataPrototypes of a NvDataInterface used in a PortPro-
totype (of a SwComponentPrototype) to capture non volatile data com-
munication or between SwComponentPrototypes

175 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• ArgumentDataPrototypes of an ClientServerOperation in a
ClientServerInterface to capture client-server communication be-
tween SwComponentPrototypes

2. communication inside of AUTOSAR SW-Cs
Measurable are implicitInterRunnableVariable, explicitInter-
RunnableVariable or arTypedPerInstanceMemory

3. data structures inside a AUTOSAR NvBlockSwComponent
Measurable are ramBlocks and romBlocks of a NvBlockSwComponent’s
NvBlock

4. Communication inside of AUTOSAR Basic Software Modules
Measurable are VariableDataPrototypes defined in role of arTyped-
PerInstanceMemory.

Further on AUTOSAR SW-Cs and Basic Software Modules can define measurables
which are not instantiated by RTE. These are described by VariableDataProto-
types in the role staticMemory. Hence those kind of measurables are not described
in the generated McSupportData of the RTE (see 4.2.8.4).

4.2.8.2.2 RTE support for Measurement

The way how measurement data is read out of the ECU is not focus of the RTE spec-
ification. But the RTE structure and behavior must be specified in that way that mea-
surement values can be provided by RTE during ECU program execution.

To avoid synchronization effort it shall be possible to read out measurement data asyn-
chronously to RTE code execution. For this the measurement data must be stable. As
a consequence this might forbid direct reuse of RAM locations for implementation of
several AUTOSAR communications which are independent of each other but occurring
sequentially in time (e.g. usage of same RAM cell to store uint8 data sender receiver
communication data between Runnables at positions 3 and 7 and later the same RAM
cell for the communication between Runnables at positions 9 and 14 of same periodi-
cally triggered task). So applying measurable elements might lead to less optimizations
in the generated RTE’s code and to increased RAM need.

There are circumstances when RTE will store same communication data in different
RAM locations, e.g. when realizing implicit sender receiver communication or Inter
Runnable Variables with implicit behavior. In these cases there is only the need to
have the content of one of these stores made accessible from outside.

Please note: In case the Rte implements Inter partition data communication with IOC
the measurement support may become vendor specific since the IOC does not provide
standardized support for measurement of IOC channels. But on the other hand the
creation of distinct measurement buffers in the Rte in addition to the needed buffers in
IOC is also not a worthwhile in any case due to the additional RAM need.

176 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The information that measurement shall be supported by RTE is defined in applied
SwDataDefProps:
The value readOnly or readWrite of the property swCalibrationAccess defines
that measurement shall be supported, any other value of the property swCalibra-
tionAccess is to be ignored for measurement.

Please note that the definition of [SWS_Rte_03900] and [SWS_Rte_03902] do
not have further conditions when the location in memory has to be provided to
support the usage of VariableDataPrototype with the swImplPolicy = mea-
surementPoint. In case that the MCD system is permitted to access such a
VariableDataPrototype the RTE is not allowed to do optimization which would
prevent such measurement even if there is no consuming software component in the
input configuration.

The memory locations containing measurement values are initialized according to
[SWS_Rte_07046] and [SWS_Rte_03852].

[SWS_Rte_07044] d The RTE generator shall reject input configurations in which a
RunnableEntity defines a read access (VariableAccess in the role readLocal-
Variable, dataReadAccess, dataReceivePointByValue or dataReceive-
PointByArgument) to an VariableDataPrototype with a swImplPolicy set to
measurementPoint. c(SRS_Rte_00018)

For sender-receiver resp. client-server communication same or compatible interfaces
are used to specified connected ports. So very often measurement will be demanded
two times for same or compatible VariableDataPrototype on provide and require
side of a 1:1 communication resp. multiple times in case of 1:N or M:1 communication.
In that case providing more than one measurement value for a VariableDataPro-
totype doesn’t make sense and would increase ECU resources need excessively.
Instead only one measurement value shall be provided.

Sender-receiver communication

[SWS_Rte_03900] d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite the RTE generator has to provide one reference to a
location in memory where the actual content of the instance specific data of the cor-
responding VariableDataPrototype of the communication can be accessed. c
(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03972] d For 1:1 and 1:N sender-receiver communication the RTE shall
provide measurement values taken from sender side if measurement is demanded in
provide and require port. c(SRS_Rte_00153)

177 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03973] d For N:1 intra-ECU sender-receiver communication the RTE shall
provide measurement values taken from receiver side if measurement is demanded in
provide and require ports. c(SRS_Rte_00153)

Note:
See further below for support of queued communication.

[SWS_Rte_03974] d For a VariableDataPrototype with measurement demand
associated with received data of inter-ECU sender-receiver communication the RTE
shall provide only one measurement store reference containing the actual received
data even if several receiver ports demand measurement. c(SRS_Rte_00153)

[SWS_Rte_07344] d For a VariableDataPrototype with measurement demand
associated with received data of inter-Partition sender-receiver communication the
RTE shall provide only one measurement store reference per partition containing the
actual received data even if several receiver ports demand measurement in the Parti-
tion. c(SRS_Rte_00153)

Client-Server communication

[SWS_Rte_03901] d If the swCalibrationAccess of an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readOnly the RTE generator has to provide one reference to a location in memory
where the actual content of the instance specific argument data of the communication
can be read. c(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected ArgumentDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03975] d For intra-ECU client-server communication the RTE shall provide
measurement values taken from client side if measurement of an ArgumentDataPro-
totypes is demanded by provide and require ports. c(SRS_Rte_00153)

[SWS_Rte_03976] d For inter-ECU client-server communication with the client being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from client side. c(SRS_Rte_00153)

[SWS_Rte_03977] d For inter-ECU client-server communication with the server being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from server if no client present on same ECU as the server is connected with that
server too. c(SRS_Rte_00153)

[SWS_Rte_07349] d For inter-Partition client-server communication with the server
being present on the same ECU as the RTE, the RTE shall provide measurement
values taken from server if no client present on the same Partition as the server is
connected with that server too. c(SRS_Rte_00153)

Note:
When a measurement is applied to a client-server call additional copy code might be

178 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

produced so that a zero overhead direct server invocation is no longer possible for this
call.

Mode Switch Communication

[SWS_Rte_06700] d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly the RTE generator has to provide three references to
locations in memory where the current mode, the previous mode and the next mode of
the related mode machine instance can be accessed. c(SRS_Rte_00153)

The affected ModeDeclarationGroupPrototypes might be used at different ports
with the same or compatible port interfaces. [SWS_Rte_06701] prohibits the occur-
rence of multiple measurement values for the same communication:

[SWS_Rte_06701] d For 1:1 and 1:N mode switch communication the RTE shall pro-
vide measurement values taken from mode manager side if measurement is de-
manded in provide and require port. c(SRS_Rte_00153)

Inter Runnable Variables

[SWS_Rte_03902] d If the swCalibrationAccess of a VariableDataPrototype
in the role implicitInterRunnableVariable or explicitInterRunnable-
Variable is set to readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the Inter Runnable Vari-
able can be accessed for a specific instantiation of the AUTOSAR SWC.
c(SRS_Rte_00153)

PerInstanceMemory

[SWS_Rte_07160] d If the swCalibrationAccess of a VariableDataPrototype
in the role arTypedPerInstanceMemory is set to readOnly or readWrite the RTE
generator has to provide one reference to a location in memory where the actual con-
tent of the arTypedPerInstanceMemory can be accessed for a specific instantiation
of the AUTOSAR SWC.
c(SRS_Rte_00153)

[SWS_Rte_06206] d If the swCalibrationAccess of a VariableDataPrototype
in the role arTypedPerInstanceMemory is set to readOnly or readWrite the RTE
Generator has to provide exactly one reference to a location in memory where the
actual content of the arTypedPerInstanceMemory can be accessed for a specific
instantiation of the Basic Software Module.
c(SRS_Rte_00153)

Nv RAM Block

[SWS_Rte_07174] d If the swCalibrationAccess of a VariableDataPrototype
in the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is
set to readOnly or readWrite the RTE generator has to provide one reference to a
location in memory where the actual content of the Nv RAM Block can be accessed

179 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

for a specific instantiation of the AUTOSAR NvBlockSwComponentType.
c(SRS_Rte_00153)

Non Volatile Data communication

[SWS_Rte_07197] d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentPro-
totype is set to readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the instance specific
data of the corresponding VariableDataPrototype of the communication can be
accessed. c(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_07198] d For 1:1 and 1:N non volatile data communication the RTE
shall provide measurement values taken from ramBlock if measurement is de-
manded either in provide port, any require port ([SWS_Rte_07197] or ramBlock
([SWS_Rte_07174]). c(SRS_Rte_00153)

Unconnected ports or compatible interfaces

As stated in section 5.2.7 RTE supports handling of unconnected ports.

Measurement support for unconnected sender-receiver provide ports makes sense
since a port might be intentionally added for monitoring purposes only.

Measurement support for unconnected sender-receiver require ports makes sense
since the measurement is specified on the type level of the Software Component and
therefore independent of the individual usage of the Software Component. In case
of unconnected sender-receiver require ports the measurement shall return the initial
value.

Support for unconnected client-server provide port does not make sense since the
server cannot be called and with this no data can be passed there.

Support for unconnected client-server require port makes sense since the measure-
ment is specified on the type level of the Software Component and therefore inde-
pendent of the individual usage of the Software Component. In case of unconnected
client-server require ports the measurement shall return the actually provided and re-
turned values.

[SWS_Rte_03978] d For sender-receiver communication the RTE generator shall
respect measurement demands enclosed in unconnected provide ports. c
(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_05101] d For sender-receiver communication the RTE generator shall re-
spect measurement demands enclosed in unconnected require ports and deliver the
initial value. c(SRS_Rte_00139, SRS_Rte_00153)

180 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03980] d For client-server communication the RTE generator shall ignore
measurement demands enclosed in unconnected provide ports. c(SRS_Rte_00139,
SRS_Rte_00153)

[SWS_Rte_05102] d For client-server communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports. The behavior shall be
similar as if the require port would be connected and the server does not respond. c
(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_05170] d For client-server communication the RTE generator shall ignore
measurement requests for queued client-server communication. c(SRS_Rte_00139,
SRS_Rte_00153)

In case the measurement of client-server communication is not possible due
to requirement [SWS_Rte_05170] the McSupportData need to reflect this
(see [SWS_Rte_05172]).

In principle the same thoughts as above are applied to unused VariableDat-
aPrototypes for sender-receiver communication where ports with compatible but
not same interfaces are connected. It’s no issue for client-server due to compati-
bility rules for client-server interfaces since in compatible client-server interfaces all
ClientServerOperations have to be present in provide and require port (see AU-
TOSAR SW-C Template [2]).

[SWS_Rte_03979] d For sender-receiver communication the RTE generator shall re-
spect measurement demands of those VariableDataPrototypes in connected
ports when provide and require port interfaces are not the same (but only compat-
ible) even when a VariableDataPrototype in the provide port has no assigned
VariableDataPrototype in the require port.
c(SRS_Rte_00153)

General measurement disabling switch

To support saving of ECU resources for projects where measurement isn’t required at
all whereas enclosed AUTOSAR SW-Cs contain SwDataDefProps requiring it, it shall
be possible to switch off support for measurement. This shall not influence support for
calibration (see 4.2.8.3).

[SWS_Rte_03903] d The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence complete RTE code
at once. c(SRS_Rte_00153)

There also might be projects in which monitoring of ECU internal behavior is required
but calibration is not.

[SWS_Rte_03904] d The enabling of RTE support for measurement shall be indepen-
dent of the enabling of the RTE support for calibration. c(SRS_Rte_00153)

Queued communication

Measurement of queued communication is not supported yet. Reasons are:

181 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• A queue can be empty. What’s to measure then?

• Which of the queue entries is the one to take the data from might differ out of
user view?

• Only quite inefficient solutions possible because implementation of queues en-
tails storage of information dynamically at different memory locations. So always
additional copies are required.

[SWS_Rte_03950] d RTE generator shall reject configurations where measure-
ment for queued sender-receiver communication is configured. c(SRS_Rte_00153,
SRS_Rte_00018)

4.2.8.3 Calibration

The RTE and Basic Software Scheduler has to support the allocation of calibration
parameters and the access to them for SW using them. As seen later on for some
calibration methods the RTE and Basic Software Scheduler must contain support SW
too (see 4.2.8.3.5). But in general the RTE and Basic Software Scheduler is not re-
sponsible for the exchange of the calibration data values or the transportation of them
between the ECU and external calibration tools.

The following sections are mentioning only the RTE but this has to be understood in
the context that the support for Calibration is a functionality which affects the Basic
Software Scheduler part of the RTE as well. In case of the Basic Software Scheduler
Generation Phase (see 3.4.1) this functionality might even be provided with out any
other software component related RTE functionality.

With AUTOSAR, a calibration parameter (which the AUTOSAR SW-C template spec-
ification [2] calls ParameterSwComponentType) is instantiated with a Parameter-
DataPrototype that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard. This chapter applies
to this kind of ParameterSwComponentTypes. For other combinations of these prop-
erties, consult the section 4.2.7

4.2.8.3.1 Calibration parameters

Calibration parameters can be defined in ParameterSwComponentTypes, in AU-
TOSAR SW-Cs, NvBlockSwComponentTypes and in Basic Software Modules.

1. ParameterSwComponentTypes don’t have an internal behavior but contain
ParameterDataPrototypes and serve to provide calibration parameters used
commonly by several AUTOSAR SW-Cs. The use case that one or several of the
user SW-Cs are instantiated on different ECUs is supported by instantiation of
the ParameterSwComponentType on the affected ECUs too.
Of course several AUTOSAR SW-Cs allocated on one ECU can commonly ac-
cess the calibration parameters of ParameterSwComponentTypes too. Also

182 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

several instances of an AUTOSAR SW-Cs can share the same calibration pa-
rameters of a ParameterSwComponentType.

2. Calibration parameters defined in AUTOSAR SW-Cs can only be used inside
the SW-C and are not visible to other SW-Cs. Instance individual and common
calibration parameters accessible by all instances of an AUTOSAR SW-C are
possible.

3. For NvBlockSwComponentTypes it is supported to provide calibration access
to the ParameterDataPrototype defining the romBlock. These values can
not be directly accessed by AUTOSAR SW-Cs but are used to serve as default
values for the NVRAM Block applied via InitBlockCallbackFunction.

4. Calibration parameters defined in Basic Software Modules can only be used in-
side the defining Basic Software Module and are not visible to other Basic Soft-
ware Modules. In contrast to AUTOSAR SW-Cs, Basic Software Modules can
only define instance specific calibration parameters.

[SWS_Rte_03958] d Several AUTOSAR SW-Cs (and also several instances of AU-
TOSAR SW-Cs) shall be able to share same calibration parameters defined in Param-
eterSwComponentTypes. c(SRS_Rte_00154, SRS_Rte_00159)

[SWS_Rte_07186] d The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent-
Types according the ValueSpecification of the ParameterProvideComSpec
referring the ParameterDataPrototype in the p-port,

• if such ParameterProvideComSpec exists and

• if no CalibrationParameterValue refers to the FlatInstanceDescrip-
tor associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(SRS_Rte_00154, SRS_Rte_00159)

[SWS_Rte_07029] d The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent-
Types according the ValueSpecification in the role implInitValue of the Cal-
ibrationParameterValue referring the FlatInstanceDescriptor associated
to the ParameterDataPrototype if such CalibrationParameterValue is de-
fined. c(SRS_Rte_00154)

Note: the initialization according [SWS_Rte_07029] and [SWS_Rte_07030] precedes
the initialization values defined in the context of an component type and used in
[SWS_Rte_07185] and [SWS_Rte_07186]. This enables to provide initial values for
calibration parameter instances to:

• predefine start values for the calibration process

• utilizes the result of the calibration process

183 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• take calibration parameter values from previous projects

[SWS_Rte_03959] d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the RTE shall support the access
to instance specific calibration parameters of the AUTOSAR SW-C. c(SRS_Rte_00154,
SRS_Rte_00158)

[SWS_Rte_05112] d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role sharedParameter the RTE shall create a common access
to the shared calibration parameter. c(SRS_Rte_00154, SRS_Rte_00159)

[SWS_Rte_07096] d If the BswInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the Basic Software Scheduler
shall support the access to instance specific calibration parameters of the Basic Soft-
ware Module. c(SRS_Rte_00154, SRS_Rte_00158)

[SWS_Rte_07185] d The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototype in the role perIn-
stanceParameter or sharedParameter

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(SRS_Rte_00154)

[SWS_Rte_07030] d The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototypes in the role perIn-
stanceParameter or sharedParameter according the ValueSpecification in
the role the implInitValue of the CalibrationParameterValue referring the
FlatInstanceDescriptor associated to the ParameterDataPrototype if such
CalibrationParameterValue is defined. c(SRS_Rte_00154)

It might be project specific or even project phase specific which calibration parameters
have to be calibrated and which are assumed to be stable. So it shall be selectable
on ParameterSwComponentTypes and AUTOSAR SW-C granularity level for which
calibration parameters RTE shall support calibration.

If an r-port contains a ParameterDataPrototype, the following requirements spec-
ify its behavior if the port is unconnected.

[SWS_Rte_02749] d In case of an unconnected parameter r-port, the RTE shall set the
values of the ParameterDataPrototypes of the r-port according to the initValue
of the r-port’s ParameterRequireComSpec referring to the ParameterDataPro-
totype. c(SRS_Rte_00139, SRS_Rte_00159)

If the port is unconnected, RTE expects an init value, see [SWS_Rte_02750].

184 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ParameterDataPrototypes in role romBlock

[SWS_Rte_07033] d If the swCalibrationAccess of a ParameterDataProto-
type in the role romBlock is set to readWrite the RTE generator has to provide
one reference to a location in memory where the actual content of the romBlock can
be accessed. c(SRS_Rte_00154)

[SWS_Rte_07034] d The generated RTE shall initialize any ParameterDataProto-
type in the role romBlock

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

c(SRS_Rte_00154)

[SWS_Rte_07035] d The generated RTE shall initialize the memory objects imple-
menting ParameterDataPrototypes in the role romBlock according the Value-
Specification in the role the implInitValue of the CalibrationParameter-
Value referring the FlatInstanceDescriptor associated to the ParameterDat-
aPrototype if such CalibrationParameterValue is defined. c(SRS_Rte_00154)

ParameterDataPrototype used as romBlock are instantiated according to
[SWS_Rte_07693].

Configuration of calibration support

[SWS_Rte_03905] d It shall be configurable for each ParameterSwComponentType
if RTE calibration support for the enclosed ParameterDataPrototypes is enabled
or not. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03906] d It shall be configurable for each AUTOSAR SW-C if RTE cali-
bration support for the enclosed ParameterDataPrototypes is enabled or not. c
(SRS_Rte_00154, SRS_Rte_00156)

RTE calibration support means the creation of SW as specified in section 4.2.8.3.5
"Data emulation with SW support".

Require ports on ParameterSwComponentTypes don’t make sense. Parameter-
SwComponentTypes only have to provide calibration parameters to other Component
types. So the RTE generator shall reject configurations containing require ports at-
tached to ParameterSwComponentTypes. (see section A.13)

4.2.8.3.1.1 Separation of calibration parameters

Sometimes it is required that one or more calibration parameters out of the mass of cal-
ibration parameters of an ParameterSwComponentType respectively an AUTOSAR

185 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SW-C shall be placed in another memory location than the other parameters of the Pa-
rameterSwComponentType respectively the AUTOSAR SW-C. This might be due to
security reasons (separate normal operation from monitoring calibration data in mem-
ory) or the possibility to change calibration data during a diagnosis session (which the
calibration parameter located in NVRAM).

[SWS_Rte_03907] d The RTE generator shall support separation of calibration param-
eters from ParameterSwComponentTypes, AUTOSAR SW-Cs and Basic Software
Modules depending on the ParameterDataPrototype property swAddrMethod. c
(SRS_Rte_00154, SRS_Rte_00158)

4.2.8.3.2 Support for offline calibration

As described in section 4.2.8.1 when using an offline calibration process measure-
ment is decoupled from providing new calibration parameters to the ECUs SW. During
measurement phase information is collected needed to define to which values the cal-
ibration parameters are to be set best. Afterwards the new calibration parameter set is
brought into the ECU e.g. by using a bootloader.

[SWS_Rte_03971] d The RTE generator shall have the option to switch off all data
emulation support for generated RTE code. This option shall influence complete RTE
code at once. c(SRS_Rte_00154, SRS_Rte_00156)

The term data emulation is related to mechanisms described in section 4.2.8.3.3.

Out of view of RTE the situation is same as when data emulation without SW support
(described in section 4.2.8.3.4) is used:
The RTE is only responsible to provide access to the calibration parameters via the
RTE API as specified in section 5.6. Exchange of ParameterDataPrototype con-
tent is done invisibly for ECU program flow and with this for RTE too.

When no data emulation support is required calibration parameter accesses to param-
eters stored in FLASH could be performed by direct memory read accesses without
any indirection for those cases when accesses are coming out of single instantiated
AUTOSAR SW-Cs or from Basic Software Modules. Nevertheless it’s not goal of this
specification to require direct accesses since this touches implementation. It might be
ECU HW dependent or even be project dependent if other accesses are more efficient
or provide other significant advantages or not.

4.2.8.3.3 Support for online calibration: Data emulation

To allow online calibration it must be possible to provide alternative calibration param-
eters invisible for application. The mechanisms behind are described here. We talk of
data emulation.

In the following several calibration methods are described:

186 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1. Data emulation without SW support and

2. several methods of data emulation with SW-support.

The term data emulation is used because the change of calibration parameters is
emulated for the ECU SW which uses the calibration data. This change is invisible for
the user-SW in the ECU.

RTE is significantly involved when SW support is required and has to create calibration
method specific SW. Different calibration methods means different support in Basic
SW which typically is ECU integrator specific. So it does not make sense to support
DIFFERENT data emulation with SW support methods in ANY one RTE build. But
it makes sense that the RTE supports direct access (see section 4.2.8.3.4) for some
AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic Software Mod-
ules and one of the data emulation with SW support methods (see section 4.2.8.3.5)
for all the other AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic
Software Modules at the same time.

[SWS_Rte_03909] d The RTE shall support only one of the data emulation with SW
support methods at once. c(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.4 Data emulation without SW support (direct access)

For "online calibration" (see section 4.2.8.1) the ECU is provided with additional
hardware which consists of control logic and memory to store modified calibration
parameters in. During ECU execution the brought in control logic redirects memory
accesses to new bought in memory whose content is modified by external tooling
without disturbing normal ECU program flow. Some microcontrollers contain features
supporting this. A lot of smaller microcontrollers don’t. So this methods is highly HW
dependent.

To support these cases the RTE doesn’t have to provide e.g. a reference table like
described in section 4.2.8.3.5. Exchange of ParameterDataPrototype content is
done invisibly for program flow and for RTE too.

[SWS_Rte_03942] d The RTE generator shall have the option to switch off data emu-
lation with SW support for generated RTE code. This option shall influence complete
RTE code at once. c(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.5 Data emulation with SW support

In case "online calibration" (see section 4.2.8.1) is required, quite often data emulation
without support by special SW constructs isn’t possible. Several methods exist, all
have the consequence that additional need of ECU resources like RAM, ROM/FLASH
and runtime is required.

187 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Data emulation with SW support is possible in different manners. During calibration
process in each of these methods modified calibration data values are kept typically in
RAM. Modification is controlled by ECU external tooling and supported by ECU internal
SW located in AUTOSAR basic SW or in complex driver.

If calibration process isn’t active the accessed calibration data is originated in
ROM/FLASH respectively in NVRAM in special circumstances (as seen later on).

Since multiple instantiation is to be supported several instances of the same
ParameterDataPrototypes have to be allocated. Because the RTE is the only
one SW in an AUTOSAR ECU able to handle the different instances the access to these
calibration parameters can only be handled by the RTE. So the RTE has to provide
additional SW constructs required for data emulation with SW support for calibration.

However the RTE doesn’t know which of the ECU functionality shall be calibrated dur-
ing a calibration session. To allow expensive RAM to be reused to calibrate different
ECU functionalities in one or several online calibration sessions (see 4.2.8.1) in case of
the single and double pointered methods for data emulation with SW support described
below the RTE has only to provide the access to ParameterDataPrototypes dur-
ing runtime but allowing other SW (a BSW module or a complex driver) to redirect the
access to alternative calibration parameter values (e.g. located in RAM) invisibly for
application.
The RTE is neither the instance to supply the alternative values for ParameterDat-
aPrototypes nor in case of the pointered methods for data emulation with SW sup-
port to do the redirection to the alternative values.

[SWS_Rte_03910] d The RTE shall support data emulation with SW support for cali-
bration. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03943] d The RTE shall support these data emulation methods with SW
support:

• Single pointered calibration parameter access
further called "single pointered method"

• Double pointered calibration parameter access further called "double pointered
method"

• Initialized RAM parameters further called "initRAM parameter method"

c(SRS_Rte_00154, SRS_Rte_00156)

Please note that the support data emulation methods is applicable for calibration pa-
rameters provided for software components as well as calibration parameters provided
for basic software modules.

ParameterElementGroup

To save RAM/ROM/FLASH resources in single pointered method and double point-
ered method ParameterDataPrototype allocation is done in groups. One entry
of the calibration reference table references the begin of a group of Parameter-
DataPrototypes. For better understanding of the following, this group is called

188 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ParameterElementGroup (which is no term out of the AUTOSAR SW-C template
specification [2]). One ParameterElementGroup can contain one or several
ParameterDataPrototypes.

[SWS_Rte_03911] d If data emulation with SW support is enabled, the RTE gen-
erator shall allocate all ParameterDataPrototypes marked with same property
swAddrMethod of one instance of a ParameterSwComponentType consecutively.
Together they build a separate ParameterElementGroup. c(SRS_Rte_00154,
SRS_Rte_00156, SRS_Rte_00158)

[SWS_Rte_03912] d If data emulation with SW support is enabled, the RTE shall
guarantee that all non-shared ParameterDataPrototypes marked with same prop-
erty swAddrMethod of an AUTOSAR SWC instance are allocated consecutively.
Together they build a separate ParameterElementGroup. c(SRS_Rte_00154,
SRS_Rte_00158)

[SWS_Rte_05194] d If data emulation with SW support is enabled, the RTE shall
guarantee that all shared ParameterDataPrototypes marked with same property
swAddrMethod of an AUTOSAR SWC type are allocated consecutively. Together they
build a separate ParameterElementGroup. c(SRS_Rte_00154, SRS_Rte_00158)

It is not possible to access same calibration parameter inside of a ParameterSwCom-
ponentType via several ports. This is a consequence of the need to support the
use case that a ParameterSwComponentType shall be able to contain several cali-
bration parameters derived from one ParameterDataPrototype which is contained
in one interface applied to several ports of the ParameterSwComponentType. Us-
ing only the ParameterDataPrototype names for the names of the elements of a
ParameterElementGroup would lead to a name clash since then several elements
with same name would have to created. So port prototype and ParameterDataPro-
totype name are concatenated to specify the ParameterElementGroup member
names.
This use case cannot be applied to AUTOSAR SW-C internal calibration parameters
since they cannot be accessed via AUTOSAR ports.

[SWS_Rte_03968] d The names of the elements of a ParameterElementGroup
derived from a ParameterSwComponentType shall be <port>_<element> where
<port> is the short-name of the provided AUTOSAR port prototype and <element>
the short-name of the ParameterDataPrototype within the ParameterInter-
face categorizing the PPort. c(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.5.1 Single pointered method

There is one calibration reference table in RAM with references to one or several
ParameterElementGroups. Accesses to calibration parameters are indirectly per-
formed via this reference table.

189 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for single point-
ered method:

1. Fill a RAM buffer with the modified calibration parameter values for complete
ParameterElementGroup

2. Modify the corresponding entry in the calibration reference table so that a redi-
rection to new ParameterElementGroup is setup

Now calibration parameter accesses deliver the modified values.

Figure 4.25 illustrates the method.

Figure 4.25: ParameterElementGroup in single pointered method context

[SWS_Rte_03913] d If data emulation with SW support with single pointered method
is enabled, the RTE generator shall create a table located in RAM with references to
ParameterElementGroups. The type of the table is an array of void pointers. c
(SRS_Rte_00154, SRS_Rte_00156)

One reason why in this approach the calibration reference table is realized as an array
is to make ECU internal reference allocation traceable for external tooling. Another is to
allow a Basic-SW respectively a complex driver to emulate other calibration parameters
which requires the standardization of the calibration reference table too.

[SWS_Rte_03947] d If data emulation with SW support with single method is en-
abled the name (the label) of the calibration reference table shall be <RteParame-
terRefTab>. c(SRS_Rte_00154, SRS_Rte_00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

190 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03936] d If data emulation with SW support with single or double point-
ered method is enabled and calibration parameter respectively a ParameterEle-
mentGroups is located in NVRAM the corresponding calibration reference table en-
try shall reference the PerInstanceMemory working as the NVRAM RAM buffer. c
(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00157)

4.2.8.3.5.2 Double pointered method

There is one calibration reference table in ROM respectively Flash with references
to one or several ParameterElementGroups. Accesses to calibration parameters
are performed through a double indirection access. During system startup the base
reference is initially filled with a reference to the calibration reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for double point-
ered method:

1. Copy the calibration reference table into RAM

2. Fill a RAM buffer with modified calibration parameter values for complete Param-
eterElementGroup

3. Modify the corresponding entry in the RAM copy of the reference table so that a
redirection to new ParameterElementGroup is setup

4. Change the content of the base reference so that it references the calibration
reference table copy in RAM.

Now calibration parameter accesses deliver the modified values.

Figure 4.26: ParameterElementGroup in double pointered method context

[SWS_Rte_03914] d If data emulation with SW support with double pointered method
is enabled, the RTE generator shall create a table located in ROM respectively FLASH

191 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

with references to ParameterElementGroups. The type of the table is an array of
void pointers. c(SRS_Rte_00154, SRS_Rte_00156)

Figure 4.26 illustrates the method.

To allow a Basic-SW respectively a complex driver to emulate other calibration param-
eters the standardization of the base reference is required.

[SWS_Rte_03948] d If data emulation with SW support with double method is enabled
the name (the label) of the calibration base reference shall be <RteParameterBase>.
This label and the base reference type shall be exported and made available to other
SW on same ECU.
c(SRS_Rte_00154, SRS_Rte_00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

For handling of calibration parameters located in NVRAM with single or double point-
ered method see [SWS_Rte_03936] in section 4.2.8.3.5.1. General information is
found in section 4.2.8.3.6).

4.2.8.3.5.3 InitRam parameter method

For each instance of a ParameterDataPrototype the RTE generator creates a cali-
bration parameter in RAM and a corresponding value in ROM/FLASH. During startup of
RTE the calibration parameter values of ROM/FLASH are copied into RAM. Accesses
to calibration parameters are performed through a direct access to RAM without any
indirection.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding:
An implementation simply would have to exchange the content of the RAM cells during
runtime.

[SWS_Rte_03915] d If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create code guaranteeing that

1. calibration parameters are allocated in ROM/Flash and

2. a copy of them is allocated in RAM made available latest during RTE startup

for those ParameterDataPrototypes for which calibration support is enabled. c
(SRS_Rte_00154, SRS_Rte_00156)

192 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE access

Copy

Parameter in

ROM / FLASH

...

Copied parameter in

RAM

...

Figure 4.27: initRam Parameter method setup

Figure 4.27 illustrates the method.

A special case is the access of ParameterDataPrototypes instantiated in NVRAM
(also see section 4.2.8.3.6). In this no extra RAM copy is required because a RAM
location containing the calibration parameter value still exists.

[SWS_Rte_03935] d If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create direct accesses to the PerInstanceMem-
ory working as RAM buffer for the calibration parameters defined to be in NVRAM. c
(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.5.4 Arrangement of a ParameterElementGroup for pointered methods

For data emulation with SW support with single or double pointered methods the RTE
has to guarantee access to each single member of a ParameterElementGroup for
source code and object code delivery independent if the member is a primitive or a
composite data type. For this the creation of a record type for a ParameterEle-
mentGroup was chosen.

[SWS_Rte_03916] d One ParameterElementGroup shall be realized as one record
type. c(SRS_Rte_00154, SRS_Rte_00156)

The sequence order of ParameterDataPrototype in a ParameterElementGroup
and the order of ParameterElementGroups in the reference table will be docu-
mented by the RTE Generator by the means of the McSwEmulationMethodSupport,
see 4.2.8.4.4.

4.2.8.3.5.5 Further definitions for pointered methods

As stated in section 4.2.8.3.1.1, dependent of the value of property swAddrMethod
calibration parameters shall be separated in different memory locations.

193 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03908] d If data emulation with SW support with single or double point-
ered method is enabled the RTE shall create a separate instance specific Parame-
terElementGroup for all those ParameterDataPrototypes with a common value
of the appended property swAddrMethod. Those ParameterDataPrototypes
which have no property swAddrMethod appended, shall be grouped together too.
c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00158)

To allow traceability for external tooling the sequence order of ParameterDataPro-
totype in a ParameterElementGroup and the order of ParameterElement-
Groups in the reference table will be documented by the RTE Generator by the means
of the McSwEmulationMethodSupport, see 4.2.8.4.4.

4.2.8.3.5.6 Calibration parameter access

Calibration parameters are derived from ParameterDataPrototypes. The RTE has
to provide access to each calibration parameter via a separate API call.

API is specified in 5.6.

[SWS_Rte_03922] d If data emulation with SW support and single or double pointered
method is enabled the RTE generator shall export the label of the calibration reference
table. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03960] d If data emulation with SW support and double pointered method
is enabled the RTE generator shall export the label and the type of the calibration base
reference. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03932] d If data emulation with SW support with single pointered method
is enabled the RTE generator shall create API calls using single indirect access via
the calibration reference table for those ParameterDataPrototypes which are in
a ParameterElementGroup for which calibration is enabled. c(SRS_Rte_00154,
SRS_Rte_00156)

[SWS_Rte_03933] d If data emulation with SW support with double pointered method
is enabled the RTE generator shall create API calls using double indirection access via
the calibration base reference and the calibration reference table for those Parame-
terDataPrototypes which are in a ParameterElementGroup for which calibra-
tion is enabled. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03934] d If data emulation with SW support with double pointered method
is enabled, the calibration base reference shall be located in RAM. c(SRS_Rte_00154,
SRS_Rte_00156)

4.2.8.3.5.7 Calibration parameter allocation

Since only the RTE knows which instances of AUTOSAR SW-Cs, ParameterSwCom-
ponentTypes and Basic Software Modules are present on the ECU the RTE has

194 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

to allocate the calibration parameters and reserve memory for them. This approach
is also covering multiple instantiated object code integration needs. So memory for
instantiated ParameterDataPrototypes is neither provided by ParameterSwCom-
ponentTypes nor by AUTOSAR SW-C.

Nevertheless AUTOSAR SW-Cs and Basic Software Modules can define calibration
parameters which are not instantiated by RTE. These are described by Parameter-
DataPrototypes in the role constantMemory. Further on the RTE can not imple-
ment any software support for data emulation for such calibration parameters. Hence
those kind of calibration parameters are not described in the generated McSupportData
of the RTE (see 4.2.8.4).

[SWS_Rte_03961] d The RTE shall allocate the memory for calibration parameters. c
(SRS_Rte_00154, SRS_Rte_00156)

A ParameterDataPrototype can be defined to be instance specific or can be
shared over all instances of an AUTOSAR SW-C or a ParameterSwComponent-
Type. The input for the RTE generator contains the values the RTE shall apply to the
calibration parameters.

To support online and offline calibration (see section 4.2.8.1) all parameter values for
all instances have to be provided.
Background:

• For online calibration often initially the same default values for calibration param-
eters can be applied. Variation is then handled later by post link tools. Initial
ECU startup is not jeopardized. This allows the usage of a default value e.g. by
AUTOSAR SW-C or ParameterSwComponentType supplier for all instances of
a ParameterDataPrototype.

• On the other hand applying separate default values for the different instances of
a ParameterDataPrototype will be required often for online calibration too, to
make a vehicle run initially. This requires additional configuration work e.g. for
integrator.

• Offline calibration based on new SW build including new RTE build and com-
pilation process requires all calibration parameter values for all instances to be
available for RTE.

Shared ParameterDataPrototypes

[SWS_Rte_03962] d For accesses to a shared ParameterDataPrototype the RTE
API shall deliver the same one value independent of the instance the calibration pa-
rameter is assigned to. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03963] d The calibration parameter of a shared ParameterDat-
aPrototype shall be stored in one memory location only. c(SRS_Rte_00154,
SRS_Rte_00156)

195 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Requirements [SWS_Rte_03962] and [SWS_Rte_03963] are to guarantee that only
one physical location in memory has to be modified for a change of a shared Param-
eterDataPrototype. Otherwise this could lead to unforeseeable confusion.
Multiple locations are possible for calibration parameters stored in NVRAM. But there
a shared ParameterDataPrototype is allowed to have only one logical data too.

Instance specific ParameterDataPrototypes

[SWS_Rte_03964] d For accesses to an instance specific ParameterDataProto-
type the RTE API shall deliver a separate calibration parameter value for each in-
stance of a ParameterDataPrototype. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03965] d For an instance specific ParameterDataPrototype the cali-
bration parameter value of each instance of the ParameterDataPrototype shall be
stored in a separate memory location. c(SRS_Rte_00154, SRS_Rte_00156)

Usage of swAddrMethod

SwDataDefProps contain the optional property swAddrMethod. It contains meta
information about the memory section in which a measurement data store resp. a
calibration parameter shall be allocated in. This abstraction is needed to support the
reuse of unmodified AUTOSAR SW-Cs resp. ParameterSwComponentTypes in
different projects but allowing allocation of measurement data stores resp. calibration
parameters in different sections.
Section usage typically depends on availability of HW resources. In one project the
micro controller might have less internal RAM than in another project, requiring that
most measurement data have to be placed in external RAM. In another project one
addressing method (e.g. indexed addressing) might be more efficient for most of the
measurement data - but not for all. Or some calibration parameters are accessed
less often than others and could be - depending on project specific FLASH availability
- placed in FLASH with slower access speed, others in FLASH with higher access
speed.

[SWS_Rte_03981] d The memory section used to store measurement values in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a measurement definition. c(SRS_Rte_00153)

Since it’s measurement data obviously this must be in RAM.

[SWS_Rte_03982] d The memory section used to store calibration parameters in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a calibration parameter definition. c(SRS_Rte_00153)

196 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.8.3.6 Calibration parameters in NVRAM

Calibration parameters can be located in NVRAM too. One use case for this is to have
the possibility to modify calibration parameters via a diagnosis service without need for
special calibration tool.

To allow NVRAM calibration parameters to be accessed, NVRAM with statically allo-
cated RAM buffer in form of PIM memory for the calibration parameters has to be de-
fined or the ramBlock of a NvBlockSwComponentType defines readWrite access
for the MCD system. Please see as well [SWS_Rte_07174] and [SWS_Rte_07160].

Note:

As the NVRAM Manager might not be able to access the PerInstanceMemory
across core boundaries in a multi core environment, the support of Calibration pa-
rameters in NVRAM for multi core controllers is limited. See also note in 4.2.9.1.

4.2.8.3.7 Multiple calibration parameters instances

In complex systems the situation occur that calibration parameter values may depend
on the configuration of the vehicle due to functional side effects. The difficulty is that
those dependencies are typically detected after design of the software components and
shall not change the software component design. In addition the overall ECU SW has
to support all vehicle variants and therefore the detection and selection of the concrete
vehicle variant needs to be done post build.

[SWS_Rte_06815] d The RTE Generator shall provide one separate memory location
per FlatInstanceDescriptor pointing to the identical ParameterDataProto-
type instance in the root software composition. c(SRS_Rte_00154, SRS_Rte_00191)

Thereby the FlatInstanceDescriptor needs to have different postBuildVari-
antConditions as described in [constr_3114]. As a consequence at most one lo-
cation in memory location created according [SWS_Rte_06815] can be active in a
specific post build variant. This value needs to be accessed by the according RTE
APIs Rte_CData and Rte_Prm accessing parameters.

[SWS_Rte_06816] d For accesses to a ParameterDataPrototype the RTE API
shall deliver the value of the memory location which belongs to the currently selected
post build variant. c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00191)

In order to ensure the functionality of Rte_CData and Rte_Prm depending on post
build variability it needs to be ensured, that exactly one FlatInstanceDescriptor
is selected in a specific post build variant when the RTE generator creates an RTE Post
Build Data Set, see section 3.6.

The binding of the post build variability is done at the call of SchM_Init according the
passed post build data set as described in sections section 4.7.2 and section 5.3.10

197 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that the requirements [SWS_Rte_07029] and [SWS_Rte_07030] also
apply in this scenario and therefore the different memory locations due to multiple
FlatInstanceDescriptors can get different initial values.

The following example shall illustrate the usage of post build variant FlatIn-
stanceDescriptors in combination with multiple instantiation. The raw ARXML is
listed in the section F.5.

In the given configuration a ParameterSwComponentType ’PSWC’ is defined with on
PPortPrototype ’EP’ typed by the ParameterInterface ’EP’. The root software com-
position defines two SwComponentPrototypes ’SWC_PA’ and ’SWC_PB’.

The ApplicationSwComponentType ’ASWC’ defines RPortPrototype ’EP’, a
perInstanceParameter ’PIP’ and a sharedParameter ’SP’ The root software
composition defines two SwComponentPrototypes ’SWC_A’ and ’SWC_B’ and there-
fore two component instances for the component type ASWC exist. PPortPrototype
’EP’ of ’SWC_PA’ is connected to RPortPrototype ’EP’ of ’SWC_A’, PPortPrototype
’EP’ of ’SWC_PB’ is connected to RPortPrototype ’EP’ of ’SWC_B’. (not shown in the
figure 4.28)

Figure 4.28: Example of component model

When the feature of multiple FlatInstanceDescriptors per ParameterDat-
aPrototype is NOT applied the following locations in memory and access by Rte
APIs would result:

Figure 4.29: Resulting memory location of component model

198 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that the resulting names of the memory locations are not standardized but
the applied pattern shall illustrate to which information in the input model they belong
to. Assuming now following configuration in the Flat Map:

’SWC_A_PIP_Z0’ {depends on PostBuildVariantCriterion ’Z’= 0}

’SWC_A_PIP_Z1’ {depends on PostBuildVariantCriterion ’Z’ = 1}

’SWC_B_PIP’

’SWC_A_SWC_B_SP_Z0’ {depends on PostBuildVariantCriterion ’Z’= 0}

’SWC_A_SWC_B_SP_Z1’ {depends on PostBuildVariantCriterion ’Z’= 1}

’SWC_PA_EP_Prm1_Z0’ {depends on PostBuildVariantCriterion ’Z’= 0}

’SWC_PA_EP_Prm1_Z1’ {depends on PostBuildVariantCriterion ’Z’= 1}

’SWC_PB_EP_Prm1’

Figure 4.30: Resulting memory location of component model

There are different possibility to implement this mechanism. Nevertheless there are
cross dependencies to the requirements concerning ’Data emulation with SW support’
in section 4.2.8.3.5.

One possibility is to create an array of parameter values which contains one array el-
ement for each different Post Build Variant. The used index for this parameter value
array in the relate RTE API is determined by the chosen variant in the post build con-
figuration of the RTE and indexes the active array element. With this approach its
easier to combine multiple calibration data instances with the ’Data emulation with SW
support’ feature since the number of ParameterElementGroups are not changed.

199 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

An other approach is to create one base pointer per identical combination of post-
BuildVariantConditions applied to calibration parameters. The related calibra-
tion parameters are grouped into a structure and for each combination of postBuild-
VariantConditions one instance of the structure is created. The base pointer is
initialized according chosen variant in the post build configuration of RTE and points to
the active structure instance.

4.2.8.4 Generation of McSupportData

The RTE Generator supports the definition, allocation and access to measurement
and calibration data for Software Components as well as for Basic Software. The
specific support of measurement and calibration tools however is neither in the focus
of the RTE Generator nor AUTOSAR. This would require the generation of an "A2L"-
file (like specified in [20]) which is the standard in this domain – but out of the focus of
AUTOSAR.

The RTE Generator however shall support an intermediate exchange format called
McSupportData which is building the bridge between the ECU software and the fi-
nal "A2L"-file needed by the measurement and calibration tools. The details about
the McSupportData format and the involved methodology are described in the Basic
Software Module Description Template document [9].

In this section the requirements on the RTE Generator are collected which elements
shall be provided in the McSupportData element.

4.2.8.4.1 Export of the McSupportData

Figure 4.31 shows the structure of the McSupportData element. The McSupport-
Data element and its sub-content is part of the Implementation element. In case
of the RTE this is the BswImplementation element which is generated / updated by
the RTE Generator in the Generation Phase (see [SWS_Rte_05086] in chapter 3.4.2).

[SWS_Rte_05118] d The RTE Generator in Generation Phase shall create the McSup-
portData element as part of the BswImplementation description of the generated
RTE. c(SRS_Rte_00189)

200 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ARElement

Implementation

McSupportData

Identifiable

McDataInstance

+ arraySize: PositiveInteger [0..1]
+ displayIdentifier: McdIdentifier [0..1]
+ role: Identifier [0..1]

«atpSplitable»
+ symbol: SymbolString [0..1]

«atpVariation»
SwDataDefProps

+ additionalNativeTypeQualifier: NativeDeclarationString [0..1]
+ displayFormat: DisplayFormatString [0..1]
+ displayPresentation: DisplayPresentationEnum [0..1]
+ stepSize: Float [0..1]
+ swAlignment: AlignmentType [0..1]
+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]
+ swImplPolicy: SwImplPolicyEnum [0..1]
+ swIntendedResolution: Numerical [0..1]
+ swInterpolationMethod: Identifier [0..1]
+ swIsVirtual: Boolean [0..1]

«atpVariation»
+ swValueBlockSize: Numerical [0..1]
+ swValueBlockSizeMult: Numerical [0..*] {ordered}

Identifiable

FlatInstanceDescriptor

+ role: Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

FlatMap

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement

EcucValueCollection

ARElement
AtpStructureElement

System

ARElement

EcucModuleConfigurationValues

BswImplementation

McSwEmulationMethodSupport

+ category: Identifier
+ shortLabel: Identifier

ARElement

SwSystemconstantValueSet

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

����������	����

������������	
 ����

�����������	��	���� �

���������

RptSwPrototypingAccess

+ rptHookAccess: RptAccessEnum
+ rptReadAccess: RptAccessEnum
+ rptWriteAccess: RptAccessEnum A

«enumeration»
SwCalibrationAccessEnum

 readOnly
 notAccessible
 readWrite

«enumeration»
RptAccessEnum

 none
 protected
 enabled

«enumeration»
RptPreparationEnum

 none
 rptLevel1
 rptLevel2
 rptLevel3

«enumeration»
RptEnablerImplTypeEnum

 none
 rptEnablerRam
 rptEnablerRom
 rptEnablerRamAndRom

RoleBasedMcDataAssignment

+ role: Identifier [0..1]

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+instance 1..*

+ecuExtract 1

«atpSplitable»

+mcSupport 0..1

«atpVariation»

+subElement
0..* {ordered}

+resultingProperties 0..1

«atpVariation»

+emulationSupport 0..*

+rootSoftwareComposition 0..1

«atpVariation,atpSplitable»

+moduleDescription
0..1

+measurableSystemConstantValues 0..*

«atpVariation,atpSplitable»

+mcParameterInstance

0..*

+resultingRptSwPrototypingAccess
0..1

«atpVariation»
+ecucValue

1..*

+mcDataInstance

0..*

+flatMapEntry

0..1

+mcDataAssignment

0..*

«atpSplitable»

+flatMap 0..1

«atpVariation,atpSplitable»

+mcVariableInstance
0..*

Figure 4.31: Overview of the McSupportData element

201 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The individual measurable and calibratable data is described using the element Mc-
DataInstance. This is aggregated from McSupportData in the role mcVariable-
Instance (for measurement) or mcParameterInstance (for calibration).

Usage of the FlatMap

The FlatMap is part of the Ecu Extract of System Description and contains a collection
of FlatInstanceDescriptor elements. The details of the FlatMap are described
in the Specification of the System Template [8].

In particular the FlatMap may be request several parameter instances for the identical
ParameterDataPrototype as described in section 4.2.8.3.7.

Common attributes of McDataInstance

The element McDataInstance specifies one element of the McSupportData. The
following requirement specify common attributes which shall to be filled in a harmo-
nized way.

[SWS_Rte_05130] d The RTE Generator shall use the shortName of the
FlatInstanceDescriptor as the shortName of the McDataInstance. c
(SRS_Rte_00189)

[SWS_Rte_03998] d The RTE Generator shall use the AliasNameAssign-
ment.shortLabel referencing the according FlatInstanceDescriptor as the
displayIdentifier of the McDataInstance. c(SRS_Rte_00189)

[SWS_Rte_05131] d If the input element (e.g. ApplicationDataType or Im-
plementationDataType) has a category specified the category value shall be
copied to the McDataInstance element. c(SRS_Rte_00189)

[SWS_Rte_05132] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies an array, the attribute arraySize of McDataIn-
stance shall be set to the size of the array. c(SRS_Rte_00189)

[SWS_Rte_05133] d If the input element (e.g. ApplicationDataType or Im-
plementationDataType) specifies a record, the McDataInstance shall aggre-
gate the record element’s parts as subElements of type McDataInstance. c
(SRS_Rte_00189)

[SWS_Rte_05119] d The McSupportData element and its sub-structure shall be self-
contained in the sense that there is no need to deliver the whole upstream descriptions
of the ECU (including the ECU Extract, Software Component descriptions, Basic Soft-
ware Module descriptions, ECU Configuration Values descriptions, Flat Map, etc.) in
order to later generate the final "A2L"-file. This means that the RTE Generator has
to copy the required information from the upstream descriptions into the McSupport-
Data element. c(SRS_Rte_00189)

[SWS_Rte_05129] d The RTE Generator in Generation Phase shall export the effec-
tive SwDataDefProps (including all of the referenced and aggregated sub-elements
like e.g. CompuMethod or SwRecordLayout) in the role resultingProperties

202 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

for each McDataInstance after resolving the precedence rules defined in the SW-
Component Template [2] chapter Properties of Data Definitions. Thereby the Im-
plementationDataType properties compuMethod and dataConstraint are not
taken in consideration for effective SwDataDefProps of the McDataInstance due
to their refinement nature of C and AI. c(SRS_Rte_00189)

[SWS_Rte_05135] d If a ParameterDataPrototype is associated with a Param-
eterAccess the corresponding SwDataDefProps and their sub-structure shall be
exported. c(SRS_Rte_00189)

For each flatMapEntry referencing to measurable or calibratible data prototype or
measureable ModeDeclarationGroupPrototype the McDataInstance shall be
generated in the McSupportData. Thereby the effected SwDataDefProps shall be
taken from the data prototype according the precedence rules defined in the SWCT.

[SWS_Rte_08313] d The RTE Generator shall create McDataInstance element(s)
in the McSupportData for each measurable or calibratible DataPrototype / Mod-
eDeclarationGroupPrototype referenced by a FlatInstanceDescriptor. c
(SRS_Rte_00189)

Explanation: In case of connected ports it may occur that the DataPrototype in the
DataInterface of the PPortPrototype and the DataPrototype in the DataInterface
of the RPortPrototype are referenced by FlatInstanceDescriptors. In this
case its intended to get two McDataInstance in order to access the value by MCD
system with two different names and may be with two different scaling (typically offset
and resolution).

In case of composite data FlatInstanceDescriptors may point to one or several
ApplicationCompositeElementDataPrototypes in order to define an individual
name for each record or array element. Thereby it is even possible that a FlatIn-
stanceDescriptor exists for the "whole" DataPrototype typed by an Appli-
cationCompositeDataType and additional FlatInstanceDescriptors exist for
the ApplicationCompositeElementDataPrototypes of such DataPrototype.

In this case a McDataInstance as child of McSupportData exists due to
the FlatInstanceDescriptors for the "whole" DataPrototype and addi-
tional McDataInstances as child of McSupportData exists for each FlatIn-
stanceDescriptor pointing to a ApplicationCompositeElementDataProto-
types in the "whole" DataPrototypes type.

[SWS_Rte_08314] d If the input element is typed by an ApplicationDataType the
subElements structure of the McDataInstance is determined by the Applica-
tionDataType. This means

• in case of ApplicationRecordDataType the number and shortName
of the subElement is determined by the ApplicationRecordElement if
[SWS_Rte_05133] and [SWS_Rte_08316] is applied,

203 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• in case of ApplicationArrayDataType the number of the subElements is
determined by the ApplicationArrayElement if [SWS_Rte_08315] is ap-
plied,

• in case of a ApplicationPrimitiveDataType, inclusive compound primi-
tives, no subElements are applicable.

c(SRS_Rte_00189)

[SWS_Rte_08315] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies an array, the McDataInstance shall aggregate
subElementss for each array element. The McDataInstance.subElements.sym-
bol shall express the array index in the C-notation. (e.g. [0], [4]). c(SRS_Rte_00189)

[SWS_Rte_08316] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies a record and no FlatInstanceDescriptor is de-
fined for the record element, the McDataInstance.subElement shortName shall be
set copied either from the related ApplicationRecordElement. Or from the Im-
plementationDataTypeElement if no ApplicationDataType is typing the Dat-
aPrototype. The McDataInstance.subElement.symbol is set to the related Im-
plementationDataTypeElement.shortName c(SRS_Rte_00189)

General handling of the symbol attribute: The concatenation of all symbol strings start-
ing from the root element over the hierarchy of McDataInstances shall represent
the full combined symbol in the programming language for all hierarchy levels in the
McDataInstance tree. When the concatenation is applied the subElements of Mc-
DataInstances of category STRUCTURE are separated by a dot.

[SWS_Rte_08317] d The RTE Generator shall document the Rte internal grouping
of measurement and calibration data in composite data datatypes in each symbol at-
tribute of the McDataInstances representing the data which is grouped.

This means the RTE Generator has to document the insertion of structures for Rte
internal purpose in the symbol attribute of the related McDataInstance. For in-
stance if the Rte groups a set of measurable inside a Rte internal structure (here
called RteInternalBuffer) the McDataInstance.symbol of the first measurable child
element carries the information about the internal structure element. e.g. Mc-
DataInstance.shortName: "MyMeasurable" McDataInstance.symbol: "RteIn-
ternalBuffer.measurable1" c(SRS_Rte_00189)

4.2.8.4.2 Export of Measurement information

Sender-Receiver communication

[SWS_Rte_05120] d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite and RteMeasurementSupport is set to true the RTE
Generator shall create a McDataInstance element with

204 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03900])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

Client-Server communication

[SWS_Rte_05121] d If the swCalibrationAccess of an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readOnly and RteMeasurementSupport is set to true the RTE Generator shall
create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03901])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ArgumentDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

[SWS_Rte_05172] d If the measurement of client-server communication is ignored due
to requirement [SWS_Rte_05170] the corresponding McDataInstance in the Mc-
SupportData shall have a resultingProperties swCalibrationAccess set
to notAccessible. c(SRS_Rte_00153)

Mode Switch Communication

[SWS_Rte_06702] d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly and RteMeasurementSupport is set to true the RTE
Generator shall create three McDataInstance elements with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_06700])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ModeDeclarationGroupPrototype

Thereby the McDataInstance element corresponding to the

• current mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to CURRENT_MODE,

• previous mode has to reference the FlatInstanceDescriptor which role
attribute is set to PREVIOUS_MODE and

• next mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to NEXT_MODE

c(SRS_Rte_00153, SRS_Rte_00189)

205 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that the resultingProperties of the McDataInstance elements cor-
responding to the ModeDeclarationGroupPrototype may get associated with a
CompuMethod if a CompuMethod is defined at the FlatInstanceDescriptor due
to [SWS_Rte_05129]. Those CompuMethod may specify a literal display of the mea-
sured modes.

InterRunnableVariable

[SWS_Rte_05122] d If the swCalibrationAccess of a VariableDataPrototype
in the role implicitInterRunnableVariable or explicitInterRunnable-
Variable is set to readOnly or readWrite and RteMeasurementSupport is set
to true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03902])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

PerInstanceMemory

[SWS_Rte_05123] d If the swCalibrationAccess of a VariableDataProto-
type in the role arTypedPerInstanceMemory is set to readOnly or readWrite
and RteMeasurementSupport is set to true the RTE Generator shall create a Mc-
DataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07160])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

Nv RAM Block

[SWS_Rte_05124] d If the swCalibrationAccess of a VariableDataPrototype
in the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is
set to readOnly or readWrite and RteMeasurementSupport is set to true the
RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07174])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the NvBlockSwComponentType

c(SRS_Rte_00153, SRS_Rte_00189)

Non Volatile Data communication

206 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_05125] d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentProto-
type is set to readOnly or readWrite and RteMeasurementSupport is set to
true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07197])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

4.2.8.4.3 Export Calibration information

Calibration can be either actively supported by the RTE using the pre-defined cali-
bration mechanisms of section 4.2.8.3.5 or calibration can be transparent to the RTE.
In both cases the location and attributes of the calibratable data has to be provided
by the RTE Generator in the Generation Phase in order to support the setup of the
measurement and calibration tools.

ParameterDataPrototypes of ParameterSwComponentType

[SWS_Rte_05126] d For each FlatInstanceDescriptor referencing a Parame-
terDataPrototype instance in a PortPrototype of a ParameterSwComponent-
Type with the swCalibrationAccess set to readOnly or readWrite an entry in
the McSupportData with the role mcParameterInstance shall be created with the
following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

Shared ParameterDataPrototypes

[SWS_Rte_05127] d For each FlatInstanceDescriptor referencing a Parame-
terDataPrototype instance of a AtomicSwComponentType’s SwcInternalBe-
havior aggregated in the role sharedParameter with the swCalibrationAccess
set to readOnly or readWrite an entry in the McSupportData with the role mcPa-
rameterInstance shall be created with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

207 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Instance specific ParameterDataPrototypes

[SWS_Rte_05128] d For each FlatInstanceDescriptor referencing a Param-
eterDataPrototype instance of a AtomicSwComponentType’s SwcInternal-
Behavior aggregated in the role perInstanceParameter with the swCalibra-
tionAccess set to readOnly or readWrite an entry in the McSupportData with
the role mcParameterInstance shall be created with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

[SWS_Rte_07097] d For each ParameterDataPrototype of a BswMod-
uleDescription’s BswInternalBehavior aggregated in the role perInstan-
ceParameter with the swCalibrationAccess set to readOnly or readWrite an
entry in the McSupportData with the role mcParameterInstance shall be created
with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

Default values for RAM Block

[SWS_Rte_05136] d If the swCalibrationAccess of a ParameterDataProto-
type in the role romBlock is set to readOnly or readWrite an entry in the McSup-
portData with the role mcParameterInstance shall be created with the following
attributes:

• symbol set to the C-symbol name used for the allocation in [SWS_Rte_07033]

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

4.2.8.4.4 Export of the Calibration Method

The RTE does provide several Software Emulation Methods which can be selected in
the Ecu Configuration of the RTE (see section 8.2).

Which Software Emulation Method has been used for a particular RTE Generation shall
be documented in the McSupportData in order to allow measurement and calibration
tools to support the RTE’s Software Emulation Methods. Additionally it is also possible
for an RTE Vendor to add custom Software Emulation Methods which needs to be

208 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

documented as well. The structure of the McSwEmulationMethodSupport is shown
in figure 4.32.

McSupportData

McSwEmulationMethodSupport

+ category: Identifier
+ shortLabel: Identifier

McParameterElementGroup

+ shortLabel: Identifier

AutosarDataPrototype

VariableDataPrototype

AutosarDataPrototype

ParameterDataPrototype

AtpStructureElement

InternalBehavior

RteCalibrationSupport:
EcucEnumerationParamDef

defaultValue = NONE

ARElement

Implementation

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

«atpVariation,atpSplitable»

+constantMemory

0..*
+romLocation

1

+baseReference

0..1

+ramLocation

1

Provides the possible
names for the category.
This could include vendor
specific methods.

«atpSplitable»

+mcSupport 0..1

«atpVariation»

+emulationSupport 0..*

«atpVariation,atpSplitable»

+staticMemory 0..*

+referenceTable

0..1

+elementGroup 0..*

Figure 4.32: Structure of the McSwEmulationMethodSupport element

[SWS_Rte_05137] d The RTE Generator in Generation Phase shall create the Mc-
SwEmulationMethodSupport element as part of the McSupportData description
of the generated RTE. c(SRS_Rte_00189)

[SWS_Rte_05138] d The RTE Generator in Generation Phase shall set the value of the
category attribute of McSwEmulationMethodSupport element according to the
implemented Software Emulation Method based on the Ecu configuration parameter
RteCalibrationSupport:

• NONE

• SINGLE_POINTERED

• DOUBLE_POINTERED

• INITIALIZED_RAM

• custom category name: vendor specific Software Emulation Method

c(SRS_Rte_00189)

The description of the generated structures is using the existing mechanisms already
available in the Basic Software Module Description Template [9].

209 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description of ParameterElementGroup

For the description of the ParameterElementGroup an Implementation-
DataType representing a structure of the group is created ([SWS_Rte_05139]).

[SWS_Rte_05139] d For each generated ParameterElementGroup an Implemen-
tationDataType shall be created. The contained ParameterDataPrototypes
are aggregated with the role subElement as ImplementationDataTypeElement.
c(SRS_Rte_00189)

In the example figure 4.33 the ImplementationDataTypes are called RteMcSup-
portGroupType1 and RteMcSupportGroupType2.

McSupport description of the InitRam parameter method

For the description of the InitRam parameter method the specific ParameterEle-
mentGroups allocated in ram and rom are specified ([SWS_Rte_05140] and
[SWS_Rte_05141]). Then the collection and correspondence of these groups is spec-
ified (in [SWS_Rte_05142]).

[SWS_Rte_05140] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type. c
(SRS_Rte_00189)

[SWS_Rte_05141] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a VariableDataPrototype with the role
staticMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The VariableDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type.
c(SRS_Rte_00189)

[SWS_Rte_05142] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a McParameterElementGroup with the
role elementGroup in the McSwEmulationMethodSupport [SWS_Rte_05137] el-
ement.

• The McParameterElementGroup shall have a reference to the corresponding
ParameterDataPrototype from [SWS_Rte_05140] with the role romLoca-
tion.

• The McParameterElementGroup shall have a reference to the correspond-
ing VariableDataPrototype from [SWS_Rte_05141] with the role ramLo-
cation.

c(SRS_Rte_00189)

210 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

McSupport description of the Single pointered method

For the description of the Single pointered method the specific ParameterElement-
Groups allocated in rom are specified ([SWS_Rte_05143]). Then an array data type
is specified which contains as many number of elements (void pointers) as there are
ParameterElementGroups ([SWS_Rte_05144]). Then the instance of this array is
specified in ram ([SWS_Rte_05152]) and referenced from the McSwEmulationMeth-
odSupport ([SWS_Rte_05153]). The actual values for each array element are speci-
fied as references to the ParameterElementGroup prototypes ([SWS_Rte_05154]).

[SWS_Rte_05143] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type. c
(SRS_Rte_00189)

[SWS_Rte_05144] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate an ImplementationDataType with one ImplementationDataTypeElement
in the role subElement.

• The ImplementationDataTypeElement shall have the attribute arraySize
set to the number of ParameterElementGroups from [SWS_Rte_05139].

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(SRS_Rte_00189)

[SWS_Rte_05152] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gen-
erate a VariableDataPrototype with the role staticMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The Vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05144] with the role type. c(SRS_Rte_00189)

[SWS_Rte_05153] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
a reference from the McSwEmulationMethodSupport [SWS_Rte_05137] element
to the VariableDataPrototype [SWS_Rte_05152] in the role referenceTable.
c(SRS_Rte_00189)

[SWS_Rte_05154] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initValue of the array [SWS_Rte_05152]

211 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

and for each ParameterElementGroup a ReferenceValueSpecification el-
ement in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes [SWS_Rte_05143]. c(SRS_Rte_00189)

McSupport description of the Double pointered method

The description of the Double pointered method is quite similar to the Single point-
ered method, but the allocation to ram and rom is different and it allocates the addi-
tional pointer parameter. The specific ParameterElementGroups allocated in rom
are specified ([SWS_Rte_05155]). Then an array data type is specified which con-
tains as many number of elements (void pointers) as there are ParameterEle-
mentGroups ([SWS_Rte_05156]). Then the instance of this array is specified in
rom ([SWS_Rte_05157]) and referenced from the McSwEmulationMethodSupport
([SWS_Rte_05158]). The actual values for each array element are specified as ref-
erences to the ParameterElementGroup prototypes ([SWS_Rte_05159]). Then the
type of the base pointer is then created ([SWS_Rte_05160]) and an instance is al-
located in ram ([SWS_Rte_05161]). The reference is initialized to the array in rom
([SWS_Rte_05162]).

[SWS_Rte_05155] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type. c
(SRS_Rte_00189)

In the example figure 4.33 the ParameterDataPrototypes are called RteMcSup-
portParamGroup1 and RteMcSupportParamGroup1.

[SWS_Rte_05156] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate an ImplementationDataType with one ImplementationDataTypeElement
in the role subElement.

• The ImplementationDataTypeElement shall be of category ARRAY with the
attribute arraySize set to the number of ParameterElementGroups from
[SWS_Rte_05139].

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(SRS_Rte_00189)

In the example figure 4.33 the ImplementationDataType is called RteMcSup-
portPointerTableType.

212 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_05157] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gen-
erate a ParameterDataPrototype with the role constantMemory in the In-
ternalBehavior of the RTE’s Basic Software Module Description. The Param-
eterDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05156] with the role type. c(SRS_Rte_00189)

In the example figure 4.33 the ParameterDataPrototype is called RteMcSup-
portPointerTable.

[SWS_Rte_05158] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
a reference from the McSwEmulationMethodSupport [SWS_Rte_05137] element
to the ParameterDataPrototype [SWS_Rte_05157] in the role referenceTable.
c(SRS_Rte_00189)

[SWS_Rte_05159] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initValue of the array [SWS_Rte_05157]
and for each ParameterElementGroup a ReferenceValueSpecification el-
ement in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes [SWS_Rte_05155]. c(SRS_Rte_00189)

In the example figure 4.33 the ArrayValueSpecification is called RteMc-
SupportPointerTableInit. The ReferenceValueSpecifications are called
RteMcSupportParamGroup1Ref and RteMcSupportParamGroup2Ref.

[SWS_Rte_05160] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate an ImplementationDataType with one ImplementationDataTypeElement
being a reference to the array type from [SWS_Rte_05156]. c(SRS_Rte_00189)

In the example figure 4.33 the ImplementationDataType is called RteMcSup-
portBasePointerType.

[SWS_Rte_05161] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gen-
erate a VariableDataPrototype with the role staticMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The Vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05160] with the role type. c(SRS_Rte_00189)

In the example figure 4.33 the VariableDataPrototype is called RteMcSupport-
BasePointer.

[SWS_Rte_05162] d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate a ReferenceValueSpecification to the array from [SWS_Rte_05157] as the
initValue of the reference [SWS_Rte_05161]. c(SRS_Rte_00189)

213 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In the example figure 4.33 the ReferenceValueSpecification is called RteMc-
SupportBasePointerInit.

214 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteInternalBehavior:
BswInternalBehavior

RteMcSupportGroupType1:
ImplementationDataType

MyCalParam111:
ImplementationDataTypeElement

RteMcSupportGroupType2:
ImplementationDataType

MyCalParam22:
ImplementationDataTypeElement

MyCalParam13:
ImplementationDataTypeElement

RteMcSupportParamGroup1:
ParameterDataPrototype

RteMcSupportParamGroup2:
ParameterDataPrototype

RteMcSupportPointerTableType:
ImplementationDataType

RteMcSupportPointerTableElement:
ImplementationDataTypeElement

arraySize = 2

RteMcSupportPointerTable:
ParameterDataPrototype

RteMcSupportPointerTableInit:
ArrayValueSpecification

RteMcSupportParamGroup1Ref:
ReferenceValueSpecification

RteMcSupportParamGroup2Ref:
ReferenceValueSpecification

RteMcSupportBasePointerType:
ImplementationDataType

RteMcSupportBasePointer:
VariableDataPrototype

RteMcSupportBasePointerInit:
ReferenceValueSpecification

«atpVariation»
RteMcSupportBaseTypePointerDDP:

SwDataDefProps

RteMcSupportBaseTypePointerTargetP:
SwPointerTargetProps

«atpVariation»
RteMcSupportBaseTypePointerTargetDDP:

SwDataDefProps

+initValue

+initValue

+type

+type

+type

+staticMemory

+subElement

+swDataDefProps

+swPointerTargetProps

+type

+referenceValue

+subElement

+swDataDefProps

+referenceValue

+element

+constantMemory

+constantMemory

+constantMemory

+subElement

+referenceValue

+implementationDataType

+subElement

+element

Figure 4.33: Example of the structure for Double Pointered Method

215 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.8.4.5 Export of Variant Handling

The Rte Generator shall provide information on values of system constants. The values
are part of the input information and need to be collected and copied into a dedicated
artifact to be delivered with the McSupportData.

[SWS_Rte_05168] d The Rte Generator in generation phase shall create an elements
of type SwSystemconstantValueSet and create copies of all system constant val-
ues found in the input information of type SwSystemconstValue where the refer-
enced SwSystemconst element has the swCalibrationAccess set to readOnly.
c(SRS_Rte_00153, SRS_Rte_00191)

In case the SwSystemconstValue is subject to variability and the variability can be
resolved during Rte generation phase

[SWS_Rte_05176] d If a SwSystemconst with swCalibrationAccess set to
readOnly has an assigned SwSystemconstValue which is subject to variabil-
ity with the latest binding time SystemDesignTime or CodeGenerationTime
the related SwSystemconstValue copy in the SwSystemconstantValueSet ac-
cording to [SWS_Rte_05168] shall contain the resolved value. c(SRS_Rte_00153,
SRS_Rte_00191)

[SWS_Rte_05174] d If a SwSystemconst with swCalibrationAccess set to
readOnly has an assigned SwSystemconstValue which is subject to variability with
the latest binding time PreCompileTime the related SwSystemconstValue copy
in the SwSystemconstantValueSet according to [SWS_Rte_05168] shall have an
AttributeValueVariationPoint. The PreBuild conditions of the Attribute-
ValueVariationPoint shall correspond to the PreBuild conditions of the input
SwSystemconstValue’s conditions. c(SRS_Rte_00153, SRS_Rte_00191)

[SWS_Rte_05169] d The Rte Generator in generation phase shall create a reference
from the McSupportData element ([SWS_Rte_05118]) to the SwSystemconstant-
ValueSet element ([SWS_Rte_05168]). c(SRS_Rte_00153, SRS_Rte_00191)

In case the RTE Generator implements variability on an element which is accessible
by a MCD system the related existence condition has to be documented in the McSup-
portData structure as well.

[SWS_Rte_05175] d If an element in the McSupportData is related to an element
in the input configuration which is subject to variability with the latest binding time
PreCompileTime or PostBuild the RTE Generator shall add a VariationPoint for
such element. The PreBuild and PostBuild conditions of the VariationPoint shall
correspond to the PreBuild and PostBuild conditions of the input element’s conditions.
c(SRS_Rte_00153, SRS_Rte_00191)

216 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.9 Access to NVRAM data

4.2.9.1 General

There are different methods available for AUTOSAR SW-Cs to access data stored in
NVRAM.

• “Calibration data” – Calibrations can be stored in NVRAM, but are not modified
during a "normal" execution of the ECU. Calibrations are usually directly read from
their memory location, but can also be read from a RAM buffer when the access
time needs to be optimized (e.g. for interpolation tables). They are described in
section 4.2.8.

• “Access to NVRAM blocks” – This method uses PerInstanceMemory as a
RAM Block for the NVRAM blocks. While this method is efficient, its use is
restricted.

The NVRAM Manager [21] is a BSW module which provides services for SW-C
to access NVRAM Blocks during runtime. The NVM block data is not accessed
directly, but through a RAM Block, which can be a PerInstanceMemory in-
stantiated by the RTE, or a SW-C internal buffer. When this method is used, the
RTE does not provide any data consistency mechanisms (i.e. different runnables
from the SW-C and the NVM can access the RAM Block concurrently without
being protected by the RTE).

Note:

This mechanism permits efficient usage of NVRAM data, but requires the SW-C
designer to take care that accesses to the PerInstanceMemory from different
task contexts don’t cause data inconsistencies. The “Access to NVRAM blocks”
should not be used in multi core environments. In AUTOSAR release 4.0, it can
not be expected that the NVRAM Manager can access the PerInstanceMem-
ory of another core. The presence of a shared memory section is not required by
AUTOSAR. Only in the case of arTypedPerInstanceMemory, a SwDataDef-
Props item is available to assign the PerInstanceMemory to a shared memory
section.

• “Access to NVRAM data with a NvBlockSwComponentType” – The data is
accessed through a NvDataInterface connected to a NvBlockSwCompo-
nentTypes. This access is modeled at the VFB level, and, when necessary,
protected by the RTE against concurrent accesses. It will be described further in
this section.

Please note that the terms NVRAM Block, NV Block, RAM Block, ROM Block and
RAM mirror used in this document are defined in the specification of the NVRAM
Manager [21].

217 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.2.9.2 Usage of the NvBlockSwComponentType

The code of NvBlock SwComponentPrototypes is implemented by the RTE Gener-
ator. NvBlockSwComponentTypes provide a port interface for the access and man-
agement of data stored in NVRAM.

Figure 4.34: Connection to the NvBlockSwComponentType

Figure 4.34 illustrates the usage of a NvBlockSwComponentType. Depending on
the use-case SW-Cs can be connected to a NvBlockSwComponentType in different
ways. For example by Ports typed by SenderReceiverInterfaces / NvDataIn-
terfaces only or by Ports typed by SenderReceiverInterfaces / NvDataIn-
terfaces and ClientServerInterfaces. Ports typed by SenderReceiverIn-
terfaces / NvDataInterfaces are used to provide access to NV data and Ports
typed by ClientServerInterfaces are used for the management of NV data. Man-
aging NV data by SW-Cs is useful in order to copy data of the RAM Block to NV
block vice versa at certain points in time (SW-Cs are clients). Additionally SW-Cs can
get notifications from NVM (SW-Cs are servers).

In the following sections the requirements for the usage of NvBlockSwComponent-
Type will be given.

[SWS_Rte_07301] d Several AUTOSAR SW-Cs (and also several instances of a AU-
TOSAR SW-C) shall be able to read the same VariableDataPrototypes of a
NvBlockSwComponentType. c(SRS_Rte_00176)

218 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AtomicSwComponentType

NvBlockSwComponentType

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ServiceNeeds

NvBlockNeeds

+ calcRamBlockCrc: Boolean [0..1]
+ checkStaticBlockId: Boolean [0..1]
+ cyclicWritingPeriod: TimeValue [0..1]
+ nDataSets: PositiveInteger [0..1]
+ nRomBlocks: PositiveInteger [0..1]
+ ramBlockStatusControl: RamBlockStatusControlEnum [0..1]
+ readonly: Boolean [0..1]
+ reliabili ty: NvBlockNeedsReliabil i tyEnum [0..1]
+ resistantToChangedSw: Boolean [0..1]
+ restoreAtStart: Boolean [0..1]
+ selectBlockForFirstInitAll: Boolean [0..1]
+ storeAtShutdown: Boolean [0..1]
+ storeCyclic: Boolean [0..1]
+ storeEmergency: Boolean [0..1]
+ storeImmediate: Boolean [0..1]
+ useAutoValidationAtShutDown: Boolean [0..1]
+ useCRCCompMechanism: Boolean [0..1]
+ writeOnlyOnce: Boolean [0..1]
+ writeVerification: Boolean [0..1]
+ writingFrequency: PositiveInteger [0..1]
+ writingPriority: NvBlockNeedsWritingPriorityEnum [0..1]

«enumeration»
NvBlockNeedsReliabil i tyEnum

 noProtection
 errorDetection
 errorCorrection

ValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

������������	
 ����

�����������	��	���� �

��������������

«enumeration»
RamBlockStatusControlEnum

 api
 nvRamManager

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

RTEEvent

TimingEvent

+ offset: TimeValue [0..1]
+ period: TimeValue

+initValue 0..1

+ramBlock 1

+nvBlockNeeds 1

+timingEvent 0..1

+initValue 0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+romBlock 0..1

Figure 4.35: NvBlockSwComponentType and NvBlockDescriptor

A NvBlockSwComponentType contains multiple NvBlockDescriptors. Each of
these NvBlockDescriptor is associated to exactly one NVRAM Block.

219 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A NvBlockDescriptor contains a VariableDataPrototype which acts as a RAM
Block for the NVRAM Block, and optionally a ParameterDataPrototype to act as
the default ROM value for the NVRAM Block.

[SWS_Rte_07353] d The RTE Generator shall reject configurations where a
NvBlockDescriptor of a NvBlockSwComponentType contains a romBlock
whose data type is not compatible with the type of the ramBlock. c(SRS_Rte_00177,
SRS_Rte_00018)

[SWS_Rte_07303] d The RTE shall allocate memory for the ramBlock Variable-
DataPrototype of the NvBlockDescriptor instances. c(SRS_Rte_00177)

[SWS_Rte_07632] d The variables allocated for the ramBlocks shall be initialized if
the general initialization conditions in [SWS_Rte_07046] are fulfilled. The initialization
as to be applied during Rte_Start and Rte_RestartPartition depending from
the configured RteInitializationStrategy. c(SRS_Rte_00177)

Note: When blocks are configured to be read by NvM_ReadAll, the initialization may
erase the value read by the NVM. These blocks should not have an initValue.

[SWS_Rte_07355] d For each NvBlockDescriptor with a romBlock Parame-
terDataPrototype, the RTE shall allocate a constant block of default values. c
(SRS_Rte_00177)

[SWS_Rte_07633] d The constants allocated for the romBlocks shall be initialized to
the value of the initValue, if they have an initValue. c(SRS_Rte_00177)

220 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AtomicSwComponentType

NvBlockSwComponentType

DataInterface

NvDataInterface

AtpStructureElement
Identifiable

NvBlockDescriptor

NvBlockDataMapping

InstantiationDataDefProps

VariableDataPrototype

AutosarVariableRef

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

ArVariableInImplementationDataInstanceRef

AbstractImplementationDataTypeElement

ImplementationDataTypeElement

AbstractImplementationDataType

ImplementationDataType

ARElement
AtpType

AutosarDataType

DataPrototype

AutosarDataPrototype

AtpInstanceRef

VariableInAtomicSWCTypeInstanceRef

������������	
 ����

�����������	��	���� �

��������������

+
ta

rg
e

tD
a

ta
P

ro
to

ty
p

e 1

+nvRamBlockElement

1

+autosarVariable 0..1

+writtenReadNvData

0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+ramBlock

1

+instantiationDataDefProps 0..*

«atpVariation»

+
co

n
te

xt
D

a
ta

P
ro

to
ty

p
e

0
..

*
{o

rd
e

re
d

}

«isOfType»

+type 1
{redefines atpType}

+writtenNvData

0..1

«atpVariation»

+subElement 0..* {ordered}

+
ro

o
tV

a
ria

b
le

D
a

ta
P

ro
to

ty
p

e

0
..

1
{s

u
b

se
ts

 a
tp

C
o

n
te

xt
E

le
m

e
n

t}

+autosarVariableInImplDatatype

0..1

+nvData 1..*

+nvBlockDataMapping1..*

«atpVariation»

+variableInstance

0..1

+
ro

o
tV

a
ria

b
le

D
a

ta
P

ro
to

ty
p

e

0
..

1

+readNvData

0..1

Figure 4.36: NvBlockDataMapping

For each element stored in the NVRAM Block of a NvBlockDescriptor, there
should be one NvBlockDataMapping to associate the VariableDataPrototypes
of the ports used for read and write access and the VariableDataPrototype defin-
ing the location of the element in the ramBlock. Thereby the Implementation-
DataTypes of the VariableDataPrototypes have to compatible.

221 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03866] d The RTE Generator shall reject any configuration that violates
[constr_1395], [constr_1403] and [constr_1404]. c(SRS_Rte_00018)

[SWS_Rte_07621] d The RTE Generator shall reject configurations where [con-
str_2013] or [constr_1285] is violated. c(SRS_Rte_00018)

Note: This is required to ensure that the default values in romBlock are structurally
matching data in the ramBlock and therefore can be copied to the ramBlock in case
that the callback Rte_NvMNotifyInitBlock of the related NvBlock is called.

[SWS_Rte_07343] d The RTE Generator shall reject configurations where a Vari-
ableDataPrototype instance in the role ramBlock is accessed by SW-C instances
of different partitions. c(SRS_Rte_00177, SRS_Rte_00018)

The rational for [SWS_Rte_07343] is to allow the implementation of cleanup activities
in case of termination or restart of a partition. These cleanup activities may require to
invalidate the RAM Block or reload data from the NVRAM device, which would impact
other partitions if a the ramBlock is accessed by SW-Cs of different partitions.

A NvBlockSwComponentType can be used to reduce the quantity of NVRAM Blocks
needed on an ECU:

• the same block can be used to store different flags or other small data elements;

• the same data element can be used by different SW-Cs or different instances of
a SW-C.

It also permits to simplify processes and algorithms when it must be guaranteed that
two SW-Cs of an ECU use the same NVRAM data.

Note: this feature can increase the RAM usage of the ECU because it forces the
NVRAM Manager to instantiate an additional RAM buffer, called RAM mirror. How-
ever, when the same data elements have to be shared between SW-Cs, it reduces the
number of RAM Blocks needed to be instantiated by the RTE, and can reduce the
overall RAM usage of the ECU.

[SWS_Rte_07356] d The RTE Generator shall reject configurations where a Vari-
ableDataPrototype referenced by a NvDataInterface has a queued swIm-
plPolicy. c(SRS_Rte_00018)

[SWS_Rte_CONSTR_09011] NvMBlockDescriptor related to a RAM Block of
a NvBlockSwComponentType shall use NvmBlockUseSyncMechanism d The
NVRAM Block associated to the NvBlockDescriptors of a NvBlockSwCompo-
nentType shall be configured with the NvMBlockUseSyncMechanism feature en-
abled, and the NvMWriteRamBlockToNvCallback and NvMReadRamBlockFrom-
NvCallback parameters set to the Rte_GetMirror and Rte_SetMirror API of
the NvBlockDescriptor. c()

An NvBlockSwComponentType may have unconnected p-ports or r-ports (see
[SWS_Rte_01329]).

222 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07669] d An NvBlockSwComponentType with an unconnected r-port
shall behave as if no updated data were received for VariableDataPrototypes
this unconnected r-port. c(SRS_Rte_00139)

4.2.9.3 Interface of the NvBlockSwComponentType

4.2.9.3.1 Access to the NVRAM data

The NvBlockSwComponentType provides PPortPrototypes and RPortProto-
types with an NvDataInterface data Sender-Receiver semantic to read the value
of the NVRAM data or write the new value.

Like the SenderReceiverInterfaces, each of these NvDataInterfaces can pro-
vide access to multiple VariableDataPrototypes.

The same Rte_Read, Rte_IRead, Rte_DRead, Rte_Write, Rte_IWrite,
Rte_IWriteRef APIs are used to access these VariableDataPrototypes as for
SenderReceiverInterfaces.

Due to the usage of the implicit APIs Rte_IRead and Rte_IWriteRef multiple
buffering can be avoided, i.e. the RunnableEntitys of application SW-Cs or Ex-
ecutableEntitys of BSW modules (e.g. DCM) can directly access the Variable-
DataPrototypes on the RAM Block. To guarantee this behavior one of the following
preconditions must apply:

• VariableDataPrototypes on a RAM Block are only accessed by
dataReadAccess

• VariableDataPrototypes on a RAM Block are accessed by dataReadAc-
cess and dataWriteAccess and there is no mutual preemption between the
write accesses or between the write and read accesses, including no preemption
by Rte_SetMirror and Rte_GetMirror.

• No PortInterfaceMappings are applied which requiring data conversions

See also chapter 4.3.1.5.1 about ConsistencyNeeds.

[SWS_Rte_07667] d The RTE Generator shall reject configurations where an r-port
typed with an NvDataInterface is not connected and no NvRequireComSpec with
an initValue are provided for each VariableDataPrototype of this NvDataIn-
terface. This requirement does not apply if the r-port belongs to a NvBlockSwCom-
ponentType. c(SRS_Rte_00018, SRS_Rte_00139)

[SWS_Rte_07667] is required to avoid unconnected r-port without a defined init-
Value. Please note that for NvBlockSwComponent unconnected r-ports without init
values are not a fault because the init values are defined in the NvBlockDescriptors
ramBlock (see as well [SWS_Rte_07632], [SWS_Rte_07669])

223 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07668] d The RTE shall initialize the VariableDataPrototypes of an r-
port according to the initValue of the r-port’s NvRequireComSpec referring to the
VariableDataPrototype. c(SRS_Rte_00139, SRS_Rte_00108, SRS_Rte_00068)

In order to write updated NV data of NVRAM Blocks to NV memory with a certain
timing schema the RTE provides a functionality called "dirty flag mechanism". This
mechanism interacts directly with the NvM module when write APIs of the RTE are
invoked by an AtomicSwComponentType using a PortPrototype typed by an Nv-
DataInterface. The behavior of the dirty flag mechanism depends on the writing
strategy of the related NvBlockDescriptors.

[SWS_Rte_08080] d If an AtomicSwComponentType using a PortPrototype
with an NvDataInterface invokes the explicit API Rte_Write and the at-
tributes NvBlockDescriptor.supportDirtyFlag and NvBlockNeeds.storeAt-
Shutdown are set to true, the RTE shall mark the associated RAM Block(s) as
CHANGED by calling the NvM_SetRamBlockStatus function of the NvM module with
the BlockChanged parameter set to true. The NvM_SetRamBlockStatus func-
tion shall be called by the RTE after the data accessed by the Rte_Write function is
written back to the RAM Block(s). c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08081] d If an AtomicSwComponentType using a PortPrototype with
an NvDataInterface invokes the implicit APIs Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.supportDirtyFlag and NvBlock-
Needs.storeAtShutdown are set to true, the RTE shall mark the associated
RAM Block(s) as CHANGED by calling the NvM_SetRamBlockStatus function of
the NvM module with the BlockChanged parameter set to true. The function
NvM_SetRamBlockStatus shall be called by the RTE after the data accessed by
the Rte_IWrite / Rte_IWriteRef functions is written back from the preemp-
tion area buffer to the RAM Block(s) (for further details see chapter 4.3.1.5.1). c
(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08082] d If an AtomicSwComponentType using a PortPrototype
with an NvDataInterface invokes the explicit API Rte_Write and the attributes
NvBlockDescriptor.supportDirtyFlag and NvBlockNeeds.storeCyclic are
set to true, the RTE shall write the associated RAM Block(s) to NV memory
by calling the NvM_WritePRAMBlock function of the NvM module in the next
cycle of a periodic activity after the data accessed by the Rte_Write func-
tion is written back to the RAM Block(s). The periodic activity shall be imple-
mented in the context of an NvBlockDescriptor’s RunnableEntity (see require-
ments [SWS_Rte_08086], [SWS_Rte_08087], [SWS_Rte_08088], [SWS_Rte_08089],
[SWS_Rte_08090]) according to the cycle period defined in the attribute NvBlockDe-
scriptor.timingEvent.period. c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08083] d If an AtomicSwComponentType using a PortPrototype with
an NvDataInterface invokes the implicit APIs Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.supportDirtyFlag and NvBlock-
Needs.storeCyclic are set to true, the RTE shall write the associated RAM
Block(s) to NV memory by calling the NvM_WritePRAMBlock function of the NvM

224 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

module in the cycle of a periodic activity after the data accessed by the Rte_IWrite /
Rte_IWriteRef functions is written back from the preemption area buffer to the RAM
Block(s) (for further details see chapter 4.3.1.5.1). The periodic activity shall be imple-
mented in the context of an NvBlockDescriptor’s RunnableEntity (see require-
ments [SWS_Rte_08086], [SWS_Rte_08087], [SWS_Rte_08088], [SWS_Rte_08089],
[SWS_Rte_08090]) according to the cycle period defined in the attribute NvBlockDe-
scriptor.timingEvent.period. c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08084] d If an AtomicSwComponentType using a PortPrototype
with an NvDataInterface invokes the explicit API Rte_Write and the at-
tributes NvBlockDescriptor.supportDirtyFlag and NvBlockNeeds.storeIm-
mediate are set to true, the RTE shall write the associated RAM Block(s)
to NV memory by calling the NvM_WritePRAMBlock function of the NvM mod-
ule. The NvM_WritePRAMBlock function shall be called in the context of an
NvBlockDescriptor’s RunnableEntity (see requirements [SWS_Rte_08086],
[SWS_Rte_08087], [SWS_Rte_08088], [SWS_Rte_08089], [SWS_Rte_08090]) after
the data accessed by the Rte_Write function is written back to the RAM Block(s). c
(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08085] d If an AtomicSwComponentType using a PortPrototype with
an NvDataInterface invokes the implicit APIs Rte_IWrite / Rte_IWriteRef
and the attributes NvBlockDescriptor.supportDirtyFlag and NvBlock-
Needs.storeImmediate are set to true, the RTE shall write the associated RAM
Block(s) to NV memory by calling the NvM_WritePRAMBlock function of the NvM
module. The function NvM_WritePRAMBlock shall be called in the context of
an NvBlockDescriptor’s RunnableEntity (see requirements [SWS_Rte_08086],
[SWS_Rte_08087], [SWS_Rte_08088], [SWS_Rte_08089], [SWS_Rte_08090]) after
the data accessed by the Rte_IWrite / Rte_IWriteRef functions is written back
from the preemption area buffer to the RAM Block(s) (for further details see chapter
4.3.1.5.1). c(SRS_Rte_00177, SRS_Rte_00245)

Note: Notifications received from the NVM module (e.g. NvMNotifyJobFinished)
will not be forwarded to the SW-Cs by the dirty flag mechanism. The standardized
NvM Client-Server interfaces can be used (see chapter 4.2.9.3.2) if a SW-C needs to
be informed regarding the NvM job result.

4.2.9.3.2 NVM interfaces

The NvBlockSwComponentType can also have ports used for NV data management
and typed by Client-Server interfaces derived from the NVRAM Manager [21] stan-
dardized ones. Note that these ports shall always have a PortInterface with the
attribute isService set to FALSE. The definition of blueprints for these interfaces can
be found in document MOD_GeneralBlueprints [22] in the ARPackage AUTOSAR/N-
vBlockSoftwareComponentType/ClientServerInterfaces_Blueprint.

The standardized NvM Client-Server interfaces are composed as follows:

225 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• NvMService

This interface is used to send commands to the NVM. The NvBlockSwCompo-
nentType provides a server port intended to be used by the SW-C users of this
NvBlockSwComponentType.

• NvMNotifyJobFinished

This interface is used by the NVM to notify the end of job. The NvBlockSwCom-
ponentType provides a server port intended to be used by the NVM, and client
ports intended to be connected to the SW-C users of this NvBlockSwCompo-
nentType.

• NvMNotifyInitBlock

This interface is used by the NVM to request users to provide the default values
in the RAM Block. The NvBlockSwComponentType provides a server port
intended to be used by the NVM, and client ports intended to be connected to the
SW-C users of this NvBlockSwComponentType.

• NvMAdmin

This interface is used to order some administrative operations to the NVM. The
NvBlockSwComponentType provides a server port intended to be used by the
SW-C users of this NvBlockSwComponentType.

For the implementation of NvBlockSwComponentTypes that have NvM service ports
the RTE has to call the API of NvM. In order to access NvM API the NvM.h file has to
be included.

[SWS_Rte_08063] d The RTE shall include the NvM.h file, if it has to access NvM API.
c(SRS_Rte_00177)

Note: no restrictions have been added to the NVM interfaces. However, some op-
erations of the NVM might require cooperation between the different users of the
NvBlockSwComponentType. For example, a ReadBlock operation will overwrite the
RAM Block, which might affect multiple SW-Cs.

226 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

OperationInvokedEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtomicSwComponentType

PortDefinedArgumentValue

PortAPIOption

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

�������	 �� ������������� ��

�����	������� �� ��� ��	���

����!�����

������������	
 ����

�����������	��	���� �

"� ����	�#��������	����

������������	
 ����

�����������	��	���� �

��������������

+port

0..*«atpVariation,atpSplitable»

+runnable 0..*

«atpVariation,atpSplitable»
+event

*«atpVariation,atpSplitable»

+port 1

+portAPIOption

0..*«atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+internalBehavior 0..1

«instanceRef»

+operation 1

+operation 1..*
«atpVariation»

+portArgValue
0..*
{ordered}

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+portPrototype

1

+startOnEvent0..1

+clientServerPort 0..*

«atpVariation»

Figure 4.37: SwcInternalBehavior of NvBlockSwComponentTypes

227 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

������������	
 ����

�����������	��	���� �

��������������

AtomicSwComponentType

������������	
 ����

�����������	��	���� �

��������������

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PRPortPrototype

������������	
 ����

�����������	��	���� �

�������	����������	����

+operation 1..*

«atpVariation»

+portPrototype

1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+port

0..*«atpVariation,atpSplitable»

«isOfType»

+
re

q
u

ire
d

In
te

rf
a

ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

+cl ientServerPort 0..*

«atpVariation»

«isOfType»

+
p

ro
vi

d
e

d
In

te
rf

a
ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

«isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

Figure 4.38: NVM notifications

The requests received from the SW-C side are forwarded by the NvBlockSwCompo-
nentType’s runnables to the NVM module, using the NVM C API indicated by the
RoleBasedPortAssignment. See figure 4.37.

Notifications received from the NVM are forwarded to all the SW-C connected to the no-
tification interfaces of the NvBlockSwComponentType with a RoleBasedPortAs-
signment of the corresponding type. See figure 4.38.

228 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07398] d The RTE Generator shall implement runnables for each con-
nected server port of a NvBlockSwComponentType. c(SRS_Rte_00177)

[SWS_Rte_07399] d The NvBlockSwComponentType’s runnables used as servers
connected to the SW-C shall forward the request to the NVM by calling the associated
NVM API. c(SRS_Rte_00177)

[SWS_Rte_04535] d The return values of NvM APIs NvM_WriteBlock
and NvM_SetRAMBlockStatus (See requirements [SWS_Rte_08080],
[SWS_Rte_08081], [SWS_Rte_08082], [SWS_Rte_08083], [SWS_Rte_08084],
[SWS_Rte_08085]) called by the RTE shall be ignored. c(SRS_Rte_00177)

[SWS_Rte_08064] d The symbol attribute of RunnableEntitys triggered by an Op-
erationInvokedEvent of NvBlockSwComponentTypes shall be used by the RTE
generator to identify the to be called NvM API function (see [constr_1234] in software
component template [2]). c(SRS_Rte_00177)

The NvBlockSwComponentType may define PortDefinedArgumentValues to
provide the BlockId value in case the NvBlockSwComponentType defines server
ports for the call of NvM services. Till R4.2 this was the only possibility to provide
the BlockId value. But these values are not mandatory any longer and are super-
seded by the configuration of RteNvRamAllocation, see [SWS_Rte_06211] and
[SWS_Rte_06212].

[SWS_Rte_06211] d The RTE generator shall determine the appropriate BlockId
value for the invocation of NvM API functions from the parameter of the NvMBlock-
Descriptor which is mapped via RteNvRamAllocation.RteNvmBlockRef to the
according NvBlockDescriptor. c(SRS_Rte_00177)

Please note: Thereby the relationship of an invocation to a specific NvBlockDe-
scriptor can be determined by following ways:

• NvBlockDescriptor.timingEvent for the cyclic invocation

• NvBlockDescriptor.clientServerPort where attribute role has the value
NvMService or NvMAdmin. In this case all OperationInvokedEvents ref-
erencing an operation in such a PPortPrototype are belonging to the
NvBlockDescriptor.

• VariableDataPrototype instances in AbstractProvidedPortPrototype
mapped to the NvBlockDescriptor.ramBlock via an NvBlockDataMap-
ping. In this case all DataReceivedEvents referencing those Variable-
DataPrototype instances are belonging to the NvBlockDescriptor.

• NvBlockDescriptor.modeSwitchEventTriggeredActivity for the mode
switch based invocation.

[SWS_Rte_06212] d The RTE generator shall ignore the given PortAPIOp-
tion with PortDefinedArgumentValue applied to a PPortPrototype of a
NvBlockSwComponentType when the BlockId value is determined according
[SWS_Rte_06211]. c(SRS_Rte_00177)

229 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Besides forwarding requests from the SW-C side to the NVM module via NvM ser-
vice ports, the NvBlockSwComponentType also supports the dirty flag mechanism
mentioned in chapter 4.2.9.3.1. In order to realize the behavior of the dirty flag mech-
anism the RTE implements RunnableEntitys for each NvBlockDescriptor that
can be triggered by RTEEvents. Depending on the writing strategy different kind of
RTEEvents will be used for triggering the RunnableEntitys.

The configuration of the NvBlockSwComponentType (i.e. defining RTEEvents for
triggering the RunnableEntitys for the NvBlockDescriptors and mapping of
RTEEvents to tasks) is usually not in the responsibility of the SW-C developer. For
this reason the SW-C developer can provide the required writing strategy in the Swc-
ServiceDependency.serviceNeeds by using the attributes storeAtShutdown,
storeCyclic, cyclicWritingPeriod, storeEmergency and storeImmediate
(for more details see Software Component Template [2]).

[SWS_Rte_08086] d The RTE generator shall implement RunnableEntitys for each
NvBlockDescriptor of an NvBlockSwComponentType with the attribute sup-
portDirtyFlag set to true. c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08087] d The RunnableEntity of an NvBlockDescriptor shall be ac-
tivated by a TimingEvent if the attribute NvBlockNeeds.storeCyclic is set to
true. c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08088] d The RunnableEntity of an NvBlockDescriptor shall be ac-
tivated by a DataReceivedEvent if the attribute NvBlockNeeds.storeAtShut-
down or NvBlockNeeds.storeImmediate is set to true. c(SRS_Rte_00177,
SRS_Rte_00245)

[SWS_Rte_08111] d The RunnableEntity of an NvBlockDescriptor shall be ac-
tivated by a SwcModeSwitchEvent when the attribute NvBlockDescriptor.mod-
eSwitchEventTriggeredActivity exists. c(SRS_Rte_00177, SRS_Rte_00245)

[SWS_Rte_08089] d For NvBlockDescriptors which need to combine several writ-
ing strategies, i.e. several NvBlockNeeds attributes referring to a writing strategy
are set to true, the RunnableEntity of the NvBlockDescriptor shall be acti-
vated by one TimingEvent or DataReceivedEvent per writing strategy according
to the requirements [SWS_Rte_08087] and [SWS_Rte_08088]. c(SRS_Rte_00177,
SRS_Rte_00245)

[SWS_Rte_08090] d If no RteEventToTaskMapping is defined for DataRe-
ceivedEvents or SwcModeSwitchEvents which are responsible for activat-
ing RunnableEntitys of NvBlockDescriptors (see [SWS_Rte_08087] and
[SWS_Rte_08088]), the according activities shall be processed in the RTE code is-
suing the DataReceivedEvents or SwcModeSwitchEvents. For explicit communi-
cation this shall be done in the related Rte_Write function and for implicit commu-
nication in the task bodies where the preemption buffers are handled. For SwcMod-
eSwitchEvents using asynchronous mode switch procedure, this shall be done in
the related Rte_Switch function.

230 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: For SwcModeSwitchEvents a direct-call requires an asynchronous mode
switch.

c(SRS_Rte_00177, SRS_Rte_00245)

4.2.9.4 Data Consistency

A VariableDataPrototype contained in a NvBlockSwComponentType is ac-
cessed when SW-Cs read the value or write a new value. It is also accessed by the
NVM when read or write requests are processed by the NVM for the associated block.

The NVM does not access directly the VariableDataPrototypes, but shall use the
Rte_GetMirror, and Rte_SetMirror APIs specified in section 5.9.3

The RTE has to ensure the data consistency of the VariableDataPrototypes, with
any of the data consistency mechanisms defined in section 4.2.5. Depending on the
user’s input, an efficient scheduling with the use of implicit APIs should permit a low
resources (OS resources, RAM, and code) implementation.

4.3 Communication Paradigms

AUTOSAR supports two basic communication paradigms: Client-Server and Sender-
Receiver. AUTOSAR software-components communicate through well defined ports
and the behavior is statically defined by attributes. Some attributes are defined on
the modeling level and others are closely related to the network topology and must be
defined on the implementation level.

The RTE provides the implementation of these communication paradigms. For inter-
ECU communication the RTE uses the functionalities provided by COM. For inter-
Partition communication (within the same ECU) the RTE may use functionalities pro-
vided by the IOC module. For intra-Partition the RTE provides the functionality on its
own.

Both communication paradigms can be used together with data transformation which
is described in chapter 4.10.

With Sender-Receiver communication there are two main principles: Data Distribu-
tion and Event Distribution. When data is distributed, the last received value is of
interest (last-is-best semantics). When events are distributed the whole history of re-
ceived events is of interest, hence they must be queued on receiver side. Therefore
the software implementation policy can be queued or non queued. This is stated in the
swImplPolicy attribute of the SwDataDefProps, which can have the value queued
(corresponding to event distribution with a queue) or standard (corresponding to last-
is-best data distribution). If a data element has event semantics, the swImplPol-
icy is set to queued. The other possible values of this attribute correspond to data
semantics.

231 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07192] d The RTE generator shall reject the configuration when an r-
port is connected to an r-port or a p-port is connected to a p-port with an
AssemblySwConnectorc(SRS_Rte_00018)

For example, a require port (r-port) of a component typed by an AUTOSAR sender-
receiver interface can read data elements of this interface. A provide port (p-port) of
a component typed by an AUTOSAR sender-receiver interface can write data elements
of this interface.

[SWS_Rte_07006] d The RTE generator shall reject the configuration violating the
[constr_1032], so when an r-port is connected to a p-port or a p-port is con-
nected to an r-port with a DelegationSwConnector. c(SRS_Rte_00018)

[SWS_Rte_08767] d In case of functionality depending on attributes of ComSpecs the
RTE Generator shall consider only the ComSpecs defined in the context of Atomic-
SwComponentTypes or ParameterSwComponentTypes. c(SRS_Rte_00018)

4.3.1 Sender-Receiver

4.3.1.1 Introduction

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements that are sent by one component and received by one
or more components. A sender-receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply sent by the receiver is sent as
a separate sender-receiver communication.

A require port (r-port) of a component typed by an AUTOSAR sender-receiver interface
can read data elements of this interface. A provide port (p-port) of a component typed
by an AUTOSAR sender-receiver interface can write data elements of this interface.

4.3.1.2 Receive Modes

The RTE supports multiple receive modes for passing data to receivers. The four
possible receive modes are:

• “Implicit data read access” – when the receiver’s runnable executes it shall
have access to a “copy” of the data that remains unchanged during the execution
of the runnable.

[SWS_Rte_06000] d For data elements specified with implicit data read access,
the RTE shall make the receive data available to the runnable through the se-
mantics of a copy. c(SRS_Rte_00128, SRS_Rte_00019)

[SWS_Rte_06001] d For data elements specified with implicit data read ac-
cess the receive data shall not change during execution of the runnable. c
(SRS_Rte_00128)

232 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When “implicit data read access” is used the RTE is required to make the data
available as a “copy”. It is not necessarily required to use a unique copy for each
runnable. Thus the RTE may use a unique copy of the data for each runnable
entity or may, if several runnables (even from different components) need the
same data, share the same copy between runnables. Runnable entities can only
share a copy of the same data when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

[SWS_Rte_06004] d The RTE shall read the data elements specified with im-
plicit data read access before the associated runnable entity is invoked. c
(SRS_Rte_00128)

Composite data types shall be handled in the same way as primitive data types,
i.e. RTE shall make a “copy” available for the RunnableEntity.

[SWS_Rte_06003] d The “implicit data read access” receive mode shall be valid
for all categories of runnable entity (i.e. 1A, 1B and 2). c(SRS_Rte_00134)

• “Explicit data read access” – the RTE generator creates a non-blocking API
call to enable a receiver to poll (and read) data. This receive mode is an “explicit”
mode since an explicit API call is invoked by the receiver.

The explicit “data read access” receive mode is only valid for category 1B or 2
runnable entities [SRS_Rte_00134].

• “wake up of wait point” – the RTE generator creates a blocking API call that the
receiver invokes to read data.

[SWS_Rte_06002] d The “wake up of wait point” receive mode shall support a
time-out to prevent infinite blocking if no data is available. c(SRS_Rte_00109,
SRS_Rte_00069)

The “wake up of wait point” receive mode is inherently only valid for a category 2
runnable entity.

A category 2 runnable entity is required since the implementation may need to
suspend execution of the caller if no data is available.

• “activation of runnable entity” – the receiving runnable entity is invoked auto-
matically by the RTE whenever new data is available. To access the new data, the
runnable entity either has to use “implicit data read access” or “explicit data read
access”, i.e. invoke an Rte_IRead, Rte_Read, Rte_DRead or Rte_Receive
call, depending on the input configuration. This receive mode differs from “im-
plicit data read access” since the receiver is invoked by the RTE in response to a
DataReceivedEvent.

[SWS_Rte_06007] d The “activation of runnable entity” receive mode shall be
valid for category 1A, 1B and 2 runnable entities. c(SRS_Rte_00134)

The validity of receive modes in conjunction with different categories of runnable entity
is summarized in Table 4.10.

233 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Receive Mode Cat 1A Cat 1B Cat 2
Implicit Data Read Access Yes Yes Yes
Explicit Data Read Access No Yes Yes
Wake up of wait point No No Yes
Activation of runnable entity Yes Yes Yes

Table 4.10: Receive mode validity

The category of a runnable entity is not an inherent property but is instead determined
by the features of the runnable. Thus the presence of explicit API calls makes the
runnable at least category 1B and the presence of a WaitPoint forces the runnable
to be category 2.

4.3.1.2.1 Applicability

The different receive modes are not just used for receivers in sender-receiver commu-
nication. The same semantics are also applied in the following situations:

• Success feedback – The mechanism used to return transmission acknowledg-
ments to a component. See Section 5.2.6.9.

• Asynchronous client-server result – The mechanism used to return the result
of an asynchronous client-server call to a component. See Section 5.7.5.4.

4.3.1.2.2 Representation in the Software Component Template

The following list serves as a reference for how the RTE Generator determines the
Receive Mode from its input [SRS_Rte_00109]. Note that references to “the Vari-
ableDataPrototype” within this sub-section will implicitly mean “the Variable-
DataPrototype for which the API is being generated”.

• “wake up of wait point” – A VariableAccess in the dataReceivePointBy-
Value or dataReceivePointByArgument role references a VariableDat-
aPrototype and a WaitPoint references a DataReceivedEvent which in
turn references the same VariableDataPrototype.

• “activation of runnable entity” – a DataReceivedEvent references the Vari-
ableDataPrototype and a runnable entity to start when the data is received.

• “explicit data read access” – A VariableAccess in the dataReceive-
PointByValue or dataReceivePointByArgument role references the
VariableDataPrototype.

• “implicit data read access” – A VariableAccess in the dataReadAccess
role references the VariableDataPrototype.

234 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

It is possible to combine certain access methods; for example ‘activation of runnable
entity’ can be combined with ‘explicit’ or ‘implicit’ data read access (indeed, one of these
pairings is necessary to cause API generation to actually read the datum) but it is an
input error if ‘activation of runnable entity’ and ‘wakeup of wait point’ are combined (i.e.
a WaitPoint references a DataReceivedEvent that references a runnable entity).
It is also possible to specify both implicit and explicit data read access simultaneously.

For details of the semantics of “implicit data read access” and “explicit data read ac-
cess” see Section 4.3.1.5.

4.3.1.3 Multiple Data Elements

A sender-receiver interface can contain one or more data elements. The transmission
and reception of elements is independent – each data element, e.g. AUTOSAR signal,
can be considered to form a separate logical data channel between the “provide” port
and a “require” port.

[SWS_Rte_06008] d Each data element in a sender-receiver interface shall be sent
separately. c(SRS_Rte_00089)

Example 4.5

Consider an interface that has two data elements, speed and freq and that a compo-
nent template defines a provide port that is typed by the interface. The RTE generator
will then create two API calls; one to transmit speed and another to transmit freq.

Where it is important that multiple data elements are sent simultaneously they should
be combined into a composite data structure (Section 4.3.1.11.1). The sender then
creates an instance of the data structure which is filled with the required data before
the RTE is invoked to transmit the data.

4.3.1.3.1 Initial Values

[SWS_Rte_06009] d For each data element in an interface specified with data se-
mantics, the RTE shall support the initValue attribute. c(SRS_Rte_00108)

The initValue attribute is used to ensure that AUTOSAR software-components al-
ways access valid data even if no value has yet been received. This information is re-
quired for inter-ECU, inter-Partition, and intra-Partition communication. For inter-ECU
communication initial values can be handled by COM but for intra-ECU communication
RTE has to guarantee that initValue is handled.

In general, the specification of an initValue is mandatory for each data element
prototype with data semantics, see [SWS_Rte_07642]. If all senders and receivers
are located in the same partition, this restriction is relaxed, see [SWS_Rte_04501].

235 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06010] d The RTE shall use any specified initial value to prevent the
receiver performing calculations based on invalid (i.e. uninitialized) values when
the swImplPolicy is not queued and if the general initialization conditions in
[SWS_Rte_07046] are fulfilled. c(SRS_Rte_00107)

The above requirement ensures that RTE API calls return the initialized value until a
“real” value has been received, possibly via the communication service. The require-
ment does not apply when “event” semantics are used since the implied state change
when the event data is received will mean that the receiver will not start to process
invalid data and would therefore never see the initialized value.

[SWS_Rte_04500] d An initial value cannot be specified when the implementation pol-
icy is set to ’queued’ attribute is specified as true. c(SRS_Rte_00107)

For senders, an initial value is not used directly by the RTE (since an AUTOSAR SW-C
must supply a value using Rte_Send) however it may be needed to configure the com-
munication service - for example, an un-initialised signal can be transmitted if multiple
signals are mapped to a single frame and the communication service transmits the
whole frame when any contained signal is sent by the application. Note that it is not
the responsibility of the RTE generator to configure the communication service.

It is permitted for an initial value to be specified for either the sender or receiver. In this
case the same value is used for both sides of the communication.

[SWS_Rte_04501] d If in context of one partition a sender specifies an initial value and
the receiver does not (or vice versa) the same initial value is used for both sides of the
communication. c(SRS_Rte_00108)

It is also permitted for both sender and receiver to specify an initial value. In this case
it is defined that the receiver’s initial value is used by the RTE generator for both sides
of the communication.

[SWS_Rte_04502] d If in context of one partition both receiver and sender specify an
initial value the specification for the receiver takes priority. c(SRS_Rte_00108)

4.3.1.4 Multiple Receivers and Senders

Sender-receiver communication is not restricted to communication connections be-
tween a single sender and a single receiver. Instead, sender receiver communica-
tion connection can have multiple senders (’n:1’ communication) or multiple receivers
(’1:m’ communication) with the restrictions that multiple senders are not allowed for
mode switch notifications, see metamodel restriction [SWS_Rte_02670].

The RTE does not impose any co-ordination on senders – the behavior of senders is
independent of the behavior of other senders. For example, consider two senders A
and B that both transmit data to the same receiver (i.e. ’n:1’ communication). Trans-
missions by either sender can be made at any time and there is no requirement that
the senders co-ordinate their transmission. However, while the RTE does not impose

236 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

any co-ordination on the senders it does ensure that simultaneous transmissions do
not conflict.

In the same way that the RTE does not impose any co-ordination on senders there is no
co-ordination imposed on receivers. For example, consider two receivers P and Q that
both receive the same data transmitted by a single sender (i.e. ’1:m’ communication).
The RTE does not guarantee that multiple receivers see the data simultaneously even
when all receivers are on the same ECU.

4.3.1.5 Implicit and Explicit Data Reception and Transmission

[SWS_Rte_06011] d The RTE shall support ’explicit’ and ’implicit’ data recep-
tion and transmission. c(SRS_Rte_00019, SRS_Rte_00098, SRS_Rte_00129,
SRS_Rte_00128, SRS_Rte_00141)

Implicit data access transmission means that a runnable does not actively initiate the
reception or transmission of data. Instead, the required data is received automatically
when the runnable starts and is made available for other runnables at the earliest when
it terminates.

Explicit data reception and transmission means that a runnable employs an explicit
API call to send or receive certain data elements. Depending on the category of the
runnable and on the configuration of the according ports, these API calls can be either
blocking or non-blocking.

4.3.1.5.1 Implicit

Implicit Read

For the implicit reading of data, VariableAccesses aggregated with a dataReadAc-
cess role [SRS_Rte_00128], the data is made available when the runnable starts us-
ing the semantics of a copy operation and the RTE ensures that the ’copy’ will
not be modified until the runnable terminates.

If data transformation shall be executed for this data element, the data transformation
takes place after reception of the data from the Com stack and before start of the
runnable execution. (See [SWS_Rte_08570], [SWS_Rte_08108])

When a runnable R is started, the RTE reads all VariableDataPrototypes refer-
enced by a VariableAccess in the dataReadAccess role, if the data elements may
be changed by other runnables a copy is created that will be available to runnable R.
The runnable R can read the data element by using the RTE APIs for implicit read
(see the API description in Section 5.6.18). That way, the data is guaranteed not to
change (e.g. by write operations of other runnables) during the entire lifetime of R. If
several runnables (even from different components) need the data, they can share the
same buffer. This is only applicable when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

237 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note that this concept implies that the runnable does in fact terminate. Therefore, while
implicit read is allowed for category 1A and 1B runnable entities as well as category 2
only the former are guaranteed to have a finite execution time. A category 2 runnable
that runs forever will not see any updated data.

VariableAccess in the dataReadAccess role is only allowed for VariableDat-
aPrototypes with their swImplPolicy different from ’queued’ ([constr_2020]).

Implicit Write

Implicit writing, VariableAccesses aggregated with a dataWriteAccess role
[SRS_Rte_00129], is the opposite concept. VariableDataPrototypes referenced
by a VariableAccess in the dataWriteAccess role are sent by the RTE after the
runnable terminates. The runnable can write the data element by using the RTE APIs
for implicit write (see the API description in Sect. 5.6.19 and 5.6.20). The sending is
independent from the position in the execution flow in which the Rte_IWrite is per-
formed inside the Runnable. When performing several write accesses during runnable
execution to the same data element, only the last one will be recognized. Here we
have a last-is-best semantics.

If data transformation shall be executed for this data element, the data transformation
takes place after termination of the runnable and before sending the data to the Com
stack. (See [SWS_Rte_08571], [SWS_Rte_08109])

[SWS_Rte_08418] d The content of a preemption area specific buffer which is used
exclusively for an implicit write access to a VariableDataPrototype shall
be initialized by the generated RTE with a copy of the global buffer between the be-
ginning of the task and the execution of the first RunnableEntity with access to this
VariableDataPrototype in the task. c(SRS_Rte_00129)

Note:
[SWS_Rte_08418] ensures that no undefined values are written back to a preemp-
tion area specific buffer at runnable termination if a VariableDataPrototype is
referenced by a VariableAccess in the dataWriteAccess role and no RTE API
for implicit write of this VariableDataPrototype is called during an execution of the
Runnable. For the first entry to the preemption area the "global buffer" will contain
the initValue of the VariableDataPrototype (if no initValue is configured
then the value will depend on the initialization strategy of the startup code). For sec-
ond and subsequent entries the "global buffer" will contain the previously written value
(if any).

[SWS_Rte_03570] d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) with the semantics of a copy. c(SRS_Rte_00129)

[SWS_Rte_03571] d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) at the earliest when the runnable has terminated. c(SRS_Rte_00129)

238 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03572] d For VariableAccesses in the dataWriteAccess role several
accesses to the same VariableDataPrototype performed inside a runnable during
one runnable execution shall lead to only one transmission of the VariableDataPro-
totype. c(SRS_Rte_00129)

[SWS_Rte_03573] d If several VariableAccesses in the dataWriteAccess role
referencing the same VariableDataPrototype are performed inside a runnable
during the runnable execution, the RTE shall use the last value written. (last-is-best
semantics) c(SRS_Rte_00129)

A VariableAccess in the dataWriteAccess role is only sensible for runnable enti-
ties that are guaranteed to terminate, i.e. category 1A and 1B. If it is used for a category
2 runnable which does not terminate then no data write-back will occur.

[SWS_Rte_03574] d VariableAccess in the dataWriteAccess role shall be valid
for all categories of runnable entity. c(SRS_Rte_00129, SRS_Rte_00134)

To get common behavior in RTEs from different suppliers further requirements
defining the semantic of implicit communication exist:

Please note that the behavior of Implicit Communication can be adjusted with ECU
Configuration. For further information see section 8.7.

Implicit Communication Behavior in case of incoherent implicit data access

[SWS_Rte_03954] d The RTE generator shall use exactly one buffer to contain data
copies of the same VariableDataPrototype per preemption area for the im-
plementation of the copy semantic of incoherent implicit data access. c
(SRS_Rte_00128, SRS_Rte_00129, SRS_Rte_00134)

Requirement [SWS_Rte_03954] means that all runnable entities mapped to tasks of a
preemption area with an incoherent implicit read access or incoher-
ent implicit write access access the same buffers.

[SWS_Rte_03598] d For implicit communication, the RTE shall provide a single shared
read/write buffer when no runnable entity mapped to tasks of the preemption area
has VariableAccess in both incoherent implicit read access and inco-
herent implicit write access referencing the same VariableDataProto-
type. c(SRS_Rte_00128, SRS_Rte_00129)

If either the sender or the receiver uses a data element with status and the
other uses a data element without status, a data element with status
can be implemented and casted in the component data structure when a pointer to a
data element without status is needed.

[SWS_Rte_03955] d For implicit communication, in case that dedicated RPortPro-
totype and PPortPrototype are used, separate read and write buffers shall be
used when at least one RunnableEntity mapped to tasks of the preemption
area has implicit read access and implicit write access referencing
the same VariableDataPrototype. c(SRS_Rte_00128, SRS_Rte_00129)

239 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In the case that a RunnableEntity defines dataWriteAccess and dataReadAc-
cess to the same VariableDataPrototype in the context of a PRPortPrototype
[SWS_Rte_03955] does not apply. In such configuration the writing RunnableEntity
immediately sees its own updates of the data values even before the RunnableEn-
tity has terminated.

[SWS_Rte_08408] d If a RunnableEntity has both dataWriteAccess and
dataReadAccess to a VariableDataPrototype in the context of a PRPort-
Prototype the result of the write access shall be immediately visible to subse-
quent read accesses from within the same RunnableEntity. c(SRS_Rte_00128,
SRS_Rte_00129)

Please note that the content of the write buffers are copied into the read buffer of the
preemption area after the RunnableEntity with the write access terminates (see
[SWS_Rte_07041]). Therefore the write buffer might be implemented as temporary
buffer.

[SWS_Rte_03599] d For implicit communication with incoherent implicit data
access all readers within a preemption area shall access the same buffer. c
(SRS_Rte_00128)

[SWS_Rte_03953] d For implicit communication with incoherent implicit data
access all writers within a preemption area shall access the same buffer. c
(SRS_Rte_00129)

The content of a shared buffer (see [SWS_Rte_03598]) is not guaranteed to stay con-
stant during the whole task since a writer will change the shared copy and hence
readers mapped in the task after the writer will access the updated copy. When buffers
are shared, written data is visible to other RunnableEntitys within the same execu-
tion of the task. However since no runnable within the task will both read and write the
same buffer ([SWS_Rte_03598] and [SWS_Rte_03955]) consistency within a runnable
is ensured.

When separate buffers used for implicit communication (see [SWS_Rte_03955]) any
data written by a runnable is not visible (to either other RunnableEntitys or to the
writing runnable) until the data is written back after the runnable has terminated.

Implicit Communication Behavior in case of coherent implicit data access

[SWS_Rte_07062] d The RTE generator shall use exactly one buffer to contain data
copies of the same VariableDataPrototype per coherency group for the im-
plementation of the copy semantic of coherent implicit data access. c
(SRS_Rte_00128, SRS_Rte_00129, SRS_Rte_00134)

Requirement [SWS_Rte_07062] means that all runnable entities with coherent im-
plicit data accesses access the same buffers. Please note that it is only sup-
ported to group implicit read accesses or implicit write accesses of
RunnableEntitys executed in the same OS Task. Therefore a coherent im-
plicit data access results in a task local buffer as it was specified in previous

240 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AUTOSAR releases. With this means a backward compatible bahavior of the RTE can
be ensured.

Please note that [SWS_Rte_03955] applies as well for coherent implicit data access.
[SWS_Rte_07062] includes already that a single shared read/write buffer shall be used
when no runnable entity has coherent implicit read access and coherent
implicit write access belonging to the same coherency group.

Implicit Communication buffer handling

The preemption area specific buffer should not be updated or made available more
often than required. The following requirements detail how to obtain that for read and
write access.

[SWS_Rte_03956] d The content of a preemption area specific buffer used for an
incoherent implicit read access to a data element shall be filled with actual
data by a copy action between the beginning of the task and the execution of the first
RunnableEntity with access to this data element in the task. c(SRS_Rte_00128)

[SWS_Rte_07020] d If the RteImmediateBufferUpdate = TRUE is configured for
an incoherent implicit read access to a data element the content of a pre-
emption area specific buffer used for that VariableAccess shall be filled with ac-
tual data by a copy action immediately before the RunnableEntity with the related
implicit read access to the data element starts. c(SRS_Rte_00128)

[SWS_Rte_07041] d The content of a separate write buffer (see [SWS_Rte_03955])
modified by an incoherent implicit write access of a RunnableEntity
shall be made available to RunnableEntitys using an implicit read access
allocated in the same preemption area immediately after the execution of the
RunnableEntity with the related implicit write access to the data element.
c(SRS_Rte_00129)

[SWS_Rte_03957] d The content of a preemption area specific buffer modified by
a incoherent implicit write access in one task shall be made available to
RunnableEntitys using an implicit read access allocated in other preemp-
tion areas at latest after the execution of the last RunnableEntity mapped to the
task. c(SRS_Rte_00129)

[SWS_Rte_07021] d If the RteImmediateBufferUpdate = TRUE is configured for
an incoherent implicit write access the content of a preemption area
specific buffer shall be made available to RunnableEntitys using an implicit
read access allocated in other preemption areas immediately after the execu-
tion of the RunnableEntity with the related implicit write access to the data
element. c(SRS_Rte_00129)

Note:
It’s the semantic of implicit communication that a VariableAccess in the
dataWriteAccess role is interpreted as writing the whole dataElement.

Explicit Schedule Points defined by RteOsSchedulePoints are placed be-
tween RunnableEntitys after the data written with implicit write access by the

241 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RunnableEntity are propagated to other RunnableEntitys and before the
preemption area specific buffer used for a implicit read access of the suc-
cessor RunnableEntity are filled with actual data by a copy action according
[SWS_Rte_07020]. This ensures that the data produced by one RunnableEn-
tity is propagated before RunnableEntitys assigned to other Os Tasks are ac-
tivated due to Task scheduling caused by the explicit Schedule Point. See as well
[SWS_Rte_07042] and [SWS_Rte_07043].

The requirements regarding buffer handling for implicit communication do not apply in
case of filters. Buffer handling of RTE for filters is specified in chapter 4.3.1.9 (require-
ments: [SWS_Rte_08077], [SWS_Rte_08078] and [SWS_Rte_08079]).

Implicit Communication buffer handling for coherent implicit data access

[SWS_Rte_07063] d The content of a coherency group specific buffer used for an
coherent implicit read access to one or more data elements shall be filled
with actual data by a copy action between the beginning of the task and the execution
of the first RunnableEntity in the task with a coherent implicit read access
belonging to the coherency group. c(SRS_Rte_00128)

[SWS_Rte_07064] d If the RteImmediateBufferUpdate = TRUE is configured for
coherent implicit read accesses the content of a coherency group spe-
cific buffer used for these VariableAccesses shall be filled with actual data by a
copy action immediately before the first RunnableEntity in the task with a co-
herent implicit read access belonging to the coherency group starts. c
(SRS_Rte_00128)

[SWS_Rte_07065] d The content of a separate write buffer (see [SWS_Rte_03955])
modified by a coherent implicit write access of a RunnableEntity shall
be made available to RunnableEntitys using a coherent implicit read ac-
cess belonging to the same coherency group immediately after the execution of
the RunnableEntity with the related coherent implicit write access. c
(SRS_Rte_00129)

[SWS_Rte_07066] d The content of a coherency group specific buffer modified
by coherent implicit write accesses in one task shall be made available to
other RunnableEntitys at earliest after the execution of the last RunnableEntity
with a coherent implicit write access belonging to this coherency group.
c(SRS_Rte_00129)

[SWS_Rte_07067] d The content of a coherency group specific buffer modified
by coherent implicit write accesses in one task shall be made available to
other RunnableEntitys at latest after the execution of the last RunnableEntity
mapped to the task. c(SRS_Rte_00129)

[SWS_Rte_07068] d If the RteImmediateBufferUpdate = TRUE is configured for a
coherent implicit write accesses the content of a coherency group spe-
cific buffer modified by coherent implicit write accesses in one task shall be
made available to other readers not belonging to this coherency group immediately

242 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

after the execution of the last RunnableEntity with a coherent implicit write
access belonging to this coherency group c(SRS_Rte_00129)

Handling of ConsistencyNeeds

ConsistencyNeeds are not directly processed by the RTE Generator but provid-
ing an important information for the correct configuration of the RTE and OS with
respect to preemption, RteEventToTaskMapping and RteImplicitCommunica-
tion. Therefore following constraints apply:

[SWS_Rte_CONSTR_09001] Whole DataPrototypeGroup in role dpgRe-
quiresCoherency shall be propagated coherently d

All RunnableEntitys in a RunnableEntityGroup with dataWriteAccess to
data belonging to the same DataPrototypeGroup in the role dpgRequiresCo-
herency shall

• Be mapped to the same OS Task

AND shall

• A) either be scheduled in a way that these RunnableEntitys can not be inter-
rupted by RunnableEntitys with dataReadAccess to (more than one) data
belonging to the DataPrototypeGroup.

• B) or the RteImplicitCommunication shall be configured to ensure a coher-
ent propagation (RteCoherentAccess == true) for reading RunnableEntitys
4.

c()

Please note that the interruption of RunnableEntitys and between RunnableEn-
titys depends from many factors like the configuration of the OS and the configura-
tion of the RTE (e.g. RteOsSchedulePoint).

[SWS_Rte_CONSTR_09002] The whole DataPrototypeGroup shall be read sta-
ble for the whole RunnableEntityGroup in the role regRequiresStability
d.

All RunnableEntitys with dataReadAccess to data belonging to the same Dat-
aPrototypeGroup and which are belonging to the same RunnableEntityGroup
in the role regRequiresStability shall

• either be configured in a way that the chain of RunnableEntitys with
dataReadAccess to the data of the DataPrototypeGroup can not be inter-
rupted by any of the RunnableEntity(s) with dataWriteAccess to data of
the DataPrototypeGroup

4RunnableEntitys with have as well dataWriteAccess to data belonging to the DataProto-
typeGroup are excluded because inside the calculation chain the latest data values are visible

243 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• or the RteImplicitCommunication shall be configured to ensure stable data
values (RteCoherentAccess == true) for reading RunnableEntitys belong-
ing to the RunnableEntityGroup.

c()

Examples

Following examples shall illustrate how ConsistencyNeeds can be implemented with
either scheduling or coherency groups.

Example 4.6

Common definition of PortInterfaces

In order to simplify the examples all PortInterfaces are of type Sender-
ReceiverInterface and contain exactly one VariableDataPrototypewith iden-
tical shortName. For example SenderReceiverInterface "A" contains Vari-
ableDataPrototype "A"

Additionally the shortName of the SenderReceiverInterface is identical to the
shortName of the PortPrototype. For example PPortPrototype "A" is typed by
SenderReceiverInterface "A".

Example 4.7

Stability need for received data

Setup of SWCs

ApplicationSwComponentType "ASWC_A" with the PPortPrototypes: "A","B"

and the RunnableEntity "ASWC_A_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_A_RUN1_A_A" referencing VariableDataPrototype "A" in
PPortPrototype "A"

• "DWP_ASWC_A_RUN1_B_B" referencing VariableDataPrototype "B" in
PPortPrototype "B"

ApplicationSwComponentType "ASWC_B" with the RPortPrototypes: "A","B"

and the RunnableEntity "ASWC_B_RUN1" which in turn has dataReadAccesses

• "DRP_ASWC_B_RUN1_A_A" referencing VariableDataPrototype "A" in
RPortPrototype "A"

• "DRP_ASWC_B_RUN1_B_B" referencing VariableDataPrototype "B" in
RPortPrototype "B"

244 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ApplicationSwComponentType "ASWC_C" with the RPortPrototypes: "A","B"

and the RunnableEntity "ASWC_C_RUN1" which in turn has dataReadAccesses

• "DRP_ASWC_C_RUN1_A_A" referencing VariableDataPrototype "A" in
RPortPrototype "A"

• "DRP_ASWC_C_RUN1_B_B" referencing VariableDataPrototype "B" in
RPortPrototype "B"

The ConsistencyNeeds "CN_BC" defines a RunnableEntityGroup in the role
regRequiresStability with the members "ASWC_B_RUN1", "ASWC_C_RUN1"
In addition the ConsistencyNeeds "CN_BC" defines a DataPrototypeGroup
in the role dpgDoesNotRequireCoherency to the VariableDataPrototypes
ASWC_B.A.A.A, ASWC_C.A.A.A, ASWC_B.B.B.B and ASWC_C.B.B.B The com-
plete example is listed as ARXML in Appendix F.2.

Assuming now a configuration:

ASWC_A_RUN1 is mapped to OsTask T10MS

ASWC_B_RUN1 is mapped to OsTask T100MS

ASWC_C_RUN1 is mapped to OsTask T100MS

where T10MS can NOT interrupt T100MS during the execution of ASWC_B_RUN1 and
ASWC_C_RUN1. This configuration fulfills [SWS_Rte_CONSTR_09002] with respect to
"CN_BC" due the scheduling conditions. Since the producer of "A" and "B" can NOT
interrupt the RunnableEntitys with the dataReadAccesses it is guaranteed that
the value for all accesses of ASWC_B_RUN1 and ASWC_C_RUN1 to the same data is
identical (and therefore stable) during one execution of OsTask T100MS.

Assuming now a configuration:

ASWC_A_RUN1 is mapped to OsTask T10MS

ASWC_B_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_C_RUN1 is mapped to OsTask T100MS

where T10MS can interrupt T100MS after the execution of ASWC_B_RUN1. With-
out further means this configuration would violate [SWS_Rte_CONSTR_09002] due
the scheduling conditions. Since the producer of "A" and "B" can interrupt the
RunnableEntitys with the dataReadAccesse it is not guaranteed that the value
for all accesses of ASWC_B_RUN1 and ASWC_C_RUN1 to the same data is kept stable
during one execution of OsTask T100MS.

With the additional configuration RteImplicitCommunication "CN_BC_A":

• RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_A_A"

245 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_A_A"

• RteCoherentAccess = true

and

RteImplicitCommunication "CN_BC_B":

• RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_B_B"

• RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_B_B"

• RteCoherentAccess = true

"ASWC_B_RUN1_A_A" and "ASWC_C_RUN1_A_A" as well as "ASWC_B_RUN1_B_B"
and "ASWC_C_RUN1_B_B" are in the same coherency group. Therefore the read
data values for "A" and "B" are from the same age in one execution of OsTask
T100MS for ASWC_B_RUN1 and ASWC_C_RUN1.

Please note, since it is not requested that data "A" and "B" are communicated coher-
ently the setup of RteImplicitCommunication for "A" and "B" can be handled
independently from each other. In particular if there a further RunnableEntitys with
dataReadAccesses to "A" or "B" mapped to the OsTask T100MS the buffers for
"A" and "B" can be loaded at different points in the execution sequence. Further on
it is not requested that "A" and "B" is produced in the same recurrence as it is show
in this example.

Example 4.8

Coherency need and stability need for received data

Setup of SWCs

ApplicationSwComponentType "ASWC_H" with the PPortPrototype: "X"

and the RunnableEntity "ASWC_H_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_H_RUN1_X_X" referencing VariableDataPrototype "X" in
PPortPrototype "X"

ApplicationSwComponentType "ASWC_I" with the RPortPrototype: "Y"

and the RunnableEntity "ASWC_I_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_I_RUN1_Y_Y" referencing VariableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_J" with the RPortPrototypes: "X","Y"

246 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

and the RunnableEntity "ASWC_J_RUN1" which in turn has following
dataReadAccesses

• "DRP_ASWC_J_RUN1_X_X" referencing VariableDataPrototype "X" in
RPortPrototype "X"

• "DRP_ASWC_J_RUN1_Y_Y" referencing VariableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_K" with the RPortPrototype: "X"

and the RunnableEntity "ASWC_K_RUN1" which in turn has following
dataReadAccesses

• "DRP_ASWC_K_RUN1_X_X" referencing VariableDataPrototype "X" in
RPortPrototype "X"

The ConsistencyNeeds "CN_J" defines a RunnableEntityGroup in the role
regDoesNotRequireStability with the member "ASWC_I_RUN1" In addi-
tion the ConsistencyNeeds "CN_J" defines a DataPrototypeGroup in the
role dpgRequiresCoherency to the VariableDataPrototypes ASWC_J.X.X.X,
ASWC_K.Y.Y.Y

The ConsistencyNeeds "CN_JK" defines a RunnableEntityGroup in the role
regRequiresStability with the member "ASWC_I_RUN1", "ASWC_J_RUN1"
In addition the ConsistencyNeeds "CN_JK" defines a DataPrototypeGroup
in the role dpgDoesNotRequireCoherency to the VariableDataPrototypes
ASWC_J.X.X.X, ASWC_K.X.X.X

Assuming now a configuration:

ASWC_H_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_I_RUN1 is mapped to OsTask T100MS

ASWC_J_RUN1 is mapped to OsTask T10MS

ASWC_K_RUN1 is mapped to OsTask T10MS

where T10MS can interrupt T100MS Without further means this configuration would
violate [SWS_Rte_CONSTR_09001] with respect to "CN_J" due to the scheduling
conditions. Since the consumer of "X" and "Y" can interrupt the RunnableEntitys
witch are producing "X" and "Y"it is not guaranteed that the value for all accesses of
ASWC_J_RUN1 and ASWC_K_RUN1 returning data of the same age during one execu-
tion of OsTask T10MS. The ConsistencyNeeds "CN_JK" is already fulfilled since
the consumers "ASWC_J_RUN1" and "ASWC_K_RUN1" can’t be interrupted by the
producing RunnableEntity ASWC_H_RUN1

With the additional configuration RteImplicitCommunication "CN_J":

247 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• RteVariableWriteAccessRef referencing "DWP_ASWC_H_RUN1_X_X"

• RteVariableReadAccessRef referencing "DWP_ASWC_I_RUN1_Y_Y"

• RteCoherentAccess = true

the write accesses to "X" and "Y" are in the same coherency group. Due to this
"CN_J" is fulfilled since the propagation of "X" and "Y" is delayed until the termination
of ASWC_I_RUN1.

4.3.1.5.2 Explicit

The behavior of explicit reception depends on the category of the runnable and on the
configuration of the according ports.

An explicit API call can be either non-blocking or blocking. If the call is non-blocking
(i.e. there is a VariableAccess in the dataReceivePointByValue or dataRe-
ceivePointByArgument role referencing the VariableDataPrototype for which
the API is being generated, but no WaitPoint referencing a DataReceivedEvent
which references the VariableDataPrototype for which the API is being gener-
ated), the API call immediately returns the next value to be read and, if the communi-
cation is queued (event reception), it removes the data from the receiver-side queue,
see Section 4.3.1.10

[SWS_Rte_06012] d A non-blocking RTE API “read” call shall indicate if no data is
available. c(SRS_Rte_00109)

In contrast, a blocking call (i.e. the VariableDataPrototype, referenced by a
VariableAccess in the role dataReceivePointByArgument, and for which the
API is being generated, is referenced by a DataReceivedEvent which is itself refer-
enced by a WaitPoint) will suspend execution of the caller until new data arrives (or
a timeout occurs) at the according port. When new data is received, the RTE resumes
the execution of the waiting runnable. ([SRS_Rte_00092])

To prevent infinite waiting, a blocking RTE API call can have a timeout applied. The RTE
monitors the timeout and if it expires without data being received returns a particular
error status.

[SWS_Rte_06013] d A blocking RTE API “read” call shall indicate the expiry of a time-
out. c(SRS_Rte_00069)

The “timeout expired” indication also indicates that no data was received before the
timeout expired.

Blocking reception of data (“wake up of wait point” receive mode as described in Sec-
tion 4.3.1.2) is only applicable for category 2 runnables whereas non-blocking reception
(“explicit data read access” receive mode) can be employed by runnables of category
2 or 1B. Neither blocking nor non-blocking explicit reception is applicable for category

248 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1A runnable because they must not invoke functions with unknown execution time (see
table 4.10).

[SWS_Rte_06016] d The RTE API call for explicit sending (VariableAccessin the
dataSendPoint role, [SRS_Rte_00098]) shall be non-blocking. c(SRS_Rte_00098)

Using this API call, the runnable can explicitly send new values of the VariableDat-
aPrototype.

Explicit writing is valid for runnables of category 1b and 2 only. Explicit writing is not al-
lowed for a category 1A runnable since these require API calls with constant execution
time (i.e. macros).

Although the API call for explicit sending is non-blocking, it is possible for a cate-
gory 2 runnable to block waiting for a notification whether the (explicit) send oper-
ation was successful. This is specified by the AcknowledgementRequest attribute
and occurs by a separate API call Rte_Feedback. If the feedback method is
’wake_up_of_wait_point’, the runnable will block and be resumed by the RTE either
when a positive or negative acknowledgment arrives or when the timeout associated
with the WaitPoint expires.

4.3.1.5.3 Concepts of data access

Tables 4.11 and 4.12 summarize the characteristics of implicit versus explicit data re-
ception and transmission.

Implicit Read Explicit Read
Receiving of data element values is
performed only once when runnable
starts

Runnable decides when and how often
a data element value is received

Values of data elements do not change
while runnable is running.

Runnable can always decide to receive
the latest value

Several API calls to the same signal
always yield the same data element
value

Several API calls to the same signal
may yield different data element values

Runnable must terminate (all cate-
gories)

Runnable is of cat. 1B or 2

Table 4.11: Implicit vs. explicit read

249 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Implicit Write Explicit Write
Sending of data element values is only
done once after runnable returns

Runnable can decide when sending of
data element values is done via the
API call

Several usages of the API call inside
the runnable cause only one data ele-
ment transmission

Several usages of the API call inside
the runnable cause several transmis-
sions of the data element content. (De-
pending on the behavior of COM, the
number of API calls and the number
of transmissions are not necessarily
equal.)

Runnable must terminate (all cate-
gories)

Runnable is cat. 1B or 2

Table 4.12: Implicit vs. explicit write

4.3.1.6 Transmission Acknowledgement

When TransmissionAcknowledgementRequest is specified, the RTE will inform
the sending component if the data has been sent correctly or not. Note that a posi-
tive transmission acknowledgement gives no guaranty that the data is actually sent on
a physical bus nor that it has been received correctly by the corresponding receiver
AUTOSAR software-component. Instead the transmission acknowledgement just con-
firms that the data was accepted for transmission and subsequent transmissions will
not override the sent data.

[SWS_Rte_05504] d The RTE shall support the use of TransmissionAcknowl-
edgementRequest independently for each data item of an AUTOSAR software-
component’s AUTOSAR interface. c(SRS_Rte_00122)

[SWS_Rte_08076] d The RTE generator shall reject configurations violating [con-
str_3074] in System Template [8]. c(SRS_Rte_00122, SRS_Rte_00018)

[SWS_Rte_07927] d The RTE generator shall reject configurations violating [con-
str_1256] in Software Component Template [2]. c(SRS_Rte_00122, SRS_Rte_00018)

The result of the feedback can be collected using “wake up of wait point”, “explicit data
read access”, “implicit data read access” or “activation of runnable entity”.

The TransmissionAcknowledgementRequest allows to specify a time-out.

[SWS_Rte_03754] d If TransmissionAcknowledgementRequest is specified, the
RTE shall ensure that time-out monitoring is performed, regardless of the receive mode
of the acknowledgment. c(SRS_Rte_00069, SRS_Rte_00122)

For inter-ECU communication, AUTOSAR COM provides the necessary functionality,
for intra-ECU communication, the RTE has to implement the time-out monitoring.

250 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

If a WaitPoint is specified to collect the acknowledgment, two time-out values have
to be specified, one for the TransmissionAcknowledgementRequest and one for
the WaitPoint.

[SWS_Rte_03755] d The RTE generator shall reject the configuration, violating the
[constr_2033]. c(SRS_Rte_00018) The DataSendCompletedEvent associated with
the VariableAccess in the dataSendPoint role for a VariableDataPrototype
shall indicate that the transmission was successful or that the transmission was not
successful. The status information about the success of the transmission shall be
available as the return value of the generated RTE API call.

[SWS_Rte_03756] d For each transmission of a VariableDataPrototype only one
acknowledgment shall be passed to the sending component by the RTE. The acknowl-
edgment indicates either that the transmission was successful or that the transmission
was not successful. c(SRS_Rte_00122)

[SWS_Rte_03757] d The status information about the success or failure of the trans-
mission shall be available as the return value of the RTE API call to retrieve the ac-
knowledgment. c(SRS_Rte_00122)

[SWS_Rte_03604] d The status information about the success or failure of the trans-
mission shall be buffered with last-is-best semantics. When a data item is sent, the
status information is reset. c(SRS_Rte_00122)

[SWS_Rte_03604] implies that once the DataSendCompletedEvent has occurred,
repeated API calls to retrieve the acknowledgment shall always return the same result
until the next data item is sent.

[SWS_Rte_03758] d If the time-out value of the TransmissionAcknowledgemen-
tRequest is 0, no time-out monitoring shall be performed. c(SRS_Rte_00069,
SRS_Rte_00122)

4.3.1.7 Communication Time-out

When sender-receiver communication is performed using some physical network there
is a chance this communication may fail and the receiver does not get an update of data
(in time or at all). To allow the receiver of a data element to react appropriately to
such a condition the SW-C template allows the specification of a time-out which the
infrastructure shall monitor and indicate to the interested software components.

A data element is the actual information exchanged in case of sender-receiver commu-
nication. In the COM specification this is represented by a ComSignal. In the SW-C
template a data element is represented by the instance of a VariableDataProto-
type.

When present, the aliveTimeout attribute5 enables the monitoring of the timely re-
ception of the data element with data semantics transmitted over the network.

5This attribute is called “LIVELIHOOD” in the VFB specification

251 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08061] d If the aliveTimeout attribute is present the RTE shall
provide the RTE COM Rx time-out callback (Rte_COMCbkRxTOut_<sg> or
Rte_COMCbkRxTOut_<sn>). c(SRS_Rte_00147)

The monitoring functionality is provided by the COM module, the RTE transports the
event of reception time-outs to software components as “data element outdated”. The
software components can either subscribe to that event (activation of runnable entity)
or get that situation passed by the implicit and explicit status information (using API
calls).

[SWS_Rte_08062] d If COM indicates a reception time-out (via RTE COM Rx time-out
callback) the RTE shall raise an event of reception time-out to software components as
”data element outdated”. c(SRS_Rte_00147)

[SWS_Rte_05021] d The RTE shall have time-out monitoring disabled for communi-
cations local to the partition, independently of the presence of aliveTimeout. c
(SRS_Rte_00147)

In such case, The RTE does not raise events of reception time-out to software compo-
nents.

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-
out notification is intended as pure error reporting.

[SWS_Rte_02710] d If aliveTimeout is present, and the communication is between
different partitions of the same ECU, time-out monitoring is disabled. Instead, a time-
out notification of the receiver will occur immediately, when the partition of the sender
is stopped and the last correctly received value shall be provided to the software com-
ponents. c(SRS_Rte_00147)

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-
out notification is intended as pure error reporting.

[SWS_Rte_03759] d If the aliveTimeout attribute is 0, no time-out monitoring shall
be performed. c(SRS_Rte_00069, SRS_Rte_00147)

[SWS_Rte_08004] d If a signal is received, even if the signal is marked as invalid, the
time-out for the same signal shall be restarted. c(SRS_Rte_00078, SRS_Rte_00147)

Note: time-out detection may already be implemented by COM. Nevertheless this is
the expected behavior towards the software components.

The time-out support (called “deadline monitoring” in COM) provided by COM has
some restrictions which have to be respected when using this mechanism. Since the
COM module is configured based on the System Description the restrictions mainly
arise from the data element to I-PDU mapping. This already has to be considered
when developing the System Description and the RTE Generator can only provide
warnings when inconsistencies are detected. Therefore the RTE Generator needs to
have access to the configuration information of COM.

252 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In case time-out is enabled on a data element with update bit, there shall
be a separate time-out monitoring for each data element with an update bit
[SWS_Com_00292].

There shall be an I-PDU based time-out for data elements without an update bit
[SWS_Com_00290]. For all data elements without update bits within the same I-PDU,
the smallest configured time-out of the associated data elements is chosen as time-out
for the I-PDU [SWS_Com_00291]. The notification from COM to RTE is performed per
data element.

In case one data element coming from COM needs to be distributed to several
AUTOSAR software-components the AUTOSAR Software Component Template allows
to configure different aliveTimeout values at each Port. In this case the RTE has to
ensure that the time-out notifications for each port will occur according to the configured
aliveTimeout value in the NonqueuedReceiverComSpec.

[SWS_Rte_08103] d The RTE shall pass time-out notifications to the SW-Cs accord-
ing to the configured aliveTimeout values in the NonqueuedReceiverComSpec.
Depending on the configuration of the COM module following rules shall apply:

• ComSignal.ComTimeout/ComSignalGroup.ComTimeout configured to 0: No
time-out notifications shall occur.

• ComSignal.ComTimeout/ComSignalGroup.ComTimeout not configured to 0
(ComSignals/ComSignalGroups with update bits): Time-out notifications shall
occur according to the greatest multiple of the ComSignal.ComTimeout/Com-
SignalGroup.ComTimeout value of the associated ComSignal/ComSignal-
Group lower than or equal to the aliveTimeout value in the Nonqueue-
dReceiverComSpec.

• I-PDU based time-out not equal to 0 (ComSignals/ComSignalGroups without
update bits): Time-out notifications shall occur according to the greatest multiple
of the I-PDU based time-out value lower than or equal to the aliveTimeout
value in the NonqueuedReceiverComSpec.

c(SRS_Rte_00147)

Following example illustrates how the value of the ComTimeout parameter of a Com-
Signal is derived and the time-out monitoring in RTE is performed in case one data
element coming from COM needs to be distributed to several SW-Cs.

Consider 3 SW-Cs receiving same data element with different aliveTimeout values
specified in the NonqueuedReceiverComSpec:

• SW-C1: aliveTimeout = 500ms

• SW-C2: aliveTimeout = 0ms (or not specified)

• SW-C3: aliveTimeout = 1200ms

The derived ComTimeout value of the ComSignal the data element is mapped to
will be in this case 500ms. I.e. the smallest aliveTimeout value of the associated

253 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SW-Cs (This value must be bigger or equal to the main function cycle of the COM
module).

The RTE will pass time-out notifications to the 3 SW-Cs in case of a reception time-out
indicated by COM as follows:

• SW-C1: directly

• SW-C2: no time-out notification

• SW-C3: after 500ms (i.e. the RTE has to count internally further 500ms before
notifying SW-C3)

[SWS_Rte_08104] d The RTE shall implement a replacement strategy according to
the handleTimeoutType attribute defined by the NonqueuedReceiverComSpec in
each receiving SWC:

• handleTimeoutType configured to none: SWC observes the latest received
value.

• handleTimeoutType configured to replace: SWC observes the Nonqueue-
dReceiverComSpec’s initValue.

c(SRS_Rte_00147)

Note: In the case of receiving SWCs with different handleTimeout-
Type values it’s expected that the related ComSignal/ComSignalGroup has
attribute ComSignal.ComRxDataTimeoutAction/ComSignalGroup.ComRxData-
TimeoutAction equal to NONE to ensure that the RTE always has access to the
last received value.

4.3.1.8 Data Element Invalidation

The Software Component template allows to specify whether a data element, de-
fined in an AUTOSAR Interface, can be invalidated by the sender. The communication
infrastructure shall provide means to set a data element to invalid and also indicate an
invalid data element to the receiving software components. This functionality is called
“data element invalidation”. For an overview see figure 4.45.

[SWS_Rte_05024] d If the handleInvalid attribute of the InvalidationPolicy
(when present) is set to keep, replace or externalReplacement the invalidation
support for this dataElement is enabled on sender side. The actual value used to
represent the invalid data element shall be specified in the Data Semantics part of the
data element definition defined in invalidValue6. c(SRS_Rte_00078)

For data element invalidation, it is intended that the Rte_Invalidate() API is used
by the software component. Nevertheless, passing the invalid value as a parameter
of the Rte_Write() API may intentionally occur. In this case, the handleInvalid

6When InvalidationPolicy is set to keep, replace or externalReplacement but there is
no invalidValue specified it is considered as an invalid configuration.

254 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

is only allowed to be set to the value dontInvalidate in order to avoid undesired
behaviour and additional effort in the RTE implementation (see [TPS_SWCT_01646]
and [constr_1390]).

[SWS_Rte_05032] d On receiver side the handleInvalid attribute of the associated
InvalidationPolicy specifies how to handle the reception of the invalid value. c
(SRS_Rte_00078)

Data element invalidation is only supported for data elements with a swIm-
plPolicy different from ’queued’. Configurations violating this constraint are rejected
by the RTE generator, see [SWS_Rte_06727].

[SWS_Rte_06727] d The RTE generator shall reject configurations which are violating
[constr_1219]. c(SRS_Rte_00078)

The API to set a dataElement to invalid shall be provided to the RunnableEntitys
on data element level.

In case an invalidated data element is received a software component can be notified
using the activation of runnable entity. If an invalidated data element is read by the
SW-C the invalid status shall be indicated in the status code of the API.

[SWS_Rte_08005] d If the initValue of an unqueued data element equals the
invalidValue and handleInvalid is set to keep and the handleNever-
Received is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidValue. c
(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08008] d If the initValue of an unqueued data element equals
the invalidValue and handleInvalid is set to keep and the handleNev-
erReceived is not defined, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidValue. c
(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08009] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to keep and the handleNeverReceived
is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus() shall return
RTE_E_NEVER_RECEIVED until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08007] d The RTE Generator shall reject configurations in which the init-
Value of an unqueued data element equals the invalidValue and handleIn-
valid is set to replace. c(SRS_Rte_00078)

[SWS_Rte_08046] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_OK until first reception of data element. In this case the APIs

255 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08047] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is not defined, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_OK until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08048] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_NEVER_RECEIVED until first reception of data element. In this
case the APIs Rte_Read() and Rte_IRead() shall provide the initValue. c
(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08096] d If the initValue of an unqueued data element equals
the invalidValue and handleInvalid is set to externalReplacement and
the handleNeverReceived is set to FALSE, the RTE APIs Rte_Read() and
Rte_IStatus() shall return RTE_E_OK until first reception of data element. In this
case the APIs Rte_Read() and Rte_IRead() shall provide the value sourced from
the ReceiverComSpec.replaceWith. c(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08097] d If the initValue of an unqueued data element equals
the invalidValue and handleInvalid is set to externalReplacement and
the handleNeverReceived is not defined, the RTE APIs Rte_Read() and
Rte_IStatus() shall return RTE_E_OK until first reception of data element. In this
case the APIs Rte_Read() and Rte_IRead() shall provide the value sourced from
the ReceiverComSpec.replaceWith. c(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08098] d If the initValue of an unqueued data element equals
the invalidValue and handleInvalid is set to externalReplacement and
the handleNeverReceived is set to TRUE, the RTE APIs Rte_Read() and
Rte_IStatus() shall return RTE_E_NEVER_RECEIVED until first reception of data
element. In this case the APIs Rte_Read() and Rte_IRead() shall provide
the value sourced from the ReceiverComSpec.replaceWith. c(SRS_Rte_00078,
SRS_Rte_00184)

4.3.1.8.1 Data Element Invalidation in case of Inter-ECU communication

Sender:

If data element invalidation is enabled and the communication is Inter-ECU:

• explicit data transmission:

– data transformation for this communication enabled: data element invalida-
tion will be performed by RTE.

256 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

– no data transformation enabled: data element invalidation will be performed
by COM (COM needs to be configured properly).

• implicit data transmission: the RTE is responsible for flagging the implicit buffer
in the case of invalidation. An implicit valid transmission may occur before the
write back at the end of the task, resetting the invalidation flag. The actual data
element invalidation after runnable termination is done in COM.

Receiver:

If data element invalidation is enabled and the communication is Inter-ECU
and:

• if all receiving software components requesting the same value for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement
and no data transformation is configured for the communication:
data element invalidation will be performed by COM (COM needs to be config-
ured properly), see [SWS_Rte_05026], [SWS_Rte_05048].

• if the receiving software components requesting different values for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement
or data transformation is configured for the communication:
data element invalidation will be performed by RTE, see [SWS_Rte_07031],
[SWS_Rte_07032]. This can occur in case of 1:n communication where for one
connector a VariableAndParameterInterfaceMapping is applied to two
SenderReceiverInterfaces with different InvalidationPolicys for the
mapped VariableDataPrototype.

[SWS_Rte_05026] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to keep for all receiving
software components and no data transformation is configured for the communication
– the query of the value shall return the value provided by COM together with an indi-
cation of the invalid case. c(SRS_Rte_00078)

[SWS_Rte_08405] d In case of Inter-ECU communication with the attribute han-
dleInvalid set to keep for all receiving software components, the RTE shall raise
a DataReceiveErrorEvent in case of reception of a data element invalid. c
(SRS_Rte_00078)

[SWS_Rte_05048] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to replace for all re-
ceiving software components – the query of the value shall return the initValue
(ComDataInvalidAction is REPLACE [SWS_Com_00314]). c(SRS_Rte_00078)

[SWS_Rte_08406] d In case of Inter-ECU communication with the attribute han-
dleInvalid set to replace for all receiving software components, in case of re-
ception of a data element invalid, the RTE shall raise a DataReceivedEvent as if a
valid value would have been received. c(SRS_Rte_00078)

257 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07031] d If a data element has been invalidated in case of Inter-ECU com-
munication where receiving software components requesting different values for han-
dleInvalid and the attribute handleInvalid is set to keep for a particular r-port
– the query of the value shall return for the r-port the same value as if COM would
have handled the invalidation (copy COM behavior). c(SRS_Rte_00078)

[SWS_Rte_08407] d In case of Inter-ECU communication where receiving software
components requesting different values for the attribute handleInvalid and this at-
tribute is set to keep for a particular R-Port, in case of reception of a data element
invalid, the RTE shall raise a DataReceiveErrorEvent. c(SRS_Rte_00078)

[SWS_Rte_07032] d If a data element has been received invalidated in case of Inter-
ECU communication where receiving software components requesting different val-
ues for handleInvalid and the attribute handleInvalid is set to replace for an
particular r-port – RTE shall perform the "invalid value substitution" with the init-
Value for the r-port. Then the reception will be handled as if a valid value would
have been received (activation of runnable entities using the DataReceivedEvent).
c(SRS_Rte_00078)

[SWS_Rte_08049] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to dontInvalidate –
the query of the value shall return the value provided by COM. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

[SWS_Rte_08099] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to externalReplace-
ment for all receiving software components – the query of the value shall return the
value sourced from the ReceiverComSpec.replaceWith (e.g. constant, NVRAM
parameter). c(SRS_Rte_00078)

[SWS_Rte_08100] d In case of Inter-ECU communication with the attribute han-
dleInvalid set to externalReplacement for all receiving software components,
in case of reception of a data element invalid, the RTE shall raise a DataReceivedE-
vent as if a valid value would have been received. c(SRS_Rte_00078)

[SWS_Rte_08101] d If a data element has been received invalidated in case of Inter-
ECU communication where receiving software components requesting different values
for handleInvalid and the attribute handleInvalid is set to externalReplace-
ment for an particular r-port – RTE shall perform the "invalid value substitution" with
the value sourced from the ReceiverComSpec.replaceWith for the r-port. Then
the reception will be handled as if a valid value would have been received (activation
of runnable entities using the DataReceivedEvent). c(SRS_Rte_00078)

258 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.1.8.2 Data Element Invalidation in case of Intra-ECU communication

Sender:

[SWS_Rte_05025] d If data element invalidation is enabled, and the commu-
nication is Intra-ECU, data element invalidation shall be implemented by the RTE. c
(SRS_Rte_00078)

The actual invalid value is specified in the SW-C template invalidValue.

Receiver:

[SWS_Rte_05030] d If a data element has been invalidated in case of Intra-ECU com-
munication and the attribute handleInvalid is set to keep – the query of the value
shall return the same value as if COM would have handled the invalidation (copy COM
behavior). Then the reception of the invalid value will be handled as an error and the ac-
tivation of runnable entities can be performed using the DataReceiveErrorEvent.
c(SRS_Rte_00078)

[SWS_Rte_05049] d If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to replace – RTE shall
perform the "invalid value substitution" with the initValue. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

[SWS_Rte_08050] d If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to dontInvalidate
– the query of the value shall return the received value. Then the reception will be
handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

[SWS_Rte_02308] d If data invalidation is enabled for a composite VariableDat-
aPrototype, and the communication is Intra-ECU, the RTE shall invalidate all invali-
dateable primitive elements of the VariableDataPrototype. c()

[SWS_Rte_02309] d The RTE generator shall reject configurations which are violating
[constr_1302]. c(SRS_Rte_00078)

[SWS_Rte_08102] d If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to externalReplace-
ment – RTE shall perform the "invalid value substitution" with the value sourced from
the ReceiverComSpec.replaceWith (e.g. constant, NVRAM parameter). Then the
reception will be handled as if a valid value would have been received (activation of
runnable entities using the DataReceivedEvent). c(SRS_Rte_00078)

4.3.1.9 Filters

By means of the filter attribute [SRS_Rte_00121] an additional filter layer can be
added on the receiver side of unqueued S/R-Communication. Value-based filters can

259 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

be defined, i.e. only signal values fulfilling certain conditions are made available for the
receiving component. The possible filter algorithms are taken from OSEK COM version
3.0.2. They are listed in the meta model (see [2]. According to the SW-C template [2],
filters are only allowed for signals that are compatible to C language unsigned integer
types (i.e. characters, unsigned integers and enumerations). Thus, filters cannot be
applied to composite data types like for instance ApplicationRecordDataType or
ApplicationArrayDataType.

[SWS_Rte_05503] d The RTE shall provide value-based filters on the receiver-
side of unqueued S/R-Communication as specified in the SW-C template [2]. c
(SRS_Rte_00121)

[SWS_Rte_05500] d For inter-ECU communication, the filter implementation is per-
formed/done by the COM module. For intra-ECU and inter-Partition communication,
the RTE shall perform the filtering itself. c(SRS_Rte_00019, SRS_Rte_00121)

[SWS_Rte_05501] d The RTE shall support a different filter specification for each
dataElement in a component’s AUTOSAR interface. c(SRS_Rte_00121)

[SWS_Rte_08077] d In case that filtering applies the input value shall be calculated
from the "unfiltered buffer" before the RunnableEntity starts, the result of the filter
calculation shall be stored in a "filtered buffer" and the RunnableEntity accessing
a dataElement in a Receiver Port with a filter shall get access to the "filtered buffer"
instead of the "unfiltered buffer". c(SRS_Rte_00121)

[SWS_Rte_08078] d For optimization reasons no "filtered buffer" should be provided,
if filtering applies for a dataElement and the "unfiltered buffer" is not used at all. The
"unfiltered buffer" should be used for filtering instead. c(SRS_Rte_00121)

[SWS_Rte_08079] d Separate "filtered buffers" shall be provided, if the same
dataElement is accessed by RunnableEntitys via different Receiver Ports and
filters with different semantics are applied in each Port. c(SRS_Rte_00121)

4.3.1.10 Buffering

[SWS_Rte_02515] d The buffering of sender-receiver communication shall be done
on the receiver side. This does not imply that COM does no buffering on the sender
side. On the receiver side, two different approaches are taken for the buffering of
‘data’ and of ‘events’, depending on the value of the software implementation policy. c
(SRS_Rte_00110)

4.3.1.10.1 Last-is-Best-Semantics for ‘data’ Reception

[SWS_Rte_02516] d On the receiver side, the buffering of ‘data’ (swImplPolicy not
queued) shall be realized by the RTE by a single data set for each data element
instance. c(SRS_Rte_00107)

260 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The use of a single data set provides the required semantics of a single element queue
with overwrite semantics (new data replaces old). Since the RTE is required to ensure
data consistency, the generated RTE should ensure that non-atomic reads and writes
of the data set (e.g. for composite data types) are protected from conflicting concurrent
access. RTE may use lower layers like COM to implement the buffer.

[SWS_Rte_02517] d The RTE shall initialize this data set [SWS_Rte_02516] with a
startup value depending on the ports attributes and if the general initialization condi-
tions in [SWS_Rte_07046] are fulfilled. c(SRS_Rte_00068, SRS_Rte_00108)

[SWS_Rte_02518] d Implicit or explicit read access shall always return the last re-
ceived data. c(SRS_Rte_00107)

Requirement [SWS_Rte_02518] applies whether or not there is a DataReceivedE-
vent referencing the VariableDataPrototype for which the API is being gener-
ated.

[SWS_Rte_02519] d Explicit read access shall be non blocking in the sense that it
does not wait for new data to arrive. The RTE shall provide mutual exclusion of read
and write accesses to this data, e.g., by ExclusiveAreas. c(SRS_Rte_00109)

[SWS_Rte_02520] dWhen new data is received, the RTE shall silently discard the pre-
vious value of the data, regardless of whether it was read or not. c(SRS_Rte_00107)

4.3.1.10.2 Queueing for ‘event’ Reception

In case the swImplPolicy is set to queued the received ‘events’ have to be buffered
in a queue.

Note: A loss of events might occur in inter-ECU communication even if the receiver
queue length is sufficient. The timing of the system has to be set up in a way that it is
ensured that the COM stack on the sender side is processed before the next event is
written by the sender.

[SWS_Rte_02521] d The RTE shall implement a receive queue for each event-like data
element (swImplPolicy = queued) of a receive port. c(SRS_Rte_00107)

The queueLength attribute of the QueuedReceiverComSpec referencing the event
assigns a constant length to the receive queue.

[SWS_Rte_02522] d The events shall be written to the end of the queue and read
(consuming) from the front of the queue (i.e. the queue is first-in-first-out). c
(SRS_Rte_00107, SRS_Rte_00110)

[SWS_Rte_02523] d If a new event is received when the queue is already filled,
the RTE shall discard the received event and set an error flag. c(SRS_Rte_00107,
SRS_Rte_00110)

[SWS_Rte_02524] d The error flag described in [SWS_Rte_02523] shall be reset
during the next explicit read access on the queue. In this case, the status value

261 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE_E_LOST_DATA shall be presented to the application together with the data. c
(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

[SWS_Rte_02525] d If an empty queue is polled, the RTE shall return with a sta-
tus RTE_E_NO_DATA to the polling function, (see chap. 5.5.1). c(SRS_Rte_00107,
SRS_Rte_00110, SRS_Rte_00094)

The minimum size of the queue is 1.

[SWS_Rte_02526] d The RTE generator shall reject a queueLength attribute of
an QueuedReceiverComSpec with a queue length ≤ 0. c(SRS_Rte_00110,
SRS_Rte_00018)

4.3.1.10.3 Queueing of mode switches

The communication of mode switch notifications is typically event driven. Ac-
cordingly, RTE offers a similar queueing mechanism as for the ’queued’ sender receiver
communication, described above.

[SWS_Rte_02718] d The RTE shall implement a receive queue for the mode switch
notifications of each mode machine instance. c(SRS_Rte_00107)

The queueLength attribute of the ModeSwitchSenderComSpec referencing the
mode machine instance, assigns a constant length to the receive queue. In con-
trast to the event communication, for mode switch communication, the length is asso-
ciated with the sender side, the mode manager, because it is unique for the mode
machine instance.

[SWS_Rte_02719] d The mode switch notification shall be written to the end
of the queue and read (consuming) from the front of the queue (i.e. the queue is
first-in-first-out). c(SRS_Rte_00107, SRS_Rte_00110)

[SWS_Rte_02720] d If a new mode switch notification is received when
the queue is already filled, the RTE shall discard the received notification. c
(SRS_Rte_00107, SRS_Rte_00110) In this case, Rte_Switch will return an error,
see [SWS_Rte_02675].

[SWS_Rte_02721] d RTE shall dequeue a mode switch notification, when the
mode switch is completed. c(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

The minimum size of the queue is 1.

[SWS_Rte_02723] d The RTE generator shall reject a queueLength attribute of
an ModeSwitchSenderComSpec with a queue length ≤ 0. c(SRS_Rte_00110,
SRS_Rte_00018)

In case of a queue length of 1, RTE will reject new mode switch notifications during the
mode transition.

262 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.1.11 Operation

4.3.1.11.1 Inter-ECU Mapping

This section describes the mapping from VariableDataPrototypes to COM signals
or COM signal groups for sender-receiver communication. The mapping is described in
the input of the RTE generator, in the DataMapping section of the System Template [8].

If a VariableDataPrototype is mapped to a COM signal or COM signal group but
the communication is local, the RTE generator can use the COM signal/COM signal
group for the transmission or it can use its own direct implementation of the communi-
cation for the transmission.

[SWS_Rte_04504] d If a sender/receiver communication is inter-ECU, then for each
data element the DataMappings element shall contain a mapping to at least one COM
signal or COM signal group, otherwise the data element shall be treated as if it is part
of an unconnected port. c(SRS_Rte_00091)

The mapping defines all aspects of the signal necessary to configure the communi-
cation service, for example, the network signal endianess and the communication bus
either by the COM configuration or the configured data transformation. The RTE gen-
erator only requires the COM signal handle id since this is necessary for invoking the
COM API and the configuration of the data transformation to execute it.

4.3.1.11.1.1 Primitive Data Types

[SWS_Rte_04505] d The RTE shall use the ComHandleId of the corresponding Com-
Signal when invoking the COM API for signal. c(SRS_Rte_00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComSignalHandleId is used to establish the link
between the ComSignal of the COM module’s configuration and the corresponding
ISignal of the System Template.

4.3.1.11.1.2 Composite Data Types

When a data prototype has a composite data type the RTE must marshall the data.
This can be achieved by two means: Explicit mapping the atomic sub-elements of the
composite type to their own COM signals or mapping of the whole composite type to
one COM signal if data transformation is used.

The DataMappings element of the ECU configuration and configuration of the data
transformer contain (or references) sufficient information to allow the data item or op-
eration parameters to be transmitted by indicating the COM signals or signal groups to
be used. It is not necessary to provide a mapping for each primitive typed leaf element
within the composite type.

263 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03863] d The RTE generator shall support the partial mapping to System-
Signals of the leaf elements of a VariableDataPrototype (typed by a composite data
type) in a PPort. c(SRS_Rte_00091)

A partial mapping means that a subset of the composite data type’s leaf elements are
mapped to SystemSignals in the relevant SystemSignalGroup (e. g. a record with
leaf elements A, B, C, D where only B and C are mapped to SystemSignals of the
SystemSignalGroup). Elements omitted from the partial mapping are simply ignored
by the RTE generator.

For RPorts it is necessary to define how the RTE generator handles the partial mapping
of a composite data type, in particular, how elements omitted from the mapping are
treated.

[SWS_Rte_03864] d For the included element of a partial mapping from SystemSig-
nals to the leaf elements of a VariableDataPrototype (typed by a composite data type)
in a RPort the RTE generator shall use the data provided by COM. c(SRS_Rte_00091)

[SWS_Rte_03865] d For the omitted elements from a partial mapping from SystemSig-
nals to the leaf elements of a VariableDataPrototype (typed by a composite data type)
in a RPort the RTE generator shall use the initial value when receiving the composite
data type. c(SRS_Rte_00091)

[SWS_Rte_08793] d If a data element is a composite data type, the communication
is inter-ECU and data transformation is used (except COM Based Transformer), the
DataMapping element shall map the composite data type directly to one COM signal
to use the data transformation. c(SRS_Rte_00091, SRS_Rte_00247)

The above requirements for mapping atomic sub-elements for them own to distinct
COM signals have two key features; firstly, COM is responsible for endianness con-
version (if any is required) of primitive types and, secondly, differing structure member
alignment between sender and receiver is irrelevant since the COM signals are packed
into I-PDUs by the COM configuration.

The DataMappings shall contain sufficient COM signals to map each primitive element7

of the AUTOSAR signal.

The above requirements for mapping the whole composite data type to one COM signal
on the other hand leaves those features to the data transformation.

[SWS_Rte_04508] d The RTE generator shall reject configuration violating the con-
straint [constr_3059]. c(SRS_Rte_00091)

[SWS_Rte_02557] d

1. Each signal that is mapped to an element of the same composite data item shall
be mapped to the same signal group.

7An AUTOSAR signal that is a primitive data type contains exactly one primitive element whereas a
signal that is a composite data type one or more primitive elements.

264 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2. If two signals are not mapped to an element of the same composite data item,
they shall not be mapped to the same signal group.

3. If a signal is not mapped to an element of a composite data item, it shall not be
mapped to a signal group.

c(SRS_Rte_00091)

[SWS_Rte_05081] d The RTE shall use the ComHandleId of the corresponding Com-
SignalGroup when invoking the COM API for signal groups. This also applies for
the array based signal group access with the Com_SendSignalGroupArray() and
Com_ReceiveSignalGroupArray(). c(SRS_Rte_00091)

[SWS_Rte_05173] d The RTE shall use the ComHandleId of the corresponding Com-
GroupSignal when invoking the COM API for group signals. c(SRS_Rte_00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComHandleId is used to establish the link between the
ComSignalGroup of the COM module’s configuration and the corresponding ISig-
nalGroup of the System Template.

The input information ComHandleId of group signals is used to establish the link be-
tween the ComGroupSignal of the COM module’s configuration and the correspond-
ing ISignal of the System Template.

4.3.1.11.2 Atomicity

[SWS_Rte_04527] d The RTE is required to treat AUTOSAR signals transmitted using
sender-receiver communication atomically [SRS_Rte_00073]. To achieve this

• either the “signal group” mechanisms provided by COM shall be utilized. See
[SWS_Rte_02557] for the mapping.

• or the “Data Transformation” approach (see section 4.10) shall be utilized.

c(SRS_Rte_00019, SRS_Rte_00073, SRS_Rte_00091)

The RTE decomposes the composite data type into single signals as described above
and passes them to the COM module by using the COM API call Com_SendSignal.
As this set of single signals has to be treated as atomic, it is placed in a “signal group”.
A signal group has to be placed always in a single I-PDU. Thus, atomicity is established.
When all signals have been updated, the RTE initiates transmission of the signal group
by using the COM API call Com_SendSignalGroup.

As would be expected, the receiver side is the exact reverse of the transmission side:
the RTE must first call Com_ReceiveSignalGroup precisely once for the signal
group and then call Com_ReceiveSignal to extract the value of each signal within
the signal group.

265 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A signal group has the additional property that COM guarantees to inform the receiver
by invoking a call-back about its arrival only after all signals belonging to the signal
group have been unpacked into a buffer.

The Data Transformation approach is described in section 4.10.

4.3.1.11.3 Fan-out

Fan-out can be divided into two scenarios; PDU fanout where the same I-PDU is sent
to multiple destinations and signal fan-out where the same signal, i.e. data element is
sent in different I-PDUs to multiple receivers.

For Inter-ECU communication, the RTE does not perform PDU fan-out. Instead, the
RTE invokes Com_SendSignal once for a primitive data element or for transformed
data and expects the fan-out to multiple PDU destinations to occur lower down in the
AUTOSAR communication stack. However, it is necessary for the RTE to support
signal fan-out since this cannot be performed by any lower level layer of the AUTOSAR
communication stack.

The data mapping in the System Template[8] is based on the SystemSignal and
SystemSignalGroup. The COM module however uses the ISignal and ISignal-
Group counterparts (ComSignal, ComSignalGroup, ComGroupSignal) to define
the COM API. The RTE Generator needs to identify whether there are several ISig-
nal or ISignalGroup elements defined for the SystemSignal or SystemSignal-
Group and implement the fan-out accordingly. Then the corresponding elements in
the COM ecu configuration (ComSignal, ComSignalGroup, ComGroupSignal) are
required to establish the interaction between Rte and COM.

With the usage of “Data Transformation” a mixture of different serialization technologies
for signal fan-out in the RTE can be used. This is determined by the ISignal or
ISignalGroup association to DataTransformation.

[SWS_Rte_06023] d For inter-ECU transmission of a primitive data type, the RTE shall
perform for each ISignal to which the primitive data element is mapped

• the transformation if the ISignal references a TransformationTechnology

• the invocation of Com_SendSignal

c(SRS_Rte_00019, SRS_Rte_00028, SRS_Rte_00247)

For the invocation the ComHandleId from the ComSignal of COM’s ecu configuration
shall be used (see [SWS_Rte_04505]).

If the data element is typed by a composite data type several scenarios shall to be
considered for each of the signal fan-out based on the ISignal or ISignalGroup
association to DataTransformation:

• no “Data Transformation”: RTE invokes Com_SendSignal for each primitive el-
ement (ISignal) in the composite data type and each COM signal to which that

266 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

primitive element is mapped, and Com_SendSignalGroup for each ISignal-
Group that does not require a “Data Transformation” to which the data element
is mapped.

• “Data Transformation” without COM Based Transformer: RTE performs the trans-
formation and then invokes Com_SendSignal for each ISignal that has the
dataTransformation association to the DataTransformation defined.

• “Data Transformation” with COM Based Transformer: RTE performs the trans-
formation and then invokes Com_SendSignalGroupArray for each ISignal-
Group that has the comBasedSignalGroupTransformation association to
the DataTransformation defined.

Note:
It is also possible to configure the system to use multiple of these scenarios at the
same time. Then the RTE executes all configured scenarios.

[SWS_Rte_04526] Inter-ECU transmission of composite data without Data Trans-
formation d For inter-ECU transmission of composite data type where

• a SenderReceiverToSignalGroupMapping to the VariableDataProto-
type is defined

• and the respective ISignalGroup has no comBasedSignalGroupTrans-
formation defined

the RTE shall invoke Com_SendSignal for each ISignal to which an element in
the composite data type is mapped and Com_SendSignalGroup for each ISig-
nalGroup to which the composite data element is mapped. c(SRS_Rte_00019,
SRS_Rte_00028)

For the invocation the ComHandleId from the ComGroupSignal and ComSig-
nalGroup of COM’s ecu configuration shall be used (see [SWS_Rte_05173] and
[SWS_Rte_05081]).

[SWS_Rte_08586] Inter-ECU transmission of composite data with COM Based
Data Transformation d For inter-ECU transmission of composite data type where

• a SenderReceiverToSignalGroupMapping to the VariableDataProto-
type is defined

• and the respective ISignalGroup has a comBasedSignalGroupTransfor-
mation reference defined

the RTE shall perform the transformation and then invoke
Com_SendSignalGroupArray for the ISignalGroup to which the composite
data type is mapped. c(SRS_Rte_00019, SRS_Rte_00028, SRS_Rte_00251)

For the invocation the ComHandleId from the ComSignalGroup of COM’s ecu con-
figuration shall be used (see [SWS_Rte_05081]).

267 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08587] Inter-ECU transmission of composite data with Data Transfor-
mation d For inter-ECU transmission of composite data type where

• a SenderReceiverToSignalMapping to the VariableDataPrototype is
defined

• and the respective ISignal has a dataTransformation reference defined

the RTE shall perform the transformation and then invoke Com_SendSignal
for the ISignal to which composite data type is mapped. c(SRS_Rte_00019,
SRS_Rte_00028, SRS_Rte_00247)

Note:
A SystemSignal can be added to a SystemSignalGroup in the role transform-
ingSystemSignal to support the configuration where a complex data element is
transferred via Sender/Receiver communication both using transformation and tradi-
tional mapping of RTE and COM.

For the invocation the ComHandleId from the ComSignal of COM’s ecu configuration
shall be used (see [SWS_Rte_04505]).

For intra-ECU transmission of data elements, the situation is slightly different; the RTE
handles the communication (the lower layers of the AUTOSAR communication stack
are not used) and therefore must ensure that the data elements are routed to all re-
ceivers. For inter-partition communication, RTE may use the IOC.

[SWS_Rte_06024] d For inter-partition transmission of data elements, the RTE
shall perform the fan-out to each receiver. c(SRS_Rte_00019, SRS_Rte_00028)

4.3.1.11.4 Fan-in

When receiving data from multiple senders in inter-ECU communication, either the
RTE on the receiver side has to collect data received in different COM signals or COM
signal groups and pass it to one receiver or the RTE on the sender side has to pro-
vide shared access to a COM signal or COM signal group to multiple senders. The
receiver RTE, which has to handle multiple COM signals or signal groups, is notified
about incoming data for each COM signal or COM signal group separately but has
to ensure data consistency when passing the data to the receiver. The sender RTE,
which has to handle multiple senders sharing COM signals or signal groups, has to
ensure consistent access to the COM API, since COM API calls for the same signal
are not reentrant.

[SWS_Rte_03760] d If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with swImplPolicy different
from queued to a receiver, the RTE on the receiver side has to pass the last received
value to the receiver component while ensuring data consistency. c(SRS_Rte_00019,
SRS_Rte_00131)

268 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03761] d If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with event semantics to a
receiver, the RTE on the receiver side has to queue all incoming values while ensuring
data consistency. c(SRS_Rte_00019, SRS_Rte_00131)

[SWS_Rte_03762] d If multiple senders share COM signals or signal groups for inter-
ECU transmission of a data element prototype to a receiver, the RTE on the sender
side shall ensure that the COM API for those signals is not invoked concurrently. c
(SRS_Rte_00019, SRS_Rte_00131)

4.3.1.11.5 Sequence diagrams of Sender Receiver communication

Figure 4.39 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram also shows the Rte_Read API behavior if an initValue is specified.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.39 is the same, but Com_SendSignalGroupArray() is used instead of
Com_SendSignal() and Com_ReceiveSignalGroupArray() is used instead of
Com_ReceiveSignal().

269 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sender
Application

Sender's RTE Sender's COM
Network Receiver's

COM

Receiver's RTE Receiver
application

Sender's
Transformer

Receiver's
Transformer

(3) init value is
stored in the
receiver's OUT
parameter.

(11) The last received
data item is stored in
the receiver's OUT
parameter

Inter-ECU communication
Explicit Sender-Receiver communication:

Port name = p
Data element name = a
VariableDataPrototype with a standard swImplPolicy (Data distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in
role dataSendPoint
The receiver VariableDataPrototype is referenced by a VariableAccess in
role dataReceivePointByArgument

(8) RTE receives the data
item a from COM and
replace the previous
value in the RTE buffer
for data item a.
Note! The callback must
block the RTERead_p_a
call.

(1) The initValue is
stored in the RTE buffer
allocated for data item
a.

(7) The received data item is
copied to the COM buffer for data
item a and the notification
callback provided by RTE is
invoked.

(2) The buffer for data
item a is copied to the
receiver's OUT
parameter.

(6) The data element is
transformed to an array
and transferred to the
COM stack

(9) The received data in the
buffer are re-transformed.
The result is copied to the
receiver's OUT buffer
parameter.

(5) the provided data is
converted. Only if data
conversion applies
(optional)

(10) The received data is
converted. Only if data
conversion applies
(optional)

(4) The data value
provided by the sender
is copied to the RTE
allocated buffer.

Rte_Read_p_a()

RTE_E_OK()

Rte_Write_p_a()

X frm_<name>()

Com_SendSignal()

E_OK()

RTE_E_OK()

Rte_COMCbk_<sn>()

Com_ReceiveSignal()

E_OK()

Rte_Read_p_a()

X frm_Inv_<name>()

RTE_E_OK()

Figure 4.39: Sender Receiver communication with data semantics and dataReceive-
PointByArgument as reception mechanism

270 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.40 shows a sequence diagram of how Sender Receiver communication for
event transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram shows the Rte_Receive API behavior when the queue is empty.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.40 is the same, but Com_SendSignalGroupArray() is used instead of
Com_SendSignal() and Com_ReceiveSignalGroupArray() is used instead of
Com_ReceiveSignal().

271 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sender
Application

Sender's RTE Sender's COM
Netwok Receiver's

COM

Receiver's RTE Receiver
application

Sender's RTE Receiver's RTE

(2) The RTE - queue for event p_e
is empty => RTE_E_NO_DATA is
returned to Receiver application.

Inter-ECU communication
Explicit Sender-Receiver communication:
Port name = p
Data element name = e
VariableDataPrototype with a queued swImplPolicy (Event distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in role dataSendPoint
The receiver VariableDataPrototype is referenced by a VariableAccess in role dataReceivePointByArgument
No WaitPoint is referencing the DataReceivedEvent that references the VariableDataPrototype (non-blocking
reception)

(10) The received
event item a is
stored in the
receiver's OUT
parameter

(1) The RTE -
queue for event
p_e is initialized
(flushed).

(7) RTE receives the event
item e from COM and puts
it into the RTE - queue for
event e.

(6) The receiver's COM
invokes the callback
function provided by RTE.

(8) RTE fetches an event
from the event e queue,
retransforms and copies it
to the Receiver's OUT
parameter.

(4) the provided data is
converted. Only if data
conversion applies
(optional)

(9) The received data is
converted. Only if data
conversion applies
(optional)

(3) The data value
provided by the sender
is copied to the RTE
allocated queue.

(5) The queue entry is
transformed to an array and
transferred to the COM stack

Rte_Receive_p_e()

RTE_E_NO_DATA()

Rte_Send_p_e()

X frm_<name>()

Com_SendSignal()

E_OK()

RTE_E_OK()

Rte_COMCbk_<sn>()

Com_ReceiveSignal()

E_OK()

Rte_Receive_p_e()

X frm_Inv_<name>()

RTE_E_OK()

Figure 4.40: Sender Receiver communication with event semantics and dataReceive-
PointByArgument as reception mechanism

272 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.41 shows a sequence diagram of how Sender Receiver communication for
event transmission and activation of runnable entity on the receiver side may be imple-
mented by RTE.

In case the COM Based Transformer [23] is used the sequence in fig-
ure 4.41 is the same, but Com_SendSignalGroupArray() is used instead of
Com_SendSignal() and Com_ReceiveSignalGroupArray() is used instead of
Com_ReceiveSignal().

273 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sender
Application

Sender's RTE Sender's COM
Netwok Receiver's

COM

Receiver's RTE Receiver runnableSender's RTE Receiver's RTE

(4) RTE fetches an event
from the event e queue
and calls the receiver's
runnable.

(5) The task is
completed

(3) The AUTOSAR OS
task that will execute
the receiver's runnable
is started.

(1) The receiver's COM
invokes the callback
function provided by RTE.

Inter-ECU communication
Port name = p
Data element name = e
VariableDataPrototype with a queued swImplPolicy (Event distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in role
dataSendPoint
The receiver VariableDataPrototype is referenced by a DataReceivedEvent
which in turn references the receiver RunnableEntity.

(2) RTE receives the event
item e from COM and
puts it into the RTE -
queue for event e.

The provided data is converted.
Only if data conversion applies
(optional)

Rte_Send_p_e()

X frm_<name>()

Com_SendSignal()

E_OK()

RTE_E_OK()

Rte_COMCbk_<sn>()

Com_ReceiveSignal()

E_OK()

Activate an OSEK Task()

ReceiversRunnable()

Figure 4.41: Sender Receiver communication with event semantics and activation of
runnable entity as reception mechanism

274 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.42 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE when using
LdCom.

275 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sender's LdCom
-Netwok-

Receiver's LdCom

Receiver's RTE Receiver
Application

Sender
Application

Sender's RTE Sender
Transformer and

Detransformer

Reciever
Transformer and

Detransformer

(2) RTE transforms all data
elements into a byte array

(5) The Receiver's RTE
buffer is locked

(7) Data is copied from RTE into
buffer provided by lower layer.
This step may repeated until all
data has been processed by
lower layer

alt LdComApiType of LdComIPdu

[LdComApiType == LDCOM_TP]

[LdComApiType == LDCOM_IF]

loop CopyRxData

[until all data received]

(3) RTE calls LdCom_Transmit for the transformed
byte array. In case LdComApiType ==
LDCOM_TP the RTE buffer is now locked.

opt Transformer

(4) Subsequent Transmission
requests on the same signal will
return RTE_E_COM_BUSY as long as
the buffer is locked

(8) Data is copied from lower
layer
into buffer provided by RTE.
This step is repeated upon
reception of each segment of
the segmented transmission

Inter-ECU communication
Explicit Sender-Receiver communication:

Port name = p
Data element name = a
VariableDataPrototype with a standard swImplPolicy (Data distribution)
The sender VariableDataPrototype is referenced by a VariableAccess in role
dataSendPoint
The receiver VariableDataPrototype is referenced by a VariableAccess in role
dataReceivePointByArgument

(6) Subsequent Read
requests on the same
buffer will return
RTE_E_COM_BUSY as
long as the buffer is
locked

(9) The Receiver's RTE
buffer are unlocked,
Data Received Event can
be fired if configured

(1) Perfom Data
Conversion (Optional)

(10) The re-transformed
data is converted. Only if
data conversion applies
(optional)

(10) The re-transformed
data is converted. Only if
data conversion applies
(optional)

Rte_Write_p_a()

X frm()

E_OK()

LdCom_Transmit()

E_OK()

RTE_E_OK()

Rte_Write_p_a()

RTE_E_COM_BUSY()

Rte_LdComCbkStartOfReception_<sn>() :BufReq_ReturnType

BUFREQ_OK()

Rte_Read_p_a()

RTE_E_COM_BUSY()

Rte_LdComCbkCopyTxData_<sn>(BufReq_ReturnType)

copy_data()

BUFREQ_OK()

Rte_LdComCbkCopyRxData_<sn>() :BufReq_ReturnType

copy_data()

BUFREQ_OK()

Rte_LdComTpTxConfirmation()

E_OK()

Rte_LdComCbkTpRxIndication_<sn>(Std_ReturnType)

X fm_Inv()

E_OK()

Rte_LdComCbkRxIndication_<sn>()

copy_data()

X frm_Inv()

E_OK()

E_OK()

Rte_Read_p_a()

E_OK()

Figure 4.42: Sender Receiver communication with data semantics over LdCom

276 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.1.12 “Never received status” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since system start (or partition
restart) or not. This additional optional status establishes the possibility to check
whether a data element has been changed since system start (or partition restart).

[SWS_Rte_07381] d On receiver side the handleNeverReceived attribute of the
NonqueuedReceiverComSpec shall specify the handling of the never received sta-
tus. c(SRS_Rte_00184)

[SWS_Rte_07382] d The initial status of the data elements with the attribute handleN-
everReceived set to TRUE shall be RTE_E_NEVER_RECEIVED. c(SRS_Rte_00184)

[SWS_Rte_07383] d The initial status of the data elements with the attribute han-
dleNeverReceived set to TRUE shall be cleared when the first reception occurs. c
(SRS_Rte_00184)

[SWS_Rte_07645] d The status of data elements shall be reset on the receiver
side to RTE_E_NEVER_RECEIVED when the receiver’s partition is restarted. c
(SRS_Rte_00184, SRS_Rte_00224)

[SWS_Rte_04529] d The configuration of the attribute handleNeverReceived to
TRUE shall have no effect for data elements received from an NvBlockSwCompo-
nentType, since these data elements are automatically received during initialization
of the RTE. c(SRS_Rte_00184)

4.3.1.13 “Update flag” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since last read or not. This addi-
tional optional status establishes the possibility to check, whether a data element has
been updated since last read.

On receiver side the “enableUpdate” attribute of the NonqueuedReceiverComSpec
has to activate the handling of the update flag.

[SWS_Rte_07385] d The RTE shall provide one update flag per dataElement
in a RPortPrototype where the “enableUpdate” attribute of the Nonqueue-
dReceiverComSpec is set to true and where at least one RunnableEntity defines
a VariableAccess in the dataReceivePointByArgument or dataReceive-
PointByValue role. c(SRS_Rte_00179)

[SWS_Rte_07386] d The update flag of the data elements configured with the “en-
ableUpdate” attribute shall be set by receiving new data from COM or from a local
software-component (including NvBlockSwComponentType). c(SRS_Rte_00179)

277 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01413] d In case a data element with configured “enableUpdate” at-
tribute is received as “invalid” the status of it’s update flag shall be determined ac-
cording to the handling of the DataReceivedEvent/DataReceiveErrorEvent:

• The update flag shall be set, if the DataReceivedEvent is triggered.

• The update flag shall keep the previous state, if the DataReceiveErrorEvent
is triggered.

c(SRS_Rte_00179)

[SWS_Rte_07387] d The update flag of a particular dataElement in a RPortPro-
totype shall be cleared after each read by Rte_Read or Rte_DRead of the data
element. c(SRS_Rte_00179)

Please note that the "UpdateFlag" for dataElements is only available for explicit com-
munication, see [SWS_Rte_07391].

[SWS_Rte_07689] d The update flag shall be cleared when the RTE is started or when
the partition of the software-component is restarted. c(SRS_Rte_00179)

The update flag can be queried by the Rte_IsUpdated API, see 5.6.35.

[SWS_Rte_04528] d Update flags of data elements which are received by an
NvBlockSwComponentType shall be set to TRUE after the data was copied from the
NvM module to the NVRAM Block by the execution of the according Rte_SetMirror
callback or after an SW-C has written new data to the NVRAM Block by the execution
of the Rte_Write API. c(SRS_Rte_00179)

4.3.1.14 Dynamic data type

Dynamic data are data whose length varies at runtime.

This includes:

• arrays with variable number of elements

• structures including arrays with variable number of elements

This excludes:

• structures including variable number of elements

The length information which specifies how many elements of the dynamic size array
are valid has to be provided by the SWC to the RTE. This is achieved by the usage
of a dynamic size array with explicit size indicator (see [2] chapter "ApplicationArray-
DataType").

The dynamic size array is represented in the implementation by a structure which con-
tains the size indicator and the dynamic size array with the payload. The size indicator
shall be hold consistent to the number of valid elements in the dynamic size array by
the SWC.

278 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In case of inter-ECU communication, dynamic data are mapped to dynamic signals
and received/transmitted through the TP by the COM stack.

With the current release of SWS_COM, COM limits the dynamic signals to the Com-
SignalType UINT_8DYN (see the requirement COM569).

The usage of dynamic size arrays together with data transformation with inter-ECU
communication circumvents these restrictions and allows dynamic size arrays also for
other data types because the output of data transformation is of the type uint8[n] which
is supported by COM.

In order to respect the VFB concept the capability of inter-ECU and intra-ECU commu-
nication should be equal. So it has been decided to extend these limitation from COM
also to the intra-ECU communication.

As a consequence dynamic data types different from uint8[n] are only supported by
the RTE (independent whether the communication is intra or inter-ECU) if data trans-
formation for inter-ECU communication is used. See [SWS_Rte_07810].

4.3.1.15 Inter-ECU communication through TP

Inter-ECU communication can be configured in COM to be supported by the TP. This
is especially necessary if:

• Size of the signal exceed the size of the L-PDU (large signals)

• Size of the signal group exceed the size of the L-PDU

In the current release of SWS_COM, COM APIs to access signal values might return
the error code COM_BUSY for the signals mapped to N-PDU. This error code indicates
that the access to the signal value has failed (internally rejected by COM) and should
be retried later. This situation might only be possible when the transmission or the
reception of the corresponding PDU is in progress in COM at the time the access to
the signal value is requested.

This is a problem for the handling of data with data semantic (last is best behavior)
because:

• "COM_BUSY like" errors are not compatible with real time systems that should
have predictable response time.

• Forwarding this error code to the application implies that every applications
should handle it (implement a retry) even if it will never comes (data is not be
mapped to N-PDU).

• Error code can not be forwarded to the application in case of direct read or implicit
write.

This is not a problem for the handling of data with event semantic (queued behav-
ior) because:

279 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• The COM_BUSY error should not be possible during the execution of COM call-
backs (Rx indication and Tx confirmation) that can be used by the RTE to handle
the queue.

• Data are queued internally by RTE and accessible at any time by the application.

Note: First point is especially true if the ComIPduSignalProcessing is configured
as IMMEDIATE. But if the ComIPduSignalProcessing is configured as DEFFERED
and 2 events are closely received, it is possible that at the time the RTE tries to access
the corresponding COM signal the second event reception has already started. In this
case the RTE will received COM_BUSY and the event will be lost but it is more a
problem of configuration than a limitation from COM.

As a consequence it has been decided to limit the data mapped to N-PDU to the event
semantic (queued behavior). See [SWS_Rte_07811].

Note: As the data mapping is not mandatory for the RTE contract phase, it is possible
that a configuration is accepted at contract phase but rejected at generation phase
when the data mapping is known.

Dynamic data are always mapped to N-PDU in case of inter-ECU communication. So
in order to avoid such situation (late rejection at generation phase) and in order to
respect the VFB concept (intra and inter-ECU should be equal) it has been decided
to extend this limitation to every dynamic data whatever the communication is intra or
inter-ECU. See [SWS_Rte_07812].

4.3.1.16 Inter-ECU communication of arrays of bytes

4.3.1.16.1 COM

Generally the communication of arrays in the case of inter-ECU communication must
make use of the signal group mechanisms to send an array to COM. This implies
sending each array element to a buffer in COM (with with Com_SendSignal() API,
and in the end send the signal group (with Com_SendSignalGroup() API).

An exception to this general rule is for arrays of bytes. In this case, the RTE shall use
the native COM interface to send directly the data.

[SWS_Rte_07408] d The RTE shall use the Com_SendSignal or
Com_ReceiveSignal APIs to send or receive fixed-length arrays of bytes if
the according VariableDataPrototype is mapped to a SystemSignal. c
(SRS_Rte_00231)

[SWS_Rte_07817] d The RTE shall use the Com_SendDynSignal or
Com_ReceiveDynSignal APIs to send or receive variable-length arrays of bytes
if the according VariableDataPrototype is mapped to a SystemSignal. c
(SRS_Rte_00231)

280 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

If the VariableDataPrototype of a fixed-length or variable-length array is mapped
to a SystemSignalGroup then requirement [SWS_Rte_04526] applies.

4.3.1.16.2 Efficient COM for large data

The rules for the decision whether to use Efficient COM for large data (LdCom) are
described in System Template [8], chapter 6.2.

[SWS_Rte_01376] d The RTE shall use LdCom for sending/receiving arrays of bytes if
the corresponding ComSignal is mapped to LdComIPdu. c(SRS_Rte_00246)

Transmission

[SWS_Rte_01377] d The RTE shall use the LdCom_Transmit API if LdComApiType
is set to LDCOM_IF in LdComIPdu. c(SRS_Rte_00231)

In case If-API is used upon LdCom_Transmit, the transmit request is passed imme-
diately to the lower layer. After return of the API the data does not need to be locked.

[SWS_Rte_01378] d The RTE shall use the LdCom_Transmit API if LdComApiType
is set to LDCOM_TP in LdComIPdu. c(SRS_Rte_00231)

In case TP-API is used, after LdCom_Transmit one or more invocations of
Rte_LdComCbkCopyTxData_<sn> by LdCom will occur asynchronously. The Trans-
mission is finalized by Rte_LdComCbkTpTxConfirmation_<sn>.

During this time the data has to be available for being passed to LdCom.

[SWS_Rte_01379] d The RTE shall lock the signal buffer after it initiated a Tp Trans-
mission (LdCom_Transmit returned E_OK). c(SRS_Rte_00246)

During the signal buffer is locked no further transmit requests are permitted on
that item. For data semantics this means that Rte_Write/Rte_Call will return
RTE_E_COM_BUSY.

[SWS_Rte_01380] d The RTE shall unlock the signal buffer after
Rte_LdComCbkTpTxConfirmation_<sn> has been invoked (independent of
the result). c(SRS_Rte_00246)

[SWS_Rte_01381] d The RTE shall copy the indicated number of bytes to the
provided destination in each invocation of Rte_LdComCbkCopyTxData_<sn>. c
(SRS_Rte_00246)

[SWS_Rte_01382] d For signals for which the Rte_LdComCbkTriggerTransmit_<sn>
API is configured the data of the corresponding signal has to be available during the
whole runtime of the RTE. c(SRS_Rte_00246)

Rationale: A call to TriggerTransmit may happen at any time, since it originates from
lower BSW layers.

281 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Hint: Main use case for [SWS_Rte_01382] is the transmission of the current value for
newly (late) subscribed receivers in ServiceDiscovery.

[SWS_Rte_01383] d If Rte_LdComCbkTriggerTransmit_<sn> is invoked, data
shall be copied to the provided destination. c(SRS_Rte_00246)

Reception

[SWS_Rte_01384] d If Rte_LdComCbkRxIndication_<sn> is invoked RTE shall
provide the following steps:

• copy the passed signal data to the buffer

• fire a DataReceivedEvent (if configured)

• return

c(SRS_Rte_00246)

[SWS_Rte_01385] d If Rte_LdComCbkStartOfReception_<sn> is invoked RTE
shall lock the corresponding reception buffer. c(SRS_Rte_00246)

[SWS_Rte_01386] d If Rte_LdComCbkCopyRxData_<sn> is invoked RTE shall copy
the passed signal data (or the indicated portion) to the previously locked reception
buffer. c(SRS_Rte_00246)

[SWS_Rte_01387] d If Rte_LdComCbkTpRxIndication_<sn> is invoked RTE shall
unlock the previously locked reception buffer. c(SRS_Rte_00246)

[SWS_Rte_01388] d When Rte_LdComCbkTpRxIndication_<sn> is invoked and
the passed result code is RTE_E_OK, it shall fire the DataReceivedEvent. Otherwise
the signal value shall be set to the invalidValue for data elements with a swImplPol-
icy different from queued. c(SRS_Rte_00246)

4.3.1.17 Handling of acknowledgment events

As a general rule, the acknowledgment events DataWriteCompletedEvent and
DataSendCompletedEvent shall be raised immediately after the sending to all re-
ceivers has been performed and in case of Inter-ECU communication all acknowledg-
ments from COM or LdCom have been received. As part of the implementation detailed
rules for the following communication scenarios have to be considered:

Intra-Partition communication

[SWS_Rte_08017] d For intra-partition communication with implicit dataWriteAc-
cess the DataWriteCompletedEvent shall be fired if and only if a task ter-
minates and the write-back copy actions to the global RTE-buffer are completed.
The transmission status shall be RTE_E_TRANSMIT_ACK and can be collected with
Rte_IFeedback API. c(SRS_Rte_00122)

282 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08043] d For intra-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In
this case the DataWriteCompletedEvent shall be fired after the termination
of the last sending runnable in the sending task. The transmission status shall
be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API. c
(SRS_Rte_00122)

[SWS_Rte_08018] d For intra-partition communication with explicit dataSendPoint
the DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed. The transmission status shall be RTE_E_TRANSMIT_ACK and
can be collected with Rte_Feedback API. c(SRS_Rte_00122)

Inter-Partition communication

[SWS_Rte_08020] d For inter-partition communication with implicit dataWriteAc-
cess the DataWriteCompletedEvent shall be fired if and only if a task terminates
and the write-back copy actions to the global RTE-buffer are completed. In addition
the execution of the data write operations at the data receiver partitions must have
taken place. Thereby the return status of the IOC for the different write operations can
be neglected. The transmission status shall be RTE_E_TRANSMIT_ACK and can be
collected with Rte_IFeedback API. c(SRS_Rte_00122)

[SWS_Rte_08044] d For inter-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the last
sending runnable in the sending task and after the execution of the data write oper-
ations at the data receiver partitions have taken place. Thereby the return status of
the IOC for the different write operations can be neglected. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API. c
(SRS_Rte_00122)

[SWS_Rte_08021] d For inter-partition communication with explicit dataSendPoint
the DataSendCompletedEvent shall be fired if and only if the sending to all
receivers has been performed and the execution of the data write operations at
the data receiver partitions have taken place. Thereby the return status of the
IOC for the different write operations can be neglected. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_Feedback API. c
(SRS_Rte_00122)

Inter-ECU communication

[SWS_Rte_08022] d For inter-ECU communication with implicit dataWriteAccess
the DataWriteCompletedEvent shall be fired if and only if a task terminates and
the write-back copy actions to the global RTE-buffer are completed. In addition the
transmission acknowledgment from COM or LdCom must be complete, i.e. the ac-
knowledgment has been received and in case of RTE-fanout all acknowledgments

283 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

have been received. The transmission status shall be RTE_E_TRANSMIT_ACK and
can be collected with Rte_IFeedback API. c(SRS_Rte_00122)

[SWS_Rte_08045] d For inter-ECU communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this case
the DataWriteCompletedEvent shall be fired after the termination of the last send-
ing runnable in the sending task and after the transmission acknowledgment from
COM or LdCom is complete, i.e. the acknowledgment has been received and in
case of RTE-fanout all acknowledgments have been received. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API. c
(SRS_Rte_00122)

[SWS_Rte_08023] d For inter-ECU communication with explicit dataSendPoint
the DataSendCompletedEvent shall be fired if and only if the sending to all re-
ceivers has been performed and the transmission acknowledgment from COM or
LdCom is complete, i.e. the acknowledgment has been received and in case
of RTE-fanout all acknowledgments have been received. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_Feedback API. c
(SRS_Rte_00122)

4.3.2 Client-Server

4.3.2.1 Introduction

Client-server communication involves two entities, the client which is the requirer (or
user) of a service and the server that provides the service.

The client initiates the communication, requesting that the server performs a ser-
vice, transferring a parameter set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a client, performs the requested
service and dispatches a response to the client’s request. So, the direction of initia-
tion is used to categorize whether a AUTOSAR software-component is a client or a
server.

A single component can be both a client and a server depending on the software
realization.

The invocation of a server is performed by the RTE itself when a request is made by
a client. The invocation occurs synchronously with respect to the RTE (typically via
a function call) however the client’s invocation can be either synchronous (wait for
server to complete) or asynchronous with respect to the server.

Note: servers which have an asynchronous operation (i.e. they accept a request
and another provide a feedback by invoking a server of the caller) should be avoided
as the RTE does not know the link between these 2 client-server communications. In
particular, the server should have no OUT (or INOUT) parameters because the RTE

284 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

cannot perform the copy of the result in the caller’s environment when the request was
processed.

[SWS_Rte_06019] d The only mechanism through which a server can be invoked is
through a client-server invocation request from a client. c(SRS_Rte_00029)

The above requirement means that direct invocation of the function implementing the
server outside the scope of the RTE is not permitted.

A server has a dedicated provide port and a client has a dedicated require port.
To be able to connect a client and a server, both ports must be categorized by the
same interface.

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received.

A server implemented by a RunnableEntity with attribute canBeInvokedCon-
currently set to FALSE is not allowed to be invoked concurrently and since a
server can have one or more clients the server may have to handle concur-
rent service calls (n:1 communication) the RTE must ensure that concurrent calls do
not interfere.

[SWS_Rte_04515] d The RTE shall ensure that call serialization8 of the operation is en-
forced when the server runnable attribute canBeInvokedConcurrently is FALSE.
c(SRS_Rte_00019, SRS_Rte_00033)

Note that the same server may be called using both synchronous and asynchronous
communication.

Note also that even when canBeInvokedConcurrently is FALSE, an Atomic-
SwComponentType might be instantiated multiple times. In this case, the implemen-
tation of the RunnableEntity can still be invoked concurrently from several tasks.
However, there will be no concurrent invocations of the implementation with the same
instance handle.

[SWS_Rte_04516] d The RTE’s implementation of the client-server communication
shall ensure that a service result is dispatched to the correct client if more than one
client uses a service. c(SRS_Rte_00019, SRS_Rte_00080)

The result of the client/server operation can be collected using “wake up of wait point”,
“explicit data read access” or “activation of runnable entity”.

[SWS_Rte_07409] d If all the following conditions are satisfied:

• the server runnable’s property canBeInvokedConcurrently is set to TRUE
8Call Serialization ensures at most one thread of control is executing an instance of a runnable

entity at any one time. An AUTOSAR software-component can have multiple instances (and therefore
a runnable entity can also have multiple instances). Each instance represents a different server and
can be executed in parallel by different threads of control thus serialization only applies to an individual
instance of a runnable entity – multiple runnable entities within the same component instance may also
be executed in parallel.

285 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• the client and server execute in the same partition, i.e. intra-partition
Client-Server communication

• the ServerCallPoint is Synchronous

• the OperationInvokedEvent is not mapped to an OsTask

the RTE Generator shall implement the Client-Server communication as a direct func-
tion call. c()

Note: In case the conditions in [SWS_Rte_04522] are fulfilled the RTE Generator may
implement a client-server call with a direct function call, even when the server runn-
able’s property canBeInvokedConcurrently is set to FALSE.

Since the communication occurs conceptually via the RTE (it is initiated via an RTE API
call) the optimization does not violate the requirement that servers are only invoked via
client-server requests (see Sect. 5.6.13, [SWS_Rte_06019]).

[SWS_Rte_07662] d The RTE Generator shall reject configurations where an
ClientServerOperation has an ArgumentDataPrototype whose Implemen-
tationDataType is of category DATA_REFERENCE and whose direction is IN-
OUT. c(SRS_Rte_00018, SRS_Rte_00019)

[SWS_Rte_08731] d If the return value of the serialization call is not equal to E_OK the
RTE shall not call Com_SendSignal c(SRS_Rte_00091)

4.3.2.2 Multiplicity

Client-server interfaces contain two dimensions of multiplicity; multiple clients invoking
a single server and multiple operations within a client-server interface.

4.3.2.2.1 Multiple Clients Single Server

Client-server communication involves an AUTOSAR software-component invoking a
defined “server” operation in another AUTOSAR software-component which may or
may not return a reply.

[SWS_Rte_04519] d The RTE shall support multiple clients invoking the same server
operation (’n:1’ communication where n ≥ 1). c(SRS_Rte_00029)

4.3.2.2.2 Multiple operations

A client-server interface contains one or more operations. A port of a AUTOSAR
software-component that requires an AUTOSAR client-server interface to the com-
ponent can independently invoke any of the operations defined in the interface
[SRS_Rte_00089].

286 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_04517] d The RTE API shall support independent access to operations in
a client-server interface. c(SRS_Rte_00029)

Example 4.9

Consider a client-server interface that has two operations, op1 and op2 and that an
AUTOSAR software-component definition requires a port typed by the interface. As
a result, the RTE generator will create two API calls; one to invoke op1 and another
to invoke op2. The calls can invoke the server operations either synchronously or
asynchronously depending on the configuration.

Recall that each data element in a sender-receiver interface is transmitted indepen-
dently (see Section 4.3.1.3) and that the coherent transmission of multiple data items
is achieved through combining multiple items into a single composite data type. The
transmission of the parameters of an operation in a client-server interface is simi-
lar to a record since the RTE guarantees that all parameters are handled atomically
[SRS_Rte_00073].

[SWS_Rte_04518] d The RTE shall treat the parameters and the results of a client-
server operation atomically. c(SRS_Rte_00033)

However, unlike a sender-receiver interface, there is no facility to combine multiple
client-server operations so that they are invoked as a group.

4.3.2.2.3 Single Client Multiple Server

The RTE is not required to support multiple server operations invoked by a single client
component request (’1:n’ communication where n > 1) (see [constr_1037] in [2]).

4.3.2.2.4 Call Serialization

Each client can invoke the server simultaneously and therefore the RTE is required to
support multiple requests of servers. If the server requires call serialization, the RTE
has to ensure it.

[SWS_Rte_04520] d The RTE shall support simultaneous invocation requests of a
server operation. c(SRS_Rte_00019, SRS_Rte_00080)

[SWS_Rte_04522] d The RTE shall ensure that the RunnableEntity implementing
a server operation has completed the processing of a request before it begins process-
ing the next request, if serialization is required by the server operation, i.e canBeIn-
vokedConcurrently attribute of the server is set to FALSE and client RunnableEn-
titys to OsTask mapping (RteEventToTaskMapping) may lead to concurrent in-
vocations of the server. c(SRS_Rte_00019, SRS_Rte_00033)

287 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When this requirement is met the operation is said to be “call serialized”. A call se-
rialized server only accepts and processes requests atomically and thus avoids the
potential for conflicting concurrent access.

Client requests that cannot be serviced immediately due to a server operation being
“busy” are required to be queued pending processing. The presence and depth of the
queue is configurable.

If the RunnableEntity implementing the server operation is reentrant , i.e. can-
BeInvokedConcurrently attribute set to TRUE, no serialization is necessary. This
allows to implement invocations of reentrant server operations as direct function calls
without involving the RTE.

But even when the canBeInvokedConcurrently attribute is set to FALSE the
RTE Generator still can utilize a direct function call, if the mapping of the client
RunnableEntitys to OsTasks will not imply a concurrent execution of the server.

[SWS_Rte_08001] d If multiple operations are mapped to the same RunnableEn-
tity, and [SWS_Rte_04522] requires a call serialization, then the operation invoked
events shall be mapped to same task and they shall have the same position in
task. Otherwise the RTE Generator shall reject configuration. c(SRS_Rte_00019,
SRS_Rte_00033)

[SWS_Rte_08002] d If multiple operations are mapped to the same RunnableEn-
tity, and [SWS_Rte_04522] requires a call serialization, then a single queue is
implemented for invocations coming from any of the operations. c(SRS_Rte_00019,
SRS_Rte_00033)

4.3.2.3 Communication Time-out

The ServerCallPoint allows to specify a timeout so that the client can be notified
that the server is not responding and can react accordingly. If the client invokes the
server synchronously, the RTE API call to invoke the server reports the timeout. If
the client invokes the server asynchronously, the timeout notification is passed to the
client by the RTE as a return value of the API call that collects the result of the server
operation.

[SWS_Rte_03763] d The RTE shall ensure that timeout monitoring is performed
for client-server communication, regardless of the receive mode for the result. c
(SRS_Rte_00069, SRS_Rte_00029)

If the server is invoked asynchronously and a WaitPoint is specified to collect the
result, two timeout values have to be specified, one for the ServerCallPoint and
one for the WaitPoint.

[SWS_Rte_03764] d The RTE generator shall reject the configuration if different
timeout values are specified for the AsynchronousServerCallPoint and for the
WaitPoint associated with the AsynchronousServerCallReturnsEvent for this
AsynchronousServerCallPoint. c(SRS_Rte_00018)

288 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In asynchronous client-server communication the AsynchronousServerCall-
ReturnsEvent associated with the AsynchronousServerCallPoint for an
ClientServerOperation indicates that the server communication is finished or that
a timeout occurred. The status information about the success of the server operation
is available as the return value of the RTE API call generated to collect the result.

[SWS_Rte_03765] d For each asynchronous invocation of an operation prototype only
one AsynchronousServerCallReturnsEvent shall be passed to the client com-
ponent by the RTE. The AsynchronousServerCallReturnsEvent shall indicate
either that the transmission was successful or that the transmission was not success-
ful. c(SRS_Rte_00079)

[SWS_Rte_03766] d The status information about the success or failure of the asyn-
chronous server invocation shall be available as the return value of the RTE API call to
retrieve the result. c(SRS_Rte_00079)

After a timeout was detected, no result shall be passed to the client.

[SWS_Rte_03770] d In case Rte_Call API returns RTE_E_LIMIT,
RTE_E_TRANSFORMER_LIMIT, RTE_E_COM_STOPPED, RTE_E_TIMEOUT,
RTE_E_UNCONNECTED, RTE_E_IN_EXCLUSIVE_AREA or RTE_E_SEG_FAULT,
the RTE shall not modify the OUT and INOUT parameters. c(SRS_Rte_00069,
SRS_Rte_00029)

[SWS_Rte_08310] d In case Rte_Result API returns
RTE_E_NO_DATA,RTE_E_HARD_TRANSFORMER_ERROR, RTE_E_COM_STOPPED,
RTE_E_TIMEOUT, RTE_E_UNCONNECTED, RTE_E_IN_EXCLUSIVE_AREA or
RTE_E_SEG_FAULT, the RTE shall not modify the OUT and INOUT parameters.
c(SRS_Rte_00069, SRS_Rte_00029)

Since an asynchronous client can have only one outstanding server invocation at a
time, the RTE has to monitor when the server can be safely invoked again.

If a server is invoked asynchronously, no timeout occurs and an Asyn-
chronousServerCallResultPoint exists then the RTE returns RTE_E_LIMIT for
subsequent invocations of the Rte_Call API until the server’s result has been suc-
cessfully passed to the client (See [SWS_Rte_01105]).

If a server is invoked asynchronously, no timeout occurs and no Asyn-
chronousServerCallResultPoint exists then the RTE returns RTE_E_LIMIT for
subsequent invocations of the Rte_Call API until the server has finished to process
the last request of the client (See [SWS_Rte_01105]).

In intra-partition client-server communication, the RTE can determine whether the
server runnable is still running or not.

[SWS_Rte_03771] d If a timeout was detected in asynchronous intra-partition client-
server communication, the RTE shall ensure that the server is not invoked again
by the same client until the server runnable has terminated. c(SRS_Rte_00069,
SRS_Rte_00079)

289 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In inter-ECU communication, the client RTE has no knowledge about the actual status
of the server. The response of the server could have been lost because of a commu-
nication error or because the server itself did not respond. Since the client-side RTE
cannot distinguish the two cases, the client must be able to invoke the server again
after a timeout expired. As partitions in one ECU are decoupled in a similar way like
separate ECUs, and can be restarted separately, client server communication should
behave similar for inter-ECU and intra-partition communication.

[SWS_Rte_03772] d If a timeout was detected in asynchronous inter-ECU or
inter-partition client-server communication, the RTE shall ensure that the server
can be invoked again by the same client after the timeout notification was passed to
the client. c(SRS_Rte_00069, SRS_Rte_00079)

Note that this might lead to client and server running out of sync, i.e. the response of
the server belongs to the previous, timed-out invocation of the client. The application
has to handle the synchronization of client and server after a timeout occurred.

[SWS_Rte_03767] d If the timeout value of the ServerCallPoint is 0, no timeout
monitoring shall be performed. c(SRS_Rte_00069, SRS_Rte_00029)

[SWS_Rte_03768] d If the canBeInvokedConcurrently attribute of the server runn-
able is set to TRUE, no timeout monitoring shall be performed if the RTE API call
to invoke the server is implemented as a direct function call. c(SRS_Rte_00069,
SRS_Rte_00029)

[SWS_Rte_02709] d In case of inter partition communication, if the partition of the
server is stopped or restarting at the invocation time of the server call or during the
operation of the server call, the RTE shall immediately provide a timeout indication to
the client. c()

Note: In case of inter-ECU or interpartition client-server communication it is recom-
mended to always specify a timeout>0 when synchronous server calls are used. Oth-
erwise in case of a full server queue the client would wait for the server response
infinitely.

4.3.2.4 Port-Defined argument values

Port-defined argument values exist in order to support interaction between Application
Software Components and Basic Software Modules.

Several Basic Software Modules use an integer identifier to represent an object that
should be acted upon. For instance, the NVRAM Manager uses an integer identifier
to represent the NVRAM block to access. This identifier is not known to the client,
as the client must be location independent, and the NVRAM block to access for a
given application software component cannot be identified until components have been
mapped onto ECUs.

There is therefore a mismatch between the information available to the client and that
required by the server. Port-defined argument values bridge that gap.

290 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The required port-defined arguments (the fact that they are required, their data type
and their values) are specified within the input to the RTE generator.

[SWS_Rte_01360] d When invoking the runnable entity specified for an OperationIn-
vokedEvent, the RTE shall include the port-defined argument values between the in-
stance handle (if it is included) and the operation-specific parameters, in the order they
are given in the Software Component Template Specification [2]. c(SRS_Rte_00152)

Requirement [SWS_Rte_01360] means that a client will make a request for an opera-
tion on a require (Client-Server) port including only its instance handle (if required) and
the explicit operation parameters, yet the server will be passed the implicit parameters
as it requires.

Note that the values of implicit parameters are constant for a particular server runnable
entity; it is therefore expected that using port-defined argument values imposes no
RAM overhead (beyond any extra stack required to store the additional parameters).

4.3.2.5 Buffering

Client-Server-Communication is a two-way-communication. A request is sent from the
client to the server and a response is sent back.

The buffering mechanisms described here also apply to the serialization of server calls
in the Basic Software Scheduler.

Unless a server call is implemented as direct function call, the RTE has to store or
buffer the communication on the corresponding receiving sides, requests on server
side and responses on client side, respectively:

• [SWS_Rte_02527] d Unless a server call is implemented as a direct function call,
the RTE shall buffer a request on the server side in a first-in-first-out queue as
described in chapter 4.3.1.10.2 for queued data elements.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN parameters, the IN/OUT parameters and a client identifer. c
(SRS_Rte_00019, SRS_Rte_00033, SRS_Rte_00110)

• [SWS_Rte_02528] d Unless a server call is implemented as a direct function call,
RTE shall keep the response on the client side in a queue with queue length 1.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN/OUT parameters, the OUT parameters and the error code. c
(SRS_Rte_00019, SRS_Rte_00033)

[SWS_Rte_02314] d The RTE shall determine the queue length for the server side
according to the following priority rules (highest priority first):

1. value of the ECU-C parameter RteServerQueueLength

2. value of the queueLength attribute of the ServerComSpec

291 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

c()

[SWS_Rte_02315] d The Basic Software Scheduler shall take the queue length for the
server from the ECU-C parameter RteBswServerQueueLength. c()

[SWS_Rte_02529] d The RTE generator shall reject a queueLength attribute of a
ServerComSpec with a queue length ≤ 0. c(SRS_Rte_00033, SRS_Rte_00110,
SRS_Rte_00018)

[SWS_Rte_02530] dThe RTE shall use the queue of requests to call serialise access
to a server. c(SRS_Rte_00033, SRS_Rte_00110)

A buffer overflow of the server is not reported to the client. The client will receive a time
out.

[SWS_Rte_07008] d If a server call is implemented by direct function call the RTE
shall not create any copy for parameters passed by reference. c(SRS_Rte_00033,
SRS_Rte_00110)

Therefore, it is the responsibility of the application to provide consistency mechanisms
for referenced parameters if necessary.

4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping

RTE is responsible to map a response to the corresponding request. With this map-
ping, RTE can activate or resume the corresponding runnable and provide the re-
sponse to the correct client. The following situations can be distinguished:

• Mapping of a response to the correct request within one ECU. In general, this is
solved already by the call stack. The details are implementation specific and will
not be discussed in this document.

• Mapping of a response coming from a different partition or a different ECU.

The problem of request to response mapping in inter-ECU and inter-Partition commu-
nication can be split into:

• Mapping of a response to the correct client. This is discussed in 4.3.2.6.1.

• Mapping of a response to the correct request within of one client. This is dis-
cussed in 4.3.2.6.2.

The general approach for the inter-ECU and inter-Partition request response mapping
is to use transaction handles.

[SWS_Rte_02649] d In case of inter-ECU client-server communication, the transaction
handle shall contain two parts of unsigned integer type:

• Client Identifier

• Client Sequence Counter

292 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_04544] d In case of inter-ECU client-server communication, where Meta-
Data is configured for the PDU associated to the SystemSignal, the transaction han-
dle shall additionally contain the item MetaData of unsigned integer type. The size shall
be equal to the size of the configured MetaData. c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_08711] d The Client Identifier of the transaction handle used for an inter-
ECU client server communication shall be of type uint16. c(SRS_Rte_00082,
SRS_Rte_00091)

[SWS_Rte_07413] d The Client Identifier of the transaction handle used for an inter-
ECU client server communication may be defined at the ClientIdDefinition be-
longing to the Ecu Extract and referring the operation instance. If defined the RTE
generator shall take the clientId from the ClientIdDefinition. If not defined
the RTE generator shall set the clientId to 0. c(SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08712] d The Client Sequence Counter part of the transaction handle
used for an inter-ECU client server communication shall be of type uint16. c
(SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_07346] d In case of inter-Partition client-server communication, the RTE
shall not communicate any response to the client if the client is part of a partition that
was restarted since the request was sent. c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_07346] could be implemented with a transaction handle that contains a
sequence counter.

[SWS_Rte_02651] d In case of inter-ECU client-server communication, the transaction
handle shall be used for the identification of client server transactions communicated
via COM or LdCom. c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_02653] d The RTE on the server side shall return the transaction handle
of the request without modification together with the response. The MetaData item
(if contained) in the transaction handle shall be passed to LdCom when invoking the
transmission of the response c(SRS_Rte_00027, SRS_Rte_00082)

Note: MetaData handling is currently only supported for LdCom. When using Com still
one dedicated SystemSignal has to be used for each calling ECU.

Since there is always at most one open request per client (see [SWS_Rte_02658]), the
transaction handle can be kept within the RTE and does not have to be exposed to the
AUTOSAR SW-C.

4.3.2.6.1 Client Identifier

In case of a server on one ECU with clients on other ECUs, the inter-ECU client-server
communication has to use different unique SystemSignals for each client-ECU to
allow the identification of the client-ECU associated with each client call. However

293 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Client ECUs for which MetaData is configured for distinction of calling ECUs can be
configured sharing one unique SystemSignal if LdCom is used. The interface to the
COM module currently doesn’t support it.

With this mechanism, the server-side RTE must handle the fan-in. This is done in the
same way as for sender-receiver communication.

However it is allowed to have several clients in one client-ECU communicating using
inter-ECU client-server communication with a server on a different ECU, if the client
identifier is used to distinguish the different clients (see [constr_3264]).

[SWS_Rte_03769] d If multiple clients have access to one server, the RTE on the
server side has to queue all incoming server invocations while ensuring data consis-
tency. c(SRS_Rte_00019, SRS_Rte_00029, SRS_Rte_00080)

4.3.2.6.2 SequenceCounter

The purpose of sequence counters is to map a response to the correct request of a
known client.

[SWS_Rte_02658] d In case of inter-ECU and inter-Partition communication, RTE shall
allow only one request per client and server operation at any time. c(SRS_Rte_00079)

[SWS_Rte_02658] does not apply to intra-partition communication because there can
be several execution-instances.

[SWS_Rte_02658] implies under normal operation that a response can be mapped to
the previous request. But, when a request or response is lost or delayed, this order
can get out of phase. To allow a recovery from lost or delayed signals, a sequence
counter is used. The sequence counter can also be used to detect stale responses
after a restart of the client side RTE and SW-C.

[SWS_Rte_02654] d RTE shall support a sequence counter for the inter ECU client
server connection where configured in the input information. c(SRS_Rte_00027,
SRS_Rte_00082)

[SWS_Rte_02655] d RTE shall initialize all sequence counters with zero during
Rte_Start. c(SRS_Rte_00082)

[SWS_Rte_02656] d RTE shall increase each sequence counter in a cyclic man-
ner after a client server operation has finished successfully or with a timeout. c
(SRS_Rte_00082)

[SWS_Rte_02657] d RTE shall ignore incoming responses that do not match the se-
quence counter. c(SRS_Rte_00027, SRS_Rte_00082)

294 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.2.7 Parameter Serialization

Within an input configuration an unconnected or an intra-ECU client will have zero
ClientServerToSignalMapping and an inter-ECU client will have exactly one
such mapping (since a client can connect to exactly one server). Fan-out is not sup-
ported for clients and therefore multiple mappings are not permitted.

[SWS_Rte_08700] d The RTE generator shall reject an input configuration where
a ClientServerOperation owned by an RPortPrototype is referenced
by more than one ClientServerToSignalMapping with identical values of
the attribute ClientServerOperation . c(SRS_Rte_00018, SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08703] d For an inter-ECU client-server communication, the RTE of the
client ECU shall communicate the request to a remote server using the callSignal
of the ClientServerToSignalMapping which references the operation instance. c
(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08705] d For an inter-ECU client-server communication, the RTE of the
client ECU shall receive the results of a remote server using the returnSignal of
the ClientServerToSignalMapping which references the operation instance. c
(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

[SWS_Rte_08707] d For an inter-ECU client-server communication, the RTE of the
server ECU shall receive a request of a remote client using the callSignal of
the ClientServerToSignalMapping which references the operation instance. c
(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08709] d For inter-ECU client-server communication, the RTE of the server
ECU shall communicate the results to a remote client using the returnSignal of
the ClientServerToSignalMapping which references the operation instance. c
(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

4.3.2.8 Operation

4.3.2.8.1 Inter-ECU Mapping

The client server protocol defines how a client call and the server response are mapped
onto the communication infrastructure of AUTOSAR in case of inter-ECU communica-
tion. This allows RTE implementations from different vendors to interpret the client
server communication in the same way.

The AUTOSAR System Template [8] does specify a protocol for the client server com-
munication in AUTOSAR.

295 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.2.8.2 Atomicity

The requirements for atomicity from Section 4.3.1.11.2 also apply for the composite
data types described in Section 4.3.2.8.1.

4.3.2.8.3 Fault detection and reporting

Client Server communication may encounter interruption like:

• Buffer overflow at transformation

• Buffer overflow at the server side.

• Communication interruption.

• Server might be inaccessible for some reason.

The client specifies a timeout that will expire in case the server or communication fails
to complete within the specified time. The reporting method of an expired timeout
depends on the communication attributes:

• If the C/S communication is synchronous the RTE returns RTE_E_TIMEOUT on
the Rte_Call function (see section 5.6.13).

• If the C/S communication is asynchronous the RTE returns RTE_E_TIMEOUT on
the Rte_Result function (see section 5.6.14).

In the case that RTE detects that the COM service is not available when forwarding sig-
nals to COM, the RTE returns RTE_E_COM_STOPPED on the Rte_Call (see section
5.6.13).

In the case a transmission is ongoing (e.g. LdCom transmission using TP-API
with pending TxConfirmation) when forwarding signals to LdCom, the RTE returns
RTE_E_COM_BUSY on the Rte_Call (see section 5.6.13).

If the client still has an outstanding server invocation when the server is invoked again,
the RTE returns RTE_E_LIMIT on the Rte_Call (see chapter 5.6.13).

In the absence of structural errors, application errors will be reported if present.

4.3.2.8.4 Asynchronous Client Server communication

Figure 4.43 shows a sequence diagram of how asynchronous client server communi-
cation may be implemented by RTE.

296 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Client's COM

Netwok Server's

COM

Server's RTE ServerClient Application Client's RTE Client's

Transformer

Server's

Transformer

(1) RTE transforms all IN
parameters of the operation

(3) The Server's COM
invokes RTE callback
when transformed data
have been received.

Inter-ECU communication
Asynchronous Client-Server communication
Port name = p
Operation name = o

The ClientResponseRunnable is referencing an
AsynchronousServerCallReturnsEvent.
The client runnable that invokes the server call is referencing an
AsynchronousServerCallPoint
The server runnable is refered by an OperationInvokedEvent
ServerComSpec attribute queueLength = number of possible
queued server calls

(9) RTE deserializes all OUT parameters and activates the
Client's response runnable.

(6) RTE fetches the server
parameter from its queue
and calls the Server
runnable.

(8) The Client's
COM invokes RTE
callback when
transformed data
have been
received.

(2) RTE calls Com_SendSignal for the
byte array to transfer all IN parameters
using it's COM

(4) The Server's COM
receives the transformed
byte array

(5) RTE calls transformer to
deserialize the byte array into
parameters. Additionally, the RTE
receives the Client ID and puts
them into the RTE queue. The
Server Task is activated.

(7) RTE calls the transformer for
the response OUT parameters
and sends the resulting array
back to the client

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

Rte_Call_p_o()

Xfrm_<name1>()

E_OK()

Com_SendDynSignal()

E_OK()

Com_SendSignal()

E_OK()

RTE_E_OK()

Rte_COMCbk_<sg>()

Com_ReceievDynSignal()

E_OK()

Com_ReceiveSignal()

E_OK()

Xfrm_Inv_<name1>()

E_OK()
Activate Server's Task()

ServerRunnable()

Xfrm_<name2>()

E_OK()

Com_SendDynSignal()

E_OK()

Com_SendSignal()

E_OK()

Rte_COMCbk_<sg>()

Activate Client's response task()

Com_ReceiveDynSignal()

E_OK()

Com_ReceiveSignal()

E_OK()

Xfrm_Inv_<name2>()

E_OK()

ClientResponseRunnable()

Figure 4.43: Client Server asynchronous

297 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.2.8.5 Synchronous Client Server communication

Figure 4.44 shows a sequence diagram of how synchronous client server communica-
tion may be implemented by RTE.

298 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Client's RTE Client's COM

Netwok Server's

COM

Server's RTE ServerClient Application Client's

Transformer

Server's

Transformer

(2) RTE calls Com_SendSignal
for the byte array to transfer all
IN parameters using it's COM

(4) The Server's COM
receives the transformed
byte array

Inter-ECU communication
Synchronous Client-Server communication
Port name = p
Operation name = o

The client runnable that invokes the server call is
referencing an SynchronousServerCallPoint
The server runnable is refered by an
OperationInvokedEvent
ServerComSpec attribute queueLength = number of
possible queued server calls

(8) RTE receives byte
array and transforms it
back to the OUT
parameters

(7) RTE calls the transformer
for the response OUT
parameters and sends the
resulting array back to the
client

Client Application is
blocked. Client task is

set waiting

Client task is
started

Client Application
continues

Client task is
released

(6) RTE fetches the server parameter
from its queue and calls the Server
runnable.

(1) RTE transforms all IN
parameters of the operation into
a byte array

(5) RTE calls transformer to
deserialize the byte array into
parameters. Additionally, the RTE
receives the Client ID and puts
them into the RTE queue. The
Server Task is activated.

(3) The Server's COM
invokes RTE callback
when transformed data
have been received.

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

alt dynamicLength of SystemSignal

[dynamicLength == true]

[dynamicLength == false]

Rte_Call_p_o()

Xfrm_<name1>()

E_OK()

Com_SendDynSignal()

E_OK()

Com_SendSignal()

E_OK()

WaitEvent(EventXY)

Rte_COMCbk_<sg>()

Com_ReceiveDynSignal()

E_OK()

Com_ReceiveSignal()

E_OK()

Xfrm_Inv_<name1>()

E_OK()

Activate Server's task()

ServerRunnable()

Xfrm_<name2>()

Com_SendDynSignal()

E_OK()

Com_SendSignal()

E_OK()

Rte_COMCbk_<sg>()

SendEvent(EventXY)

Com_ReceiveDynSignal()

E_OK()

Com_ReceiveSignal()

E_OK()

Xfrm_Inv_<name2>()

RTE_E_OK()

Figure 4.44: Client Server synchronous

299 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.3 SWC internal communication

4.3.3.1 Inter Runnable Variables

Sender/Receiver and Client/Server communication through AUTOSAR ports are the
model for communication between AUTOSAR SW-Cs.

For communication between Runnables inside of an AUTOSAR SW-C the AUTOSAR
SW-C Template [2] establishes a separate mechanism. AtomicSwComponents (ex-
cept for NvBlockComponents) can reserve InterRunnableVariables which can only be
accessed by the Runnables of this one AtomicSwComponent. The Runnables might
be running in the same or in different task contexts. Read and write accesses are
possible.

[SWS_Rte_03589] d The RTE shall support Inter Runnable Variables for single and
multiple instances of AUTOSAR SW-Cs. c(SRS_Rte_00142)

[SWS_Rte_07187] d The generated RTE shall initialize a defined implicitInter-
RunnableVariable and explicitInterRunnableVariable according to the
ValueSpecification of the VariableDataPrototype defining the implic-
itInterRunnableVariable respectively explicitInterRunnableVariable if
the general initialization conditions in [SWS_Rte_07046] and [SWS_Rte_03852] are
fulfilled. c(SRS_Rte_00142)

InterRunnableVariables have a behavior corresponding to Sender/Receiver commu-
nication between AUTOSAR SW-Cs (or rather between Runnables of different AU-
TOSAR SW-Cs).

But why not use Sender/Receiver communication directly instead? Purpose is data
encapsulation / data hiding. Access to InterRunnableVariables of an AUTOSAR SW-C
from other AUTOSAR SWCs is not possible and not supported by RTE. InterRunnabl-
eVariable content stays SW-C internal and so no other SW-C can use it. Especially not
misuse it without understanding how the data behaves.

Like in Sender/Receiver (S/R) communication between AUTOSAR SW-Cs two different
behaviors exist:

1. Inter Runnable Variables with implicit behavior
(implicitInterRunnableVariable)
This behavior corresponds with VariableAccesses in the dataReadAc-
cess and dataWriteAccess roles of Sender/Receiver communication and is
supported by implicit S/R API in this specification.

Note:
If a VariableAccess in the writtenLocalVariable role referring to a
VariableDataPrototype in the implicitInterRunnableVariable role
is specified for a certain interrunnable variable, but no RTE API for implicit write
of this interrunnable variable is called during an execution of the runnable, an
undefined value is written back when the runnable terminates.

300 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

For more details see section 4.2.5.6.1.
For APIs see sections 5.6.23 and 5.6.24.

Note 2:
As for the Implicit Sender/Receiver communication, the implicit concept for Inter-
RunnableVariables implies that the runnable does terminate. For runnable enti-
ties of category 2, the behavior is guaranteed only if it has a finite execution time.
A category 2 runnable that runs forever will not have its data updated.

2. Inter Runnable Variables with explicit behavior
(explicitInterRunnableVariable)
This behavior corresponds with VariableAccesses in the dataSendPoint,
dataReceivePointByValue, or dataReceivePointByArgument roles of
Sender/Receiver communication and is supported by explicit S/R API in this
specification.

For more details see section 4.2.5.6.2
For APIs see sections 5.6.26 and 5.6.27.

4.3.4 Inter-Partition communication

Partitions are used to decompose an ECU into functional units. Partitions can con-
tain both SW-Cs and BSW modules. The partitioning is done to protect the software
contained in the partitions against each other or to increase the performance by run-
ning the partitions on different cores of a multi core controller.

Since the partitions may be separated by core boundaries or memory boundaries and
since the partitions can be stopped and restarted independently, the observable be-
havior to the SW-Cs for the communication between different partitions is rather similar
to the inter ECU communication than to the intra partition communication. The RTE
needs to use special mechanisms to communicate from one partition to another.

Like for the inter ECU communication, inter partition communication uses the connec-
tionless communication paradigm. This means, that a send operation is successful for
the sender, even if the receiving partition is stopped. A receiver will only, by means of
a timeout, be notified if the partition of the sender is stopped.

Unlike most basic software, the RTE does not have a main processing function. The
execution logic of the RTE is contained in the generated task bodies, the wrapper code
around the runnables whose execution RTE manages.

As the tasks that contain the SW-Cs runnables are uniquely assigned to partitions (see
page 11EER of [15]), the execution logic of the RTE is split among the partitions. It
can not be expected that the RTE generated wrapper code running in one partition can
directly access the memory objects assigned to the RTE part of another partition.

In this sense, there is one RTE per partition, that contains runnable entities.

301 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Still, RTE is responsible to support the communication between SW-Cs allocated to
the different partitions. According to the AUTOSAR software layered architecture, RTE
has to be independent of the micro controller architecture. AUTOSAR supports a wide
variety of multi core and memory protection architectures.

[SWS_Rte_02734] d The RTE generator shall support a mode in which the generated
code is independent of the micro controller. c(SRS_BSW_00161)

It can not be generally assumed that a cache coherent, shared memory is available
for the communication between partitions. Direct memory access and function calls
across partition boundaries are generally not possible. In the extreme case, communi-
cation might even be limited to a message passing interface.

To allow memory protection and multi core support in spite of [SWS_Rte_02734], the
AUTOSAR OS provides a list of mechanisms, that can be used for the communication
across cores (see [4]). Especially, the IOC has been designed to support the commu-
nication needs of RTE in a way that should not introduce additional run time overhead.

If a communication between Basic Software Modules is necessary for which the IOC
does not suffice, for example Sender-Receiver or Client-Server communication, there
are also mechanisms provided by the Basic Software Scheduler. These mechanisms
follow the Client-Server communication pattern or the Sender-Receiver communica-
tion pattern of the VFB but cannot be used for inter-ECU communication. The Basic
Software Scheduler can internally use the IOC to cross the partition boundaries. See
[24].

The following sections describe the use of some OS mechanisms that are designed for
inter partition communication.

4.3.4.1 Inter partition data communication using IOC

The general idea to allow the data communication between partitions in a most efficient
way and still be independent of the micro controller implementation is to take the buffers
and queues from the intra partition communication case and replace them with so
called IOC communication objects in the inter partition communication case.

In the ideal case, the access macros to the IOC communication object resolve to a
direct access to shared memory.

The IOC (Inter OS-Application Communication) is a feature of the AUTOSAR OS, which
provides a data oriented communication mechanism between partitions. The IOC pro-
vides communication buffers, queues, and protected access functions/macros to these
buffers that can be used from any pre-configured partitions concurrently.

The IOC offers communication of data to another core or between memory protected
partitions with guarantee of data consistency.

302 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

All data communications including the passing of parameters and return values in client
server communication, can be implemented by using the IOC. The basic principle for
using the IOC is to replace the RTE internal communication buffers by IOC buffers.

The IOC supports 1:1 and N:1 communication. For 1:N communication, N IOC com-
munication objects have to be used. The IOC is configured and provides generated
APIs for each IOC communication object. In case of N:1 communication, each sender
has a separate API.

The IOC API is not reentrant.

[SWS_Rte_02737] d RTE shall prevent concurrent access to the same IOC API from
different ExecutableEntity execution-instances. c()

The IOC will use the appropriate mechanism to communicate between the partitions,
whether it requires communicating with another core, communicating with a partition
with a different level of trust, or communicating with another memory partition.

The IOC channels are configured in the OS Configuration. Their configurations has to
be provided as inputs for the RTE generator when the external configuration switch
strictConfigurationCheck [SWS_Rte_05148] is set to true, and can be pro-
vided by the RTE Generator or RTE Configuration Editor when strictConfigura-
tionCheck is set to false (see [SWS_Rte_05150]).

The IOC APIs use:

1. types declared by user on input to RTE (sender-receiver communication across
OsApplication boudaries).

2. types created by RTE to collect client-server operation arguments into single data
structure.

For the second item, RTE uses internal types that have to be described as Imple-
mentationDataTypes (see [SWS_Rte_08400]).

The signaling between partitions is not covered by the IOC. The callbacks of IOC are
in interrupt context and are mainly intended for direct use by BSW. For the signaling
between partitions, RTE can use the activation of tasks or setting of events, see section
4.3.4.4.

[SWS_Rte_02736] d The RTE shall not execute ExecutableEntitys in the context
of IOC callbacks. c()

This is necessary to ensure that ExecutableEntitys will not be executed in interrupt
context or when a partition is terminated or restarted.

4.3.4.2 Inter partition data communication using Basic Software Scheduler

The Basic Software Scheduler provides Sender-Receiver and Client-Server communi-
cations mechanisms for communication between Basic Software Modules in different

303 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

partitions. Therefore these communication paradigms can be used by Basic Software
Modules in a multi core environment.

The usage is described in [9].

For Sender-Receiver communication currently only "explicit" transmission of data ele-
ments with "event" semantic (queued) is supported.

[SWS_Rte_08763] d For inter-ECU Sender-Receiver communication the length of the
queue is specified by the attribute queueLength of the BswQueuedDataRecep-
tionPolicy which references through receivedData the VariableDataProto-
type of the Sender-Receiver communication. c(SRS_Rte_00243)

[SWS_Rte_08764] d The RTE generator shall reject a queueLength attribute of a
BswQueuedDataReceptionPolicy with a queue length ≤ 0. c(SRS_Rte_00243)

4.3.4.3 Accessing Ld(Com) and Det in multicore/multipartition configuration

In a multicore ECU it might be possible for a software component to send data to
another ECU via the communication stack which might be located in a different partition
than the sending software component. In this case, different approaches for the Rte
are possible:

1. It is assumed that Ld(Com) and Det can be called from everywhere—they are in
every partition—in case shared buffer is available for the ECU.

2. Ld(Com) and Det are called via the CallTrustedFunction. It is assumed they can
be called from each core but they are in different partitions. In this case, the
application calling the Com is in an untrusted OsApplication and the Com in
a trusted OsApplication. This approach requires a MPU configuration.

3. Ld(Com) and Det are only in one partition. Here, the Rte could first transmit the
data to the Ld(Com) partition and then calls the required Ld(Com) APIs in the
context of the Ld(Com) partition e.g. via an OsTask.

Please note that the 3 exemplary scenarios do not exhaustively show all possible sce-
narios. For instance an ECU may host different safety levels and / or BSW modules
might be available only in QM or for specific safety levels.

304 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.4.4 Signaling and control flow support for inter partition communication

The OS representation of a partition is an OS Application.

This is a (non-exhaustive) summary of OS features that can be used for signaling and
control flow across partition boundaries:

• activation of tasks

• start and stop of schedule tables

• event signaling

• alarms

• spin locks (for inter core synchronization)

The following are not available for inter core signaling:

• OS Resource

• DisableAllInterrupts

For inter core synchronization, spin locks are provided. But, for efficiency reasons they
should be used with care.

4.3.4.5 Trusted Functions

The call-trusted-function mechanism of AUTOSAR OS can be used in a memory pro-
tected controller to implement a function call from an untrusted to a trusted partition.

This Trusted Partition is a partition that may have full access to the OS objects of other
partitions on the same core. The Basic Software is assumed to reside in a trusted
partition. It is assumed that the trusted partition cannot be terminated or restarted.

The typical use case for the call-trusted-function mechanism are AUTOSAR services
which are usually provided by a client/server interface where the service side resides
together with the basic software in the trusted partition.

Beware that this mechanism can not be used between two untrusted partitions or be-
tween cores.

The trusted functions are configured in the OS Configuration. Their configurations
shall be provided as inputs for the RTE generator when the external configuration
switch strictConfigurationCheck [SWS_Rte_05148] is set to true, and can be
provided by the RTE Generator or RTE Configuration Editor when strictConfigu-
rationCheck is set to false (see [SWS_Rte_05150]).

[SWS_Rte_07606] d Direct start of an ExecutableEntity execution-instance by the
mean of a trusted function shall only be used for the start of an ExecutableEntity
in the Trusted Partition. c(SRS_Rte_00195, SRS_Rte_00210)

305 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The OS ensures that the partition of the caller is not terminated or restarted when a
trusted function is executed unless the termination of the partition calling the trusted
function is caused by another TRUSTED partition. If needed, the termination or restart
of the caller’s partition is delayed after the trusted function returns.

RTE has to ensure, that the OS does not kill an RTE-generated task due to stopping
or restarting a partition while this task is executing a function call to BSW or to the
software component of another partition when this call is not a pure function.

For this purpose, RTE can use either the OS mechanism of trusted function call, or it
can allocate the server to a different task than the client.

[SWS_Rte_02761] d In a partitioned system that supports stop or restart of partitions,
the RTE shall not use a direct function call (without use of OS call trusted function)
from a task of an untrusted partition to BSW or to the SW-C of another partition unless
this is a pure function. c(SRS_Rte_00196)

Please note that [SWS_Rte_02761] might require the use of OS call trusted function
for a partitioned system even without memory protection.

4.3.4.6 Memory Protection and Pointer Type Parameters in RTE API

In a memory protected ECU, a SW-C from an untrusted partition might misuse the
transition to the trusted context to modify memory in another partition. This can occur
when a pointer to a different memory partition is passed from the untrusted partition to
the trusted context. The RTE shall avoid this misuse by at least checking the validity
of the address of the pointer, and, where possible, also checking the integrity of the
associated memory object.

[SWS_Rte_02752] dWhen a SW-C in an untrusted partition receives (OUT parameter)
or provides (IN parameter with composite data type) an ArgumentDataPrototype
or VariableDataPrototype, it hands over a pointer to a memory object to an RTE
API. The RTE shall only forward this pointer to a trusted SW-C after it has checked that
the whole memory object is owned by the caller’s partition. c(SRS_Rte_00210)

[SWS_Rte_02753] d When a SW-C in an untrusted partition passes an Argument-
DataPrototype or VariableDataPrototype, as a reference type to a SW-C
in a trusted partition (DATA_REFERENCE as an IN parameter), the RTE shall only
check that the caller’s partition owns the start address of the referenced memory. c
(SRS_Rte_00210)

Note to [SWS_Rte_02753]: The RTE only checks whether the start address referenced
directly by the DataPrototypes belongs to the calling partition. Because the RTE is
not aware of the semantic of the pointed reference, it cannot check if the referenced
object is completely contained in the calling partition (e.g. the RTE does not know
the size and does not know if the referenced object also contains references to other
objects). The BSW is responsible to make sure that the referenced memory object
does not cross memory section boundaries.

306 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The OS API CheckTaskMemoryAccess can be used to fulfill [SWS_Rte_02752] and
[SWS_Rte_02753].

4.3.5 PortInterface Element Mapping and Data Conversion

AUTOSAR supports the connection of an R-port to a P-port with an interface that is not
compatible in the sense of the AUTOSAR compatibility rules. In addition, for sender-
receiver communication it is possible to specify how data elements are represented
given that the communication requires the usage of a dedicated communication bus.
In these cases the generated RTE has to support the conversion and re-scaling of
data.

4.3.5.1 PortInterface Element Mapping

Per default the shortNames of PortInterface elements are used to identify the
matching element pairs of connected ports. In case of non fitting names — might
be caused due to distributed development, off-the-shelf development, or re-use of soft-
ware components — it is required to explicitly specify which PortInterface elements
shall correlate. This is modelled with PortInterfaceMappings. A connection of two
ports can be associated with a set of PortInterfaceMappings. If two ports are
connected and a PortInterfaceMapping for the pair of interfaces of the two ports
is associated with the connection, the interface elements are mapped and converted
as specified in the PortInterfaceMapping. If no PortInterfaceMapping for the
respective pair of interfaces is associated with the connection, the ordinary interface
compatibility rules are applied.

The general approach is to perform the data conversion in the RTE of the ECU imple-
menting the R-port. The reason for this design decision is that in case of 1:n sender-
receiver communication it is inefficient to perform all the data conversions for the mul-
tiple receivers on the sender side and then send multiple sets of the same data just in
different representations over the communication bus.

[SWS_Rte_03815] d The RTE shall support the mapping of sender-receiver interfaces,
parameter interfaces and non-volatile data interface elements. c(SRS_Rte_00182)

[SWS_Rte_03816] d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and a
VariableAndParameterInterfaceMapping for both interfaces is associated with
the connection, the RTE of the ECU implementing the R-port shall map and convert the
data elements of the sender’s interface to the data elements of the receiver’s interface.
c(SRS_Rte_00182)

[SWS_Rte_07091] d The RTE shall support the Mapping of elements of composite
data types in the context of a mapping of SenderReceiverInterface, NvDataIn-
terface or ParameterInterface elements. c(SRS_Rte_00182, SRS_Rte_00234)

307 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07092] d The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototypes of the sender’s interface
to the composite data type elements of DataPrototypes of the receiver’s interface
according the SubElementMapping
if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to an R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is as-
sociated with the connection and
the SubElementMapping maps composite data type elements of the provided inter-
face to composite data type elements of the required interface. c(SRS_Rte_00182,
SRS_Rte_00234)

[SWS_Rte_07099] d The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototype of the sender’s interface
to the primitive DataPrototype of the receiver’s interface according the SubEle-
mentMapping
if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to a R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is
associated with the connection and the SubElementMapping exclusively maps
one composite data type element of the provided interface c(SRS_Rte_00182,
SRS_Rte_00234)

According to [TPS_SWCT_01551], incomplete SubElementMappings are allowed
for unqueued communication, when unmapped dataElements on the receiver side
have an initValue.

Please note that the DataPrototypes of the provide port and DataPrototypes of
the require port might use exclusively ApplicationDataTypes, exclusively Imple-
mentationDataTypes or both kinds of AutosarDataTypes in a mixed manner.

[SWS_Rte_02307] d The RTE generator shall reject configurations that violate [con-
str_1300]. c()

[SWS_Rte_03817] d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and no
VariableAndParameterInterfaceMapping for this pair of interfaces is associ-
ated with the connection, the RTE generator shall reject the input as an invalid config-
uration. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_03818] d The RTE shall support the mapping of client-server interface ele-
ments. c(SRS_Rte_00182)

[SWS_Rte_03819] d If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and a ClientServerInter-
faceMapping for both interfaces is associated with the connection, the RTE of the
ECU implementing the R-port, i. e. the client, shall map the operation and map and
convert the operation arguments of the client’s interface to the operation arguments of
the server’s interface. c(SRS_Rte_00182)

308 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07925] d If a ClientServerApplicationErrorMapping exists, the
RTE shall translate the error codes of the server into the corresponding error codes
described by the mapping. c(SRS_Rte_00182, SRS_Rte_00123)

[SWS_Rte_07926] d If a ClientServerApplicationErrorMapping exists and a
particular error of the server is not mapped, this error shall be translated to RTE_E_OK.
c(SRS_Rte_00182, SRS_Rte_00123)

[SWS_Rte_03820] d If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and no ClientServerInter-
faceMapping for this pair of interfaces is associated with the connection, the
RTE generator shall reject the input as an invalid configuration. c(SRS_Rte_00182,
SRS_Rte_00018)

[SWS_Rte_03821] d The RTE shall support the mapping of ModeSwitchInterface
elements. c(SRS_Rte_00182)

[SWS_Rte_03822] d If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and a ModeInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map and convert the mode elements of the sender’s interface to the mode
elements of the receiver’s interface. c(SRS_Rte_00182)

[SWS_Rte_03823] d If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and no ModeInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_03824] d The RTE shall support the mapping of trigger interface elements.
c()

[SWS_Rte_03825] d If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and a TriggerInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map the trigger of the sender’s interface to the trigger of the receiver’s
interface. c()

[SWS_Rte_03826] d If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and no TriggerInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. c(SRS_Rte_00018)

In order to generate the RTE for the ECU implementing the R-ports, the RTE gener-
ator has to know the interfaces of the P-ports that are connected over the bus. This
information is provided in the ECU extract via the networkRepresentationProps
(see section 4.3.6) specified at the ISignal representing the data element.

309 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.3.6 Network Representation

4.3.6.1 Network Representation with no data transformation

For sender-receiver communication where no data transformation applies, it is possible
to specify how data elements are represented given that the communication requires
the usage of a dedicated communication bus. For this purpose networkRepresen-
tationProps and physicalProps can be specified at the ISignal respectively
SystemSignal, describing the representation of the data element on the communi-
cation bus via the attributes baseType and compuMethod.

[SWS_Rte_07842] d The RTE generator shall reject any input that violates
[TPS_SYST_02001] as an invalid configuration. c(SRS_Rte_00018)

[SWS_Rte_03827] d The RTE of the transmitting ECU shall perform the conversion of
the data element that has to be sent over a communication bus to the representation
specified by the baseType of the networkRepresentationProps of the ISignal
and the compuMethod of the physicalProps of the respective SystemSignal if
the dataTypePolicy of the ISignal is set to override or legacy. The converted
data shall be passed to COM. c(SRS_Rte_00181)

[SWS_Rte_06737] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective SenderComSpec is defined, the RTE of the transmitting ECU shall per-
form the conversion of the data element that has to be sent over a communication
bus to the representation specified by the baseType and compuMethod of the net-
workRepresentation of the respective SenderComSpec. The converted data shall
then be passed to COM. c(SRS_Rte_00181)

[SWS_Rte_03828] d The RTE of the receiving ECU shall perform the conversion of
the data element that is received over a communication bus from the representation
specified by the baseType of the networkRepresentationProps of the ISignal
and the compuMethod of the physicalProps of the respective SystemSignal to
the data element’s application data type if the dataTypePolicy of the ISignal is
set to override or legacy. In this case [SWS_Rte_03816] shall not be applied c
(SRS_Rte_00181)

[SWS_Rte_06738] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective ReceiverComSpec is defined, the RTE of the receiving ECU shall
perform the conversion of the data element that is received over a communica-
tion bus from the representation specified by the baseType and compuMethod of
the networkRepresentation of the respective ReceiverComSpec. In this case
[SWS_Rte_03816] shall not be applied. c(SRS_Rte_00181)

[SWS_Rte_07844] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec but there is no networkRepresenta-
tion defined by the ReceiverComSpec (respectively SenderComSpec) then no con-
version shall be performed by RTE. c(SRS_Rte_00181)

310 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

As an alternative to networkRepresentationProps the representation of the
VariableDataPrototypes and ArgumentDataPrototypes on the communica-
tion bus can be expressed by the used DataTypes in the PortInterfaces on the
outerPorts of the CompositionSwComponentType describing the ecu extract. In
this case the conversion between the network representation and the representation
for the software components on the ecu are described by a PortInterfaceMapping
which in turn is referenced by the DelegationSwConnector connecting the inner-
Port of the software component and the outerPort. These supports especially
conversions of texttable data representation where a TextTableMapping is needed
to describe the particular conversion rule.

[SWS_Rte_07828] d If a PortInterfaceMapping is specified at the Delegation-
SwConnector of a P-port, the RTE of the transmitting ECU shall perform the conver-
sion of the VariableDataPrototypes or ArgumentDataPrototypes that has to
be sent over a communication bus to the representation specified by the outerPort.
The converted data shall be passed to COM. c(SRS_Rte_00181)

[SWS_Rte_07829] d d If a PortInterfaceMapping is specified at the Delega-
tionSwConnector of a R-port, the RTE of the receiving ECU shall perform the con-
version of the VariableDataPrototypes or ArgumentDataPrototypes that is re-
ceived over a communication bus from the representation specified by the outerPort
to the representation specified by the innerPort. In this case [SWS_Rte_03816]
shall not be applied. c(SRS_Rte_00181).

4.3.6.2 Network Representation with data transformation

For sender-receiver communication where data transformation applies, it is possible, to
specify how data elements are represented given that the communication requires the
usage of a dedicated communication bus. For this purpose ISignal.Transforma-
tionISignalProps. DataPrototypeTransformationProps.networkRepre-
sentationProps can be specified describing the representation of the data element
on the communication bus via the attributes baseType and compuMethod.

[SWS_Rte_04536] d The RTE of the transmitting ECU shall perform the conversion of
each primitive element, which belongs to the data to be transformed and sent over
a communication bus to the representation specified by the baseType and com-
puMethod of the ISignal.TransformationISignalProps. DataPrototype-
TransformationProps.networkRepresentationProps for the respective primi-
tive element. The converted data shall be passed to the first transformer in the chain.
c(SRS_Rte_00181)

[SWS_Rte_04537] d If the ISignal.TransformationISignalProps. DataPro-
totypeTransformationProps.networkRepresentationProps is not defined
for a primitive element of a transformed ISignal, the RTE of the transmitting ECU shall
perform the conversion of that primitive element based on the baseType specified at
the ImplementationDataType used by the PPortPrototype. The converted data
shall be passed to the first transformer in the chain. c(SRS_Rte_00181)

311 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_04538] d The RTE of the receiving ECU shall perform the conversion
of each primitive element that is received over a communication bus and then
re-transformed from the representation specified by the baseType and the com-
puMethod of the ISignal.TransformationISignalProps.DataPrototype-
TransformationProps. networkRepresentationProps. c(SRS_Rte_00181)

[SWS_Rte_04539] d If the ISignal.TransformationISignalProps. DataPro-
totypeTransformationProps.networkRepresentationProps is not defined
for a primitive element of a transformed networkRepresentationProps, the RTE
of the receiving ECU shall perform the conversion of that primitive element based on
the baseType specified at the ImplementationDataType used by the RPortPro-
totype. c(SRS_Rte_00181)

4.3.7 Data Conversion

[SWS_Rte_03829] d The RTE shall support the conversion of an identical or linear
scaled data representation to another identical or linear scaled data representation. In
this context, the term "linear scaled data representation" also includes floating-point
data representations. c(SRS_Rte_00182)

[SWS_Rte_08801] d The RTE shall support the conversion integer-to-float and float-to-
integer. It is recommended to consider implication of MISRA-C rule 10.3, in particular,
the requirement for no implicit conversion. c(SRS_Rte_00182)

Today the RTE Specification does not define any specific behavior supporting float to
integer and integer to float conversions. This enables the RTE implementers to develop
the most efficient, stable and robust solution.

[SWS_Rte_03830] d The RTE shall support the conversion of a texttable data rep-
resentation (enumeration or bitfield) to another texttable data representation. c
(SRS_Rte_00182)

[SWS_Rte_03855] d The RTE shall support the conversion of a mixed linear scaled
and texttable data representation to another mixed linear scaled and texttable data
representation. c(SRS_Rte_00182)

[SWS_Rte_03856] d The RTE shall support the conversion between a texttable data
representation (enumeration) and a mixed linear scaled and texttable data represen-
tation. In this case only the enumeration part of the data representation shall be con-
verted, the linear scaled part shall be handled as out of range data. c(SRS_Rte_00182)

[SWS_Rte_03857] d The RTE shall support the conversion between an identical or
linear scaled data representation and a mixed linear scaled and texttable data repre-
sentation. A scale with a compuConst shall be handled as out of range data if the
mapping to a value is not defined by a TextTableMapping. c(SRS_Rte_00182)

[SWS_Rte_03860] d The RTE shall support the conversion of composite data
representations. In this case, the respective requirements [SWS_Rte_03829],
[SWS_Rte_03830], [SWS_Rte_03855], [SWS_Rte_03856], [SWS_Rte_03857],

312 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03831], [SWS_Rte_03832], and [SWS_Rte_03833] are applicable to the
individual composite elements. c(SRS_Rte_00182)

[SWS_Rte_03831] d The RTE generator shall reject any input that requires a con-
version which is not supported according to [SWS_Rte_03829], [SWS_Rte_03830],
[SWS_Rte_03855], [SWS_Rte_03856], or [SWS_Rte_03860] as an invalid configura-
tion. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_07928] d The data conversion shall be supported for data
types that refer to CompuMethods of category LINEAR, IDENTICAL,
SCALE_LINEAR_AND_TEXTTABLE, TEXTTABLE , BITFIELD_TEXTTABLE and
CompuMethods of category RAT_FUNC with a reciprocal linear data scaling. c
(SRS_Rte_00182)

Note: The definition of a reciprocal linear data scaling is given in Software Component
Template [2], [TPS_SWCT_01550]

[SWS_Rte_03832] d For the conversion between two data representations with lin-
ear scaling described either by an ApplicationDataType or a combination of
BaseType and CompuMethod (used for the specification of the network represen-
tation at the ComSpec respectively the SystemSignal) the RTE generator shall
derive the data conversion code automatically from the referred CompuMethods
of the two representations. In this context the scaling of a data representa-
tion is linear if the referred CompuMethod is of category IDENTICAL, LINEAR,
RAT_FUNC or SCALE_LINEAR_AND_TEXTTABLE. In case of a CompuMethod of cat-
egory SCALE_LINEAR_AND_TEXTTABLE this requirement applies to the linear scaled
part only. c(SRS_Rte_00182)

For a linear conversion the linear conversion factor can be calculated out of the fac-
torSiToUnit and offsetSiToUnit attributes of the referred Units and the Com-
puRationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Further information about Linear Data Scaling is given in document Software Compo-
nent Template [2].

Example 4.10

A software component SwcA on an ECU EcuA sends a data element u of a uint16
type t_VoltageAtSender via its port SenderPort. The referenced CompuMethod
is cm_VoltageAtSender, describing a fixpoint representation with offset 0 and LSB
1
4
= 2−2. The port SenderPort is connected to the port ReceiverPort of a soft-

ware component SwcB that is deployed on a different ECU EcuB. The sent data el-
ement u is mapped to a data element u of a uint16 type t_VoltageAtReceiver on
the receiving side that references a CompuMethod named cm_VoltageAtReceiver.
cm_VoltageAtReceiver describes a fixpoint representation with offset 16

8
= 2 and

LSB 1
8
= 2−3. For transportation over the bus a networkRepresentation that refer-

ences a uint8 type t_VoltageOnNetwork is specified, using a fixpoint representation
described by the CompuMethod cm_VoltageOnNetwork with offset 1

2
= 0.5 and LSB

1
2
= 2−1.

313 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Definition of the CompuMethods in XML:
<COMPU-METHOD>

<SHORT-NAME>cm_VoltageAtSender</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>0</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>4</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageAtReceiver</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>16</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>8</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageOnNetwork</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>1</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>2</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

Implementation of Rte_Send on the sending ECU EcuA:
1 Std_ReturnType
2 Rte_Send_SwcA_SenderPort_u(t_voltageAtSender u)
3 {
4 ...
5 /*
6 u_NetworkRepresentation
7 = ((u * LSB_sender + off_sender) - off_network) / LSB_network
8 = ((u / 4 + 0) - 0.5) * 2

314 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

9 = (u / 2) - 1
10 */
11 u_NetworkRepresentation = (uint8) ((u >> 1) - 1);
12 ...
13 }

Implementation of Rte_Receive on the receiving ECU EcuB:
1 Std_ReturnType
2 Rte_Receive_SwcB_ReceiverPort_u(t_voltageAtReceiver * u)
3 {
4 ...
5 /*
6 *u
7 *u = ((u_NetworkRepresentation * LSB_network + off_network)
8 - off_receiver) / LSB_receiver
9 = ((u_NetworkRepresentation / 2 + 0.5)

10 - 2) * 8
11 = (u_NetworkRepresentation * 4 + 4)
12 - 16
13 = u_NetworkRepresentation * 4 - 12
14 */
15 *u = (uint16) ((u_NetworkRepresentation << 2) - 12);
16 ...
17 }

Following examples show possible implementations for a table conversion where
DataPrototypes with a CompuMethod of category BITFIELD_TEXTTABLE are in-
volved.

Example 4.11

Conversion between a DataPrototype with a CompuMethod of category TEXT-
TABLE (in this case describing a Boolean) and a DataPrototype with a Com-
puMethod of category BITFIELD_TEXTTABLE:

Definition of the TextTableMapping in XML:
<PORT-INTERFACE-MAPPING-SET>

<SHORT-NAME>PortMappingSet</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>

<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
<SHORT-NAME>Mapping_LDW_BF</SHORT-NAME>
<DATA-MAPPINGS>

<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">
/Example/Interfaces/One/LDW

</FIRST-DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">

/Example/Interfaces/Two/bitfield
</SECOND-DATA-PROTOTYPE-REF>
<TEXT-TABLE-MAPPINGS>

<TEXT-TABLE-MAPPING>
<IDENTICAL-MAPPING>false</IDENTICAL-MAPPING>

315 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<MAPPING-DIRECTION>bidirectional</MAPPING-DIRECTION>
<BITFIELD-TEXTTABLE-MASK-SECOND>

0b00000100
</BITFIELD-TEXTTABLE-MASK-SECOND>
<VALUE-PAIRS>

<TEXT-TABLE-VALUE-PAIR>
<FIRST-VALUE>0</FIRST-VALUE>
<SECOND-VALUE>0</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>
<TEXT-TABLE-VALUE-PAIR>

<FIRST-VALUE>1</FIRST-VALUE>
<SECOND-VALUE>4</SECOND-VALUE>

</TEXT-TABLE-VALUE-PAIR>
</VALUE-PAIRS>

</TEXT-TABLE-MAPPING>
</TEXT-TABLE-MAPPINGS>

</DATA-PROTOTYPE-MAPPING>
</DATA-MAPPINGS>

</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
</PORT-INTERFACE-MAPPINGS>

</PORT-INTERFACE-MAPPING-SET>

C code for Implementation of Rte_Write:
1 Std_ReturnType Rte_Write_<p>_<o>(boolean v) {
2 /* fetch the bit field from the RAM Block */
3 uint32 *bitfield = Rte_RamBlk_<BlkNr>.bitfield;
4 /* data consistency block on */
5 /* bit operation (masking & conversion) - bit position 6 is deduced
6 from BITFIELD-TEXTTABLE-MASK-SECOND */
7 if(v == 0) Bfx_ClrBit_u8u8(*bitfield, 6);
8 else Bfx_SetBit_u8u8(*bitfield, 6);
9 /* data consistency block off */

10 }

C code for Implementation of Rte_Read:
1 Std_ReturnType Rte_Read_<p>_<o>(boolean *v) {
2 /* fetch the bit field from the RAM Block */
3 uint32 bitfield = Rte_RamBlk_<BlkNr>.bitfield;
4 /* bit operation (masking & conversion) - bit position 6 is deduced
5 from BITFIELD-TEXTTABLE-MASK-SECOND */
6 *v = Bfx_GetBit_u8u8u8(bitfield, 6);
7 }

Example 4.12

Conversion between two DataPrototypes with a CompuMethod of category BIT-
FIELD_TEXTTABLE (mapping of 32bit bitfield of type uint32 to 4bit bitfield of type
uint8):

Definition of the TextTableMapping in XML:
<PORT-INTERFACE-MAPPING-SET>

<SHORT-NAME>PortMappingSet</SHORT-NAME>

316 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<PORT-INTERFACE-MAPPINGS>
<VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>

<SHORT-NAME>Mapping_BF32_BF4</SHORT-NAME>
<DATA-MAPPINGS>

<DATA-PROTOTYPE-MAPPING>
<FIRST-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">

/Example/Interfaces/One/BF32
</FIRST-DATA-PROTOTYPE-REF>
<SECOND-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">

/Example/Interfaces/Two/BF4
</SECOND-DATA-PROTOTYPE-REF>
<TEXT-TABLE-MAPPINGS>

<TEXT-TABLE-MAPPING>
<IDENTICAL-MAPPING>true</IDENTICAL-MAPPING>
<MAPPING-DIRECTION>firstToSecond</MAPPING-DIRECTION>
<BITFIELD-TEXTTABLE-MASK-FIRST>

0b00000000000000000000000000001111
</BITFIELD-TEXTTABLE-MASK-FIRST>
<BITFIELD-TEXTTABLE-MASK-SECOND>

0b00001111
</BITFIELD-TEXTTABLE-MASK-SECOND>

</TEXT-TABLE-MAPPING>
</TEXT-TABLE-MAPPINGS>

</DATA-PROTOTYPE-MAPPING>
</DATA-MAPPINGS>

</VARIABLE-AND-PARAMETER-INTERFACE-MAPPING>
</PORT-INTERFACE-MAPPINGS>

</PORT-INTERFACE-MAPPING-SET>

C code for Implementation of Rte_Read:
1 Std_ReturnType Rte_Read_<p>_<o>(uint8 *v) {
2 /* fetch the bit field from the RAM Block */
3 uint32 bitfield = Rte_RamBlk_<BlkNr>.bitfield;
4 /* bit operation (masking & shifting) - start position 28 and length
5 4 are deduced from BITFIELD-TEXTTABLE-MASK-FIRST */
6 *v = Bfx_GetBits_u8u8u8_u32(bitfield, 28, 4) &
7 BitfieldTexttableMaskSecond;
8 }

The intention of this specification is not to describe any mechanism that supports the
generation of identical conversion code for each implementation of an RTE generator.
Even if the generated C code for the conversion would be the same, the numerical
result of the conversion still depends on the microcontroller target and the compiler.

Strategies how to handle the conversion of values that are out of range of the target
representation are described in section 4.3.8.

[SWS_Rte_03833] d For the conversion between two texttable data representations
(enumerations or bitfields) described either by an ApplicationDataType or an Im-
plementationDataType (used for the specification of the network representation)

317 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the RTE generator shall generate the data conversion code according to the Text-
TableMapping. This requirement also applies to the texttable part of a mixed linear
scaled and texttable data representation. c(SRS_Rte_00182)

4.3.8 Range Checks during Runtime

A software component might try to send a value that is outside the range that is spec-
ified at a dataElement or ISignal. In case of different ranges the result of a data
conversion might also be a value that is out of range of the target representation. For a
safe handling of these use cases the RTE provides range checks during runtime. For
an overview see figure 4.45.

[SWS_Rte_08024] d Range checks during runtime shall occur after data invalidation,
i.e. first the handleNeverReceived check, then the invalidation check and lastly the
range check shall be effected. c(SRS_Rte_00180)

[SWS_Rte_03861] d The range check is intended to be performed according to the
following rule: If a upper/lower limit is specified at the DataConstr, this value shall be
taken for the range check. If it is not specified at the DataConstr, the highest/lowest
representable value of the datatype shall be used. c(SRS_Rte_00180)

Whether a range check is required is specified in case of intra ECU communication at
the handleOutOfRange attribute of the respective SenderComSpec or Receiver-
ComSpec and in case of inter ECU communication at the handleOutOfRange at-
tribute of ISignalProps of the sending or receiving ISignal.

Range checks at sender’s side

Range checks during runtime for intra ECU communication at the sender’s side are
described in the following requirements:

[SWS_Rte_08026] d The RTE shall implement a range check of sent data in the
sending path of a particular component if the handleOutOfRange is defined at the
SenderComSpec and has any value other than none. In this case all receivers receive
the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08039] d The RTE shall use the preceding limits ([SWS_Rte_07196]) from
the DataPrototype in the PPortPrototype or PRPortPrototype for the range
check of sent data in the sending path of a particular component if the handleOut-
OfRange is defined at the SenderComSpec. c(SRS_Rte_00180)

[SWS_Rte_03839] d If for a dataElement to be sent a SenderComSpec with han-
dleOutOfRange=ignore is provided, a range check shall be implemented in the
sending component. If the value is out of bounds, the sending of the dataElement
shall not be propagated. This means for a non-queued communication that the last
valid value will be propagated and for a queued communication that no value will be
enqueued.

318 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In case of a composite datatype the sending of the whole dataElement shall not be
propagated, if any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_03840] d If for a dataElement to be sent a SenderComSpec with han-
dleOutOfRange=saturate is provided, a range check shall be implemented in the
sending component. If the value is out of bounds, the value actually sent shall be set
to the lower respectively the upper limit.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be saturated. c(SRS_Rte_00180)

[SWS_Rte_03841] d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=default is provided, a range check shall be implemented
in the sending component. If the value is out of bounds and the initValue is not
equal to the invalidValue, the value actually sent shall be set to the initValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. c(SRS_Rte_00180)

[SWS_Rte_03842] d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=invalid is provided, a range check shall be implemented
in the sending component. If the value is out of bounds, the value actually sent shall
be set to the invalidValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the invalidValue. c(SRS_Rte_00180)

[SWS_Rte_03843] d If for a dataElement to be sent a QueuedSenderComSpec
with handleOutOfRange set to default or invalid is provided, the RTE generator
shall reject the input as an invalid configuration, since for a QueuedSenderComSpec
the attribute initValue is not defined (see SW-C Template [2]) and data invalidation
is not supported (see [SWS_Rte_06727]). c(SRS_Rte_00180)

Range checks during runtime for inter ECU communication at the sender’s side are
described in the following requirements:

[SWS_Rte_08027] d The RTE shall implement a range check of sent data in the send-
ing path of a particular signal if the handleOutOfRange is defined at the ISignal-
Props and has any value other than none. In this case only receivers of the specific
ISignal receive the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08040] d The RTE shall use the limits from the ISignal for the range
check of sent data in the sending path of a particular signal if the handleOutOfRange
is defined at the ISignalProps. c(SRS_Rte_00180)

[SWS_Rte_08030] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=ignore is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds, the sending of the ISignal shall not be propa-
gated. In this case the RTE shall behave as if no sending occurred. c(SRS_Rte_00180)

319 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08031] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=saturate is provided, a range check shall be implemented in the send-
ing signal. If the value is out of bounds, the value actually sent shall be set to the lower
respectively the upper limit. c(SRS_Rte_00180)

[SWS_Rte_08032] d If for an ISignal to be sent an ISignalProps with han-
dleOutOfRange=default is provided, a range check shall be implemented in the
sending signal. If the value is out of bounds and the initValue is not equal
to the invalidValue, the value actually sent shall be set to the initValue. c
(SRS_Rte_00180)

[SWS_Rte_08033] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=invalid is provided, a range check shall be implemented in the send-
ing signal. If the value is out of bounds, the value actually sent shall be set to the
invalidValue. c(SRS_Rte_00180)

Range checks at receiver’s side

Range checks during runtime for intra ECU communication at the receiver’s side are
described in the following requirements:

[SWS_Rte_08028] d The RTE shall implement a range check in the receiving path of a
particular component if the handleOutOfRange is defined at the ReceiverComSpec
and has any value other than none. In this case the range check applies only for data
received by the particular component. c(SRS_Rte_00180)

[SWS_Rte_08041] d The RTE shall use the preceding limits ([SWS_Rte_07196]) from
the DataPrototype in the rPort for the range check of received data in the re-
ceiving path of a particular component if the handleOutOfRange is defined at the
ReceiverComSpec. c(SRS_Rte_00180)

[SWS_Rte_03845] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=ignore is provided, a range check shall be implemented in the
receiving component. If the value is out of bounds, the reception of the dataElement
shall not be propagated. This means for a non-queued communication that the last
valid value will be propagated and for a queued communication that no value will be
enqueued.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype the reception of the whole dataElement shall not
be propagated, if any of the composite elements is out of bounds. If the handleOut-
OfRangeStatus attribute is set to indicate, the return value of the RTE shall be
RTE_E_OUT_OF_RANGE. c(SRS_Rte_00180)

[SWS_Rte_03846] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=saturate is provided, a range check shall be implemented in

320 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the receiving component. If the value is out of bounds, the value actually received shall
be set to the lower respectively the upper limit.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be saturated. If the handleOutOfRangeStatus attribute is set to
indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if any of the
composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_03847] d If for a dataElement to be received a NonqueuedReceiver-
ComSpec with handleOutOfRange=default is provided, a range check shall be
implemented in the receiving component. If the value is out of bounds and the init-
Value is not equal to the invalidValue, the value actually received shall be set to
the initValue.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. If the handleOutOfRangeStatus attribute
is set to indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if
any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_03848] d If for a dataElement to be received a NonqueuedReceiver-
ComSpec with handleOutOfRange=invalid is provided, a range check shall be im-
plemented in the receiving component. If the value is out of bounds, the value actually
received shall be set to the invalidValue.

If the value of the received dataElement is out of bounds and a ReceiverComSpec
with handleOutOfRangeStatus=indicate is provided, the return value of the RTE
shall be RTE_E_INVALID.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be set to the invalidValue. If the handleOutOfRangeStatus
attribute is set to indicate, the return value of the RTE shall be RTE_E_INVALID, if
any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_08016] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=externalReplacement is provided, a range check shall be
implemented in the receiving component. If the value is out of bounds, the value actu-
ally received shall be replaced by the value sourced from the ReceiverComSpec.re-
placeWith (e.g. constant, NVRAM parameter).

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

321 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In case of a composite datatype the value actually received shall be completely re-
placed by the external value, if any of the composite elements is out of bounds. If the
handleOutOfRangeStatus attribute is set to indicate, the return value of the RTE
shall be RTE_E_OUT_OF_RANGE. c(SRS_Rte_00180)

[SWS_Rte_03849] d If for a dataElement to be received a QueuedReceiver-
ComSpec with handleOutOfRange set to default or invalid is provided, the
RTE generator shall reject the input as an invalid configuration, since for a Queue-
dReceiverComSpec the attribute initValue is not defined (see SW-C Template [2])
and data invalidation is not supported (see [SWS_Rte_06727]). c(SRS_Rte_00180)

[SWS_Rte_08025] d If for a dataElement to be received a QueuedReceiverCom-
Spec is provided and the handleOutOfRangeStatus attribute is set to indicate,
the RTE generator shall reject the input as an invalid configuration. c(SRS_Rte_00180)

Range checks during runtime for inter ECU communication at the receiver’s side are
described in the following requirements:

[SWS_Rte_08029] d The RTE shall implement a range check in the receiving path of a
particular signal if the handleOutOfRange is defined at the ISignalProps and has
any value other than none. In this case all receivers of the specific ISignal on that
ECU receive the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08042] d The RTE shall use the limits from the ISignal for the range
check of received data in the receiving path of a particular signal if the handleOut-
OfRange is defined at the ISignalProps. c(SRS_Rte_00180)

[SWS_Rte_08034] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=ignore is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the reception of the ISignal shall
not be propagated. In this case the RTE shall behave as if no reception occurred. c
(SRS_Rte_00180)

[SWS_Rte_08035] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=saturate is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the value actually received shall be set
to the lower respectively the upper limit. c(SRS_Rte_00180)

[SWS_Rte_08036] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=default is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds and the initValue is not equal to
the invalidValue, the value actually received shall be set to the initValue. c
(SRS_Rte_00180)

[SWS_Rte_08037] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=invalid is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the value actually received shall be set
to the invalidValue. c(SRS_Rte_00180)

322 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08038] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=externalReplacement is provided, a range check shall be imple-
mented in the receiving signal. If the value is out of bounds, the value actually received
shall be replaced by the value sourced from the ReceiverComSpec.replaceWith
(e.g. constant, NVRAM parameter). c(SRS_Rte_00180)

323 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

before
first reception?

no

yes

receiver

Configuration
handleInvalid

RTE status
DE propagation

init != invalid init == invalid

keep RTE_E_OK RTE_E_INVALID init value

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK init value

external
Replacement RTE_E_OK RTE_E_OK external replacement

value

Configuration
handleInvalid

RTE status
DE propagation

init != invalid init == invalid

keep RTE_E_
NEVER_RECEIVED

RTE_E_
NEVER_RECEIVED init value

replace RTE_E_
NEVER_RECEIVED REJECT init value

dontInvalidate RTE_E_
NEVER_RECEIVED

RTE_E_
NEVER_RECEIVED init value

external
Replacement

RTE_E_
NEVER_RECEIVED

RTE_E_
NEVER_RECEIVED

external replacement
value

handle
NeverReceived?

yes

no

DE producer

yes
invalid?

no

receiver

Configuration
handleInvalid

RTE status
DE propagation

init != invalid init == invalid

keep RTE_E_INVALID RTE_E_INVALID last valid value1

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK value

external
Replacement RTE_E_OK RTE_E_OK external replacement

value

yes out of
bounds?

Configuration
handleOutOfRange

RTE status

DE propagation handleOutOfRange
Status == silent5

handleOutOfRange
 Status == indicate4,5

none RTE_E_OK RTE_E_OK value

ignore RTE_E_OK RTE_E_
OUT_OF_RANGE last valid value2

saturate RTE_E_OK RTE_E_
OUT_OF_RANGE lower/upper limit

default4 RTE_E_OK RTE_E_
OUT_OF_RANGE init value3

invalid4 RTE_E_INVALID RTE_E_INVALID invalid value

external
Replacement5 RTE_E_OK RTE_E_

OUT_OF_RANGE
external replacement

value

no

1. If no valid value was received previously then the init value shall be propagated
2. In case of queued communication the RTE behaves as if no value was enqueued
3. Init value shall not be equal to invalid value
4. Applicable only in combination with a non-queued COMSPEC
5. Applicable only in combination with a receiver COMSPEC RTE status DE

propagation

RTE_E_OK value

Figure 4.45: Overview for data invalidation and range checks

324 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4 Modes

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

«enumeration»
ModeActivationKind

 onEntry
 onExit
 onTransition

AbstractEvent

BswEvent

BswScheduleEvent

BswModeSwitchEvent

+ activation: ModeActivationKind

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

BswSchedulableEntity

ExecutableEntity

BswModuleEntity

AbstractAccessPoint
AtpStructureElement

Identifiable

ModeSwitchPoint

«instanceRef»

+mode 1..2
{ordered}

«isOfType»

+type

1
{redefines
atpType}

«instanceRef»

+disabledMode 0..*

+modeDeclaration

1..*
«atpVariation»

«instanceRef»
+modeGroup 0..1

«atpVariation»

+managedModeGroup 0..*

+initialMode

1

+startsOnEvent 1

«instanceRef»

+mode
1..2
{ordered}

+startOnEvent

0..1

+modeSwitchPoint *

«atpVariation,atpSplitable»

«atpVariation»

+accessedModeGroup
0..*

«instanceRef»

+disabledInMode
0..*

Figure 4.46: Summary of the use of ModeDeclarations by an AUTOSAR software-
components and Basic Software Modules as defined in the Software Component Tem-
plate Specification [2] and Specification of BSW Module Description Template [9].

The purpose of modes is to start RunnableEntitys and Basic Software Schedulable
Entities on the transition between modes and to disable (/enable) specified triggers of
RunnableEntitys and Basic Software Schedulable Entities in certain modes. Here,
we use the specification of modes from the Software Component Template Specifica-
tion [2]. Further on the document Specification of BSW Module Description Template
[9] describes how modes are described for Basic Software Modules.

The first subsection 4.4.1 describes how modes can be used by an AUTOSAR
software-component or Basic Software Module mode user. The role of the mode
manager who initiates mode switches is described in section 4.4.2. How ModeDec-
larations are connected to a state machine is described in subsection 4.4.3. The
behavior of the RTE and Basic Software Scheduler regarding mode switches is de-
tailed in subsection 4.4.4.

325 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

One usecase of modes is described in section 4.6.2 for the initialization and finalization
of AUTOSAR software-components. Modes can be used for handling of communica-
tion states as well as for specific application purposes. The specific definition of modes
and their use is not in the scope of this document.

The status of the modes will be notified to the AUTOSAR software-component mode
user by mode communication - mode switch notifications - as described in
the subsection 4.4.7. The port for receiving (or sending) a mode switch notifi-
cation is called

mode switch port.

A Basic Software Module mode users and the Basic Software Module mode man-
ager are not necessarily using ports. Basic Software Modules without AUTOSAR
Interfaces are connected via the configuration of the Basic Software Scheduler.

4.4.1 Mode User

To use modes, an AUTOSAR software-component (mode user) has to reference a
ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a require
mode switch port, see section 4.4.7. The ModeDeclarationGroup contains the
required modes. Alternatively the mode manager can also contain a ModeAccess-
Point for a provided mode switch port and can combine the roles of mode user
and mode manager for the same ModeDeclarationGroupPrototype.

An Basic Software Module (mode user) has to define a requiredModeGroup Mod-
eDeclarationGroupPrototype.The ModeDeclarationGroup referred by these
ModeDeclarationGroupPrototype contains the required modes. Similar to a
software-component mode user, the Basic Software Module mode manager can
also contain a accessedModeGroup for a providedModeGroup ModeDeclara-
tionGroupPrototype. By this it combines the roles of mode user and mode man-
ager for the same ModeDeclarationGroupPrototype.

The ModeDeclarations can be used in two ways by the mode user (see also figure
4.46):

1. Modes can be used to trigger runnables: The SwcInternalBehavior of
the AUTOSAR SW-C or the BswInternalBehavior of the BSW module
can define a SwcModeSwitchEvent respectively a BswModeSwitchEvent
referencing the required ModeDeclaration. This SwcModeSwitchEvent
or BswModeSwitchEvent can then be used as trigger for a RunnableEn-
tity / BswSchedulableEntity. Both SwcModeSwitchEvent and BswMod-
eSwitchEvent carry an attribute ModeActivationKind which can be ‘exit’,
‘entry’, or ‘transition’.

A RunnableEntity or BswSchedulableEntity that is triggered by a Swc-
ModeSwitchEvent or a BswModeSwitchEvent with ModeActivationKind
‘exit’ is triggered on exiting the mode. For simplicity it will be called

326 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

on-exit ExecutableEntity. Correspondingly, an on-transition Ex-
ecutableEntity is triggered by a SwcModeSwitchEvent or a BswMod-
eSwitchEvent with ModeActivationKind ‘transition’ and will be executed
during the transition between two modes, and an

on-entry ExecutableEntity is triggered by a SwcModeSwitchEvent or
a BswModeSwitchEvent with ModeActivationKind ‘entry’ and will be exe-
cuted when the mode is entered.

Since a RunnableEntity as well as a BswSchedulableEntity can be trig-
gered by multiple RTEEvents respectively BswEvents, both can be an on-exit-,
on-transition and on-entry ExecutableEntity at the same time.

RTE does not support a WaitPoint for a SwcModeSwitchEvent (see
[SWS_Rte_01358]).

2. An RTEEvent or BswEvent that starts an ExecutableEntity can contain a
mode disabling dependency.

[SWS_Rte_02503] d If a RunnableEntity r is referenced with startOnEvent
by an RTEEvent e that has a mode disabling dependency on a mode m,
then

RTE shall not activate runnable r on any occurrence of e while the mode m
is active.

c(SRS_Rte_00143, SRS_Rte_00052)

[SWS_Rte_07530] d If a BswSchedulableEntity r is referenced with start-
sOnEvent by an BswEvent e that has a mode disabling dependency on
a mode m, then Basic Software Scheduler shall not activate BswSchedu-
lableEntitys r on any occurrence of e while the mode m is active. c
(SRS_Rte_00213)

Note: As a consequence of [SWS_Rte_02503] and [SWS_Rte_07530] in combi-
nation with [SWS_Rte_02661], RTE or Basic Software Scheduler will not start
runnable or BswSchedulableEntity r on any occurrence of e while the
mode m is active.

The mode disabling is active during the transition to a mode, during the mode
itself and during the transition for exiting the mode. For a precise definition see
section 4.4.4.

The existence of a mode disabling dependency prevents the RTE to
start the mode disabling dependent ExecutableEntity by the disabled
RTEEvent / BswEvent during the mode, referenced by the mode disabling
dependency, and during the transitions from and to that mode. mode dis-
abling dependencys override any activation of a RunnableEntity and
BswSchedulableEntity by the disabled RTEEvents / BswEvents. This is
also true for the SwcModeSwitchEvent and BswModeSwitchEvent.

327 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A RunnableEntity as well as a BswSchedulableEntity can not be ‘en-
abled’ explicitly. RunnableEntitys are Basic Software Schedulable Entities are
only ‘enabled’ by the absence of any active mode disabling dependencys.

Note that mode disabling dependencys do not prevent the wake up from
a WaitPoint by the ‘disabled’ RTEEvent. This allows the wake-uped
RunnableEntity to run until completion if a transition occurred during the
RunnableEntitys execution.

[SWS_Rte_02504] d The existence of a mode disabling dependency
shall not instruct the RTE to kill a running runnable at a mode switch. c
(SRS_Rte_00143)

[SWS_Rte_07531] d The existence of a mode disabling dependency shall
not instruct the Basic Software Scheduler to kill a running BswSchedulableEn-
tity at a mode switch. c(SRS_Rte_00213)

The RTE and the Basic Software Scheduler can be configured to switch sched-
ule tables to implement mode disabling dependencies for cyclic triggers of
RunnableEntitys or Basic Software Schedulable Entities. Sets of mutual ex-
clusive modes can be mapped to different schedule tables. The RTE shall imple-
ment the switch between schedule tables according to the mapping of modes to
schedule tables in RteModeScheduleTableRef, see [SWS_Rte_05146].

The mode user can specify in the ModeSwitchReceiverComSpec (software compo-
nents) or BswModeReceiverPolicy (BSW modules) that it is able to deal with asyn-
chronous mode switch behavior (supportsAsynchronousModeSwitch == TRUE).
If all mode users connected to the same ModeDeclarationGroupPrototype of
the mode manager support the asynchronous mode switch behavior, the related mode
machine instance can be implemented with the asynchronous mode switching pro-
cedure. Otherwise, the synchronous mode switching procedure has to be applied (see
[SWS_Rte_07150]).

4.4.2 Mode Manager

Entering and leaving modes is initiated by a mode manager. A mode manager might
be a basic software module, for example the Basic Software Mode Manager (BswM),
the communication manager (ComM), or the ECU state manager (EcuM). The mode
manager may also be an AUTOSAR SW-C. In this case, it is called an application
mode manager.

The mode manager contains the master state machine to represent the modes.

To provide modes, an AUTOSAR software-component (mode manager) has to ref-
erence a ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a
provide mode switch port, see section 4.4.7. The ModeDeclarationGroup con-
tains the provided modes.

328 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

An Basic Software Module (mode manager) has to define a providedModeGroup
ModeDeclarationGroupPrototype. The ModeDeclarationGroup referred by
these ModeDeclarationGroupPrototype contains the provided modes.

The RTE / Basic Software Scheduler will take the actions necessary to switch between
the modes. This includes the termination and execution of several ExecutableEntities
from all mode users that are connected to the same ModeDeclarationGroupProto-
type of the mode manager. To do so, the RTE / Basic Software Scheduler needs a
state machine to keep track of the currently active modes and transitions initiated by
the mode manager. The RTE’s / Basic Software Scheduler ’s mode machine is called
mode machine instance. There is exactly one mode machine instance for
each ModeDeclarationGroupPrototype of a mode manager’s provide mode switch
port respectively providedModeGroup ModeDeclarationGroupPrototype.

It is the responsibility of the mode manager to advance the RTE’s / Basic Soft-
ware Scheduler ’s mode machine instance by sending mode switch notifi-
cations to the mode users. The mode switch notifications are imple-
mented by a non blocking API (see 5.6.6 / 6.5.7). So, the mode switch notifi-
cations alone provide only a loose coupling between the state machine of the mode
manager and the mode machine instance of the RTE / Basic Software Scheduler.
To prevent, that the mode machine instance lags behind and the states of the
mode manager and the RTE / Basic Software Scheduler get out of phase, the mode
manager can use acknowledgment feedback for the mode switch notification.
RTE / Basic Software Scheduler can be configured to send an acknowledgment of the
mode switch notification to the mode manager when the requested transition
is completed.

At the mode manager, the acknowledgment results in an ModeSwitchedAckEvent.
As with DataSendCompletedEvents, this event can be picked up with the polling
or blocking Rte_SwitchAck API. And the event can be used to trigger a Mod-
eSwitchAck ExecutableEntity to pick up the status. Note: The Basic Soft-
ware Scheduler do not support WaitPoints. Therefore the SchM_SwitchAck never
blocks.

Some possible usage patterns for the acknowledgement are:

• The most straight forward method is to use a sequence of Rte_Switch and a
blocking Rte_SwitchAck to send the mode switch notification and wait
for the completion. This requires the use of an extended task.

• Another possibility is to have a cyclic RunnableEntity / BswSchedula-
bleEntity (maybe the same that switches the modes via Rte_Switch /
SchM_Switch) to poll for the acknowledgement using Rte_SwitchAck /
SchM_SwitchAck.

• The acknowledgement can also be polled from a RunnableEntity or
BswSchedulableEntity that is started by the ModeSwitchedAckEvent.

The mode manager can also use the Rte_Mode / SchM_Mode API to read the cur-
rently active mode from the RTE’s / Basic Software Scheduler ’s perspective.

329 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4.3 Refinement of the semantics of ModeDeclarations and Mode-
DeclarationGroups

To implement the logic of mode switches, the RTE / Basic Software Scheduler needs
some basic information about the available modes. For this reason, RTE / Basic Soft-
ware Scheduler will make the following additional assumptions about the modes of one
ModeDeclarationGroup:

1. [SWS_Rte_CONSTR_09013] Exactly one mode or one mode transition shall
be active d Whenever any RunnableEntity or BswSchedulableEntity is
running, there shall always be exactly one mode or one mode transition active of
each ModeDeclarationGroupPrototype. c()

2. Immediately after initialization of a mode machine instance, RTE / Basic
Software Scheduler will execute a transition to the initial mode of each Mod-
eDeclarationGroupPrototype (see [SWS_Rte_02544]).

RTE / Basic Software Scheduler will enforce the mode disablings of the initial
modes and trigger the on-entry ExecutableEntitys (if any defined) of the
initial modes of every ModeDeclarationGroupPrototype immediately after
initialization of the RTE / Basic Software Scheduler.

In other words, RTE / Basic Software Scheduler assumes, that the modes of one
ModeDeclarationGroupPrototype belong to exactly one state machine without
nested states. The state machines cover the whole lifetime of the atomic AUTOSAR
SW-Cs9 and mode dependent AUTOSAR Basic Software Modules 10.

4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon inter-
ception of a mode switch notification

This section describes what the ‘communication’ of a mode switch to a mode user
actually does. What does the RTE Basic Software Scheduler do to switch a mode and
especially in which order.

Mode switch procedures

Depending on the needs of mode users for synchronicity, the mode machine instance
can be implemented with two different realizations.

• synchronous mode switching procedure

• asynchronous mode switching procedure

The differences between these two realizations are the omitted waiting conditions in
case of asynchronous mode switching procedure. For instance with asynchronous

9The lifetime of an atomic AUTOSAR SW-C is considered to be the time span in which the SW-C’s
runnables are being executed.

10The lifetime of an mode dependent AUTOSAR Basic Software Module is considered to be the time
span in which the Basic Software Schedulable Entities are being executed.

330 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

behavior a software component can not rely that all mode disabling dependent
ExecutableEntitys of the previous mode are terminated before on-entry Exe-
cutableEntitys and on-exit ExecutableEntitys are started. On one hand
this might put some effort to the software component designer to enable the compo-
nents implementation to support this kind of scheduling but on the other hand it enables
fast and lean mode switching.

[SWS_Rte_07150] d The RTE generator shall use the synchronous mode switching
procedure if at least one mode user of the mode machine instance does not sup-
port the asynchronous mode switch behavior. c(SRS_Rte_00143, SRS_Rte_00213)

[SWS_Rte_07151] d The RTE generator shall apply the asynchronous mode switch
behavior, if all mode users support the asynchronous mode switch behavior and
if it is configured for the related mode machine instance. c(SRS_Rte_00143,
SRS_Rte_00213)

Typical usage of modes to protect resources

RTE / Basic Software Scheduler can start and prevent the execution of RunnableEn-
titys and BswSchedulableEntity. In the context of mode switches,

• RTE / Basic Software Scheduler starts on-exit ExecutableEntitys for
leaving the previous mode. This is typically used by ‘clean up ExecutableEn-
titys’ to free resources that were used during the previous mode.

• RTE / Basic Software Scheduler starts on-entry ExecutableEntitys for
entering the next mode. This is typically used by ‘initialization ExecutableEn-
titys’ to allocate resources that are used in the next mode.

• And RTE / Basic Software Scheduler can prevent the execution of mode dis-
abling dependent ExecutableEntitys within a mode. This is typically
used with time triggered ‘work ExecutableEntity’ that use a resource which is not
available in a certain mode.

According to this use case, during the execution of ‘clean up ExecutableEntitys’
and ‘initialization ExecutableEntitys’ the ‘work ExecutableEntitys’ should be
disabled to protect the resource. Also, if the same resource is used (by different SW-
C’s) in two successive modes, the ‘clean up ExecutableEntitys’ should be safely
terminated before the ‘initialization ExecutableEntitys’ of the next mode are exe-
cuted (synchronous mode switching procedure). In summary, this would lead to the
following sequence of actions by the RTE / Basic Software Scheduler upon reception
of the mode switch notification:

1. activate mode disablings for the next mode

2. wait for the newly disabled ExecutableEntitys to terminate in case of syn-
chronous mode switching procedure

3. execute ‘clean up ExecutableEntitys’

4. wait for the ‘clean up ExecutableEntitys’ to terminate in case of synchronous
mode switching procedure

331 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5. execute ‘initialization ExecutableEntitys’

6. wait for the ‘initialization ExecutableEntitys’ to terminate in case of syn-
chronous mode switching procedure

7. deactivate mode disablings for the previous modes and enable Exe-
cutableEntitys that have been disabled in the previous mode.

RTE / Basic Software Scheduler can also start on-transition ExecutableEnti-
tys on a transition between two modes which is not shown in this use case example.

Often, only a fraction of the SW-Cs, Runnable Entities, Basic Software modules and
Basic Software Schedulable Entities of one ECU depends on the modes that are
switched. Consequently, it should be possible to design the system in a way, that
the mode switch does not influence the performance of the remaining software.

Figure 4.47: This figure shall illustrate what kind of ExecutableEntities will run in what or-
der during a synchronous mode transition. The boxes indicate activated ExecutableEn-
tities. Mode disabling dependant ExecutableEntities are printed in blue (old mode) and
pink (new mode). on-exit, on-transition, and on-entry ExecutableEntity are printed in
red, yellow, and green.

332 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 4.48: This figure shall illustrate what kind of ExecutableEntity will run in what
order during an asynchronous mode transition where the ExecutableEntities are trig-
gered on a mode change are mapped to a higher priority task than the Mode Dependent
ExecutableEntity. The boxes indicate activated ExecutableEntity. Mode disabling de-
pendant ExecutableEntity are printed in blue (old mode) and pink (new mode). on-exit,
on-transition, and on-entry ExecutableEntity are printed in red, yellow, and green.

The remainder of this section lists the requirements that guarantee the behavior de-
scribed above.

All runnables with dependencies on modes have to be executed or terminated during
mode transitions. Restriction [SWS_Rte_02500] requires these runnables to be of
category 1 to guarantee finite execution time.

For simplicity of the implementation to guarantee the order of runnable executions, the
following restriction is made:

All on-entry ExecutableEntitys, on-transition ExecutableEntitys,
and on-exit ExecutableEntitys of the same mode machine instance
should be mapped to the same task in the execution order following on-exit, on-
transition, on-entry (see [SWS_Rte_02662]).

A mode machine instance implementing an asynchronous mode switch procedure
might be fully implemented inside the Rte_Switch or SchM_Switch API. In this
case the on-entry ExecutableEntitys, on-transition ExecutableEnti-
tys, on-exit ExecutableEntitys and ModeSwitchAck ExecutableEnti-
tys are not mapped to tasks as described in chapter 8.5.1.

[SWS_Rte_07173] d The RTE generator shall support invocation of on-entry
ExecutableEntitys, on-transition ExecutableEntitys, on-exit Exe-
cutableEntitys and ModeSwitchAck ExecutableEntitys via direct function
call, if all following conditions are fulfilled:

• if the asynchronous mode switch behavior is configured (see [SWS_Rte_07151])

333 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• the on-entry ExecutableEntitys, on-transition ExecutableEn-
titys, on-exit ExecutableEntitys and ModeSwitchAck Exe-
cutableEntitys do not define a ’minimum start distance’

• the mode manager and mode user are in the same Partition

• if the preconditions of [constr_4086] are fulfilled

c(SRS_Rte_00143, SRS_Rte_00213)

Further on the requirements [SWS_Rte_05083], [SWS_Rte_07155] and
[SWS_Rte_07157] has to be considered.

[SWS_Rte_02667] d Within the mode manager’s Rte_Switch / SchM_Switch API
call to indicate a mode switch, one of the following shall be done:

1. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is full, Rte_Switch / SchM_Switch shall
return an error immediately.

2. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is not full, the mode switch notifica-
tion shall be queued.

3. If the mode machine instance is not in a transition, Rte_Switch /
SchM_Switch shall initiate the transition as described by the sequence
in [SWS_Rte_02665] which in turn activates the mode disablings (see
[SWS_Rte_02661]) of the next mode.

c(SRS_Rte_00143, SRS_Rte_00213)

The following list holds the requirements for the steps of a mode transition.

• [SWS_Rte_02661] d At the beginning of a transition of a mode machine
instance, the RTE / Basic Software Scheduler shall activate the mode
disablings of the next mode (see also [SWS_Rte_02503]), if any mode
disabling dependencys for that mode are defined. c(SRS_Rte_00143,
SRS_Rte_00213)

• [SWS_Rte_07152] d If any mode disabling dependencys for the next mode
are defined (as specified by [SWS_Rte_02661]), the RTE / Basic Software
Scheduler shall wait until the newly disabled RunnableEntitys and Basic Soft-
ware Schedulable Entities are terminated, in case of synchronous mode switch-
ing procedure. c(SRS_Rte_00143, SRS_Rte_00213)

Note: To guarantee in case of synchronous mode switching all activated
mode disabling dependent ExecutableEntitys of this core local
mode user group have terminated before the start of the on-exit Ex-
ecutableEntitys of the transition, RTE generator can exploit the restric-
tion [SWS_Rte_02663] that mode disabling dependent ExecutableEn-
titys run with higher or equal priority than the on-exit ExecutableEnti-
tys and the on-entry ExecutableEntitys.

334 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02562] d RTE / Basic Software Scheduler shall execute the
on-exit ExecutableEntitys of the previous mode. c(SRS_Rte_00143,
SRS_Rte_00052, SRS_Rte_00213)

• [SWS_Rte_07153] d If any on-exit ExecutableEntity is configured
the RTE / Basic Software Scheduler shall wait after its execution
([SWS_Rte_02562]) until all on-exit ExecutableEntitys are terminated
in case of synchronous mode switching procedure. c(SRS_Rte_00143,
SRS_Rte_00213)

• [SWS_Rte_02707] d RTE / Basic Software Scheduler shall execute the on-
transition ExecutableEntitys configured for the transition from previous
mode to next mode. c(SRS_Rte_00143, SRS_Rte_00052, SRS_Rte_00213)

• [SWS_Rte_02708] d If any on-transition ExecutableEntity is con-
figured, the RTE / Basic Software Scheduler shall wait after its execution
([SWS_Rte_02707]) until all on-transition ExecutableEntitys are ter-
minated in case of synchronous mode switching procedure. c(SRS_Rte_00143,
SRS_Rte_00213)

• [SWS_Rte_02564] d RTE / Basic Software Scheduler shall execute the
on-entry ExecutableEntitys of the next mode. c(SRS_Rte_00143,
SRS_Rte_00052, SRS_Rte_00213)

• [SWS_Rte_07154] d If any on-entry ExecutableEntity is configured the
RTE shall wait after its execution ([SWS_Rte_02564]) until all on-entry Exe-
cutableEntitys are terminated in case of synchronous mode switching pro-
cedure. c(SRS_Rte_00143, SRS_Rte_00213)

• [SWS_Rte_02563] d The RTE / Basic Software Scheduler shall deactivate the
previous mode disablings and only keep the mode disablings of the next
mode. c(SRS_Rte_00143, SRS_Rte_00213)

With this, the transition is completed.

• [SWS_Rte_02587] d At the end of the transition, RTE / Basic Software Scheduler
shall trigger the ModeSwitchedAckEvents connected to the mode manager’s
ModeDeclarationGroupPrototype. c(SRS_Rte_00143, SRS_Rte_00213)

This will result in an acknowledgment on the mode manager’s side which allows
the mode manager to wait for the completion of the mode switch.

The dequeuing of the mode switch notification shall also be done at the end of
the transition, see [SWS_Rte_02721].

[SWS_Rte_02665] d During a transition of a mode machine instance each appli-
cable of the steps

1. [SWS_Rte_02661] (The transition is entered in parallel with this step),

2. [SWS_Rte_07152],

335 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3. [SWS_Rte_02562],

4. [SWS_Rte_07153],

5. [SWS_Rte_02707],

6. [SWS_Rte_02708],

7. [SWS_Rte_02564],

8. [SWS_Rte_07154],

9. [SWS_Rte_02563] (The transition is completed with this step), and

10. immediately followed by [SWS_Rte_02587]

shall be executed in the order as listed for a core local mode user group. If a step is
not applicable, the order of the remaining steps shall be unchanged.

If mode users are belonging to different core local mode user group the steps 1. - 9.
may be executed in parallel on the different cores. The step 10. is executed if the
step 1. - 9. is finished for the whole mode machine instance. c(SRS_Rte_00143,
SRS_Rte_00213)

In the case that mode users belonging to the same mode machine instance are
mapped to different partitions which in turn are scheduled on different micro controller
cores the sequence described in [SWS_Rte_02665] can be parallelized.

[SWS_Rte_02668] d Immediately after the execution of a transition as described
in [SWS_Rte_02665], RTE / Basic Software Scheduler shall check the queue for
pending mode switch notifications of this mode machine instance. If a
mode switch notification can be dequeued, the mode machine instance
shall enter the corresponding transition directly as described by the sequence in
[SWS_Rte_02665]. c(SRS_Rte_00143, SRS_Rte_00213)

In the case of a fast sequence of two mode switches, the Rte_Mode or SchM_Mode
API will not indicate an intermediate mode, if a mode switch notification to the
next mode is indicated before the transition to the intermediate mode is completed.

[SWS_Rte_02630] d In case of synchronous mode switch procedure, the RTE shall ex-
ecute all steps of a mode switch (see [SWS_Rte_02665]) synchronously for the whole
mode machine instance. c(SRS_Rte_00143, SRS_Rte_00213)

I.e., the mode transitions will be executed synchronously for all mode users that are
connected to the same mode manager’s ModeDeclarationGroupPrototype.

[SWS_Rte_02669] d If the next mode and the previous mode of a transition are the
same, the transition shall still be executed. c(SRS_Rte_00143, SRS_Rte_00213)

336 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4.5 Assignment of mode machine instances to RTE and Basic Software
Scheduler

[SWS_Rte_07533] d A mode machine instance shall be assigned to the RTE
if the correlating ModeDeclarationGroupPrototype is instantiated in a port of
a software-component and if the ModeDeclarationGroupPrototype is not syn-
chronized (synchronizedModeGroup of a SwcBswMapping) with a providedMode-
Group ModeDeclarationGroupPrototype of a Basic Software Module instance. c
(SRS_Rte_00143)

[SWS_Rte_07534] d A mode machine instance shall be assigned to the Basic
Software Scheduler if the correlating ModeDeclarationGroupPrototype is a pro-
videdModeGroup ModeDeclarationGroupPrototype of a Basic Software Mod-
ule instance. c(SRS_Rte_00213)

[SWS_Rte_07535] d The RTE Generator shall create only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated in a port of a software-
component is synchronized (synchronizedModeGroup of a SwcBswMapping) with a
providedModeGroup ModeDeclarationGroupPrototype of a Basic Software
Module instance. The related common mode machine instance shall be as-
signed to the Basic Software Scheduler. c(SRS_Rte_00143, SRS_Rte_00213,
SRS_Rte_00214)

In case of synchronized ModeDeclarationGroupPrototypes the correlating com-
mon mode machine instance is initialized during the execution of the SchM_Init.
At this point of time the scheduling of RunnableEntitys is not enabled due to the
uninitialized RTE. Therefore situation occurs, that the RunnableEntitys being on-
entry ExecutableEntitys are not called if the mode machine instance is ini-
tialized. Further on the current mode of such mode machine instance might be
still switched until the RTE gets initialized. Nevertheless the on-entry Runnables of the
current active mode are executed.

[SWS_Rte_07582] d For common mode machine instances the on-entry Runn-
able Entities of the current active mode are executed during the initialization of the RTE
if the common mode machine instance is not in transition. c(SRS_Rte_00214)

[SWS_Rte_07583] d A common mode machine instances is not allowed to en-
ter transition phase during the RTE initialization if the common mode machine in-
stances has on-entry Runnable Entities, on-transition Runnable Entities or on-exit
Runnable Entities c(SRS_Rte_00214)

Note: [SWS_Rte_07582] and [SWS_Rte_07583] shall ensure a deterministic behavior
that the software components receiving a Mode Switch Request from a common mode
machine instances are receiving the current active mode during RTE initialization.

[SWS_Rte_07564] d The RTE generator shall reject configurations where Mod-
eSwitchPoint(s) referencing a ModeDeclarationGroupPrototype in a mode
switch port and a managedModeGroup association(s) to a providedMode-
Group ModeDeclarationGroupPrototype are not defined mutual exclusively to

337 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

one of two synchronized ModeDeclarationGroupPrototypes. c(SRS_Rte_00143,
SRS_Rte_00213, SRS_Rte_00214, SRS_Rte_00018)

[SWS_Rte_CONSTR_09014] ModeSwitchPoint(s) and managedModeGroup(s)
are mutually exclusive for synchronized ModeDeclarationGroupPrototypes d
Only one of two synchronized ModeDeclarationGroupPrototypes shall mutual exclu-
sively be referenced by ModeSwitchPoint(s) or managedModeGroup association(s). c
()

Note: [SWS_Rte_CONSTR_09014] shall ensure in the combination with the exis-
tence conditions of the Rte_Switch, Rte_Mode, Rte_SwitchAck, SchM_Switch,
SchM_Mode and SchM_SwitchAck that either the port based RTE API or the Ba-
sic Software Scheduler API ([SWS_Rte_07201] and [SWS_Rte_07264]) offered to the
implementation of the mode manager.

4.4.6 Initialization of mode machine instances

A mode machine instance can either be initialized during Rte_Start or during
Rte_Init. The initialization during Rte_Init enables a defined order when which
mode machine instance gets initialized and the belonging on-entry Runnable En-
tities are scheduled.

[SWS_Rte_06766] d RTE shall initiate the transition to the initial modes of each mode
machine instance belonging to the RTE during Rte_Start if the on-entry Runn-
able Entities for the initialMode are not mapped to any RteInitialization-
RunnableBatch container. c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116)

[SWS_Rte_06767] d RTE shall initiate the transition to the initial modes of each mode
machine instance belonging to the RTE during Rte_Init if the on-entry Runnable
Entities for the initialMode are mapped to one or several RteInitialization-
RunnableBatch container. c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116,
SRS_Rte_00240)

Please note the restrictions on the mapping to RteInitializationRunnable-
Batch containers [SWS_Rte_CONSTR_09062], [SWS_Rte_CONSTR_09063] and
[SWS_Rte_CONSTR_09064].

[SWS_Rte_02544] d During the transition to the initial modes of mode machine in-
stances belonging to the RTE, the steps defined in the following requirements have
to be omitted as no previous mode is defined:

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

• [SWS_Rte_02563],

338 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116)

[SWS_Rte_07532] d Basic Software Scheduler shall initiate the transition to the initial
modes of each mode machine instance belonging to the Basic Software Sched-
uler during SchM_Init. During the transition to the initial modes, the steps defined in
the following requirements have to be omitted as no previous mode is defined:

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

• [SWS_Rte_02563],

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00213)

339 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4.7 Notification of mode switches

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

������������	
 ����

�����������	��	���� � ��������������

ModeSwitchInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

PPortPrototypeRPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

������������	
 ����

�����������	��	���� �

��������������

ARElement
AtpStructureElement

SwcBswMapping

SwcBswSynchronizedModeGroupPrototype

AtomicSwComponentType

AbstractRequiredPortPrototype AbstractProvidedPortPrototype

PRPortPrototype

«isOfType»

+requiredInterface

+modeDeclaration 1..*

«atpVariation»

+initialMode 1

+port

0..*«atpVariation,atpSplitable»

«atpVariation»

+synchronizedModeGroup0..*

«isOfType»

+providedRequiredInterface

«atpVariation,atpSplitable»

+requiredModeGroup

0..*

«atpVariation,atpSplitable»

+providedModeGroup

0..*

«instanceRef»

+swcModeGroup

1

+bswModeGroup

1

«isOfType»

+type

1
{redefines
atpType}

+modeGroup 1

«isOfType»

+providedInterface

Figure 4.49: Definition of a ModeSwitchInterface.

340 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02549] d Mode switches shall be communicated via RTE by Mod-
eDeclarationGroupPrototypes of a ModeSwitchInterface as defined in
[2], see Fig. 4.49. c(SRS_Rte_00144)

The mode switch ports of the mode manager and the mode user are of
the type of a ModeSwitchInterface.

• [SWS_Rte_07538] d Mode switches shall be communicated via Basic Software
Scheduler via providedModeGroup and requiredModeGroup ModeDecla-
rationGroupPrototypes as defined in [9], see Fig. 4.49. Which ModeDeclara-
tionGroupPrototypes are connected to each other is defined by the configuration
of the Basic Software Scheduler. c(SRS_Rte_00213)

• RTE / Basic Software Scheduler only requires the notification of switches be-
tween modes.

• AUTOSAR does not support inter ECU communication of mode switch notifica-
tions.

For the distributed mode management mode requests can be distributed via Ser-
viceProxySwComponentTypes and the BswM of each target ECU to the mode
users of the BswMs.

• [SWS_Rte_02508] d A mode switch shall be notified asynchronously as indicated
by the use of a ModeSwitchInterface. c(SRS_Rte_00144)

Rationale: This simplifies the communication. Due to [SWS_Rte_08788] the
communication is ECU local and no handshake is required to guarantee reliable
transmission.

RTE offers the Rte_Switch API to the mode manager for this notification, see
5.6.6.

Basic Software Scheduler offers the SchM_Switch API to the mode manager
for this notification, see 6.5.7.

• The mode manager might still require a feedback to keep it’s internal state
machine synchronized with the RTE / Basic Software Scheduler view of active
modes.

The RTE generator shall support an AcknowledgementRequest from the mode
switch port / providedModeGroup ModeDeclarationGroupPrototype
of a mode manager, see [SWS_Rte_02587], to notify the mode manager of the
completion of a mode switch.

• [SWS_Rte_02566] d A ModeSwitchInterface shall support 1:n communica-
tion. c(SRS_Rte_00144)

Rationale: This simplifies the configuration and the communication. One mode
switch can be notified to all receivers simultaneously.

341 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A ModeSwitchInterface does not support n:1 communication, see
[SWS_Rte_02670].

• [SWS_Rte_07539] d The connection of providedModeGroup and required-
ModeGroup ModeDeclarationGroupPrototype shall support 1:n communi-
cation. c(SRS_Rte_00213)

• [SWS_Rte_02624] d A mode switch shall be notified with event seman-
tics, i.e., the mode switch notifications shall be buffered by RTE or Basic
Software Scheduler to which the mode machine instance is assigned. c
(SRS_Rte_00144)

The queueing of mode switches (and SwcModeSwitchEvents) depends like
that of DataReceivedEvents on the settings for the receiving port, see sec-
tion 4.3.1.10.2.

• [SWS_Rte_02567] d A ModeSwitchInterface shall only indicate the next
mode of the transition. c(SRS_Rte_00144)

• [SWS_Rte_07541] d A providedModeGroup ModeDeclarationGroupPro-
totype shall only indicate the next mode of the transition. c(SRS_Rte_00213)

The API takes a single parameter (plus, optionally, the instance handle) that in-
dicates the requested ’next mode’. For this purpose, RTE and Basic Software
Scheduler will use identifiers of the modes as defined in [SWS_Rte_02568] and
[SWS_Rte_07294].

• [SWS_Rte_02546] d The RTE shall keep track of the active modes
of a mode manager’s ModeDeclarationGroupPrototypes (mode ma-
chine instances) which is assigned to the RTE. c(SRS_Rte_00143,
SRS_Rte_00144)

• [SWS_Rte_07540] d The Basic Software Scheduler shall keep track of the active
modes of a mode manager’s ModeDeclarationGroupPrototypes (mode
machine instances) which is assigned to the Basic Software Scheduler. c
(SRS_Rte_00213, SRS_Rte_00144)

Rationale: This allows the RTE / Basic Software Scheduler to guarantee con-
sistency between the timing for firing of SwcModeSwitchEvents / BswMod-
eSwitchEvents and disabling the start of ExecutableEntities by mode dis-
abling dependency without adding additional interfaces to a mode manager
with fine grained substates on the transitions.

• The RTE offers an Rte_Mode API to the SW-C to get information about the active
mode, see section 5.6.30.

• The Basic Software Scheduler offers an SchM_Mode API to the Basic Software
Module to get information about the active mode, see section 6.5.8.

• In addition to the mode switch ports, the mode manager may offer an AU-
TOSAR interface for requesting and releasing modes as a means to keep modes
alive like for ComM and EcuM.

342 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.4.8 Mode switch acknowledgment

In case of mode switch communication, the mode manager may specify a Mod-
eSwitchedAckEvent or BswModeSwitchedAckEvent to receive a notification from
the RTE that the mode transition has been completed, see [SWS_Rte_02679] and
[SWS_Rte_07559].

The ModeSwitchedAckEvent is triggered by the RTE regardless which runnable en-
tity has requested the mode switch notification, even if the meta model implies a link to
a specific ModeSwitchPoint.

[SWS_Rte_02679] d If acknowledgment is enabled for a provided Mod-
eDeclarationGroupPrototype and a ModeSwitchedAckEvent references a
RunnableEntity as well as the ModeDeclarationGroupPrototype, the
RunnableEntity shall be activated when the mode switch acknowledgment occurs
or when the RTE detects that any partition to which the mode users are mapped was
stopped or restarted or when a timeout was detected by the RTE. c(SRS_Rte_00051,
SRS_Rte_00143)

The related Entry Point Prototype is defined in [SWS_Rte_02512].

[SWS_Rte_07559] d If acknowledgment is enabled for a provided (providedMode-
Group) ModeDeclarationGroupPrototype and a BswModeSwitchedAckEvent
references a BswSchedulableEntity as well as the ModeDeclarationGroup-
Prototype, the BswSchedulableEntity shall be activated when the mode switch
acknowledgment occurs or when a timeout was detected by the Basic Software Sched-
uler. [SWS_Rte_02587]. c(SRS_Rte_00213, SRS_Rte_00143)

The related Entry Point Prototype is defined in [SWS_Rte_04542].

Requirement [SWS_Rte_02679] and [SWS_Rte_07559] merely affects when the runn-
able is activated. The Rte_SwitchAck and SchM_SwitchAck shall still be created,
according to requirement [SWS_Rte_02678] and [SWS_Rte_07558] to actually read
the acknowledgment.

[SWS_Rte_02730] d A ModeSwitchedAckEvent that references a RunnableEn-
tity and is referenced by a WaitPoint shall be an invalid configuration which is re-
jected by the RTE generator. c(SRS_Rte_00051, SRS_Rte_00018, SRS_Rte_00143)

The attributes ModeSwitchedAckRequest and BswModeSwitchAckRequest allow
to specify a timeout.

[SWS_Rte_07056] d If ModeSwitchedAckRequest or BswModeSwitchAckRe-
quest with a timeout greater than zero is specified, the RTE shall ensure that timeout
monitoring is performed, regardless of the receive mode of the acknowledgment. c
(SRS_Rte_00069, SRS_Rte_00143)

[SWS_Rte_07060] d Regardless of an occurred timeout during a mode transition
the RTE shall complete the transition of a mode machine instance as defined in
[SWS_Rte_02665]. c(SRS_Rte_00069, SRS_Rte_00143)

343 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

If a WaitPoint is specified to collect the acknowledgment, two timeout values have to
be specified, one for the ModeSwitchedAckRequest and one for the WaitPoint.

[SWS_Rte_07057] d The RTE generator shall reject configuration violating [con-
str_4012] in software component template [2]. c(SRS_Rte_00018, SRS_Rte_00143)

[SWS_Rte_07058] d The status information about the success or failure of the mode
transition shall be buffered with last-is-best semantics. When a new mode switch
notification is sent or when the mode switch notification was completed after a
timeout, the status information is overwritten. c(SRS_Rte_00143)

[SWS_Rte_07058] implies that once the ModeSwitchedAckEvent or BswMod-
eSwitchedAckEvent has occurred, repeated API calls (Rte_SwitchAck or
SchM_SwitchAck to retrieve the acknowledgment can return different values.

[SWS_Rte_07059] d If the timeout value of the ModeSwitchedAckRequest or
BswModeSwitchAckRequest is 0, no timeout monitoring shall be performed. c
(SRS_Rte_00069, SRS_Rte_00143)

4.4.9 Mode switch error handling

Since the mode switch communication may cross partitions basically two error scenar-
ios are possible:

• The partition of the mode users gets terminated.

• The partition of the mode manager gets terminated.

In both cases additionally the terminated partition may be restarted. For both error
scenarios the RTE offers functionality to handle the errors.

4.4.9.1 Mode User gets terminated

When a mode manager is getting out of sync with the mode user(s) (because the
partition of the mode user has been terminated) a sequence of error reactions is
defined.

This shall support on the one hand to inform the mode manager about the fact that the
mode users are absent. This might be used by the mode manager to set internal
states. This supports an active error handling by the mode manager as well as a
synchronization of the mode manager to the mode user’s partition restart.

Furthermore the RTE offers the ability to switch into a default mode automatically. This
feature can be used to ensure that either the mode users are re-initialized as during
ECU start (default mode is initial mode) or that the mode users are re-initialized by
a dedicated mode (default mode is different from initial mode) which in turn may be
used to ensure a secure behavior of the mode user’s, for instance suppressing the
actuator self tests in the running system.

344 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that the application of a default mode during mode user partition restart for
modes communicated cross partitions cannot be applied since this would disturb the
execution of the fault free partitions. For this scenario the only applicable error reaction
is modeManagerErrorBehavior.errorReactionPolicy set to lastMode. Other
configurations are rejected, see [SWS_Rte_08788].

[SWS_Rte_06794] d The RTE Generator shall take the modeManagerErrorBehav-
ior from the ModeDeclarationGroup typing the ModeDeclarationGroupPro-
totype in the ModeSwitchInterface of the PPortPrototype/PRPortProto-
type. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06772] d The RTE shall clear all mode switch notifications in the
queue when all partitions of the mode userss are terminated. c(SRS_Rte_00143,
SRS_Rte_00144)

[SWS_Rte_06773] d The RTE shall activate RunnableEntitys triggered by a Swc-
ModeManagerErrorEvent when all partitions of the mode userss are terminated.
c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06774] d If ModeSwitchedAckRequest or BswModeSwitchAckRe-
quest is specified, the RTE shall detect a timeout when mode users partitions are
terminated during an ongoing transition. c(SRS_Rte_00143, SRS_Rte_00144)

Also see [SWS_Rte_02679], [SWS_Rte_07559], and [SWS_Rte_03853].

The further behavior of the mode machine instance depends on the attribute
ModeDeclarationGroup.modeUserErrorBehavior.

[SWS_Rte_06775] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to lastMode the mode machine instance stays in the last
mode before the termination of the mode users. If the partition of the mode users
gets terminated during an ongoing transition the last mode is the next mode of the
transition. c(SRS_Rte_00143, SRS_Rte_00144)

Please note: In case the partition of the mode users gets terminated during an on-
going transition logically the transition is still completed even if the mode users didn’t
"survive" the transition.

[SWS_Rte_06776] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to defaultMode the RTE shall enqueue the mode defined
by modeManagerErrorBehavior.defaultMode to the mode switch notifi-
cation queue. c(SRS_Rte_00143, SRS_Rte_00144)

If the ModeSwitchInterface does not define a specific modeManagerErrorBe-
havior the RTE uses the initialMode as a default mode.

[SWS_Rte_06777] d If the attribute modeManagerErrorBehavior is not defined the
RTE shall enqueue the mode defined by initialMode to the mode switch noti-
fication queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06778] d The RTE shall execute the error reactions in case the partition of
the mode users gets terminated in following order:

345 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1. [SWS_Rte_06772]

2. [SWS_Rte_06773]

3. [SWS_Rte_06774]

4. [SWS_Rte_06775] or [SWS_Rte_06776] or [SWS_Rte_06777]

c(SRS_Rte_00143, SRS_Rte_00144)

If the partition of the mode users is capable to restart (PartitionCanBeRestarted
== true) the mode manager shall be able to enqueue new mode switch requests
during the restart of the partition. This shall support a dedicated error handling by the
mode manager depending on other environmental conditions. In this case the mode
manager may decide which transitions are appropriate to get the mode users either
back in an operational mode or in a secure default mode. Therefore the errorReac-
tionPolicy equals lastMode avoids any automatically forced mode transitions by
the error handling of the RTE.

[SWS_Rte_06779] d RTE shall support the enqueueing of new mode switch requests
during the restart of the mode user’s partition by the mode manager after the call of
Rte_PartitionRestarting. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06780] d When the partition with the mode users is restarted (after call of
Rte_PartitionRestart), RTE shall dequeue queued mode switch notifica-
tions. c(SRS_Rte_00143, SRS_Rte_00144)

When the first mode switch notification after a partition restart is dequeued
the previous mode is defined as "last mode" or "on transition" depending on the
modeManagerErrorBehavior.errorReactionPolicy. See [SWS_Rte_06783]
and [SWS_Rte_06784].

Initialization of mode machine instance during mode user’s partition restart

Depending on the modeManagerErrorBehavior the RTE has to re-initialize the
mode machine instance during the restart of the mode user’s partition. In
case modeManagerErrorBehavior.errorReactionPolicy is set to default-
Mode the behavior is similar as during the transition to the initial mode (see
[SWS_Rte_02544]). During the initialization of the RTE resources for a restarting mode
user partition only a subset of the single steps of a mode transition is applicable.

[SWS_Rte_06796] d During the transition to the default mode (next mode is default
mode) of mode machine instances when the mode user’s partition restarts, the
steps defined in the following requirements have to be omitted as no previous mode is
applicable:

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

346 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02563],

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the default mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00143, SRS_Rte_00144)

In case modeManagerErrorBehavior.errorReactionPolicy is set to last-
Mode the behavior indicates a stable mode during the re-initialization in order to provide
the means to the mode manager to explicitly decide on the appropriate mode to han-
dle the fault.

[SWS_Rte_06797] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to lastMode the RTE / Basic Software Scheduler shall ac-
tivate the mode disablings of the last mode during the partition restart, if any
mode disabling dependencys for that mode are defined. c(SRS_Rte_00143,
SRS_Rte_00144)

4.4.9.2 Mode Manager gets terminated

When a mode user gets out of sync with the mode manager (because the partition
of the mode manager has been terminated) a sequence of error reactions is defined.

Hereby the RTE offers the ability to automatically switch into a default mode. This
feature can be used to ensure that the mode users are automatically switched into
a defined mode which in turn may be used to ensure a secure behavior of the mode
users, for instance switching off some actuators.

As an alternative the mode machine instance can stay in the last mode which can
be used to keep the "status quo" until the mode manager is restarted.

[SWS_Rte_06795] d The RTE Generator shall take the modeUserErrorBehav-
ior from the ModeDeclarationGroup typing the ModeDeclarationGroupPro-
totype in the ModeSwitchInterface of the PPortPrototype/PRPortProto-
type. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06785] d If the partition of the mode manager gets terminated during
an ongoing transition, the RTE shall complete the transition. c(SRS_Rte_00143,
SRS_Rte_00144)

[SWS_Rte_06786] d If the partition of the mode manager gets terminated dur-
ing an ongoing transition, the RTE shall skip the mode switch acknowledg-
ment. c(SRS_Rte_00143, SRS_Rte_00144) For mode switch acknowledgment see
[SWS_Rte_02587] and section 4.4.8

347 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06787] d The RTE shall clear all mode switch notifications in the
queue when the partition of the mode manager gets terminated and after an ongoing
transition is completed. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06788] d If the attribute modeUserErrorBehavior.errorReaction-
Policy is set to lastMode the mode machine instance stays in the last mode
before the termination of the mode manager. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06789] d If the attribute modeUserErrorBehavior.errorReaction-
Policy is set to defaultMode the RTE shall enqueue the mode defined by
modeUserErrorBehavior.defaultMode to the mode switch notification
queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06790] d If the attribute modeUserErrorBehavior is not defined the RTE
shall enqueue the mode defined by initialMode to the mode switch notifica-
tion queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06791] d The RTE shall execute the error reactions in case the partition of
the mode manager gets terminated in the following order:

1. [SWS_Rte_06785], [SWS_Rte_06786]

2. [SWS_Rte_06787]

3. [SWS_Rte_06788] or [SWS_Rte_06789] or [SWS_Rte_06790]

c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06792] d The RTE shall dequeue queued mode switch notifica-
tions and execute them regardless whether the partition with the mode manager
is terminated, restarting or restarted. Thereby the restart of the mode manager’s
partition shall not abort the ongoing transition of a mode machine instance. c
(SRS_Rte_00143, SRS_Rte_00144)

This ensures that the defaultMode in the mode switch notification queue
gets effective.

[SWS_Rte_06793] d The RTE shall activate RunnableEntitys triggered by a Swc-
ModeManagerErrorEvent when the partition of the mode manager is restarted. c
(SRS_Rte_00143, SRS_Rte_00144)

4.4.10 Mapping of ModeDeclarations

There exist several use cases (especially if software is reused), where mode users
are connected to mode managers providing ModeDeclarationGroups with differ-
ent ModeDeclarations than the user.

Examples:

• A mode manager can be able to differentiate more fin grained sub states as it
is required by the generic mode user. But due to the definition of the mode

348 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

communication it is not possible to use two p-ports at the mode manager be-
cause this would lead to two independent and unsynchronized mode machine
instances in the RTE.

• A generic mode user can support additionally modes which are not used by all
mode managers.

This would normally lead to an error as incompatible ports are connected. To overcome
this limitation the Software Component Template [2] provides a mapping between dif-
ferent ModeDeclarations so that the RTE can translated on mode to the other.

[SWS_Rte_08511] d If a ModeDeclaration of a mode user is mapped to a sin-
gle ModeDeclaration of a mode manager the related mode of the mode user is
entered or exit when the mapped mode of the mode manager is entered or exit. c
(SRS_Rte_00236)

[SWS_Rte_08512] d If one ModeDeclaration of a mode user is mapped to sev-
eral ModeDeclarations of a mode manager the related mode of the mode user
is entered when any of the mapped modes of the mode manager mapped by one
modeDeclarationMapping is entered. The related mode of the mode user is exit
when any of the mapped modes of the mode manager mapped by one modeDecla-
rationMapping is exit and if the new mode is not mapped by the same modeDec-
larationMapping to related mode of the mode user. c(SRS_Rte_00236)

Note: If one ModeDeclaration of a mode user is mapped to several ModeDecla-
rations of a mode manager by the means of several modeDeclarationMappings
the semantics is defined in a way that the individual mode transitions of the mode man-
ager are getting visible as “exit” and “enter” events for the mode user. Further on the
transition phase gets visible by the RTE_TRANSITION return value in the case that
Rte_Mode-API is called during such a transition phase.

If one ModeDeclaration of a mode user is mapped to several ModeDeclara-
tions of a mode manager by the means of a single modeDeclarationMapping
the semantics is defined in a way that the individual mode transitions of the mode
manager are not visible for the mode user.

Example:
The mode manager and the mode user have different ModeDeclaration-
Groups which are mapped by several modeDeclarationMappings. The Mode-
DeclarationGroup of the mode manager is more fine grained, so more than one
of its ModeDeclarations has to be mapped onto the same ModeDeclaration of
the mode user. The modeDeclarationMappings can be seen in table 4.13. The
complete example is listed as ARXML in Appendix F.1.

modeDeclarationMapping ModeDeclarations of the
mode manager

Mapped ModeDeclara-
tions of the mode user

StartUp_2_STARTUP StartUp STARTUP
Run_2_RUN Run RUN
PostRunX_2_POST_RUN PostRun1

PostRun2
POST_RUN

ShutDown_2_SHUTDOWN ShutDown SHUTDOWN

349 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sleep_Hibernate_2_SHUTDOWN Sleep
Hibernate

SHUTDOWN

Table 4.13: Example of a modeDeclarationMapping which maps ModeDeclarations
from mode manager to ModeDeclarations of the mode user

Table 4.14 shows a possible scenario how mode transitions of a mode manager
will be seen from the point of view of a mode user when the modeDeclaration-
Mapping maps more than one ModeDeclaration of the mode manager’s Mode-
DeclarationGroup onto the same ModeDeclaration of the mode user’s Mode-
DeclarationGroup.

Mode transitions of the
mode manager

Mode transitions of the
mode user resulting out of the mapping

Undefined→ StartUp Undefined→ STARTUP
StartUp→ Run STARTUP→ RUN
Run→ PostRun1 RUN→ POST_RUN
PostRun1→ PostRun2 — (no transition)
PostRun2→ ShutDown POST_RUN→ SHUTDOWN
ShutDown→ Sleep SHUTDOWN→ SHUTDOWN
Sleep→ Hibernate — (no transition)

Table 4.14: Possible scenario of mode transitions by the mode manager and the result-
ing transitions from the point of view of the mode user

A configuration that maps several ModeDeclarations of a mode user to a single
ModeDeclaration representing a mode of a mode manager shall be rejected (see
also [constr_1209]). This is not valid as it violates the principle that modes are mutually
exclusive.

[SWS_Rte_08513] d The RTE-Generator shall reject configurations violating [con-
str_1209]. c(SRS_Rte_00236)

If a modeDeclarationMapping exists that references a ModeDeclaration repre-
senting a mode of the mode manager then ModeDeclarationMappings shall exist
that map all ModeDeclarations of the mode manager to ModeDeclarations of
the mode user (see also [constr_1210]).

[SWS_Rte_08514] d The RTE-Generator shall reject configurations violating [con-
str_1210]. c(SRS_Rte_00236)

Note: It is only supported that modes of the mode user might not be mapped.

4.4.11 Distributed Shared Mode Queues

In case different mode state machines are switched via synchronous mode switches,
the order of their execution is basically undefined. Limited possibilities exist by using
separate tasks for the different mode state machines. But these would globally give

350 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

switches of one mode machine instance a higher priority than switches of another
mode machine instance. In some cases it is required to keep the strict order of
the mode switches, independent to which mode state machine they belong. One ex-
ample, could be the key state (ON, OFF) and the engine state (RUNNING, STOPPED)
which are technically independent mode machine instances, but have a functional
connection. If the mode switch from key ON to OFF occurs first, followed by the switch
from engine RUNNING to STOPPED, it was obviously the user’s intention to stop the
engine. If the two transitions are executed in the reverse order, the system will see a
switch from engine RUNNING to STOPPED while the key state is still ON which in-
dicates a stalled engine which a start stop system might try to restart. This example
shows how important it is for the application software to see the execution of the mode
switches in the order they have been requested. As a result, it is required to have a
mechanism to define a FIFO order for the mode switches of at least a subset of the
mode machine machines in the ECU.

A similar issue occurs in multi core systems in which user components on multiple
cores have to react directly or indirectly on a mode switch. On one side it is already
clear that in case mode disabling dependencies exist on multiple cores, to fulfil the
requirements about the synchronous switching of these disabling dependencies, it
is necessary to have one mode switch task per partition having mode disabling de-
pendencies. But also in case there are SwcModeSwitchEvents in components of
different partitions which react on switches of the same mode machine instance
there have to be multiple tasks performing these switches as it is not legal to execute
RunnableEntitys of a software component assigned to one partition in tasks be-
longing to another partition. To avoid that one partition is already in the new state while
the other one didn’t even start the transition, it is also necessary to synchronize the
mode switch tasks of multiple partitions, especially if they reside on different cores.
This is important for the same reason as above. A component might expect a certain
behavior of the system in a certain state. If now one partitions is still in the old state
while another one is already in the new state, the expectation does not match reality
with the consequence of functional misbehavior.

A distributed shared mode queue is characterized by a set of mode machine
instances and a set of OsTasks in which the mode switches of the participating
mode state machines will be executed.

[SWS_Rte_06832] d The RTE Generator shall retrieve the set of mode machine in-
stances belonging to one distributed shared mode queue from the set of Rt-
eDSMQModeMachineInstanceRef. c(SRS_Rte_00143, SRS_Rte_00310)

[SWS_Rte_06833] d The RTE Generator shall retrieve the set of DSMQ transition Os-
Tasks belonging to one distributed shared mode queue from the set of Rt-
eDSMQOsTaskRefs. c(SRS_Rte_00143, SRS_Rte_00310)

The OsTasks participating in a single distributed shared mode queue may or
may not belong to a separate partition. If such OsTasks are belonging to OsAppli-
cations executed on the same micro controller core such DSMQ transition OsTasks

351 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

have to be chained via the EcuC configuration. But not necessarily each partition will
have an OsTask participating in a distributed shared mode queue.

The OsTasks participating in a single distributed shared mode queue will only
contain ExecutableEntitys mapped to this OsTasks via SwcModeSwitchEvents,
BswModeSwitchEvents, ModeSwitchedAckEvents or BswModeSwitchedAck-
Events referencing one of the mode machine instance participating in this dis-
tributed shared mode queue.

[SWS_Rte_CONSTR_09102] Exclusive usage of OsTasks used for distributed
shared mode queue d An OsTask belonging to a distributed shared mode
queue shall have only mapped on-entry ExecutableEntitys, on-transition
ExecutableEntitys, on-exit ExecutableEntitys, and ModeSwitchAck
ExecutableEntitys to it which are triggered by mode machine instances be-
longing to the identical distributed shared mode queue. c()

Thereby [SWS_Rte_06839] constraints the order of the event to task mappings.

Similar to the behavior defined in [SWS_Rte_02665] the execution of the mode switch
may be triggered for each partition in parallel. If the partitions are executed on the
same micro controller core the order depends on the priorities of the OsTask or on a
configured task chaining. In case partitions are executed on different micro controller
cores, execution of the on-entry ExecutableEntitys, on-transition Exe-
cutableEntitys, and on-exit ExecutableEntitys may run concurrently.

[SWS_Rte_06834] d The RTE shall trigger all OsTasks belonging to a dis-
tributed shared mode queue simultaneously, except the ones which are chained
after another OsTask belonging to this distributed shared mode queue. c
(SRS_Rte_00143, SRS_Rte_00310)

[SWS_Rte_06835] d The RTE shall execute the mode switches of the mode machine
instances participating in a distributed shared mode queue in the order of
the calls of the related Rte_Switch or SchM_Switch APIs. c(SRS_Rte_00143,
SRS_Rte_00310)

Thereby the queued mode switches of the mode machine instances of the same
distributed shared mode queue are processed one after the other according
the FIFO principle.

[SWS_Rte_06838] d The RTE shall switch at most one mode machine instance
of the set of mode machine instances participating in a distributed shared
mode queue at the same time into transition. c(SRS_Rte_00143, SRS_Rte_00310)

The implementation of the behavior defined in [SWS_Rte_06835] requires a single
mode queue which handles the queuing of the mode switches for all mode machine
instances. In opposite to the mode machine instance local queues such a
shared queue has to memorize which transition in which mode machine instance
was notified.

[SWS_Rte_06836] d The size of the mode queue of the distributed shared
mode queue shall be the sum of the individual queue lengths of all mode

352 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

machine instances participating in this distributed shared mode queue. c
(SRS_Rte_00143, SRS_Rte_00310)

Nevertheless the RTE has still to check the individual queue sizes of each mode ma-
chine instances. This ensures, that each mode manager can always enqueue
the maximum number of mode switch notifications reserved for this mode
machine instances.

[SWS_Rte_06840] d If a new mode switch notification is received the RTE
shall check if not more mode switch notifications of a particular mode ma-
chine instance are queued than the queue size of this particular mode machine
instance supports. If the queue size would be exceeded, the RTE shall discard the
received notification. c(SRS_Rte_00143, SRS_Rte_00310)

In this case, Rte_Switch will return an error, see [SWS_Rte_02675].

The behavior described in [SWS_Rte_02665] has the consequence, that RTE / Ba-
sic Software Scheduler deactivates the previous mode disablings asynchronous on
each core. But one major use case of distributed shared mode queues is the
synchronization of activities across partitions. Therefore previous mode disablings de-
activated by RTE after all on-exit ExecutableEntitys are executed.

[SWS_Rte_06837] d During a transition of a mode machine instance belonging to
one distributed shared mode queue following steps are applicable:

1. [SWS_Rte_02661],

2. [SWS_Rte_07152]

3. [SWS_Rte_02562],

4. [SWS_Rte_07153],

5. [SWS_Rte_02707],

6. [SWS_Rte_02708],

7. [SWS_Rte_02564],

8. [SWS_Rte_07154]

9. [SWS_Rte_02563] (The transition is completed with this step), and

10. immediately followed by [SWS_Rte_02587]

If a step is not applicable, the order of the remaining steps shall be unchanged.

Thereby:

• Step 1. - 2 shall be executed synchronously in each partition for the whole mode
machine instance.

• Step 3. - 8. may be executed in parallel on the different cores and therefore are
triggered in parallel for each partition.

353 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• Step 9. shall be executed synchronously in each partition for the whole mode
machine instance.

The step 10. is executed if the step 1. - 9. is finished for the whole mode machine
instance. c(SRS_Rte_00143, SRS_Rte_00310)

4.5 External and Internal Trigger

4.5.1 External Trigger Event Communication

4.5.1.1 Introduction

With the mechanism of the trigger event communication a software component or a
Basic Software Module acting as a trigger source is able to request the activation
of Runnable Entities respectively Basic Software Schedulable Entities of connected
trigger sinks. Typically but not necessarily these Runnable Entities and Basic
Software Schedulable Entities are executed in a sequential order.

354 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

AtpBlueprintable
AtpPrototype

Components::PortPrototype

Components::RPortPrototype

Components::AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

PortInterface::TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

������������	
 ����

�����������	��	���� �

��������������

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswOverview::BswModuleDescription

+ moduleId: PositiveInteger [0..1]

InternalBehavior

BswBehavior::
BswInternalBehavior

BswBehavior::
BswTriggerDirectImplementation

+ task: Identifier

Components::PPortPrototype

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

������������	
 ����

�����������	��	���� �

��������������

SwcBswMapping::
SwcBswSynchronizedTrigger

ARElement
AtpStructureElement

SwcBswMapping::SwcBswMapping

Components::
AbstractRequiredPortPrototype

Components::
AbstractProvidedPortPrototype

Components::
PRPortPrototype

0..*

+masteredTrigger 1

«atpVariation,atpSplitable»

+requiredTrigger

0..*

«atpVariation»
+synchronizedTrigger 0..*

«isOfType»

+providedRequiredInterface

«isOfType»

+providedInterface
1
{redefines
atpType}

«atpVariation,atpSplitable»

+releasedTrigger

0..*

«atpSplitable»

+internalBehavior 0..*

+port

0..*«atpVariation,atpSplitable»

«atpVariation,atpSplitable»

+triggerDirectImplementation

0..*

+trigger 1..*

+bswTrigger

1

«isOfType»

+requiredInterface

«instanceRef»

+swcTrigger

1

Figure 4.50: Summary of the use of Trigger by an AUTOSAR software-components and
Basic Software Modules as defined in the Software Component Template Specifica-
tion[2] and Specification of BSW Module Description Template[9].

[SWS_Rte_07212] d The RTE shall support External Trigger Event Communication. c
(SRS_Rte_00162)

355 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07542] d The Basic Software Scheduler shall support the activation
of Basic Software Schedulable Entities occurrence of External Trigger Events. c
(SRS_Rte_00216)

4.5.1.2 Trigger Sink

A AUTOSAR software-component trigger sink has a dedicated require trigger
port. The trigger port is typed by an TriggerInterface declaring one or more Trig-
ger. See figure 4.50. The Runnable Entities of the software component are activated
at the occurrence of the external event by the means of an ExternalTriggerOc-
curredEvent.

An Basic Software Module trigger sink has to define a requiredTrigger Trigger.
The Basic Software Schedulable Entities of the Basic Software Module are activated
at the occurrence of the external event by the means of a BswExternalTriggerOc-
curredEvent. See figure 4.50.

Basically there are two approaches to implement the activation of triggered Ex-
ecutableEntityss. In one case the triggered ExecutableEntityss of the
trigger sinkss triggered by one Trigger of the trigger source are mapped
in one or more tasks. In this case the event communication can be implemented by the
means of activating an Operating System Task. Please note that the tasks may belong
to different partitions.

[SWS_Rte_07213] d The RTE generator shall support invocation of triggered Ex-
ecutableEntitys via OS Task. c(SRS_Rte_00162, SRS_Rte_00216)

In the other case the Event Communication is mapped to a function call which means
that the triggered ExecutableEntitys of the trigger sinks are executed in
the Rte_Trigger API respectively SchM_Trigger API used to raise the trigger event
in the trigger sinks.

[SWS_Rte_07214] d The RTE generator shall support invocation of triggered Ex-
ecutableEntitys via direct function call, if all of the follwing conditions are fulfilled:

• the triggered ExecutableEntitys do not define a ‘minimum start distance’

• the trigger sink and trigger source are in the same Partition

• if no BswTriggerDirectImplementation is defined.

• if the preconditions of [constr_4086] are fulfilled

• no queuing for the trigger source is configured

c(SRS_Rte_00162, SRS_Rte_00216)

356 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.5.1.3 Trigger Source

An AUTOSAR software-component trigger source has a dedicated provide trig-
ger port. The trigger port is typed by an TriggerInterface declaring one or more
Trigger. See figure 4.50. To be able to connect a provide trigger port and a re-
quire trigger port, both ports must be categorized by the same or by compatible
TriggerInterface(s).

An Basic Software Module trigger source has to define a releasedTrigger Trigger.
See figure 4.50. The connection of releasedTrigger and requiredTrigger Trigger is
defined by the ECU configuration of the Basic Software Scheduler.

To inform the RTE about an occurrence of the external trigger event the RTE provides
the Rte_Trigger to an AUTOSAR software-component trigger source.

[SWS_Rte_07543] d The call of the Rte_Trigger API shall activate all Runnable En-
tities that are activated by ExternalTriggerOccurredEvents associated to a connected
Trigger of the trigger source if either no queuing for the Trigger is config-
ured or if queuing for the Trigger is configured and the trigger queue is empty. c
(SRS_Rte_00162)

For Basic Software Module trigger source are two options defined to interfaces
with Basic Software Scheduler.

The first option is that the Basic Software Module trigger source inform the Basic
Software Scheduler about an occurrence of the external trigger event by the call of the
SchM_Trigger API.

[SWS_Rte_07544] d The call of the SchM_Trigger API shall activate all Exe-
cutableEntitys that are activated by ExternalTriggerOccurredEvents associated to
a connected Trigger of the trigger source if either no queuing for the Trigger is
configured or if queuing for the Trigger is configured and the trigger queue is empty.
c(SRS_Rte_00216)

The second option is that the Basic Software Module trigger source directly takes
care about the activation of the particular OS task to which the ExternalTriggerOc-
curredEvents of the triggered ExecutableEntitys are mapped. In this case
the trigger source has to define a BswTriggerDirectImplementation. The name
of the used OS tasks is annotated by the task attribute. If an BswTriggerDirectImple-
mentation is defined no SchM_Trigger API is generated by the RTE generator. see
[SWS_Rte_07548] and [SWS_Rte_07264].

[SWS_Rte_07545] d The RTE generator shall reject configurations where a BswTrig-
gerDirectImplementation is specified and an ExecutableEntity that is activated by
an ExternalTriggerOccurredEvent associated to a connected Trigger of the trigger
source is mapped to an OS task different from the one defined by the task attribute of
the BswTriggerDirectImplementation. c(SRS_Rte_00216, SRS_Rte_00018)

357 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07548] d The RTE generator shall reject configurations where a issuedTrig-
ger association and a BswTriggerDirectImplementation is defined for the same re-
leasedTrigger Trigger. c(SRS_Rte_00216, SRS_Rte_00018)

[SWS_Rte_CONSTR_09007] issuedTrigger and BswTriggerDirectImplementation
are mutually exclusive d A releasedTrigger Trigger shall not be referenced by both a
issuedTrigger and a BswTriggerDirectImplementation. c()

Note: This shall ensure in the combination with the existence conditions
([SWS_Rte_07264]) of the SchM_Trigger that either the Trigger API or the direct
task activation is offered to the implementation of the trigger source.

Note also that several OS tasks might be used to implement a Trigger (several
BswTriggerDirectImplementation can be defined for a releasedTrigger).

If the BswTriggerDirectImplementation is defined for a releasedTrigger which
swImplPolicy attribute is set to queued it is part of the trigger source to imple-
ment the queue or to use the means of the OS (OsTaskActivation > 1) to queue the
number of raised triggers. (OsTaskActivation > 1). Further details about queuing of
triggers is described in 4.5.5.

4.5.1.4 Multiplicity

4.5.1.4.1 Multiple Trigger

A trigger interface contains one or more Trigger. A port of an AUTOSAR software-
component that provides an AUTOSAR trigger interface to the component can inde-
pendently raise events related to each Trigger defined in the interface .

[SWS_Rte_07215] d The RTE API shall support independent event raising for each
Trigger in a trigger interface. c(SRS_Rte_00162)

Further on a Basic Software Module trigger source can define several re-
leasedTrigger Trigger which can be independently raised.

[SWS_Rte_07546] d The Basic Software Scheduler API shall support independent
event raising for each releasedTrigger Trigger. c(SRS_Rte_00216)

4.5.1.4.2 Multiple Trigger Sinks Single Trigger Source

The concept of external event communication supports, that a trigger source ac-
tivates one or more triggered ExecutableEntitys in one or more trigger
sinks.

[SWS_Rte_07216] d The RTE generator shall support triggered ExecutableEn-
titys triggered by the same Trigger of a trigger source (‘1 : n’ communication
where n ≥ 1). c(SRS_Rte_00162, SRS_Rte_00216)

358 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The execution order of the triggered ExecutableEntitys in the trigger sinks
depends from the RteEventToTaskMapping described in chapter 8.5.1 and the
configured priorities of the operating system.

4.5.1.4.3 Multiple Trigger Sources Single Trigger Sink

The RTE generator does not support multiple trigger sources communicating
events to the same Trigger in a trigger sink (‘n : 1’ communication where n > 1).

[SWS_Rte_07039] d The RTE generator shall reject configurations where multiple
trigger sources communicating events to the same Trigger in a trigger sink
(‘n : 1’ communication where n > 1). c(SRS_Rte_00018)

[SWS_Rte_CONSTR_09008] The same Trigger in a trigger sink must not be
connected to multiple trigger sources d The same Trigger in a trigger sink must
not be connected to multiple trigger sources. c()

4.5.1.5 Synchronized Trigger

If two Triggers are synchronized by the definition of a SwcBswSynchronizedTrig-
ger then the Trigger in the referenced provide trigger port and the referenced
releasedTrigger Trigger are treated as one common Trigger. This means that
all ExecutableEntitys activated by an ExternalTriggerOccurredEvent asso-
ciated to one of the connected Triggers are activated together.

[SWS_Rte_07218] d The RTE and Basic Software Scheduler shall activate to-
gether all ExecutableEntitys that are activated by ExternalTriggerOccurre-
dEvents associated to a synchronized connected Trigger. c(SRS_Rte_00162,
SRS_Rte_00216, SRS_Rte_00217)

[SWS_Rte_07549] d The RTE generator shall reject configurations where a synchro-
nized Trigger is referenced by more than one type of access method, where the type
is one of the following:

1. ExternalTriggeringPoint

2. issuedTrigger

3. BswTriggerDirectImplementation

c(SRS_Rte_00216, SRS_Rte_00217, SRS_Rte_00018)

[SWS_Rte_CONSTR_09009] Synchronized Trigger shall not be referenced by
more than one type of access method d A synchronized Trigger shall only be ref-
erenced by either ExternalTriggeringPoints, issuedTriggers or BswTrig-
gerDirectImplementations. c()

359 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: This shall ensure in the combination with the existence conditions
of the Rte_Trigger and SchM_Trigger that only one kind of Trigger API
([SWS_Rte_07201] and [SWS_Rte_07264]) or the direct task activation is offered to
the implementation of the trigger source.

4.5.2 Inter Runnable Triggering

With the mechanism of Inter Runnable Triggering one Runnable Entity is able to re-
quest the activation of Runnable Entities of the same software-component instance.

[SWS_Rte_07220] d The RTE shall support Inter Runnable Triggering. c
(SRS_Rte_00163)

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered runnables can be implemented by means of activating an Operating
System Task or by direct function call.

[SWS_Rte_07555] d The call of the Rte_IrTrigger API shall activate all trig-
gered runnables which InternalTriggerOccurredEvents are associated with the
related InternalTriggeringPoint of the same software-component instance if either
no queuing for the InternalTriggeringPoint is configured or if queuing for
the InternalTriggeringPoint is configured and the trigger queue is empty. c
(SRS_Rte_00163)

[SWS_Rte_07221] d The RTE shall support for Inter Runnable Triggering that trig-
gered runnables entities are invoked via OS Task activation. c(SRS_Rte_00163)

[SWS_Rte_07224] d The RTE shall support for Inter Runnable Triggering that trig-
gered runnables are invoked via direct function call if all of the following conditions
are fulfilled:

• none of the triggered BswSchedulableEntitys activated by this In-
ternalTriggeringPoint define a ‘minimum start distance’

• no queuing for the InternalTriggeringPointis configured

c(SRS_Rte_00163)

4.5.2.1 Multiplicity

An InternalTriggeringPoint might be referenced by more than one Internal-
TriggerOccurredEvent. Therefore one RunnableEntity is able to request the
activation of several RunnableEntity’s with the mechanism of Inter Runnable Trig-
gering contemporaneously.

[SWS_Rte_07223] d The RTE shall support multiple RunnableEntity’s triggered
by the same InternalTriggeringPoint (‘1 : n’ Inter Runnable Triggering where
n ≥ 1). c(SRS_Rte_00163)

360 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The execution order of the runnable entities in the trigger sinks depends from the Runn-
able Entity to task mapping described in chapter 8.5.1 and the configured priorities of
the operating system.

4.5.3 Inter Basic Software Module Entity Triggering

The Inter Basic Software Module Entity Triggering is similar to the mechanism of In-
ter Runnable Triggering (see chapter 4.5.2) with the exception that it is used inside a
Basic Software Module. It can be used to request the activation of a BswSchedula-
bleEntity by a Basic Software Entity of the same a Basic Software Module instance.

[SWS_Rte_07551] d The Basic Software Scheduler shall support Inter Basic Software
Module Entity Triggering. c(SRS_Rte_00230)

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered BswSchedulableEntity can be implemented by means of acti-
vating an Operating System Task or by direct function call.

[SWS_Rte_07552] d The call of the SchM_ActMainFunction API shall activate all
triggered BswSchedulableEntitys which BswInternalTriggerOccurredEvents
are associated by the related activationPoint of the same a Basic Software Module
instance if either no queuing for the BswInternalTriggeringPoint is configured
or if queuing for the BswInternalTriggeringPoint is configured and the trigger
queue is empty.. c(SRS_Rte_00230)

[SWS_Rte_07553] d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered BswSchedulableEntitys are in-
voked via OS Task activation. c(SRS_Rte_00230)

[SWS_Rte_07554] d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered BswSchedulableEntitys are in-
voked via direct function call if

• the triggered BswSchedulableEntitys do not define a ‘minimum start dis-
tance’

• if the preconditions of constraint [constr_4086] are fulfilled

• no queuing for the BswInternalTriggeringPointis configured

c(SRS_Rte_00230)

Note: Typically the feature of Inter Basic Software Module Entity Triggering is used
to decouple the execution context of Basic Software Entities. But if this decoupling
is really required depends from the particular scheduling concept and microcontroller
performance.

361 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.5.4 Inter ECU Trigger Communication

The trigger communication is also possible in case of inter-ECU communication. In
this case, a software component on an ECU can act as a trigger source for a soft-
ware component on another ECU, so requesting the activation of software components
on the other ECU.

[SWS_Rte_08409] d The RTE shall support inter-ECU Trigger Communication. c
()

[SWS_Rte_08410] d The RTE shall support the activation of RunnableEntitys oc-
currence of Trigger Events coming from another ECU. c()

[SWS_Rte_08411] d In case of an issued Trigger the RTE shall send the ISignal
associated with that Trigger to the Com stack. c()

In case no data transformation is used, the API call argument of Com_SendSignal has
no meaning. In case of data transformation, the first transformer is executed without
input data.

[SWS_Rte_08412] d In case of a received Trigger without data transformation the
RTE shall only care about the COM Notification which indicates a reception of the zero
size signal. The value of such signal shall not be read (Com_ReceiveSignal shall
not be called). c()

In case of a received Trigger with data transformation the RTE executes the inverse
data transformation on the received data from Com Stack. (See [SWS_Rte_08597]).
This is necessary to recognize transformation errors.

[SWS_Rte_08072] d The RTE generator shall reject configurations violating the [con-
str_3065]. c(SRS_Rte_00018)

4.5.5 Queuing of Triggers

The queuing of triggers ensures that the number of executions of triggered Ex-
ecutableEntitys is equal to the number of released triggers. Further on it en-
sures that the number of activations of triggered ExecutableEntitys is equal for
all associated triggered ExecutableEntitys of a trigger emitter if the as-
sociated triggered ExecutableEntitys are not activated by other RTEEvents.
Therefore the trigger queue is rather a counter than a real queue.

[SWS_Rte_07087] d The RTE shall support the queuing of triggers for

• External Trigger Event Communication

• Inter Runnable Triggering

• Inter Basic Software Module Entity Triggering

362 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

if the RteTriggerSourceQueueLength / RteBswTriggerSourceQueueLength
is configured > 0, regardless of the value of the attribute swImplPolicy of the trigger
entity. c(SRS_Rte_00235)

The attribute swImplPolicy specifies a queued or non queued processing of the
trigger emitter. Since the setup of a queue might have other side effects on
the dynamic behavior of the ECU its still an design decision of the ECU integrator to
configure a trigger queue.
Therefore it is possible to configure a trigger queue regardless on the value of the
attribute swImplPolicy of the trigger emitter.

[SWS_Rte_07088] d The RTE shall enqueue a trigger when the RTE gets informed
about the occurrence of a trigger by the call of the related API (Rte_IrTrigger,
Rte_Trigger, SchM_Trigger, SchM_ActMainFunction) if queuing for this
trigger emitter is configured and if the maximum queue length (RteTrigger-
SourceQueueLength / RteBswTriggerSourceQueueLength) is not exceeded. c
(SRS_Rte_00235)

[SWS_Rte_07089] d The RTE shall dequeue a trigger when the trigger emitter is
informed about the end of execution of all triggered ExecutableEntitys which
are triggered by this trigger emitter. In the case of triggered ExecutableEntitys
whose execution is disabled by a mode disabling dependency then the trigger is de-
queued as if the entities ran. This behaviour prevents the dequeue operation from
being blocked indefinitely c(SRS_Rte_00235)

[SWS_Rte_07090] d The RTE shall activate all triggered ExecutableEntitys
associated to a trigger emitter when it has successfully dequeued a trigger from
the trigger queue of the trigger emitter except for the last dequeued trigger. c
(SRS_Rte_00235)

Figure 4.51: Queued activation of ExecutableEntitys

The figure 4.51 illustrates the basic behavior of a trigger queue.

• At "‘A"’ the RTE gets informed by the call of the API about the occurrence
of a Trigger. Since no trigger is in the queue all associated triggered

363 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ExecutableEntitys are activated ([SWS_Rte_07544], [SWS_Rte_07555],
[SWS_Rte_07552]) and the trigger is enqueued ([SWS_Rte_07088]).

• At "‘B"’ all triggered ExecutableEntitys which are triggered by this trig-
ger emitter have terminated. The RTE dequeues the trigger but since it is the
last dequeued trigger the associated triggered ExecutableEntitys are
not activated again.

• At "‘C"’ the RTE gets informed by the call of the API about the occurrence of a
Trigger. Enqueuing of triggers and activating of triggered ExecutableEn-
titys is done as in "‘A"’

• At "‘D"’ the RTE gets informed again by occurrence of a trigger. Since a trigger
is already in the queue the associated triggered ExecutableEntitys are
not activated ([SWS_Rte_07544], [SWS_Rte_07555], [SWS_Rte_07552]). Nev-
ertheless the trigger is enqueued ([SWS_Rte_07088]).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this
trigger emitter have terminated. The RTE dequeues the trigger
([SWS_Rte_07089]) and activates all associated triggered ExecutableEn-
titys ([SWS_Rte_07090]).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this trig-
ger emitter have terminated. Dequeuing of triggers is done as in "‘B"’

Implementation hint:
One possible solution to implement the queue for the number of released triggers is
to use the means of the operation systems which already can queue the activation
requests for a OS task (OsTaskActivation > 1). This for sure is only possible
if all ExternalTriggerOccurredEvents, InternalTriggerOccurredEvents,
BswExternalTriggerOccurredEvent and BswInternalTriggerOccurredE-
vent connected to the same trigger emitter with configured queuing are mapped
exclusively to one OS task.

4.5.6 Activation of triggered ExecutableEntities

The activation of triggered ExecutableEntitys is done like described in chapter
4.2.3. See also Fig. 4.17.

If the triggered ExecutableEntitys are activated synchronous or asynchronous
depends how the RTEEvents and BswEvents are mapped to OS tasks.

If all ExternalTriggerOccurredEvents of the trigger sinks which are associated to
connected Trigger of the trigger source

• either are mapped to OS task(s) with higher priority as the OS task where the
Executable Entity calling the Rte_Trigger respectively the SchM_Trigger API
is mapped

364 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• or are activated by direct function call

the triggering behaves synchronous. This means that all "triggered" Executable Entities
of the trigger sinks are executed before the Rte_Trigger or SchM_Trigger
API returns.

If any ExternalTriggerOccurredEvent of the trigger sinks which are associated to
connected Trigger of the trigger source

are mapped to an OS task with lower priority as the OS task where the Executable
Entity calling the Rte_Trigger respectively the SchM_Trigger API is mapped
the triggering behaves asynchronous. This means that not all triggered Exe-
cutableEntitys of the trigger sinks are executed before the Rte_Trigger
or SchM_Trigger API returns.

4.6 Initialization and Finalization

4.6.1 Initialization and Finalization of the RTE

RTE and Basic Software Scheduler have a nested life cycle. It is only
permitted to initialize the RTE if the Basic Software Scheduler is initialized
([SWS_Rte_CONSTR_09036]). Further on it is only supported to finalize the Basic
Software Scheduler after the RTE is finalized ([SWS_Rte_CONSTR_09056]).

Basic Software Scheduler initial ized

RTE initialized

EcuM RTEBasic Software
Scheduler

alt Rte initial ization

SchM_Deinit()

SchM_Init()

Rte_Stop()

Rte_Start()

Figure 4.52: Nested life cycle of RTE and Basic Software Scheduler

365 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.6.1.1 Initialization of the Basic Software Scheduler

Before the Basic Software Scheduler is initialized only the API calls SchM_Enter and
SchM_Exit are available ([SWS_Rte_07578]).

The ECU state manager calls the startup routine SchM_Init of the Basic Software
Scheduler before any Basic Software Module needs to be scheduled.

The initialization routine of the Basic Software Scheduler will return within finite execu-
tion time (see [SWS_Rte_07273]).

The Basic Software Scheduler will initialize the mode machine instances
([SWS_Rte_02544])assigned to the Basic Software Scheduler. This will activate the
mode disablings of all initial modes during SchM_Init and trigger the execution
of the on-entry ExecutableEntitys of the initial modes. After initialization of the
Basic Software Scheduler internal data structure and mode machine instances
the activation of Basic Software Schedulable Entities triggered by BswTimingEvents
starts.

[SWS_Rte_07574] d The call of SchM_StartTiming shall start the activation of
BswSchedulableEntitys triggered by BswTimingEvents. c(SRS_Rte_00211)

[SWS_Rte_07584] d The call of SchM_Init shall start the activation of BswSchedu-
lableEntitys triggered by BswBackgroundEvents. c(SRS_Rte_00211)

Note: In case of OS task where BswEvents and RTEEvents are mapped to the RTE
Generator has to ensure, that RunnableEntitys are not activated before the RTE is
initialized or after the RTE is finalized. See [SWS_Rte_07580] and [SWS_Rte_02538].

[SWS_Rte_07580] d The Basic Software Scheduler has to prevent the activation of
RunnableEntitys before the RTE is initialized. c(SRS_Rte_00220)

4.6.1.2 Initialization of the RTE

The ECU state manager calls the startup routine Rte_Start of the RTE at the end of
startup phase II when the OS is available and all basic software modules are initialized.

The initialization routine of the RTE will return within finite execution time (see
[SWS_Rte_02585]).

Before the RTE is initialized completely, there is only a limited capability of RTE to
handle incoming data from COM:

The RTE will initialize the mode machine instances ([SWS_Rte_02544]) assigned
to the RTE. This will activate the mode disablings of all initial modes during
Rte_Start and trigger the execution of the on-entry ExecutableEntitys of
the initial modes. Further on for common mode machine instances the on-entry
Runnable Entities of the current active mode are executed during the initialization of
the RTE ([SWS_Rte_07582]). common mode machine instances can not enter
the transition phase during RTE initialization ([SWS_Rte_07583]).

366 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07575] d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by TimingEvents if the Rte_StartTiming API does not exist. c
(SRS_Rte_00072)

[SWS_Rte_07178] d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by BackgroundEvents if the Rte_StartTiming API does not exist.
c(SRS_Rte_00072)

[SWS_Rte_06759] d The call of Rte_StartTiming shall start the activation of
RunnableEntitys triggered by TimingEvents if the Rte_StartTiming API does
exist. c(SRS_Rte_00072, SRS_Rte_00240)

[SWS_Rte_06760] d The call of Rte_StartTiming shall start the activation of
RunnableEntitys triggered by BackgroundEvents if the Rte_StartTiming API
does exist. c(SRS_Rte_00072, SRS_Rte_00240)

[SWS_Rte_07615] d The call of Rte_Start shall be executed on every core indepen-
dently. c()

[SWS_Rte_07616] d The Rte_Start includes the partition specific startup activities
of RTE for all partitions that are mapped to the core, from which the Rte_Start is
called. c()

4.6.1.3 Stop and restart of the RTE

Partitions of the ECU can be stopped and restarted. In a stopped or restarting parti-
tion, the OS has killed all running tasks. RTE has to react to stopping and restarting
partitions.

The RTE does not execute ExecutableEntitys of a terminated or restarting parti-
tion.

[SWS_Rte_07604] d The RTE shall not activate, start or release ExecutableEntity
execution-instances of a terminated or restarting partition. c(SRS_Rte_00195)

The RTE is notified of the termination (respectively, the beginning of
restart) of a partition by the Rte_PartitionTerminated (respectively,
Rte_PartitionRestarting) API. At this point in time, the tasks containing
the runnables of this partition are already killed by the OS. In case of restart, RTE
is notified by the Rte_RestartPartition API when the communication can be
re-initialized and re-enabled.

[SWS_Rte_07604] also applies to ExecutableEntitys whose execution started be-
fore the notification to the RTE. RTE can rely on the OS functionality to stop or restart
an OS application and all related OS objects.

When a partition is restarted, the RTE will restore an initial environment for its SW-Cs.

[SWS_Rte_02735] dWhen the Rte_RestartPartition API for a partition is called,
the RTE shall restore an initial environment for its SW-Cs on this partition. c()

367 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The SW-Cs themselves are responsible to restore their internal initial environment and
should not rely on any initialization performed by the compiler. This should be done in
initialization runnables.

[SWS_Rte_07610] d The RTE Generator shall reject configurations where the
handleTerminationAndRestart attribute of a SW-C is not set to can-
BeTerminatedAndRestarted and this SW-C is mapped on a Partition with
the PartitionCanBeRestarted parameter set to TRUE. c(SRS_Rte_00018,
SRS_Rte_00196)

When a partition is terminated or is being restarted, it is important that the runnable
entities of this partition are not activated before the partition returns to the ACTIVE
state.

In case of partition restart or termination, event sent to this partition or activation of
tasks of this partition are discarded. The RTE can use these mechanism to ensure that
ExecutableEntitys are not activated.

4.6.1.4 Finalization of the RTE

The finalization routine Rte_Stop of the RTE is called by the ECU state manager at
the beginning of shutdown phase I when the OS is still available. (For details of the
ECU state manager, see [7]. For details of Rte_Start and Rte_Stop see section
5.8.)

[SWS_Rte_02538] d The RTE shall not activate, start or release RunnableEn-
titys on a core after Rte_Stop has been called on this core. c(SRS_Rte_00116,
SRS_Rte_00220)

Note: RTE does not kill the tasks during the ‘running’ state of the runnables.

[SWS_Rte_02535] d RTE shall ignore incoming client server communication requests,
before RTE is initialized completely and when it is stopped. c(SRS_Rte_00116)

[SWS_Rte_02536] d Incoming data and events from sender receiver communica-
tion shall be ignored, before RTE is initialized completely and when it is stopped. c
(SRS_Rte_00116)

4.6.1.5 Finalization of the Basic Software Scheduler

The ECU state manager calls the finalization routine SchM_Deinit of the Basic Soft-
ware Scheduler if the scheduling of Basic Software Modules has to be stopped.

[SWS_Rte_07586] d The BSW Scheduler shall neither activate nor start BswSchedu-
lableEntitys on a core after SchM_Deinit has been called on this core. c
(SRS_Rte_00116)

368 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: The BSW Scheduler does not kill the tasks during the ‘running’ state of the
BswSchedulableEntitys.

[SWS_Rte_04552] d The basic software scheduler shall ignore incoming client server
communication requests, before the basic software scheduler is initialized completely
or after it is stopped. c(SRS_Rte_00116)

4.6.2 Initialization and Finalization of AUTOSAR Software-Components

For the initialization and finalization of AUTOSAR software components, RTE provides
the mechanism of mode switches. A SwcModeSwitchEvent of an appropriate Mod-
eDeclaration can be used to trigger a corresponding initialization or finalization
runnable (see [SWS_Rte_02562]). Runnables that shall not run during initialization
or finalization can be disabled in the corresponding modes with a mode disabling
dependency (see [SWS_Rte_02503]).

Since category 2 runnables have no predictable execution time and can not be ter-
minated using ModeDisablingDependencies, it is the responsibility of the imple-
menter to set meaningful termination criteria for the cat 2 runnables. These criteria
could include mode information. At latest, all runnables will be terminated by RTE
during the shutdown of RTE, see [SWS_Rte_02538].

It is appropriate to use user defined modes that will be handled in a proprietary ap-
plication mode manager.

All runnables that are triggered by entering an initial mode, are activated immediately
after the initialization of RTE. They can be used for initialization. In many cases it might
be preferable to have a multi step initialization supported by a sequence of different
initialization modes.

In addition to the mode-based approach RunnableEntitys to be used for initializa-
tion purposes can be activated by InitEvents as well. More information is provided
in section 4.2.2.11.

369 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7 Variant Handling Support

4.7.1 Overview

The AUTOSAR Templates support the creation of Variants in a subset of its model
elements. The Variant Handling support in the in AUTOSAR Templates is driven by
the purpose to describe variability in a AUTOSAR System on several aspects, e.g.

• Virtual Functional Bus

• Component SwcInternalBehavior and SwcImplementation

• Deployment of the software components to ECUs

• Communication Matrix

• Basic Software Modules

This approach requires that the RTE Generator is able to process the described Vari-
ability in input configurations and partially to implement described variability in the gen-
erated RTE and Basic Software Scheduler code.

In the meta-model all locations that may exhibit variability are marked with the stereo-
type �atpVariation�. This allows the definition of possible variation points.
Tagged Values are used to specify additional information.

There are four types of locations in the meta-model which may exhibit variability:

• Aggregations

• Associations

• Attribute Values

• Classes providing property sets

More details about the AUTOSAR Variant Handling Concept can be found in the AU-
TOSAR Generic Structure Template [10].

[SWS_Rte_06543] d The RTE generator shall support the VariationPoints defined
in the AUTOSAR Meta Model c(SRS_Rte_00201, SRS_Rte_00202, SRS_Rte_00229,
SRS_Rte_00191)

The list of VariationPoints shall provide an overview about the most prominent
ones which impacting the generated RTE code. Further on tables will show which
implementation of variability is standardized due to the relevance for contract phase.
(see tables 4.17, 4.19, 4.20, 4.21, 4.22, 4.23, 4.27, 4.28, 4.30 and 4.31. But please
note that these tables are not listing all possible variation of the input configuration. For
that the related Template Specifications are relevant.

370 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7.2 Choosing a Variant and Binding Variability

To understand the later definition it is required to clarify the difference between Choos-
ing a Variant and Resolving Variability.

A particular PreBuild Variant in a variant rich input configuration is chosen by assigning
particular values to the SwSystemconsts with the means of PredefinedVariants
and associated SwSystemconstantValueSets. With this information SwSystem-
constDependentFormulas can be evaluated which determines PreBuild conditions
of VariationPoints and attribute values. Nevertheless the input configuration con-
tains still the information of all potential variants.

A particular PostBuild Variant in a variant rich input configuration is chosen by as-
signing particular values to the PostBuildVariantCriterion with the means
of PredefinedVariants and associated PostBuildVariantCriterionValue-
Sets. With this information PostBuildVariantConditions can be evaluated for
instance to check the consistency of chosen PostBuild Variant. Nevertheless the input
configuration contains still the information of all potential variants.

From an RTE perspective this information is mainly used to generate the RTE Post
Build Variant Sets which are used to bind the post-build variability during
initialization of the RTE (call of SchM_Init).

The variability of an input configuration is bound if information related to other variants
is removed and only the information of the bound variant is kept. Binding respectively
resolving variability in the scope of this specification means that the generated code
only implements the particular variant which results out of the chosen variant of the
input configuration.

If the variability can not be resolved in a particular phase of the RTE Generation Pro-
cess (see chapter 3) the generated RTE files have to be able to support the potential
variants by implementing all potential variants.

If the variability is relevant for the software components contract the RTE Generator
uses standardized Condition Value Macros to implement the pre-build variabil-
ity. These Condition Value Macros are set in the RTE PreBuild Data Set Contract
Phase and RTE PreBuild Data Set Generation Phase to the resulting value of the eval-
uated ConditionByFormula of the related VariationPoint.

For further definition see sections 4.7.2.3, 4.7.2.4, 4.7.2.5, 4.7.2.6 and 4.7.2.7.

4.7.2.1 General impact of Binding Times on RTE generation

In the AUTOSAR meta-model, each VariationPoint is associated with a tag named
vh.latestBindingTime. The value of the tag yields the applicable latest binding
time for the given VariationPoint.

Each VariationPoint with a swSyscond has an attribute bindingTime in its Con-
ditionByFormula, which defines when the pre-build condition may be evaluated

371 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

earliest for this VariationPoint. This controls the capability of the software imple-
mentation to bind the variant earliest at a certain point of time.

Even if the variability is chosen earlier (for instance by assigning SwSystemconst-
Values to the SwSystemconsts used by the VariationPoint’s condition) the RTE
generator has to respect potential later binding of the VariationPoints.

Please note that variability with the bindingTime PreCompileTime and post-
BuildVariantConditions has a particular semantic for the RTE generation and
impacts the generated output.

For instance a conditional existence RTE API which is bound at PreCompileTime
requires that the RTE generator inserts specific pre processor statements.

RTE Phase System De-
signe Time

Code Gen-
eration Time

Pre Compile
Time

Link Time Post Build

RTE Contract Phase R R I n/a n/a
Basic Software
Scheduler Contract
Phase

R R I n/a n/a

RTE PreBuild Data
Set Contract Phase

n/a n/a RV n/a n/a

Basic Software
Scheduler Gener-
ation Phase

R R I n/a I

RTE Generation
Phase

R R I n/a I

RTE PreBuild Data
Set Generation Phase

n/a n/a RV n/a n/a

RTE PostBuild Data
Set Generation Phase

n/a n/a n/a n/a RV

Table 4.15: Overview impact of Binding Times on RTE generation

R resolve variability, a particular variant is the output
I implement variability, all possible variants in the output
RV provide values to resolve implemented variability PreBuild or PostBuild
n/a not applicable

Table 4.16: Key to table 4.15

4.7.2.2 Choosing a particular variant

A particular variant of the variant rich input configuration is chosen via the ECU con-
figuration For that purpose a set of PredefinedVariants is configured to chosen
a variant in the input configuration and to later on bind the variability in subsequent
phases of the RTE Generation Process 3. For further information see document [10].

372 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06500] d For each pre-build variability in the input configura-
tion the RTE Generator shall choose a particular variant according to the Pre-
definedVariants selected by the parameter EcucVariationResolver. c
(SRS_Rte_00201, SRS_Rte_00202, SRS_Rte_00229, SRS_Rte_00191)

[SWS_Rte_06546] d For each post-build variability in the input configuration
the RTE Generator shall choose a particular variant according to the Predefined-
Variants selected by the parameter RtePostBuildVariantConfiguration. c
(SRS_Rte_00201, SRS_Rte_00202, SRS_Rte_00229, SRS_Rte_00191)

Having variants chosen the RTE generator can apply further consistency checks on
the particular variants.

4.7.2.3 SystemDesignTime

Variability with latest binding time SystemDesignTime (called SystemDesignTime
variability) has to be bound before the RTE Contract Phase respectively Basic
Software Scheduler Contract Phase. Such variability is resolved by RTE generator in
all generation phases. Due to that such kind of variability results always in a particular
variant and needs no special code generation rules for RTE generator.

[SWS_Rte_06501] d The RTE generator shall bind SystemDesignTime vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase,
RTE Generation Phase and Basic Software Scheduler Generation Phase (3). c
(SRS_Rte_00191)

[SWS_Rte_06502] d The RTE Generator shall reject input configurations during
the RTE Contract Phase where not a particular variant is chosen for each Sys-
temDesignTime variability affecting the software components contract. c
(SRS_Rte_00201, SRS_Rte_00018)

[SWS_Rte_06503] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Contract Phase where not a particular variant is chosen
for each SystemDesignTime variability affecting the Basic Software Scheduler
contract. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06504] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Generation Phase where not a particular variant is chosen
for each SystemDesignTime variability affecting the Basic Software Scheduler
generation. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06505] d The RTE Generator shall reject input configurations during the
RTE Generation Phase where not a particular variant is chosen for each Sys-
temDesignTime variability affecting the RTE generation. c(SRS_Rte_00201,
SRS_Rte_00202, SRS_Rte_00018)

373 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7.2.4 CodeGenerationTime

During RTE Contract Phase, RTE Generation Phase and Basic Software Scheduler
Generation Phase the variability with latest binding time CodeGenerationTime (called
CodeGenerationTime variability) has to be bound and the RTE generator re-
solves the variability. This denotes that the code is generated for a particular variant. To
do this it is required that a particular variant for each CodeGenerationTime vari-
ability has to be chosen.

[SWS_Rte_06507] d The RTE generator shall bind CodeGenerationTime vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE
Generation Phase and Basic Software Scheduler Generation Phase (see sections
3.1.1, 3.1.2, 3.4.1 and 3.4.2). c(SRS_Rte_00229, SRS_Rte_00191)

[SWS_Rte_06547] d The RTE Generator shall reject input configurations during
the RTE Contract Phase where not a particular variant is chosen for each Code-
GenerationTime variability affecting the software components contract. c
(SRS_Rte_00191, SRS_Rte_00018)

[SWS_Rte_06548] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Contract Phase where not a particular variant is chosen for
each CodeGenerationTime variability affecting the Basic Software Scheduler
contract. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06508] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Generation Phase where not a particular variant is chosen
for each CodeGenerationTime variability affecting the Basic Software Sched-
uler generation. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06509] d The RTE Generator shall reject input configurations during the
RTE Generation Phase where not a particular variant is chosen for each Code-
GenerationTime variability affecting the RTE generation. c(SRS_Rte_00191,
SRS_Rte_00018)

4.7.2.5 PreCompileTime

Variability with latest binding time PreCompileTime (called PreCompileTime vari-
ability) is relevant for the RTE Contract Phase and Basic Software Scheduler Con-
tract Phase as well as for the RTE Generation Phase and Basic Software Scheduler
Generation Phase. The Application Header File, Application Types Header File, Mod-
ule Interlink Header and Module Interlink Types Header and the generated RTE / Basic
Software Scheduler has to support the potential variability of the software components
and Basic Software Modules. The variability is resolved during the execution of the pre
processor of the C-Complier.

[SWS_Rte_06510] d The RTE generator shall implement PreCompileTime vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE
Generation Phase, Basic Software Scheduler Generation Phase via pre processor

374 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

statements in the generated RTE code (see sections 3.1.1, 3.1.2, 3.4.1 and 3.4.2).
c(SRS_Rte_00191)

[SWS_Rte_06553] d The RTE Generator shall use the defined Attribute Value
Macro instead of immediate values if the value depends on an AttributeVal-
ueVariationPoint where the bindingTime is set to preCompileTime. c
(SRS_Rte_00191)

4.7.2.6 LinkTime

The latest Binding Time LinkTime will not be supported for VariationPoints relevant for
the RTE Generator.

[SWS_Rte_06511] d The RTE generator shall reject configuration which defines RTE
or Basic Software Scheduler relevant LinkTime variability. c(SRS_Rte_00018)

4.7.2.7 PostBuild

Variability with latest binding time PostBuild (called post-build variability)
might be bound / rebound after the generated RTE is compiled and has been linked
to the executable. The generated RTE binary code has to contain all variants. Which
variant is executed during ECU runtime is decided by variant selectors.

[SWS_Rte_06512] d The RTE generator shall implement post-build variabil-
ity in the RTE Generation Phase and Basic Software Scheduler Generation Phase
via C statements in the generated RTE code (see 3.4.1 and 3.4.2). c(SRS_Rte_00191)

Combining PreBuild and post-build variability

According document [10] it is supported that a VariationPoint defines a pre-
build variability in conjunction with post-build variability. If the Pre-
Build condition is false, it is not expected that the element which is subject to variability
including the code evaluating the PostBuild condition gets implemented at all.

[SWS_Rte_06549] d In cases where a VariationPoint defines a SystemDesign-
Time variability or CodeGenerationTime variability in conjunction with
post-build variability the post-build variability shall only be imple-
mented by the RTE Generator in the generated RTE code if the condition of the pre-
build variability evaluates to true. c(SRS_Rte_00191)

[SWS_Rte_06550] d In cases where a VariationPoint defines a PreCompile-
Time variability in conjunction with post-build variability the post-
build variability shall only be effective in the RTE executable if the condition
of the PreCompileTime variability evaluates to true. c(SRS_Rte_00191)

375 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In this case the post-build variability implemented according
[SWS_Rte_06512] depends from the PreCompileTime variability imple-
mented according [SWS_Rte_06510].

4.7.3 Variability affecting the RTE generation

4.7.3.1 Software Composition

This section describes the affects of the existence of variation points with regards to
compositions. Though the application software compositions have been flattened and
effectively eliminated after allocation to an ECU there is still one composition to con-
sider for the RTE (i.e. the RootSwCompositionPrototype). The RootSwCompo-
sitionPrototype contains the atomic software components allocated to the respec-
tive ECU, its assembly connections,its delegation connections and the connections of
the delegation ports to system signals. Once the variability is resolved for a varia-
tion point it must adhere to the constraints and limitations that apply to a model that
does not have any variations. For example dangling connectors are not allowed and
as such their existence will lead to undefined behavior if such configurations still exist
after resolving post-build variation points.

Also within this specification section the wording "‘a variant is enabled or disabled"’
refers to the variation point’s SwSystemconstDependentFormula and/or PostBuildVari-
antCondition evaluating to "‘true or false"’ respectively.

4.7.3.1.1 Variant existence of SwComponentPrototypes

[SWS_Rte_06601] d If a variant is disabled for the aggregation of a SwComponent-
Prototype in a CompositionSwComponentType then all RTEEvents destined for
Runnables in the respective SwComponentPrototype shall be blocked; No RTE-
Event is allowed to reach any Runnable that is contained in a "‘disabled"’ SwCompo-
nentPrototype. c(SRS_Rte_00206, SRS_Rte_00207, SRS_Rte_00204)

Potential misconfigurations of connectors connecting to ports of "‘disabled"’ SWC’s
will result in undefined behavior; It is the responsibility of the person considering the
variability of the SwComponentPrototype to make the connections also variable and
valid when a variant selection results in the elimination of a SwComponentPrototype
from a composition. It is recommended to use predefined variants to ensure proper
configurations are established.

4.7.3.1.2 Variant existence of SwConnectors

[SWS_Rte_06602] d If a variant is disabled for a SwConnector (i.e. Assem-
blySwConnector or DelegationSwConnector) aggregated in a Composition-
SwComponentType then the PortPrototypes at each end of the connector shall

376 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

behave as an unconnected port (see section 5.2.7 for the defined RTE behavior) if
no other variant enables a SwConnector between these ports. c(SRS_Rte_00206,
SRS_Rte_00207)

4.7.3.1.3 COM related Variant existence

This section describes the impact on the RTE interaction with the COM layer as a
result of variability of DataMappings (i.e. SenderReceiverToSignalMapping and
SenderReceiverToSignalGroupMapping in the SystemMapping) as well as the
existence of variants for ISignals The Meta Model allows for mapping the same data
to different SystemSignals as well as associating a SystemSignal with 1 or more
ISignals.

[SWS_Rte_06603] d If a variant is enabled for a SystemMapping aggregating a
DataMapping then the RTE shall call the appropriate API’s for the applicable map-
ping type. c(SRS_Rte_00206, SRS_Rte_00207)

[SWS_Rte_06604] d The appropriate API shall be determined based on the existence
of variants of ISignals to which a SystemSignal is associated to. For each enabled
ISignal the RTE shall call the proper COM API to send and receive data System-
Signals c(SRS_Rte_00206, SRS_Rte_00207)

For example for an instance mapping from a VariableDataPrototype to a Sys-
temSignal the RTE shall call the corresponding Com_SendSignal with the proper
SignalId and SignalDataPtr based on the selected variant DataMapping.

The existence of variants of ISignals is determined by the System element (see also
[constr_3028]).

[SWS_Rte_06605] d Delegation ports on a RootSwCompositionPrototype for
which no DataMapping exists (i.e. no variant DataMapping is enabled) shall be
considered unconnected because no path exists to a designated SystemSignal.
Since this is a delegation port all enabled delegation connectors linking SWC R-
ports to the respective delegation port must be considered unconnected (see section
5.2.7). P-Ports shall behave as documented in section 4.7.3.1.2. c(SRS_Rte_00206,
SRS_Rte_00207)

4.7.3.1.4 Variant existence of PortPrototypes

[SWS_Rte_06606] d If no variant is enabled for a delegation port on a RootSwCom-
positionPrototype then all connected R-Ports using a DelegationSwConnec-
tor to this delegation port shall be considered unconnected (see section 5.2.7). The
behavior of the P-ports shall be as defined in section 4.7.3.1.2. c(SRS_Rte_00206,
SRS_Rte_00207)

Note on variant disabling criteria: In a proper variant configuration the following should
be followed: when a PortPrototype is eliminated from any SwComponentType then

377 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

any associated SwConnector should also have a variation point removing the connec-
tion since the connection is illegal.

4.7.3.2 Atomic Software Component and its Internal Behavior

4.7.3.2.1 RTE API which is subject to variability

Following VariationPoints in the Meta Model do control the variant existence of
RTE API for a software component. If a RTE API is variant existent, the API mapping
and the related entries in the component data structure are ’variant’ as well. This
means, if a RTE API does not exist the API mapping does not exist as well. A part
of the component data structure entries are related to the existences of the port. In
these cases the component data structure entry depends from the existence of the
PortPrototype.

Variation Point RTE API which is
subject to variability

form kind infix

Condition Value Macro
ExclusiveArea Rte_Enter,

Rte_Exit
component
internal

ExAr

[SWS_Rte_06518]
VariableDataPrototype in the role arTyped-
PerInstanceMemory

Rte_Pim component
internal

PIM

[SWS_Rte_06518]
PerInstanceMemory Rte_Pim component

internal
PIM

[SWS_Rte_06518]
ParameterDataPrototype in the role perIn-
stanceParameter

Rte_CData component
internal

Prm

[SWS_Rte_06518]
ParameterDataPrototype in the role shared-
Parameter

Rte_CData component
internal

Prm

[SWS_Rte_06518]
ServerCallPoint Rte_Call component

port
[SWS_Rte_06515]
AsynchronousServerCallResultPoint Rte_Result component

port
[SWS_Rte_06515]
InternalTriggeringPoint Rte_IrTrigger entity

internal
IRT

[SWS_Rte_06519]
ExternalTriggeringPoint Rte_Trigger component

port
[SWS_Rte_06515]
ModeSwitchPoint Rte_Switch,

Rte_SwitchAck
component
port

[SWS_Rte_06515]
ModeAccessPoint Rte_Mode component

port
[SWS_Rte_06515]

378 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

VariableAccess in the role dataReadAccess Rte_IRead ,
Rte_IStatus,
Rte_IsUpdated

entity port

[SWS_Rte_06515]
VariableAccess in the role dataWriteAccess Rte_IWrite,

Rte_IWriteRef,
Rte_IInvalidate,
Rte_IFeedback

entity port

[SWS_Rte_06515]
VariableAccess in the role dataSendPoint Rte_Write,

Rte_Invalidate,
Rte_Feedback

component
port

[SWS_Rte_06515]
VariableAccess in the role dataReceive-
PointByArgument

Rte_Read component
port

[SWS_Rte_06515]
VariableAccess in the role dataReceive-
PointByValue

Rte_DRead component
port

[SWS_Rte_06515]
VariableAccess in the role readLocalVari-
able referring an explicitInterRunnable-
Variable

Rte_IrvRead component
internal

IRV

[SWS_Rte_06518]
VariableAccess in the role writtenLo-
calVariable referring an explicitInter-
RunnableVariable

Rte_IrvWrite component
internal

IRV

[SWS_Rte_06518]
VariableAccess in the role readLocalVari-
able referring an implicitInterRunnable-
Variable

Rte_IrvIRead entity
internal

IRV

[SWS_Rte_06519]
VariableAccess in the role writtenLo-
calVariable referring an implicitInter-
RunnableVariable

Rte_IrvIWrite
Rte_IrvIWriteRef

entity
internal

IRV

[SWS_Rte_06519]
PortPrototype referring a ParameterInter-
face

Rte_Prm component
port

[SWS_Rte_06515]
PortAPIOption with attribute indirectAPI Rte_Port
[SWS_Rte_06520]

Table 4.17: variant existence of RTE API

column description
kind infix The column kind infix defines infix strings to differentiate condition value

macros belonging to variation points of different API sets
form The column form specifies which names for the macro of the condition

value are concatenated to ensure a unique name space of the macro.

form description
component port The related API is provide for the whole software component and belongs

to a software components port
entity port The related API is provide for a particular RunnableEntity and belongs

to a software components port

379 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

component internal The related API is provide for the whole software component and belongs
to a software component internal functionality

entity internal The related API is provide per RunnableEntity and belongs to a soft-
ware component internal functionality

Table 4.18: Key to table 4.17

[SWS_Rte_06517] d The RTE generator shall treat RTE API as variant RTE API only
if all elements (e.g. VariableAccess) in the input configuration controlling the exis-
tence of the same RTE API are subject to variability. c(SRS_Rte_00203)

4.7.3.2.2 Conditional API options

Following variation points in the Meta Model do control the variant properties of RTE
API or allocated Memory.

Variation Point Subject to variability
Condition Value Macro
PortAPIOption with attribute portArgValue PortDefinedArgument-

Value is passed to a
RunnableEntity

not standardized
PortAPIOption with attribute indirectAPI Number of Ports which are

supporting indirect API, see
Rte_NPorts and Rte_Ports

not standardized

Table 4.19: Conditional API options

4.7.3.2.3 Runnable Entity’s and RTEEvents

Following variation points in the Meta Model do control the variant existence and acti-
vation of RunnableEntitys.

Variation Point Subject to variability
Condition Value Macro
RunnableEntity Existence of the RunnableEn-

tity prototype
[SWS_Rte_06530]
RTEEvent Activation of the RunnableEn-

tity
not standardized

Table 4.20: variation on Runnable Entity’s and RTEEvents

380 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7.3.2.4 Conditional Memory Allocation

Following variation points in the Meta Model do control the variant existence of RTE
memory allocation for the software component instance.

Variation Point Subject to variability
Condition Value Macro
implicitInterRunnableVariable variable definition implementing

the implicitInterRunnabl-
eVariable

not standardized
explicitInterRunnableVariable variable definition implementing

the explicitInterRunnabl-
eVariable

not standardized
arTypedPerInstanceMemory variable definition implementing

the arTypedPerInstance-
Memory

not standardized
PerInstanceMemory variable definition implementing

the PerInstanceMemory
not standardized
perInstanceParameter constant definition implementing

the perInstanceParameter
not standardized
sharedParameter variable definition implementing

the sharedParameter
not standardized
InstantiationDataDefProps, SwDataDefProps Allocation of the memory

objects described via swAd-
drMethod, accessibility for
MCD systems described via
swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.21: Conditional Memory Allocation

4.7.3.3 NvBlockComponent and its Internal Behavior

Variation Point Subject to variability
Condition Value Macro
PortPrototype of a NvBlockSwComponentType typed by Nv-
DataInterface

Existence of the ability to access
the memory objects of the ram-
Block

not standardized
NvBlockDataMapping of a NvBlockDescriptor Existence of the ability to access

the memory objects of the ram-
Block

not standardized

381 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

provide PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RunnableEntity and referring
OperationInvokedEvent

Existence of the Block Manage-
ment port and the ability to
access the Block Management
API of the NvRAM Manager

not standardized
require PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RoleBasedPortAssignment
and referring the PortPrototype

Existence of the callback notifi-
cation port

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ramBlock or romBlocks initValue ValueSpec-
ification (aggregated or referred one)

initialization values of the mem-
ory objects implementing the
ramBlock or romBlock

not standardized
InstantiationDataDefProps Allocation of the memory objects

implementing the ramBlock
or romBlock described via
swAddrMethod, accessibility
for MCD systems described
via swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.22: variation in NvBlockSwComponentTypes

4.7.3.4 Parameter Component

Variation Point Subject to variability
Condition Value Macro
PortPrototype of a ParameterSwComponentType Existence of the memory objects

/ definitions related to the Pa-
rameterDataPrototypes in
the PortInterface referred
by the PortPrototype

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ParameterProvideComSpecs initValue Value-
Specification (aggregated or referred one)

initialization values of the mem-
ory objects / definitions related
to the ParameterDataProto-
types

not standardized

Table 4.23: variation in ParameterSwComponentTypes

4.7.3.5 Data Type

Following variation points in the Meta Model do control the variant generation of data
types.

Variation Point Subject to variability
Condition Value Macro
ImplementationDataTypeElement Existence of the structure or

union element
[SWS_Rte_06542]

382 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

arraySize Number of elements in the array
[SWS_Rte_06541]
CompuMethod upperLimit Upper limit of the Implementa-

tionDataType

CompuMethod lowerLimit Lower limit of the Implementa-
tionDataType

CompuMethod v attributes Coefficients of nominator and
denominator

Table 4.24: variation in ImplementationDataTypes

Variation Point Subject to variability
Condition Value Macro
DataConstr upperLimit Upper limit of the Applica-

tionPrimitiveDataType
[SWS_Rte_06551]
DataConstr lowerLimit Lower limit of the Applica-

tionPrimitiveDataType
[SWS_Rte_06552]
CompuMethod upperLimit Upper limit of the Applica-

tionPrimitiveDataType

CompuMethod lowerLimit Lower limit of the Applica-
tionPrimitiveDataType

CompuMethod v attributes Coefficients of nominator and
denominator

Table 4.25: variation in ApplicationDataTypes and related meta classes

4.7.3.6 Constants

Variation Point Subject to variability
Condition Value Macro

NumericalValueSpecification value numerical value

ApplicationValueSpecification v (swArraysize) size of compound primitives

ApplicationValueSpecification v (value) attributes physical value

Table 4.26: variation in ValueSpecifications

383 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.7.3.7 Basic Software Modules and its Internal Behavior

4.7.3.7.1 Basic Software Interfaces

Variation Point Subject to variability
Condition Value Macro
providedEntry Existence of the provided

BswModuleEntry
not standardized
outgoingCallback Existence of the expected

BswModuleEntry
not standardized
ModeDeclarationGroupPrototype in role providedMode-
Group

Existence of the provided
ModeDeclarationGroup-
Prototype

not standardized
ModeDeclarationGroupPrototype in role requiredMode-
Group

Existence of the required
ModeDeclarationGroup-
Prototype

not standardized
Trigger in role releasedTrigger Existence of the released

Trigger
not standardized
Trigger in role requiredTrigger Existence of the required Trig-

ger
not standardized

Table 4.27: variability affecting Basic Software Interfaces

4.7.3.8 Flat Instance descriptor

It is possible to instruct the RTE Generator to provide various instances for a Pa-
rameterDataPrototype in the component description. Therefore one FlatIn-
stanceDescriptor per expected parameter instance has to point to the Param-
eterDataPrototype. Thereby the FlatInstanceDescriptors needs to define
post build variation points to resolve the access to the various parameter instances.

Further details are described in section 4.2.8.3.7.

4.7.4 Variability affecting the Basic Software Scheduler generation

4.7.4.1 Basic Software Scheduler API which is subject to variability

The VariationPoints listed in table 4.28 in the input configuration are controlling
the variant existence of Basic Software Scheduler API.

Variation Point Subject to variability form kind infix
Condition Value Macro
ExclusiveArea SchM_Enter, SchM_Exit module

internal
ExAr

384 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06535]
managedModeGroup association to
providedModeGroup ModeDeclara-
tionGroupPrototype

SchM_Switch,
SchM_SwitchAck

module
external

MMod

[SWS_Rte_06536]
accessedModeGroup association to pro-
videdModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype

SchM_Mode module
external

AMod

[SWS_Rte_06536]
issuedTrigger association to re-
leasedTrigger Trigger

SchM_Trigger module
external

Tr

[SWS_Rte_06536]
BswModuleCallPoint SchM_Call module

external
SrvCall

[SWS_Rte_06536]
BswAsynchronousServerCallResult-
Point

SchM_Result module
external

SrvRes

[SWS_Rte_06536]
dataSendPoint association to provided-
Data

SchM_Send module
external

DSP

[SWS_Rte_06536]
dataReceivePoint association to re-
quiredData

SchM_Receive module
external

DRP

[SWS_Rte_06536]
BswInternalTriggeringPoint SchM_ActMainFunction entity

internal
ITr

[SWS_Rte_06536]
perInstanceParameter Parameter-
DataPrototype

SchM_CData module
internal

PIP

[SWS_Rte_06535]

Table 4.28: variant existence of Basic Software Scheduler API

column description
kind infix The column kind infix defines infix strings to differentiate condition value

macros belonging to variation points of different API sets
form The column form specifies which names for the macro of the condition

value are concatenated to ensure a unique name space of the macro.

form description
module external The related API is provide for the whole module and belongs to a module

interface
module internal The related API is provide for the whole module and belongs to a module

internal functionality
entity internal The related API is provide per ExecutableEntity and belongs to a mod-

ule internal functionality

Table 4.29: Key to table 4.28

[SWS_Rte_06537] d The RTE generator shall treat the existence of Basic Software
Scheduler API as subject to variability only if all elements (e.g. managedModeGroup

385 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

association) in the input configuration controlling the existence of the same Basic Soft-
ware Scheduler API are subject to variability. c(SRS_Rte_00229)

4.7.4.2 Basic Software Entities

The VariationPoints listed in table 4.30 in the input configuration are controlling the
variant existence of BswModuleEntitys and the variant activation of BswSchedula-
bleEntitys.

Variation Point Subject to variability
Condition Value Macro
BswSchedulableEntity Existence of the BswSchedu-

lableEntity prototype
[SWS_Rte_06532]
BswEvent Activation of the BswSchedu-

lableEntity
not standardized

Table 4.30: variability affecting BswSchedulableEntitys

4.7.4.3 API behavior

The VariationPoints listed in table 4.31 in the input configuration are controlling
the variant behavior of Basic Software Scheduler API.

Variation Point Subject to variability
Condition Value Macro
BswModeSenderPolicy Queue length in the mode ma-

chine instance dependent
from the attribute

not standardized
BswModeReceiverPolicy attribute supportsAsyn-

chronousModeSwitch has to
be considered according the
bound variant

not standardized

Table 4.31: variant existence of BswSchedulableEntity

4.7.5 Variability affecting SWC implementation

In this section some examples will be given in order to describe the affects of variability
with regard to SWC implementation. The implemented variability in SWCs is described
through VariationPointProxys and can be resolved by pre-build evaluation, by
post-build evaluation or by the combination of them. Furthermore for each Varia-
tionPointProxy AUTOSAR defines the categorys VALUE and CONDITION (see
Software Component Template [2]). In the following code examples one scenario for

386 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

each category will be described. The first scenario addresses the post-build case
and the second one the case of combination of pre-build and post-build.

Scenario for category VALUE

VariationPointProxy FRIDA
postBuildValueAccess Rte_PBCon_FRIDA = 3
might result for example in something like:

1 /* Generated RTE-Code */
2

3 const Rte_PBCon_FRIDA 3

1 /* SWC-Code */
2

3 if (Rte_PBCon_FRIDA == 3) {
4 /* code depending on proxy FRIDA */
5 }
6 else {
7 /* functional alternative, if FRIDA is not selected */
8 }

Scenario for category CONDITION

SystemConstant FRANZ = 10
VariationPointProxy HUGO
conditionAccess Rte_SysCon_HUGO = (FRANZ == 10)
postBuildVariantCondition A = 3, postBuildVariantCondition B = 5
might result for example in something like:

1 /* Generated RTE-Code */
2

3 #define Rte_SysCon_HUGO 1
4

5 #define Rte_PBCon_HUGO (
6 Rte_SysCon_HUGO &&
7 RteInternal_EvalPostBuildVariantCondition_HUGO_A &&
8 RteInternal_EvalPostBuildVariantCondition_HUGO_B
9)

1 /*SWC-Code*/
2

3 /* ensure that no code for HUGO remains in
4 the binary, if HUGO is not selected */
5 #if Rte_SysCon_HUGO
6

7 /* check during run time, if HUGO is
8 active due to post-build conditions */
9 if (Rte_PBCon_HUGO) {

10 /* code depending on proxy HUGO */
11 }
12 else {
13 /* functional alternative, if HUGO is not selected */
14 }
15

16 #else

387 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

17 /* functional alternative is always
18 active since HUGO is not selected */
19 #endif

Since the post-build data structure is not standardized the algorithm for the evaluation
of the expressions RteInternal_EvalPostBuildVariantCondition_HUGO_A
and RteInternal_EvalPostBuildVariantCondition_HUGO_B is up to the im-
plementer.

In contrast to Rte_SysCon the Rte_PBCon API has no guarantee, that it can be re-
solved in the pre-processor. It is subject to the optimization of the compiler to reduce
code size. If one wants to be absolutely sure, that no superfluous code exists even with
non optimizing compilers, he needs to implement a pre-processor directive in addition
(see example).

4.8 Development error

Errors which can occur at runtime in the RTE are classified as development errors. The
RTE uses a BSW module report these types of errors to the DET [25] (Default Error
Tracer).

4.8.1 DET Report Identifiers

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows the
development error to be traced to a specific core. c(SRS_BSW_00337)

[SWS_Rte_06632] d The RTE shall use the Service Id as identified in the table 4.33.
Each RTE API template, RTE callback template and RTE API will have an Identifier.
This ID Service ID must be used when running code in the context of the respective
RTE call. c(SRS_BSW_00337)

4.8.2 DET Error Identifiers

Only a limited set of development identifiers are currently recognized. Each of these
need to be detected either at runtime or during initialization of the RTE. To report these
errors extra development code must be generated by the RTE generator.

[SWS_Rte_06633] d An RTE_E_DET_ILLEGAL_SIGNAL_ID (0x01) shall be reported
at runtime by the RTE when it receives a COM callback for a signal name (e.g.
Rte_COMCbk_<sn>, Rte_COMCbkTAck_<sn>) which was not expected within the
context of the currently-selected postBuild variant. See section 5.9.2.1 for the list of
possible COM callback template API. c(SRS_BSW_00337)

388 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06634] d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE
(0x02) shall be reported by the RTE when it determines that a value is assigned to
a variant criterion which is not in the list of possible values for that criterion. This error
shall be detected during the RTE initialization phase. c(SRS_BSW_00337)

[SWS_Rte_07684] d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE
(0x02) shall be reported by the Basic Software Scheduler when the SchM_Init API
is called with a NULL parameter. c(SRS_BSW_00337)

[SWS_Rte_06635] d An RTE_E_DET_ILLEGAL_INVOCATION (0x03) shall be re-
ported by the RTE when it determines that an RTE API is called by a Runnable which
should not call that RTE API. The RTE can identify the active Runnable when it dis-
patches the RTE Event and if it subsequently receives a call from that Runnable to
an API that is not part of its contract then this particular error ID must me logged. c
(SRS_BSW_00337)

[SWS_Rte_06637] d An RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA (0x04) shall be
reported by the RTE when an application has called an Rte_Enter API and subse-
quently asks the RTE to enter a wait state. This is illegal because it would lock the
ECU. c(SRS_BSW_00337)

[SWS_Rte_07675] d An RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA
(0x05) shall be reported by the RTE when an application violates
[SWS_Rte_CONSTR_09029]. c(SRS_BSW_00337)

[SWS_Rte_07685] d An RTE_E_DET_SEG_FAULT (0x06) shall be reported by the
RTE when the parameters of an RTE API call contain a direct or indirect reference to
memory that is not accessible from the callers partition as defined in [SWS_Rte_02752]
and [SWS_Rte_02753]. c(SRS_BSW_00337)

[SWS_Rte_07682] d If RteDevErrorDetectUninit is enabled, an RTE_E_UNINIT
(0x07) shall be reported by the RTE when one of the APIs :

• Specified in 5.6.

• Rte_NvMNotifyInitBlock.

• Rte_PartitionTerminated.

• Rte_PartitionRestarting.

• Rte_RestartPartition.

is called before Rte_Start, after Rte_Stop or After the partition to which the API
belongs is terminated. c(SRS_BSW_00337)

Note:

• In production mode, No checks are performed.

• In development mode, if an error is detected the API behaviour is undefined and
it is left to the Rte implementer.

389 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rational: The introduction of this developpement check should not introduce big
changes to production mode configuration.

[SWS_Rte_07683] d If RteDevErrorDetectUninit is enabled, an RTE_E_UNINIT
(0x07) shall be reported by the Basic Software Scheduler / RTE when one of the APIs
SchM_Switch, SchM_Mode, SchM_SwitchAck, SchM_Trigger, SchM_Send,
SchM_Receive, SchM_Call, SchM_Result, SchM_ActMainFunction,
SchM_Start, SchM_StartTiming, or Rte_Start is called before SchM_Init. c
(SRS_BSW_00337)

4.8.3 DET Error Classification

The following abbreviations are used to identify the DET error in table 4.33.

Abbreviation RTE DET Error
ISI RTE_E_DET_ILLEGAL_SIGNAL_ID

IVCV RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE
II RTE_E_DET_ILLEGAL_INVOCATION

INEA RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA
WIEA RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA

UNINIT RTE_E_UNINIT

Table 4.32: Abbreviations of RTE DET Errors to APIs

The following table 4.33 indicates which DET errors are relevant for the various RTE
APIs, and the service ID associated with the RTE APIs (see [SWS_Rte_06632]):

API name Service ID I
S
I

I
V
C
V

I
I

I
N
E
A

W
I
E
A

U
N
I
N
I
T

Rte_Ports APIs 0x10 X
Rte_NPorts APIs 0x11 X
Rte_Port APIs 0x12 X
Rte_Send APIs 0x13 X
Rte_Write APIs 0x14 X
Rte_Switch APIs 0x15 X
Rte_Invalidate APIs 0x16 X
Rte_Feedback APIs 0x17 X X
Rte_SwitchAck APIs 0x18 X X
Rte_Read APIs 0x19 X
Rte_DRead APIs 0x1A X
Rte_Receive APIs 0x1B X X
Rte_Call APIs 0x1C X X
Rte_Result APIs 0x1D X X
Rte_Pim APIs 0x1E X
Rte_CData APIs 0x1F X
Rte_Prm APIs 0x20 X
Rte_IRead APIs 0x21 X
Rte_IWrite APIs 0x22 X
Rte_IWriteRef APIs 0x23 X

390 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rte_IInvalidate APIs 0x24 X
Rte_IStatus APIs 0x25 X
Rte_IrvIRead APIs 0x26 X
Rte_IrvIWrite APIs 0x27 X
Rte_IrvIWriteRef APIs 0x31 X
Rte_IrvRead APIs 0x28 X
Rte_IrvWrite APIs 0x29 X
Rte_Enter APIs 0x2A X
Rte_Exit APIs 0x2B X X
Rte_Mode APIs 0x2C
Rte_Trigger APIs 0x2D X
Rte_IrTrigger APIs 0x2E X
Rte_IFeedback APIs 0x2F X
Rte_IsUpdated APIs 0x30 X
trigger by TimingEvent 0x50 X
trigger by BackgroundEvent 0x51 X
trigger by SwcModeSwitchEvent 0x52 X
trigger by AsynchronousServerCallReturnsEvent 0x53 X
trigger by DataReceiveErrorEvent 0x54 X
trigger by OperationInvokedEvent 0x55 X
trigger by DataReceivedEvent 0x56 X
trigger by DataSendCompletedEvent 0x57 X
trigger by ExternalTriggerOccurredEvent 0x58 X
trigger by InternalTriggerOccurredEvent 0x59 X
trigger by DataWriteCompletedEvent 0x5A X
Rte_Start API 0x70 X
Rte_Stop API 0x71
Rte_PartitionTerminated APIs 0x72
Rte_PartitionRestarting APIs 0x73
Rte_RestartPartition APIs 0x74
Rte_Init API 0x75
Rte_StartTiming API 0x76
Rte_COMCbkTAck_<sn> callbacks 0x90 X
Rte_COMCbkTErr_<sn> callbacks 0x91 X
Rte_COMCbkInv_<sn> callbacks 0x92 X
Rte_COMCbkRxTOut_<sn> callbacks 0x93 X
Rte_COMCbkTxTOut_<sn> callbacks 0x94 X
Rte_COMCbk_<sg> callbacks 0x95 X
Rte_COMCbkTAck_<sg> callbacks 0x96 X
Rte_COMCbkTErr_<sg> callbacks 0x97 X
Rte_COMCbkInv_<sg> callbacks 0x98 X
Rte_COMCbkRxTOut_<sg> callbacks 0x99 X
Rte_COMCbkTxTOut_<sg> callbacks 0x9A X
Rte_COMCbk_<sn> callbacks 0x9F X
Rte_LdComCbkRxIndication_<sn> callbacks 0xA0 X X
Rte_LdComCbkStartOfReception_<sn> callbacks 0xA1 X X
Rte_LdComCbkCopyRxData_<sn> callbacks 0xA2 X X
Rte_LdComCbkTpRxIndication_<sn> callbacks 0xA3 X X
Rte_LdComCbkCopyTxData_<sn> callbacks 0xA4 X X
Rte_LdComCbkTpTxConfirmation_<sn> callbacks 0xA5 X X
Rte_LdComCbkTriggerTransmit_<sn> callbacks 0xA6 X X
Rte_LdComCbkTxConfirmation_<sn> callbacks 0xA7 X X
Rte_SetMirror callbacks 0x9B

391 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rte_GetMirror callbacks 0x9C
Rte_NvMNotifyJobFinished callbacks 0x9D
Rte_NvMNotifyInitBlock callbacks 0x9E X
SchM_Init API 0x00 X
SchM_Deinit API 0x01
SchM_GetVersionInfo API 0x02
SchM_Enter APIs 0x03
SchM_Exit APIs 0x04 X
SchM_ActMainFunction APIs 0x05 X
SchM_Switch APIs 0x06 X
SchM_Mode APIs 0x07 X
SchM_SwitchAck APIs 0x08 X
SchM_Trigger APIs 0x09 X
SchM_Send APIs 0x0A X
SchM_Receive APIs 0x0B X
SchM_Call APIs 0x0C X
SchM_Result APIs 0x0D X

Table 4.33: Applicability of RTE DET Errors to APIs

392 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9 Bypass Support

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU).

With Bypass technology the original ECU and software stays in the control loop to
supports the majority of the control algorithms and interface with sensors, actuators
and communication buses: only the specific control algorithm that shall be prototyped
is deported into the RPU (external bypass) or even directly executed in the original ECU
(internal bypass). Bypass mainly consists in replacing at run time inputs and/or outputs
of the original software algorithms by value computed by the prototype algorithm under
test.

The RTE does not directly implement bypass but the RTE provides supports for the
integration of such implementation by CDD and/or integration code.

4.9.1 Bypass description

In order to describe a rapid prototyping system as an Autosar Software Component a
System Description with the category RPT_SYSTEM is used. This System Description
is not relevant for the RTE itself but is only a support for the ECU integrator to setup
the rapid prototyping solution.

[SWS_Rte_07833] d RTE shall ignore definitions in System Description of category
RPT_SYSTEM. c(SRS_Rte_00244)

4.9.2 Component wrapper method

The component wrapper method consists in wrapping the original software component
implementation with a CDD that implements the bypass. With this method the CDD is
able to take the control of the AUTOSAR interfaces of the software component because
there is no more direct call between RTE and the SWC but everything go through the
CDD.

393 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE

SWC ASWC A

RTE

SWC B

RPT CDD

SWC B

Figure 4.53: Component wrapper method

The RTE supports the component wrapper method by generating the SWC interfaces
with a c-namespace including an additional [Byps_] infix for the bypassed SWC (i.e.
SWC B in Figure 4.53). This includes:

• naming of Application Header File

• naming of the Application Type Header File

• naming of the RTE APIs (excepted life cycle APIs)

• naming of the runnables

• naming of the instance handle

• naming of the Component Data Structure type

• naming of the memory sections

The component wrapper method for bypass support is enabled per software compo-
nent type.

[SWS_Rte_07840] d The component wrapper method for bypass support is enabled
for a software component type if the general switch RteBypassSupport is set to COM-
PONENT_WRAPPER and the individual switch for this software component type RteBy-
passSupportEnabled is set to true. c(SRS_Rte_00244)

394 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07841] d The component wrapper method for bypass support is disabled
for a software component type if the general switch RteBypassSupport is set to
value different from COMPONENT_WRAPPER or if the individual switch for this software
component type RteBypassSupportEnabled is not configured or is set to false. c
(SRS_Rte_00244)

[SWS_Rte_07834] d If the component wrapper method for bypass support is en-
abled for a software component type, the RTE generator shall include the optional
infix [Byps_] to the name of all the elements generated for this software compo-
nent type that are defined in this specification with the optional infix [Byps_]. c
(SRS_Rte_00244)

[SWS_Rte_07835] d If the component wrapper method for bypass support is dis-
abled for a software component type, the RTE generator shall remove the optional
infix [Byps_] to the name of all the elements generated for this software compo-
nent type that are defined in this specification with the optional infix [Byps_]. c
(SRS_Rte_00244)

4.9.3 Direct buffer access method

The direct buffer access method provides runtime direct read and write access to the
RTE buffers that implement the ECU communication infrastructure.

The RTE supports the direct buffer access method by generating the McSupportData
for these buffers. This is already supported by the RTE measurement and calibration
support but for the rapid prototyping purpose additional elements shall be generated.

The component wrapper method for bypass support is enabled per software compo-
nent type.

The component wrapper method for bypass support is enabled for a software compo-
nent type if the individual switch for this software component type RteBypassSup-
portEnabled is set to true.

[SWS_Rte_07836] d If the direct buffer access method for bypass support is en-
abled for a software component type, the RTE generator shall generate McSup-
portData with mcDataAccessDetails for each preemption area specific buffer
that implements the implicit communication for this software component type. c
(SRS_Rte_00244)

4.9.4 Extended buffer access method

The extended buffer access method enhances the support for rapid prototyping (RP) to
support the bypass use case where the RTE cannot be regenerated by the bypass user.
The goal is to ensure that all VariableDataPrototypes that are communicated
via RTE APIs are written to and read back from a RP global buffer that can be

395 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

modified by rapid prototyping tools (RPT). The method applies to all RTE APIs and not
just those for implicit access and hence is termed the extended buffer access method.

SWC A

RTE

SWC B SWC A

RTE

SWC B
RP

Figure 4.54: Extended Buffer Access method

Within the Extended buffer access method a VariableDataPrototype, an RTE-
Event or a complete SwComponentPrototype can be flagged for rapid prototyp-
ing at one of three levels depending on whether or not post-build hooking is used.
rptLevel1 is intended for use by post-build hooking tools and rptLevel2 and
rptLevel3 by non post-build hooking. The mapping from RTE API class to supported
level is defined by Table 4.34.

API Class rptLevel1 rptLevel2 rptLevel3
Explicit S/R Yes Yes Yes
Implicit S/R Yes Yes Yes
C/S Yes Yes Yes
Mode Yes Yes Yes
Trigger No No No
Explicit IRV Yes Yes Yes
Implicit IRV Yes Yes Yes

Table 4.34: Table of API classes and supported RPT level

4.9.4.1 Global Enable

[SWS_Rte_06086] d The Extended Buffer Access method is enabled if the
general switch RteBypassSupport is set to EXTENDED_BUFFER_ACCESS c
(SRS_Rte_00244)

When RteBypassSupport is set to a value other than EXTENDED_BUFFER_ACCESS
then no bypass support, i.e. no use of RP memory interface, no RP service point,
etc., is generated.

When RteBypassSupport is set to EXTENDED_BUFFER_ACCESS then the RteBy-
passSupportEnabled and/or RteServicePointSupportEnabled must also be

396 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

set to true for Extended Buffer Access bypass support to be generated for a software
component.

The configuration options are summarized in Table 4.35.

RteBypassSupport
(global)

RteBypass-
SupportEnabled
(per-SWC)

RteServicePoint-
SupportEnabled
(per-SWC)

Effect

NONE or COMPONENT_-
WRAPPER

Any Any No bypass support gener-
ated by RTE. No RP ex-
port generated by RTE

EXTENDED_BUFFER_-
ACCESS

FALSE FALSE No bypass support for
SWC type generated by
RTE in code (i.e. No ser-
vice points and no use
of RP memory interface).
RP export describes ser-
vice points for SWC Inter-
nal service points only.

EXTENDED_BUFFER_-
ACCESS

FALSE TRUE Service points generated
for SWC. No use of RP
memory interface. RP
export describes resulting
SWC Internal and RTE
assigned service points.

EXTENDED_BUFFER_-
ACCESS

TRUE FALSE Service points not gener-
ated for SWC. RP mem-
ory interface generated
for RTE APIs. RP export
describes SWC Internal
service points and also
the resulting RP buffers
and enabler flags.

EXTENDED_BUFFER_-
ACCESS

TRUE TRUE Service points generated
for SWC. RP memory in-
terface generated for RTE
APIs. RP export de-
scribes resulting SWC In-
ternal and RTE assigned
service points, RP buffers
and enabler flags.

Table 4.35: Summary of enable/disable options for Extended Buffer Access method

4.9.4.2 RPT Preparation

The RptImplPolicy.rptPreparationLevel supports three preparation levels:

• Level 1 – When RptImplPolicy.rptPreparationLevel is set to
rptLevel1 then the generated RTE uses a specific memory access pattern
(a write-read cycle within accessing code created by the RTE generator) suitable
for access by post-build hooking tools patch writes to buffers.

397 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• Level 2 – When RptImplPolicy.rptPreparationLevel is set to
rptLevel2 then in addition to the use of an RP global buffer (as for rptLevel1)
the generated code also includes an RP enabler flag that is used to make update
of the RP global buffer conditional.

The RP enabler flag can be in either (calibratable) ROM or RAM based on Rpt-
Container.rptEnablerImplType.

• Level 3 – When RptImplPolicy.rptPreparationLevel is set to
rptLevel3 then in addition to the requirements of rptLevel2, the generated
code also records the original ECU-generated value as well as the RP replace-
ment value.

When rptImplPolicy of a RptContainer is used the RptContainer can refer-
ence:

• VariableDataPrototype – the preparation level applies to a single data item
(and hence, for example, related Sender-Receiver APIs).

• ArgumentDataPrototype – the preparation level applies to a single opera-
tion argument (and hence related Client-Server APIs).

• ModeDeclarationGroupPrototype – the preparation level applies to a single
ModeDeclaration argument (and hence related Mode APIs).

• operation – the preparation level applies to all ClientServerOperation’s
ArgumentDataPrototypes (and hence related Client-Server APIs).

• RunnableEntity – the preparation level applies to a all data items / arguments
accessed by the RunnableEntity.

• SwComponentPrototype – the preparation level applies to all RunnableEn-
titys (and hence all accessed data items and arguments) in the software com-
ponent.

4.9.4.3 Level 1 - Post-Build Hooking

This level is intended to be used by post-build hooking tools that patch writes to buffers
such that a bypass value is written into a buffer rather than the value calculated by the
ECU.

Logically this means that a C statement like:
1 buffer = ecu_value;

is patched to be:
1 buffer = f(ecu_value);

where f() is a function calculated by the RP system, e.g. on external RP hardware.
Note that the function call in the example may be, in reality, a simple access to a value
calculated by the RP system rather than an actual function call.

398 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9.4.3.1 Explicit Sender-Receiver and IRV APIs

As an example of the changes to generated RTE code when rptLevel1 of the Ex-
tended Buffer Access method is enabled, consider an Rte_Write API that sends
VariableDataPrototype D via port P using explicit semantics. A “typical” imple-
mentation might look something like Example 4.13:

Example 4.13

1 Std_ReturnType Rte_Write_P_D(<type> data)
2 {
3 <send> data;
4 return <result of send>;
5 }

Where <type> is the implementation data type of the VariableDataPrototype,
<send> represents the transmission process, e.g. via COM or direct access, and <re-
sult of send> represents the return value of the RTE API.

To support RP the implementation, Example 4.13 is modified as follows:

Example 4.14

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_D;
3

4 Std_ReturnType Rte_Write_P_D(<type> data)
5 {
6 SWCA_Bypass_P_D = data;
7 <send> SWCA_Bypass_P_D;
8 return <result of send>;
9 }

The changes as a result of rptLevel1 support revolve around the reads/writes of the
RP global buffer. These changes are summarized by the following two require-
ments:

[SWS_Rte_06033] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed using explicit semantics the RTE generator shall write each associ-
ated IN or INOUT API parameter to a RP global buffer. c(SRS_Rte_00244)

Subsequent accesses to the actual parameter within the generated function are re-
placed by use of the RP global buffer instead.

[SWS_Rte_06034] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed using explicit semantics then within RTE APIs the RTE generator
shall read the value of the associated IN and INOUT parameters from the RP global
buffer rather than use the formal parameter. c(SRS_Rte_00244)

399 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

These modifications ensure that if an RP tool patches the write to the RP global
buffer SWCA_Bypass_P_D then the value that is written by the RP tool to
SWCA_Bypass_P_D will be sent instead of the actual function parameter data.

The requirements inherently cause the RP global buffer to exist thus there is no
explicit requirement to create the global buffer. However the characteristics of this
buffer are constrained as follows.

[SWS_Rte_06035] d An RP global buffer used for rptLevel1 data shall be
marked as volatile. c(SRS_Rte_00244)

The volatile keyword is essential to ensure that compiler optimization does not elide
the read of SWCA_Bypass_P_D in <send> SWCA_Bypass_P_D.

[SWS_Rte_06036] d The RP global buffer contents shall be valid for at least the
lifetime of the accessing RTE function (i.e. the lifetime of the runnable that calls the RTE
function) and any related measurement and stimulation services. c(SRS_Rte_00244)

[SWS_Rte_06037] d The same RP global buffer shall always be used for the
same SWCI/API-type/port/variable-data-prototype. c(SRS_Rte_00244)

Requirement [SWS_Rte_06037] ensures stability for post-build hooking tools, e.g. if
we have Rte_Write_P_D for SWCA then the same RP global buffer is used irre-
spective of when or how SWCA calls Rte_Write_P_D. Since the RTE API is created
per-SWC instance then different instances will use different RP global buffers.

Note that requirement [SWS_Rte_06036] indicates the minimum lifetime required; in
an implementation the actual lifetime may be longer.

The above requirements are not intended to indicate that a dedicated RP global
buffer must be created. In particular, if the generated RTE already contains a buffer
whose characteristics satisfy those of an RP global buffer then an implementation
is free to reuse the existing buffer.

As an additional example, consider an Rte_Read API that receives VariableDat-
aPrototype D via port P. A “typical” implementation might look something like Exam-
ple 4.15:

Example 4.15

1 Std_ReturnType Rte_Read_P_D(<type>* const data)
2 {
3 *data = <receive>;
4 <notifications>;
5 return <result of receive>;
6 }

Where <type> is the implementation data type of the VariableDataPrototype,
<receive> represents the reception process, e.g. from COM or direct access, <no-
tifications> the steps required (if any) to notify that the reception has occurred
and <result of receive> represents the return value of the RTE API.

400 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When using the Extended buffer access method and the rptPreparationLevel is
rptLevel1, the RptContainer references D and rptReadAccess is rptReadAc-
cess the generated RTE API from Example 4.15 is modified to become Example 4.16:

Example 4.16
1 volatile <type> SWCB_Bypass_P_D; /* RP global buffer */
2 Std_ReturnType Rte_Read_P_D(<type>* const data)
3 {
4 SWCB_Bypass_P_D = <receive>;
5 *data = SWCB_Bypass_P_D;
6 <notifications>;
7 return <result of receive>;
8 }

[SWS_Rte_06038] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed by explicit semantics the RTE generator shall substitute the write of
received data to an associated OUT or INOUT API parameter with a write to an RP
global buffer. c(SRS_Rte_00244)

[SWS_Rte_06039] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed by explicit semantics the RTE generator shall copy from the RP
global buffer to OUT or INOUT API parameters before performing any AUTOSAR
data reception notifications (and thus before the API returns if there are no notifica-
tions). c(SRS_Rte_00244)

As with the explicit write, these requirements ensure that if an RP tool patches the write
to SWCB_Bypass_P_D then the value that the tool writes will be returned to the API
caller rather than the originally received value.

The characteristics of the RP global buffer are defined for the <send> pro-
cess above. In particular the volatile keyword is essential to ensure that com-
piler optimization does not elide the read of the RP global buffer in *data =
SWCB_Bypass_P_D.

Additional volatile RP global buffers are also used for IRV arguments in a
similar way to the sender-receiver Rte_Read and Rte_Write APIs.

4.9.4.3.2 Interaction With Data Conversion

[SWS_Rte_06088] d Where a VariableDataPrototype is subject to data conver-
sion before being transmitted the conversion shall occur before the write to the RP
global buffer. c(SRS_Rte_00244)

Assuming the data conversion if represented by the function f(x) then the example
Rte_Write API would become Example 4.17:

Example 4.17
1 /* RP global buffer */

401 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2 volatile <type2> SWCA_Bypass_P_D;
3

4 Std_ReturnType Rte_Write_P_D(<type> data)
5 {
6 SWCA_Bypass_P_D = f(data);
7 <send> SWCA_Bypass_P_D;
8 return <result of send>;
9 }

Where <type2> is the data type after conversion.

4.9.4.3.3 Implicit Sender-Receiver and IRV

For implicit Sender-Receiver and IRV communication, RP global buffers are used
when the context-local implicit communication buffers are initialized and written back.
Consider an Rte_IWrite API that sends VariableDataPrototype D via port P
and an Rte_IRead API that reads VariableDataPrototype E via port Q. A “typical”
implementation might look like:

1 local_P_D = global_P_D;
2 local_Q_E = global_Q_E;
3 Runnable();
4 global_P_D = local_P_D;

Where Runnable() uses Rte_IWrite_P_D() and Rte_IRead_Q_E() which in
turn access the context-local buffers local_P_D and local_Q_E to provide the re-
quired semantics.

When rptPreparationLevel is rptLevel1 and the container references the im-
plicitly accessed VariableDataPrototype this is modified as follows:

1 volatile <type> Bypass_P_D; /* RP global buffer */
2 volatile <type> Bypass_Q_E; /* RP global buffer */

And inside the generated task body:
1 TASK(...)
2 {
3 volatile <type> local_P_D;
4 volatile <type> local_Q_E;
5

6 /* ... */
7

8 local_P_D = global_P_D; /* Not changed */
9 Bypass_Q_E = global_Q_E; /* Setup via RP global buffer */

10 local_Q_E = Bypass_Q_E;
11 Runnable();
12 Bypass_P_D = local_P_D; /* Write-back via RP global buffer */
13 global_P_D = Bypass_P_D;
14 }

402 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

To enable the RP tool to intercept the update of the context-local buffer used by the
implicit APIs the Extended Buffer Access method uses an RP global buffer in a
similar fashion to the explicit APIs.

[SWS_Rte_06040] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed by implicit semantics the RTE generator shall first update the RP
global buffer from the RTE global variable / COM signal and then update the pre-
emption area specific buffer from the RP global buffer before runnable invocation
c(SRS_Rte_00244)

[SWS_Rte_06087] dWhen rptLevel1 support is enabled for a VariableDataPro-
totype accessed by implicit semantics the RTE generator shall, after runnable termi-
nation, perform any write-back by first writing the preemption area specific buffer to the
RP global buffer and then updating the RTE global variable / COM signal from
the RP global buffer. c(SRS_Rte_00244)

The Runnable() sequence can comprise of one or more calls to different runnables.
Each runnable has a unique implicit API and therefore can, potentially, access different
context-local buffers.

Finally, the write to the preemption area specific buffer and subsequent use could be
used as the write-read cycle required for post-build hooking. A distinct RP global
buffer may therefore be optimized away in some circumstances and the preemption
area specific buffer used to enforce the requirement memory access pattern.

[SWS_Rte_06091] dWhen rptLevel1 support is enabled the RTE generator should
avoid dedicated RP global buffer variables for implicit communication by im-
plementing the preemption area specific buffers according to the (implementation)
requirements on a RP global buffer ([SWS_Rte_06035],[SWS_Rte_06036]). c
(SRS_Rte_00244)

For instance in this case the preemption area specific buffers needs to be declared as
volatile.

4.9.4.3.4 Mode APIs

Mode APIs are handled in a similar manner to explicit Sender-receiver APIs with the
actual function parameters being written to an associated RP global buffer before
use.

[SWS_Rte_06107] d When rptLevel1 support is enabled for a ModeDeclara-
tionGroupPrototype the RTE generator shall write the API parameter to a RP
global buffer. c(SRS_Rte_00244)

Subsequent accesses to the actual parameter within the generated function are re-
placed by use of the RP global buffer instead.

[SWS_Rte_06108] d When rptLevel1 support is enabled for a ModeDeclara-
tionGroupPrototype then within RTE APIs the RTE generator shall read the value

403 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

of the associated parameter from the RP global buffer rather than use the formal
parameter. c(SRS_Rte_00244)

These modifications ensure that if an RP tool patches the write to the RP global
buffer then the value that is written by the RP tool will be used as the new mode
instead of the actual function parameter.

As an additional example, consider the typical implementation for an Rte_Switch API
shown in Example 4.18 (error handling omitted for clarity):

Example 4.18

1 Std_ReturnType Rte_Switch_P_M(<type> newMode)
2 {
3 if (! <in_transition>)
4 {
5 mode = newMode;
6 <notifications>
7 }
8 else
9 {

10 <enQueue>(newMode);
11 }
12 return E_OK;
13 }

When using the Extended buffer access method and the rptPreparationLevel is
rptLevel1 the generated RTE API from Example 4.18 is modified to become Exam-
ple 4.19:

Example 4.19

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_M;
3

4 Std_ReturnType Rte_Switch_P_M(<type> newMode)
5 {
6 SWCA_Bypass_P_M = newMode;
7

8 if (! <in_transition>)
9 {

10 mode = SWCA_Bypass_P_M;
11 <notifications>
12 }
13 else
14 {
15 <enQueue>(SWCA_Bypass_P_M);
16 }
17 return E_OK;
18 }

404 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9.4.3.5 Client-Server APIs

rptLevel1 support can be enabled for individual parameters within an operation.
The generated support differs based on the parameter direction.

4.9.4.3.5.1 IN Parameters

Client-Server parameters with direction of IN are copied to a dedicated RP
global buffer variable before use to ensure the required write-read cycle. For IN
parameters passed by reference a deep-copy is used.

[SWS_Rte_06092] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of IN the generated RTE API shall write the parameter
to a RP global buffer. c(SRS_Rte_00244)

Subsequent accesses to the actual parameter within the generated RTE function are
replaced by use of the RP global buffer instead.

[SWS_Rte_06093] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of IN the RTE generator shall read the value of the
associated parameter from the RP global buffer rather than use the formal pa-
rameter. c(SRS_Rte_00244)

These modifications ensure that if an RP tool patches the write to the RP global
buffer SWCA_Bypass_P_OP_a then the value that is written by the RP tool to
SWCA_Bypass_P_OP_a will be see by the server instead of the actual function pa-
rameter a.

As an example of the changes to generated RTE code when rptLevel1 of the Ex-
tended Buffer Access method is enabled, consider an Rte_Call API that invokes
ClientServerOperation OP via port P. A “typical” implementation might look some-
thing like Example 4.20:

Example 4.20

1 Std_ReturnType Rte_Call_P_OP([IN] <type> a)
2 {
3 Server(a);
4 return E_OK;
5 }

[SWS_Rte_06092] and [SWS_Rte_06093] modify Example 4.20 as follows:

Example 4.21

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_OP_a;
3

4 Std_ReturnType Rte_Call_P_OP([IN] <type> a)
5 {

405 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6 /* Copy to RP global buffer */
7 SWCA_Bypass_P_OP_a = a;
8 Server(SWCA_Bypass_P_OP_a);
9 return E_OK;

10 }

The RP global buffer is volatile according to [SWS_Rte_06035].

4.9.4.3.5.2 OUT Parameters

When rptLevel1 support is enabled for Client-Server parameters with direction
of OUT the server generated value can be replaced with a value generated by the RPT.
In the generated code the value generated by the server is captured into a dedicated
RP global buffer and then, after the server has completed, returned to the client
via a copy that permits the RPT to affect the returned value.

[SWS_Rte_06094] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of OUT the generated RTE API shall invoke the server
with the OUT parameter replaced by a reference to an RP global buffer. c
(SRS_Rte_00244)

After the server call the generated RTE API must return either the RPT generated
result or the server generated result returned to the client.

[SWS_Rte_06095] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of OUT the RTE generator shall copy the value of the
associated parameter from the RP global buffer. c(SRS_Rte_00244)

These modifications ensure that if an RP tool patches the write to the RP global
buffer SWCA_Bypass_P_OP_a then the value that is written by the RP tool to
SWCA_Bypass_P_OP_a will be see by the server instead of the actual function pa-
rameter a.

As an example of the changes to generated RTE code when rptLevel1 of the Ex-
tended Buffer Access method is enabled, consider an Rte_Call API that invokes
ClientServerOperation OP via port P. A “typical” implementation might look some-
thing like Example 4.22:

Example 4.22

1 Std_ReturnType Rte_Call_P_OP([OUT] <type> a)
2 {
3 Server(a);
4 return E_OK;
5 }

406 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06094] and [SWS_Rte_06095] modify Example 4.22 as follows:

Example 4.23

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_OP_a;
3

4 Std_ReturnType Rte_Call_P_OP([OUT] <type> a)
5 {
6 /* Pass reference to RP global buffer to server */
7 Server(&SWCA_Bypass_P_OP_a);
8

9 /* Copy server value (possible modified by RPT) to client */
10 <deep-copy>(a, &SWCA_Bypass_P_OP_a);
11 return E_OK;
12 }

4.9.4.3.5.3 IN-OUT Parameters

When rptLevel1 support is enabled for Client-Server parameters with direction
of IN-OUT the server generated value can be replaced with a value generated by the
RPT as well as the value seen by the server being modified by RPT. Therefore in
addition to the support for OUT parameters an initial copy before the server invocation
is necessary.

[SWS_Rte_06096] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of IN-OUT the generated RTE API shall initialize
the RP global buffer with the actual parameter before server invocation. c
(SRS_Rte_00244)

After the server call the generated RTE API must return either the RPT generated
result or the server generated result returned to the client.

[SWS_Rte_06097] d When rptLevel1 support is enabled for an ArgumentDat-
aPrototype with direction of IN-OUT the RTE generator shall copy the value of
the associated parameter from the RP global buffer. c(SRS_Rte_00244)

As an example of the changes to generated RTE code when rptLevel1 of the Ex-
tended Buffer Access method is enabled, consider an Rte_Call API that invokes
ClientServerOperation OP via port P. A “typical” implementation might look some-
thing like Example 4.24:

Example 4.24

1 Std_ReturnType Rte_Call_P_OP([IN-OUT] <type> a)
2 {
3 Server(a);
4 return E_OK;
5 }

407 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06094] and [SWS_Rte_06095] modify Example 4.22 as follows:

Example 4.25

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_OP_a;
3

4 Std_ReturnType Rte_Call_P_OP([IN-OUT] <type> a)
5 {
6 /* Copy in value (possible modified by RPT) to RP global buffer */
7 <deep-copy>(&SWCA_Bypass_P_OP_a, a);
8

9 /* Pass reference to RP global buffer to server */
10 Server(&SWCA_Bypass_P_OP_a);
11

12 /* Copy server value (possible modified by RPT) to client */
13 <deep-copy>(a, &SWCA_Bypass_P_OP_a);
14 return E_OK;
15 }

4.9.4.4 Level 2 - Non Post-Build Hooking

This level is used for bypass scenarios where the binary code remains unchanged after
RTE generation – in particular any code level requirements for bypass are inserted
when the RTE is generated. For example, RP global buffers may be inserted as
for rptLevel1 however run-time RP enabler flags are also added to allow control
of how the buffers are used.

The typical Rte_Write Example 4.13 becomes Example 4.26:

Example 4.26

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_D;
3

4 /* RP enabler flag */
5 volatile <flag> SWCA_Bypass_P_D_Enable = FALSE;
6

7 Std_ReturnType Rte_Write_P_D(<type> data)
8 {
9 if (FALSE == SWCA_Bypass_P_D_Enable)

10 {
11 SWCA_Bypass_P_D = data;
12 }
13 <send> SWCA_Bypass_P_D;
14 <notifications>;
15 return <result of send>;
16 }

408 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Where <type>, <send>, <notifications> and <result of send> are as be-
fore.

rptLevel2 is conceptually similar to rptLevel1 but with the additional constraint
that the RP global buffer is only updated within the generated RTE function when
the RP enabler flag is disabled11. Thus when the RP enabler flag is dis-
abled, rptLevel2 has the same semantics as rptLevel1.

[SWS_Rte_06041] d When rptLevel2 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics and the RP enabler flag is disabled the RTE generator shall write each
associated IN or INOUT API parameter to a RP global buffer before the actual
parameter is otherwise used within the generated function. c(SRS_Rte_00244)

Subsequent accesses to the actual parameter within the generated function are re-
placed by use of the RP global buffer instead.

[SWS_Rte_06042] d When rptLevel2 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics then within RTE APIs the RTE generator shall read the value of the associated
IN and INOUT parameters from the RP global buffer rather than use the formal
parameter. c(SRS_Rte_00244)

The typical Rte_Read Example 4.15 becomes Example 4.27:

Example 4.27

1 /* RP global buffer */
2 volatile <type> SWCB_Bypass_P_D;
3

4 /* RP enabler flag */
5 volatile <flag> SWCB_Bypass_P_D_Enable = FALSE;
6

7 Std_ReturnType Rte_Read_P_D(<type>* const data)
8 {
9 <type> temp = <receive>;

10 if (FALSE == SWCB_Bypass_P_D_Enable)
11 {
12 SWCB_Bypass_P_D = temp;
13 }
14 *data = SWCB_Bypass_P_D;
15 <notifications>;
16 return <result of receive>;
17 }

11The RP enabler flags are described using inverted logic to reflect the requirements of bypass en-
able/disable. When rptLevel2/rptLevel3 bypass is disabled we want the API to use the value from
the API’s “data” argument whereas when rptLevel2/rptLevel3 bypass is enabled we do not want
the API to use the value from the “data” argument because the RP service point will have written
the bypass value into the RP global buffer before the runnable containing the API runs.

409 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06043] d When rptLevel2 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics and the RP enabler flag is disabled the RTE generator shall write the
value destined for each OUT or INOUT API parameter to an associated RP global
buffer after the value is received within the generated function. c(SRS_Rte_00244)

[SWS_Rte_06044] dWhen rptLevel2 support is enabled for a VariableDataPro-
totype accessed using explicit semantics then within RTE APIs the RTE generator
shall read the value of the associated OUT and INOUT parameters from the RP global
buffers rather than directly using the values received in the generated function. c
(SRS_Rte_00244)

rptLevel2 support can be enabled for individual parameters within an operation.
The generated RP enabler flags control the copies of the parameter before and/or
after the server invocation within the generated RTE API.

For IN and IN-OUT parameters the generated code conditionally overwrites the value
in the associated RP global buffer before server invocation. The overwrite oc-
curs when the RP enabler flag is disabled and hence bypass – use of the RP
generated value – is enabled.

[SWS_Rte_06098] dWhen rptLevel2 support is enabled for a ArgumentDataPro-
totype with direction IN or IN-OUT and the RP enabler flag is disabled the
RTE generator shall write the actual parameter value destined for each IN or IN-OUT
API parameter to an associated RP global buffer after the value is received within
the generated function. c(SRS_Rte_00244)

To enable replacement of the server generated value with one generated by the RPT
a selection can be made based on the RP enabler flag.

[SWS_Rte_06099] dWhen rptLevel2 support is enabled for a ArgumentDataPro-
totype with direction IN-OUT or OUT and the RP enabler flag is disabled the
RTE generator shall copy the server-generated value to the RP global buffer be-
fore copying the RP global buffer to the client’s IN-OUT or OUT parameter . c
(SRS_Rte_00244)

[SWS_Rte_06100] dWhen rptLevel2 support is enabled for a ArgumentDataPro-
totype with direction IN-OUT or OUT and the RP enabler flag is enabled
the RTE generator shall copy the RP global buffer to the client’s IN-OUT or OUT
parameter after the server invocation is complete. Note that in this case the server-
generated value is ignored. c(SRS_Rte_00244)

Requirements [SWS_Rte_06099] and [SWS_Rte_06100] require that the output
comes from two different places; the server generated value when bypass is disabled
and the RPT generate value when enabled. This implies the use of a temporary data
store passed to the server to avoid overwriting the RPT value held in the RP global
buffer.

410 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06101] dWhen rptLevel2 support is enabled for a ArgumentDataPro-
totype with direction IN-OUT the generated code shall use separate RP en-
abler flags for input-side and output-side bypass. c(SRS_Rte_00244)

The Rte_Call Example 4.24 is then modified as follows:

Example 4.28

1 /* Input-side bypass */
2 volatile <type> SWCA_BypassIN_P_OP_a;
3 volatile <flag> SWCA_BypassIN_P_OP_Enable = FALSE;
4

5 /* Output-side bypass */
6 volatile <type> SWCA_BypassOUT_P_OP_a;
7 volatile <flag> SWCA_BypassOUT_P_OP_Enable = FALSE;
8

9 Std_ReturnType Rte_Call_P_OP([IN-OUT] <type> a)
10 {
11 if (FALSE == SWCA_BypassIN_P_OP_Enable)
12 {
13 /* RP disabled... use IN value */
14 <deep-copy>(&SWCA_BypassIN_P_OP_a, a);
15 }
16

17 /* Pass reference to RP global buffer to server */
18 Server(&SWCA_BypassIN_P_OP_a);
19

20 if (FALSE == SWCA_BypassOUT_P_OP_Enable)
21 {
22 /* Output-side bypass disabled: use server value */
23 <deep-copy>(a, &SWCA_BypassIN_P_OP_a);
24 }
25 else
26 {
27 /* Copy RPT-initialized value to client */
28 <deep-copy>(a, &SWCA_BypassOUT_P_OP_a);
29 }
30

31 return E_OK;
32 }

Note: The update of SWCA_BypassOUT_P_OP_a occurs in the background and is not
shown in Example 4.28. The exact point that this occurs is not defined but will be
before it is used in the generated function.

For IN and OUT parameters the generated code is similar to Example 4.28 but with
either the input-side or output-side bypass omitted as appropriate.

411 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9.4.4.1 RP Enabler Flag

The RP enabler flags control how the generated APIs interact with the RP
global buffers (e.g. as updated by a post build hooking tool) depending on the
flag state:

Disabled – When the RP enabler flag for a VariableDataPrototype is dis-
abled the values received by the APIs are written to the RP global buffers
and the APIs behave as normal.

Enabled – When the RP enabler flag for a VariableDataPrototype is en-
abled the write defined by [SWS_Rte_06043] does not occur and thus the API
ignores data generated by runnables and uses bypass values written into the RP
global buffers.

[SWS_Rte_06075] d When rptLevel2 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics then within RTE APIs the RTE generator shall support RP enabler flags
to permit the write to the RP global buffer to be disabled. c(SRS_Rte_00244)

The RP enabler flags can be variables in RAM (as in the example), calibration
characteristics or both - as specified in the input configuration. The <type> used for
RP enabler flag is implementation dependent, e.g. an AUTOSAR Boolean or a
bit-packed type, but is described in the generated RP description to enable access by
RPT.

[SWS_Rte_06073] d The RTE generator shall create RP enabler flags in RAM
when rptEnablerImplType is rptEnablerRam or rptEnablerRamAndRom. c
(SRS_Rte_00244)

[SWS_Rte_06074] d The RTE generator shall create RP enabler flags as cal-
ibration characteristics when a rptEnablerImplType is rptEnablerRom. c
(SRS_Rte_00244)

To enable the bypass to take effect the generated API must use the RP global
buffers (as updated according to [SWS_Rte_06043], [SWS_Rte_06073] and
[SWS_Rte_06074]) within the generated code rather than the values on input to the
API.

[SWS_Rte_06079] d When the rptEnablerImplType is rptEnablerRamAndRom
the two RP enabler flags are logically AND’d. c(SRS_Rte_00244)

When both RAM and calibration characteristics are used the formulation would be
something like:

Example 4.29

1 /* RP enabler flag (in RAM) */
2 volatile <flag> SWCA_Bypass_P_D_Enable = FALSE;
3

4 /* RP enabler flag (as a characteristic) */
5 volatile const <flag> SWCA_Bypass_P_D_Enable_Char = FALSE;

412 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6

7 if ((FALSE == SWCA_Bypass_P_D_Enable) &&
8 (FALSE == SWCA_Bypass_P_D_Enable_Char))
9 {

10 SWCA_Bypass_P_D = data;
11 }

In the above examples <flag> represents the RP enabler flag data type. Imple-
mentations are at liberty to provide optimized implementations of the enablers, e.g.
packing multiple enabler flags into a single variable, depending on known hardware
characteristics.

4.9.4.5 Level 3 - Extended Non Post-Build Hooking

rptLevel3 is an extension of rptLevel2 but also records the value the ECU calcu-
lated. For example:

Example 4.30

1 /* RP global buffer */
2 volatile <type> SWCA_Bypass_P_D;
3

4 /* RP global measurement buffer */
5 volatile <type> SWCA_Bypass_P_D_Original;
6

7 /* RP enabler flag */
8 volatile <flag> SWCA_Bypass_P_D_Enable = FALSE;
9

10 Std_ReturnType Rte_Write_P_D(<type> data)
11 {
12 SWCA_Bypass_P_D_Original = data;
13 if (FALSE == SWCA_Bypass_P_D_Enable)
14 {
15 SWCA_Bypass_P_D = data;
16 }
17 <send> SWCA_Bypass_P_D
18 return <result of send>
19 }

[SWS_Rte_06045] d When rptLevel3 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics the RTE generator shall write the associated IN or INOUT API parame-
ter to a RP global measurement buffer on entry to the generated function. c
(SRS_Rte_00244)

[SWS_Rte_06046] d When rptLevel3 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics and the RP enabler flag is disabled the RTE generator shall write each
associated IN or INOUT API parameter to a RP global buffer after the RP

413 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

global measurement buffer is updated and before the RP global buffer is
otherwise used within the generated function. c(SRS_Rte_00244)

[SWS_Rte_06102] dWhen rptLevel3 support is enabled for a ArgumentDataPro-
totype the RTE generator shall write the associated IN or INOUT API parame-
ter to a RP global measurement buffer on entry to the generated function. c
(SRS_Rte_00244)

[SWS_Rte_06103] d When rptLevel3 support is enabled for a ArgumentDat-
aPrototype and the RP enabler flag is disabled the RTE generator shall write
each associated IN or INOUT API parameter to a RP global buffer after the RP
global measurement buffer is updated and before the RP global buffer is
otherwise used within the generated function. c(SRS_Rte_00244)

Subsequent accesses to the actual parameter within the generated function are re-
placed by use of the RP global buffer instead.

[SWS_Rte_06047] d When rptLevel3 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics then within RTE APIs the RTE generator shall read the value of the associated
IN and INOUT parameters from the RP global buffer rather than use the formal
parameter. c(SRS_Rte_00244)

[SWS_Rte_06104] dWhen rptLevel3 support is enabled for a ArgumentDataPro-
totype then within RTE APIs the RTE generator shall read the value of the associated
IN and INOUT parameters from the RP global buffer rather than use the formal
parameter. c(SRS_Rte_00244)

And likewise for the Rte_Read API:

Example 4.31

1 /* RP global buffer */
2 volatile <type> SWCB_Bypass_P_D;
3

4 /* RP global measurement buffer */
5 volatile <type> SWCB_Bypass_P_D_Original;
6

7 /* RP enabler flag */
8 volatile <flag> SWCB_Bypass_P_D_Enable = FALSE;
9

10 Std_ReturnType Rte_Read_P_D(<type>* const data)
11 {
12 <type> temp = <receive>;
13 SWCB_Bypass_P_D_Original = temp;
14 if (FALSE == SWCB_Bypass_P_D_Enable)
15 {
16 SWCB_Bypass_P_D = temp;
17 }
18 *data = SWCB_Bypass_P_D;
19 return <result of receive>;
20 }

414 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06048] d When rptLevel3 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics the RTE generator shall write the value destined for each OUT or INOUT API
parameter to an associated RP global measurement buffer after the value is
received within the generated function. c(SRS_Rte_00244)

[SWS_Rte_06105] dWhen rptLevel3 support is enabled for a ArgumentDataPro-
totype the RTE generator shall write the value destined for each OUT or INOUT API
parameter to an associated RP global measurement buffer after the value is
returned by the server within the generated function. c(SRS_Rte_00244)

[SWS_Rte_06049] d When rptLevel3 support is enabled for a ModeDecla-
rationGroupPrototype or a VariableDataPrototype accessed using ex-
plicit semantics and the RP enabler flag is disabled the RTE generator shall
write the value destined for each OUT or INOUT API parameter to an associated
RP global buffer after the RP global measurement buffer is updated. c
(SRS_Rte_00244)

[SWS_Rte_06106] d When rptLevel3 support is enabled for a ArgumentDat-
aPrototype and the RP enabler flag is disabled the RTE generator shall
write the value destined for each OUT or INOUT API parameter to an associated
RP global buffer after the RP global measurement buffer is updated. c
(SRS_Rte_00244)

[SWS_Rte_06050] d When rptLevel3 support is enabled for a ModeDeclara-
tionGroupPrototype or a VariableDataPrototype accessed using explicit se-
mantics then within RTE APIs the RTE generator shall read the value of the associated
OUT and INOUT parameters from the RP global buffers rather than directly using
the values received in the generated function. c(SRS_Rte_00244)

The Rte_Call Example 4.24 is then modified as follows:

Example 4.32

1 /* Input-side bypass */
2 volatile <type> SWCA_BypassIN_P_OP_a;
3 volatile <type> SWCA_BypassINMeasurementBuf_P_OP_a;
4 volatile <flag> SWCA_BypassIN_P_OP_Enable = FALSE;
5

6 /* Output-side bypass */
7 volatile <type> SWCA_BypassOUT_P_OP_a;
8 volatile <type> SWCA_BypassOUTMeasurementBuf_P_OP_a;
9 volatile <flag> SWCA_BypassOUT_P_OP_Enable = FALSE;

10

11 Std_ReturnType Rte_Call_P_OP([IN-OUT] <type> a)
12 {
13 /* rptLevel3: Retain input value */
14 <deep-copy>(&SWCA_BypassINMeasurementBuf_P_OP_a, a);
15 if (FALSE == SWCA_BypassIN_P_OP_Enable)
16 {
17 /* RP disabled... use IN value */
18 <deep-copy>(&SWCA_BypassIN_P_OP_a, a);

415 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

19 }
20 else
21 {
22 /* RP enabled... do nothing & use value from RPT */
23 }
24

25 /* Pass reference to RP global buffer to server */
26 Server(&SWCA_BypassIN_P_OP_a);
27

28 /* rptLevel3: Retain server generated value */
29 <deep-copy>(&SWCA_BypassOUTMeasurementBuf_P_OP_a, &

SWCA_BypassIN_P_OP_a);
30

31 if (FALSE == SWCA_BypassOUT_P_OP_Enable)
32 {
33 /* Output-side bypass disabled: use server value */
34 <deep-copy>(a, &SWCA_BypassIN_P_OP_a);
35 }
36 else
37 {
38 /* Copy RPT-initialized value to client */
39 <deep-copy>(a, &SWCA_BypassOUT_P_OP_a);
40 }
41

42 return E_OK;
43 }

For IN and OUT parameters the generated code is similar to Example 4.32 but with
either the input-side or output-side bypass omitted as appropriate.

4.9.4.6 Level 2 and 3 - Non Post-Build Hooking and Implicit Communication

For implicit communication the context-local buffer is updated from the global master
via an interception if the RP enabler flag is disabled. For rptLevel3 the original
(master) data is also preserved in the RP global measurement buffer. A typi-
cal implementation for the initialization of the context-local buffer within a task (when
rptLevel3 support is enabled) would therefore look like:

Example 4.33

1 /* RP global buffer */
2 volatile <type> SWCB_Bypass_P_D;
3

4 /* RP global measurement buffer */
5 volatile <type> SWCB_Bypass_P_D_Original;
6

7 /* RP enabler flag */
8 volatile <flag> SWCB_Bypass_P_D_Enable = FALSE;
9

10 TASK(X)
11 {

416 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

12 /* RP global measurement buffer = global master data */
13 SWCB_Bypass_P_D_Original = global_P_D;
14

15 if (FALSE == SWCB_Bypass_P_D_Enable)
16 {
17 /* RP global buffer = global master data */
18 SWCB_Bypass_P_D = global_P_D;
19 }
20

21 /* context-local buffer */
22 local_P_D = SWCB_Bypass_P_D;
23 ...
24 }

When the RP enabler flag is disabled the global master data is used to update
SWCB_Bypass_P_D and hence the RP generated value is not used. Conversely when
bypass is enabled the value written by the RPT into SWCB_Bypass_P_D is used rather
than overwriting with the global master.

[SWS_Rte_06051] d When rptLevel3 is enabled for a VariableDataPrototype
accessed by implicit semantics the RTE generator shall update the RP global mea-
surement buffer before the context-local buffer is updated (via the RP global
buffer). c(SRS_Rte_00244)

[SWS_Rte_06052] d When rptLevel2 or rptLevel3 is enabled for a Variable-
DataPrototype accessed by implicit semantics and the RP enabler flag is dis-
abled the RTE generator shall write the value from the global master data to the RP
global buffer. c(SRS_Rte_00244)

[SWS_Rte_06053] d When rptLevel2 or rptLevel3 is enabled for a Variable-
DataPrototype accessed by implicit semantics the RTE generator shall write the
value from the RP global buffer to the context-local buffer after the RP global
buffer is updated. c(SRS_Rte_00244)

[SWS_Rte_06054] d The RTE generator shall perform the above requirements
in the sequence [SWS_Rte_06051] [SWS_Rte_06052] [SWS_Rte_06053]. c
(SRS_Rte_00244)

After runnable termination the value produced must be written back to the global mas-
ter. The write-back occurs via an interception if the RP enabler flag is disabled.
For rptLevel3 the original data produced by the runnable is also preserved in the
RP global measurement buffer. A typical implementation for the initialization
of the context-local buffer within a task (when rptLevel3 support is enabled) would
therefore look like:

Example 4.34

1 /* RP global buffer */
2 volatile <type> SWCB_Bypass_P_D;
3

4 /* RP global measurement buffer */

417 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5 volatile <type> SWCB_Bypass_P_D_Original;
6

7 /* RP enabler flag */
8 volatile <flag> SWCB_Bypass_P_D_Enable = FALSE;
9

10 TASK(X)
11 {
12 ...
13

14 /* RP global measurement buffer = context-local buffer */
15 SWCB_Bypass_P_D_Original = local_P_D;
16

17 if (FALSE == SWCB_Bypass_P_D_Enable)
18 {
19 /* RP global buffer = context-local buffer */
20 SWCB_Bypass_P_D = local_P_D;
21 }
22

23 global_P_D = SWCB_Bypass_P_D;
24 }

[SWS_Rte_06055] d When rptLevel3 is enabled for a VariableDataPrototype
accessed by implicit semantics the RTE generator shall update the RP global mea-
surement buffer using the context-local buffer. c(SRS_Rte_00244)

[SWS_Rte_06056] d When rptLevel2 or rptLevel3 is enabled for a Variable-
DataPrototype accessed by implicit semantics and the RP enabler flag is dis-
abled the RTE generator shall write the value from the context-local buffer to the RP
global buffer. c(SRS_Rte_00244)

[SWS_Rte_06057] d When rptLevel2 or rptLevel3 is enabled for a Vari-
ableDataPrototype accessed by implicit semantics the RTE generator shall write
the value from the RP global buffer to the global master after the RP global
buffer is updated. c(SRS_Rte_00244)

[SWS_Rte_06058] d The RTE generator shall perform the above requirements
in the sequence [SWS_Rte_06055] [SWS_Rte_06056] [SWS_Rte_06057]. c
(SRS_Rte_00244)

4.9.4.7 Export

The RTE generator must describe the various buffers and flags created to support the
configured RptImplPolicy.rptPreparationLevel for a VariableDataProto-
type so that the information can be accessed by the RP system after RTE genera-
tion12.

12To be fully used by an RPT system the information exported by the RTE generator may need sub-
sequent augmentation to add details that are not known to the RTE generator, e.g. address information.

418 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A generated RP buffer, flag, etc. is described by a separate McDataInstance with
a particular role, e.g. RP-GLOBAL-BUFFER, that describe its usage. The role can
describe the following:

1. RP global buffer.

2. RP enabler flag(s) (rptLevel2/rptLevel3).

3. RP global measurement buffer (rptLevel3).

4. RP stimulation enabler flag

The McDataInstance includes a reference to the relevant FlatIn-
stanceDescriptor. This reference is the same one included in the McDataIn-
stance for the RTEs buffer and therefore allows RP tools to make an association
betwen the RTE managed buffers and the RP buffers/flags.

4.9.5 Service Based Prototyping

Access to the RP global buffers and RP global measurement buffers can
be implemented by using a service based ECU interface in which an additional RP
service component, such as an “XCP on CAN” or “XCP on Ethernet” service, is
added to the ECU application.

The integration of the service can be performed pre-build by means of source code
based integration, for example, by adding an XCP or custom BSW component, or
post-build by patching the binary code of an already compiled ECU image.

In a service based scenario data is sampled and/or stimulated at RP service
points. During either sampling or stimulation the data is read and/or written from the
memory associated with the VariableDataPrototype to/from a local buffer during
the execution of the RP service point and hence transferred to/from the RP tool.
Within the context of the RTE the data stimulated by the RP service points are the
RP global buffers and RP global measurement buffers however any data
that is measurable is potentially subject to reading.

A RP service point is simply a call of a RP service function that is provided
by the RP service component. The RP service function is responsible for
sampling (reading) and stimulating (writing) the bypass data. The action of sampling
may then trigger the RP system to perform the bypass (this may involve the commu-
nication of the sampled data to an external system for computation) ready for reading
when the stimulation occurs.

419 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9.5.1 Rapid Prototyping Scenarios

The Extended Buffer Access method augments the RapidPrototypingScenario
to support service-based bypass. A RapidPrototypingScenario aggregates one
or more RptContainers and one or more RptProfiles.

• RptProfile – Each profile defines an RP service profile consisting of:

– The permitted range of RP service point id defined as minService-
PointId to maxServicePointId.

– The C-Symbols of the RP service functions invoked before and after
the runnable entity.

• RptContainer – Each RptContainer defines the entity to be encapsulated
by calls to the RP service function. A single RptContainer instance can
reference a complete SW-C (in which case all invocations of its runnable entities
are encapsulated by calls to RP service functions), a single RTEEvent or
a single VariableDataPrototype.

An RptContainer can optionally define one or more explicitRptProfile-
Selection references. When present the references provide a list of RptPro-
files which needs to be applied when the RPT support is implemented. When
no explicitRptProfileSelection references are defined then all RptPro-
files defined in the RapidPrototypingScenario are applicable.

The RptExecutableEntityProperties within an RptContainer aggre-
gates information about the properties of the executable entity(s) to which the
RP service points apply. This includes rptServicePoint which defines
a switch for RP service point generation and thus permits profiles to define
variable preparation and/or service point support.

For each applicable RptProfile (i.e. selected through explicitRptProfileSe-
lection references or by the use of all profiles when no such references are present)
the RTE generator inserts calls to the RP service function around the invocation
of the runnable entity (or runnable entities) started by the RTEEvent referenced by
each aggregated RptContainer.

Example 4.35

As an example of how RptProfile and RptContainer interact, consider the follow-
ing scenario:

• A RapidPrototypingScenario instance that aggregates a single RptPro-
file instance.

• An RptProfile instance that aggregates two RP service functions:

– servicePointSymbolPre defines ServiceFunc1_pre.

– servicePointSymbolPost defines ServiceFunc1_post.

420 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• A single RptContainer instance (with no explicitRptProfileSelection
references) that:

– Has zero explicitRptProfileSelection references.

– References, using byPassPoint, a single RTEEvent Event1 that triggers
runnable re1.

The RTE would then generate:
1 ServiceFunc1_pre(<rptEventId>, <spId1>, <stim>);
2 re1();
3 ServiceFunc1_post(<rptEventId>, <spId2>, <stim>);

Where:

• The RTE event identifier, <rptEventId>, identifies the RTE event and is
within the range specified in the interval [minRptEventId. . .maxRptEventId)
of the RptExecutableEntityProperties.

• The RP service point ids, <spId1> and <spId2>, identify the ser-
vice point and are within the interval [minServicePointId. . .maxService-
PointId) of the RptProfile.

• <stim> is the RP stimulation enabler flag to control RP stimulation.

To extend Example 4.35, an additional RptProfile referencing RP service func-
tion, ServiceFunc2 (both pre- and post) is added to the RapidPrototypingSce-
nario.

Example 4.36

The RTE would then generate:
1 ServiceFunc1_pre(<rptEventId>, <spId1>, <stim>);
2 ServiceFunc2(<rptEventId>, <spId2>, <stim>);
3 re1();
4 ServiceFunc1_post(<rptEventId>, <spId3>, <stim>);
5 ServiceFunc2(<rptEventId>, <spId4>, <stim>);

Each RP service function use the same RTE event identifier, i.e.
<rptEvendId>, since all four calls wrap the same runnable invocation however each
uses a different RP service point id.

Multiple RptProfiles can lead to multiple RP service functions for the same
RTEEvent. All such calls are ordered alphabetically ([SWS_Rte_06061]) and have the
same RTE event identifier but different RP service point ids.

421 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4.9.5.2 Service Functions

The RP service function is responsible for sampling the required data. The pa-
rameters of the RP service function do not include the data, instead, the param-
eters identify the RTE EVent and service point:

<rptEventId> – RTE event identifier indicating the associated RTE Event.

This parameter is defined by the RptContainer’s RptExecutableEnti-
tyProperties and is therefore the same for all RptProfiles aggregated
within the RptContainer.

<servicePointId> – The RP service point id is used by the RP service
component to identify the particular service point.

This parameter is defined by the RptProfile and is therefore differentfor each
profile.

<stimEnabler> – Calibratable value to control RP Stimulation. This parameter is
optional, if not configured zero is passed to the RP service function.

This parameter is defined by the RptProfile and is therefore differentfor each
profile.

[SWS_Rte_06059] d A RP service point id shall have the type uint16. c
(SRS_Rte_00244)

[SWS_Rte_06060] d An invocation of a RP service function shall conform to the
prototype:

void <RptServiceSymbol>(uint16 <rptEventId>,
uint16 <servicePointId>
uint8 <stimEnabler>);

Where <RptServiceSymbol> is specified as the RptProfile.service-
PointSymbolPre or RptProfile.servicePointSymbolPost and <servi-
cePointid> is the RP service point id. The <stimEnabler> provides
run-time control of RP stimuation. c(SRS_Rte_00244)

Note that given the defined type the range of RP service point id is [0 . . . 65535].

[SWS_Rte_06061] d For all RP service function defined by the input configura-
tion the RTE generator shall invoke the RP service function in alphabetical order
(ASCII / ISO 8859-1 code in ascending order). c(SRS_Rte_00244)

To avoid ambiguity two RptProfiles are not permitted to declare identical <RptSer-
viceSymbol>s.

[SWS_Rte_06076] d The RTE generator shall reject configurations where RptPro-
file.servicePointSymbolPre or RptProfile.servicePointSymbolPost are
not globally unique. c(SRS_Rte_00244)

422 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The “pre” and “post” positions provide the ability to differentiate RP service points
that are invoked before and after runnable invocation if this is required. The two calls
will have a common RP event ids but different RP service point ids.

To permit one RptProfile to describe variable preparation and/or service points the
rptServicePoint within the RptContainer defines an enable/disable switch:

[SWS_Rte_06120] d The RTE generator shall create calls to RP service func-
tions defined by an RptProfile only when the RptContainer’s rptService-
Point parameter is enabled. c(SRS_Rte_00244)

4.9.5.2.1 RP Stim Enabler

The RP stimulation enabler flag parameter provides runtime control of RP
stimulation by the RP service function. Example 4.37 shows the same value
passed as the <stimEnabler> parameter to both pre- and post RP service
points.

Example 4.37

1 ServiceFunc1_pre(<rptEventId>, <spId1>, <stimEnabler>);
2 if (! <rp_disabler_flag>)
3 {
4 re1();
5 }
6 ServiceFunc1_post(<rptEventId>, <spId2>, <stimEnabler>);

The <stimEnabler> parameter has a fixed datatype of uint8 and is, when config-
ured, exported into RptSupportData as calibratable.

[SWS_Rte_06111] d When RptProfile.stimEnabler is rptEnablerRam or
rptEnablerRom the value of the <stimEnabler> shall be passed as the third pa-
rameter of the RP service function invocation. c(SRS_Rte_00244)

[SWS_Rte_06112] d When RptProfile.stimEnabler is none the third parameter
of the RP service function invocation shall be 0 (zero). c(SRS_Rte_00244)

[SWS_Rte_06115] d The RTE generator shall reject configurations where the Rpt-
Profile.stimEnabler is rptEnablerRamAndRom. c(SRS_Rte_00244)

Each RP service point has its own <stimEnabler> parameter. As a conse-
quence, there are as many <stimEnabler> parameters as there are enabled RP
service points, i.e. 1000 Service points with enabled RptProfile.stimEnabler
will result in 1000 calibratable <stimEnabler> parameters.

As well as instantiating the <stimEnabler> parameter the RTE generate must output
information in the generated RptSupportData to enable down-stream tools to locate
the calibratable parameter.

423 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06110] d When RptProfile.stimEnabler is not none the <sti-
mEnabler> description shall be exported in the RptSupportData. c(SRS_Rte_00244)

The calibratable <stimEnabler> parameters are accessed by MC or RP tools. To
enable the identification of different parameters the name of the generated calibratable
value includes the name of the hooked RTE/BSW Event.

[SWS_Rte_06109] d The name of generated <stimEnabler> parameter shall in-
clude the name of hooked SwComponentPrototype and RTEEvent/BswEvent to
be referenced. c(SRS_Rte_00244)

4.9.5.3 Integration

There are two possibilities on how to integrate a RP service point pre-build; either
as SWC Internal inserted by the SWC developer or as RTE Assigned created by the
RTE generator.

SWC Internal In this scenario the RP service function signature of the BSW that
provides the service is known by the SWC developer.

The SWC developer implements the RP service function calls at required
positions within the RunnableEntity code, typically one right before and a sec-
ond one right after every area to be prepared for bypassing. This mechanism is
typically used in migration scenarios where a single RunnableEntity contains
multiple functionality.

The SWC developer has to document the integrated RP service point,
whether used for sampling or stimulating RP data, in the context of the
RunnableEntity information of the AUTOSAR SWC description.

In this scenario there is no requirement for the RTE generator to insert RP ser-
vice point calls within generated code. In addition, the RTE generator is not
responsible for assignment of RP service point ids instead these are se-
lected when the RP service functions invocations are created. However
the RTE generator must ensure that the description of the SWC’s service hooks
is exported for subsequent tools.

RTE Assigned In this scenario the RTE generator evaluates the SWC descriptions
for required SWC RP service points and adds them at dedicated positions
before and after the invocation of a RunnableEntity.

In the following discussion the positions for the invocation of SWC RP service
points is defined by the following pseudo-code for the invocation of a runnable
entity:

Example 4.38

1 [Point A]
2 <update context-local buffers>
3 <VFB Runnable Start>();

424 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4 [runnable invocation]
5 <VFB Runnable Return>();
6 [Point B]
7 <update global buffers>
8 <RTE notifications>

[SWS_Rte_06064] d When an RptContainer references a SwComponent-
Prototype, the RTE generator shall insert RP service points at both
[Point A] and [Point B] for each RptProfile for all applicable RTE-
Event/BswEvent(s). c(SRS_Rte_00244)

[SWS_Rte_06089] d When an RptContainer references an RTEEvent/Bsw-
Event in a SwComponentPrototype, the RTE generator shall insert RP ser-
vice points at both [Point A] and [Point B] for each applicable Rpt-
Profile. c(SRS_Rte_00244)

[SWS_Rte_06090] d When an RptContainer references an Variable-
DataPrototype, the RTE generator shall insert RP service points at
both [Point A] and [Point B] for each applicable RptProfile for each
RTEEvent/BswEvent that can read/write the VariableDataPrototype. c
(SRS_Rte_00244)

The invocation of a RunnableEntity may be conditional, for example, as a
result of an execution pre-scaling when multiple RTEEvents are mapped to the
task. If so then the execution of the RP service points has the same condi-
tionality.

[SWS_Rte_06065] d The RTE generator shall invoke the SWC RP service
points at [Point A] and [Point B] only if the ExecutableEntity is sub-
ject to invocation at [runnable invocation]. c(SRS_Rte_00244)

Note that the invocation of the ExecutableEntity may still be subject to omis-
sion if the execution would conflict with the bypass functionality; see below.

4.9.5.4 Service Point IDs

The RTE input configuration may include SWCs from multiple suppliers that each con-
tain SWC-Internal RP service point ids. The same RP service point id
must never be used twice within the same ECU application and therefore the RTE
generator is required to reject input configurations that result in duplications – it is not
permitted to remap RP service point ids.

[SWS_Rte_06066] d The RTE generator shall reject configurations that contain SWCs
with duplicate SWC-Internal RP service point ids. c(SRS_Rte_00244)

425 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In addition to SWC-Internal RP service point ids the RTE generator is required
to assign RP service point ids used for RTE hooks. To avoid conflicts with SWC-
Internal RP service point ids the input configuration describes permitted range
for IDs for such RP service points.

To enable Pre and Post RP service point invocations to be distinguished differ-
ent RP service point id are used – a unique ID is used for each RP service
point invocation.

[SWS_Rte_06067] d The RTE generator shall assign the next unused RP service
point id for the RP service point invocations at [Point A] and [Point B]
from the permitted range. c(SRS_Rte_00244)

[SWS_Rte_06068] d The permitted range is defined as minServicePointId to
maxServicePointId inclusive. c(SRS_Rte_00244)

The RP service point ids assigned by the RTE generator are documented in the
generated configuration as part of the RptProfile. See Example 4.38 for locations
of [Point A] and [Point B].

4.9.5.5 Conditional RunnableEntity Invocation

In addition to data bypass the invocation of the RP service function at [Point
A] (see Example 4.38) may trigger computation that replaces the execution of the
original RunnableEntity either because the execution would be redundant or have
unwanted side effects. Thus it is possible to make the execution conditional and thus
the [runnable invocation] element of the pseudo-code above is replaced by:

Example 4.39

1 if (FALSE == <RPRunnableDisablerFlag>)
2 {
3 [VFB Trace event - runnable start]
4 symbol() /* runnable invocation */
5 [VFB Trace event - runnable return]
6 }

The conditional execution of the original symbol is unrelated to the normal condi-
tionality of the invocation, e.g. due to the presence of prescalers created by the RTE
generator when multiple RTEEvents are mapped to the task. Mofication, e.g. incre-
ment, of the prescalers should occur even when the RP runnable disabler flag
is TRUE. Example 4.40 shows the combination of RP runnable disabler flag
with RTE generated conditional execution that invokes the runnable once every five
task activations.

Example 4.40

1 if (--Rte_RunnableDivide == 0)
2 {

426 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3 Rte_RunnableDivide = 5u;
4 if (FALSE == <RPRunnableDisablerFlag>)
5 {
6 [VFB Trace event - runnable start]
7 symbol() /* runnable invocation */
8 [VFB Trace event - runnable return]
9 }

10 }

[SWS_Rte_06069] d When the RP rptExecutionControl is conditional the
RTE generator shall invoke the symbol only if the runnable disabler flag is FALSE. c
(SRS_Rte_00244)

Note that there is no ability to control the execution of RTEEvents since the intent is to
avoid the side effects of the runnable whatever the triggering event therefore the same
conditionality applies to all uses of the runnable.

[SWS_Rte_06077] d For each conditional in the input rptExecutionControl
the RTE generator shall document the generated RP runnable disabler flag in
the exported RptSupportData. c(SRS_Rte_00244)

4.9.5.6 Interaction with RTE-Managed buffers

The <update context-local buffers> pseudo-code is responsible for manip-
ulating the RTE-managed context-local buffers (i.e. those used for implicit communi-
cation) based on updates performed by the RP service function invocations –
it must therefore happen after the invocations at [Point A] and [Point B] ((see
Example 4.38 for locations of [Point A] and [Point B]).

The <update context-local buffers> pseudo-code uses the RP global
buffers to update the context-local buffers and thus, potentially, use values provided
by the RP service function [Point A].

As an example of rptLevel3 bypass (which includes the ability to enable/disable
bypass at run-time) the <update context-local buffers> pseudo-code could
be implemented as follows:

Example 4.41

1 /* RP global measurement buffer = global master data */
2 SWCB_Bypass_P1_D_Original = global_P1_D;
3

4 if (FALSE == SWCB_Bypass_P1_D_Enable)
5 {
6 /* Bypass disabled */
7 /* RP global buffer = global master data */
8 SWCB_Bypass_P1_D = SWCB_Bypass_P1_D_Original;
9 }

10

11 /* context-local buffer */

427 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

12 local_P1_D = SWCB_Bypass_P1_D;

Similarly the <update global buffers> pseudo-code that follows [Point B]
uses the RTE-managed context-local buffers to update the RTE-managed global
buffers with either RP global buffer values or context-local values (if using
rptLevel2 or rptLevel3 bypass which include run-time bypass enable/disable).
Consequently the <update global buffers> must occur after RP service
point [Point B] but before configured notifications have been made at <RTE no-
tifications>.

Example 4.42

1 /* RP global measurement buffer = context-local buffer */
2 SWCB_Bypass_P2_D_Original = local_P2_D;
3

4 if (FALSE == SWCB_Bypass_P2_D_Enable)
5 {
6 /* Bypass disabled */
7 /* RP global buffer = context-local buffer */
8 SWCB_Bypass_P2_D = local_P2_D;
9 }

10

11 global_P2_D = SWCB_Bypass_P2_D;

4.9.5.7 Export

For both SWC-Internal and RTE-Assigned RP service point ids the RTE gener-
ator must describe the invoked RP service functions so that the information can
be accessed by the RP system after RTE generation13.

The exported RTE McSupportData is used to describe the generated configuration and
consists of:

• RptSupportData describing RP execution contexts

• Invoked RP service points (whether SWC-Internal or RTE-Assigned).

• Relationship between RptExecutableEntityEvent and pre-functional RP
service point.

• Relationship between RptExecutableEntityEvent and post-functional RP
service point.

• Relationship between RptExecutableEntityEvent and RP runnable
disabler flag.

13To be fully used by an RPT system the information exported by the RTE generator may need sub-
sequent augmentation to add details that are not known to the RTE generator, e.g. address information.

428 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

In the following requirements [Point A] and [Point B] refer to locations defined
in Example 4.38.

[SWS_Rte_06080] d When a RunnableEntity has implicit read access to a Vari-
ableDataPrototype for which RP service points are generated according to
[SWS_Rte_06064] then the RTE generator shall export rptServicePointPre at the
according RptExecutableEntityEvent documenting the RP service points
generated at [Point A]. c(SRS_Rte_00244)

[SWS_Rte_06081] d When a RunnableEntity has implicit write access to a
VariableDataPrototype for which RP service points are generated accord-
ing to [SWS_Rte_06064] then the RTE generator shall export rptServicePoint-
Post at the according RptExecutableEntityEvent documenting the RP ser-
vice points generated at [Point B]. c(SRS_Rte_00244)

[SWS_Rte_06082] d When a RunnableEntity has explicit read access to a
VariableDataPrototype for which RP service points are generated accord-
ing to [SWS_Rte_06064] then the RTE generator shall export rptServicePoint-
Post at the according RptExecutableEntityEvent documenting the RP ser-
vice points generated at [Point B]. c(SRS_Rte_00244)

[SWS_Rte_06083] d When a RunnableEntity has explicit write access to a
VariableDataPrototype for which service points are generated according to
[SWS_Rte_06064], [SWS_Rte_06089] or [SWS_Rte_06090] then the RTE gener-
ator shall export rptServicePointPre at the according RptExecutableEn-
tityEvent documenting the RP service points generated at [Point A]. c
(SRS_Rte_00244)

[SWS_Rte_06084] d When a RunnableEntity has explicit read or write access
to a VariableDataPrototype for which service points are generated according
to [SWS_Rte_06064], [SWS_Rte_06089] or [SWS_Rte_06090] then the RTE gen-
erator shall export rptServicePointPre at the according RptExecutableEn-
tityEvent documenting the RP service points generated at [Point A]. c
(SRS_Rte_00244)

[SWS_Rte_06085] dWhen a RunnableEntity has explicit read or write access to a
VariableDataPrototype for which RP service points are generated accord-
ing to [SWS_Rte_06064], [SWS_Rte_06089] or [SWS_Rte_06090] then the RTE gen-
erator shall export rptServicePointPost at the according RptExecutableEn-
tityEvent documenting the RP service points generated at [Point B]. c
(SRS_Rte_00244)

4.10 Data Transformation

Transformers enable AUTOSAR systems to use a data transformation mechanism to
linearize and transform data. They can be concatenated to transformer chains and

429 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

are executed by the RTE for inter-ECU communication which is configured to be trans-
formed. The input of the first transformer in the chain gets the data from the RTE.
Each following transformer uses the output of the preceding transformer as input. All
transformers following the first one then have a generic signature with just a byte array
as IN and OUT parameter. Such an architecture could be used to design systems,
where you can flexibly add functionality like safety or security protection to a serialized
stream.

The transformers for inter-ECU communication are configured in the System Descrip-
tion.

Furthermore the RTE can execute transformers for intra-ECU communication to trans-
form different representations of data structures between software components or ba-
sic software modules within one ECU. Transformers for intra-ECU communication are
restricted to unqueued S/R communication. In addition no transformer chains are appli-
cable. Those limitations are formulated since for the currently known use-cases there
is no need for introducing this functionality.

The execution of the transformers and the necessary buffer handling is coordinated by
the RTE.

4.10.1 Execution of Transformer

4.10.1.1 Transformer for inter-ECU communication

[SWS_Rte_08794] d The RTE shall execute data transformation for inter-ecu commu-
nication if a DataTransformation is referenced by an ISignal that references a
SystemSignal which

1. is referenced by a SenderReceiverToSignalMapping, ClientServer-
ToSignalMapping or TriggerToSignalMapping

2. or is referenced by a SystemSignalGroup in the role transformingSys-
temSignal if the SystemSignalGroup is referenced by a SenderReceiver-
ToSignalGroupMapping

c(SRS_Rte_00247)

Note:
In case of fan-in of inter-ECU communication where the ISignals use different data
transformations, the RTE has to ensure that it executes the correct transformer chain
that belongs to exactly that ISignal. This could be achieved for example by remem-
bering within the Com callback which DataTransformation belongs to the received
data.

[SWS_Rte_08795] d The RTE shall execute all transformers of a transformer chain
in their execution order for queued (event semantics) sender-receiver communication
even when the queue is empty (because no data are available) if executeDespite-
DataUnavailability of DataTransformation is enabled and the Rte_Receive

430 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

API has non-blocking characteristics according to [SWS_Rte_01288]. The input to
all the transformers in the chain shall be NULL with a dataLength equal to 0. c
(SRS_Rte_00247)

Please note: This functionality is only available on the receiving side of queued
Sender/Receiver communication. Furthermore, if Signal fan-in is used, no signal shall
have the attribute executeDespiteDataUnavailability set to true (see [con-
str_3208]).

There are two main cases considered when executeDespiteDataUnavailabil-
ity is important: an empty queue in case of queued S/R communication and errors in
the COM stack so that the RTE doesn’t get data from Com or LdCom.

[SWS_Rte_08796] d For VariableAccesses in the roles dataReceivePointB-
yArgument, dataReceivePointByValue or dataSendPoint the RTE shall exe-
cute data transformation from within the called RTE API. c(SRS_Rte_00247)

In case of explicit sender-receiver communication, the execution of the data transfor-
mation takes place inside the RTE API which is called by the SWC.

In case of implicit sender-receiver communication, the execution of the data transfor-
mation takes place on sender side between execution of the runnable and handover of
the data to the Com stack and on receiver side between reception of the data from the
Com stack and start of the runnable.

[SWS_Rte_08570] d For VariableAccesses in the dataReadAccess role the RTE
shall execute data transformation after reception of the data from the Com stack and
before start of the runnable/coherency group. c(SRS_Rte_00247)

[SWS_Rte_08571] d For VariableAccesses in the dataWriteAccess role the RTE
shall execute data transformation after termination of the runnable/coherency group
and before handing the data over to the Com stack. c(SRS_Rte_00247)

[SWS_Rte_08596] d For ExternalTriggeringPoints the RTE shall execute data
transformation from within the called RTE API Rte_Trigger. c(SRS_Rte_00247)

In case of external trigger communication, the execution of the data transformation
takes place inside the RTE API which is called by the SWC.

[SWS_Rte_08797] d If transformer is configured to have access to original data, the
RTE shall ensure that these are unchanged until the end of the execution of the trans-
former chain. c(SRS_Rte_00247)

4.10.1.2 Transformer for intra-ECU communication

[SWS_Rte_08105] d The RTE shall execute data transformation for intra-ecu commu-
nication if a DataTransformation is referenced by a DataPrototypeMapping. c
(SRS_Rte_00253)

431 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08107] d For VariableAccess in the roles dataReceivePointB-
yArgument, dataReceivePointByValue or dataSendPoint the RTE shall ex-
ecute data transformation from within the called RTE API. c(SRS_Rte_00253)

In case of implicit sender-receiver communication, the execution of the data
transformation takes place on sender side after execution of the RunnableEn-
tity/BswSchedulableEntity and on receiver side before the start of the
RunnableEntity/BswSchedulableEntity.

[SWS_Rte_08108] d For VariableAccess in the dataReadAccess role the RTE
shall execute data transformation before start of the RunnableEntity/BswSchedu-
lableEntity. c(SRS_Rte_00253)

[SWS_Rte_08109] d For VariableAccess in the dataWriteAccess role the
RTE shall execute data transformation after termination of the RunnableEn-
tity/BswSchedulableEntity. c(SRS_Rte_00253)

4.10.2 Transformer Chains

[SWS_Rte_08798] d The RTE shall support transformer chains (DataTransfor-
mation) with a length up to 255 transformers TransformationTechnology. c
(SRS_Rte_00247)

[SWS_Rte_08110] d The RTE shall support transformer chains (DataTransforma-
tion) only for inter-ecu data transformation. c(SRS_Rte_00247)

[SWS_Rte_08799] d The RTE on sender side shall execute the transformers of the
chain in order. c(SRS_Rte_00247)

[SWS_Rte_08588] d The RTE on receiver side shall execute the retransformers of the
chain in reverse order. c(SRS_Rte_00247)

[SWS_Rte_08589] d The RTE on client side shall execute the transformers of the chain
in order for all IN and IN/OUT arguments of the server call. c(SRS_Rte_00247)

[SWS_Rte_08590] d The RTE on server side shall execute the retransformers of
the chain in reverse order for all IN and IN/INOUT arguments of the server call. c
(SRS_Rte_00247)

Both the IN and the IN/OUT arguments are transferred from the client to the server.

[SWS_Rte_08515] d The RTE on server side shall execute the transformers of the
chain in order for all IN/OUT and OUT arguments and return code of the server opera-
tion. c(SRS_Rte_00247)

[SWS_Rte_08516] d The RTE on client side shall execute the retransformers of the
chain in reverse order for all IN/OUT and OUT arguments and return code of the server
operation. c(SRS_Rte_00247)

432 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

All the IN/OUT arguments, OUT arguments and the return value are transferred from
the server to the client. The IN/OUT arguments have to be included in both communi-
cation directions because these arguments represent bi-directional communication.

[SWS_Rte_08517] d If data conversion does not apply, the input of the first transformer
(in execution order) on sender side for sender-receiver communication shall be the data
from the VariableDataPrototype by the SWC. c(SRS_Rte_00247)

[SWS_Rte_04540] d If data conversion applies, the input of the first transformer (in
execution order) on sender side for sender-receiver communication shall be the con-
verted data from the VariableDataPrototype by the SWC. c(SRS_Rte_00247)

[SWS_Rte_08518] d The input for the first transformer (in execution order) on receiver
side for inter-ECU sender-receiver communication shall be the received data from the
Com stack. c(SRS_Rte_00247)

[SWS_Rte_08519] d The input for the first transformer (in execution order) on client
side for client-server communication shall be the data from the ClientServerOper-
ation by the SWC. c(SRS_Rte_00247)

[SWS_Rte_08520] d The input for the first transformer (in execution order) on server
side for the request of a client-server communication shall be the received data from
the Com stack. c(SRS_Rte_00247)

[SWS_Rte_08521] d The input for the first transformer (in execution order) on server
side for the response of a client-server communication shall be the data from the
ClientServerOperation by the SWC. c(SRS_Rte_00247)

[SWS_Rte_08522] d The input for the first transformer (in execution order) on client
side for the response of a client-server communication shall be the received data from
the Com stack. c(SRS_Rte_00247)

The input for the first transformer (in execution order) on the Trigger Source side for
external trigger communication contains no payload data (See [SWS_Xfrm_00102] in
[26, ASWS Transformer General]).

[SWS_Rte_08597] d The input for the first transformer (in execution order) on Trigger
Sink side for external trigger communication shall be the received data from the Com
stack. c(SRS_Rte_00247)

[SWS_Rte_08523] d The output of the last transformer (in execution order) on sender
side for inter-ECU sender-receiver communication shall be transmitted to the Com
stack. c(SRS_Rte_00247)

[SWS_Rte_08524] d If data conversion does not apply, the output of the last trans-
former (in execution order) on receiver side for sender-receiver communication shall
be handed over to the SWC. c(SRS_Rte_00247)

[SWS_Rte_04541] d If data conversion applies, the RTE shall convert the output of the
last transformer (in execution order) on receiver side for sender-receiver communica-
tion before handing it over to the SWC. c(SRS_Rte_00247)

433 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08525] d The output of the last transformer (in execution order) on client
side for the request of a client-server communication shall be transmitted to the COM
or Com stack. c(SRS_Rte_00247)

[SWS_Rte_08598] d The output of the last transformer (in execution order) on Trigger
Source side for external trigger communication shall be transmitted to the Com stack.
c(SRS_Rte_00247)

[SWS_Rte_08599] d On Trigger Sink side for external trigger communication, the RTE
shall trigger the execution of the triggered RunnableEntity if no transformer in the
transformer chain returns a hard error. c(SRS_Rte_00247)

This means that only the RunnableEntity for the TransformerHardErrorEvents
but not the RunnableEntitys for ExternalTriggerOccurredEvents shall be
triggered if a hard transformer error occurred.

[SWS_Rte_08526] d On server side for client/server communication, the RTE shall
trigger the execution of the triggered RunnableEntity and hand the output of the
last transformer over to the triggered RunnableEntity if and only if no transformer
in the transformer chain returns a hard error. c(SRS_Rte_00247)

[SWS_Rte_08527] d The output of the last transformer (in execution order) on server
side for the response of a client-server communication shall be transmitted to the Com
stack. c(SRS_Rte_00247)

[SWS_Rte_08528] d The output of the last transformer (in execution order) on client
side for the response of a client-server communication shall be handed over to the
SWC. c(SRS_Rte_00247)

[SWS_Rte_08529] d The output of a non-last transformer (in execution order) in a
transformer chain shall be the input for the next transformer in the execution order of
the chain. c(SRS_Rte_00247)

If there is a signal fanout, it is possible to optimize the execution of the transformers. If
multiple transformer chains in case of a signal fanout have the same set of transform-
ers at the beginning of the transformer chain, the RTE optimizes and executes those
transformers only once for all transformer chains together. The result can be shared
between all transformers chains. This is only possible if no ComBasedTransformer
is involved.

[SWS_Rte_08530] d If the XfrmImplementationMapping (see [ECUC_Xf_00001])
maps multiple transformers (which are used to transform different ISignals) to the
same BswModuleEntry, the RTE shall execute those first transformers only once
using the mapped BswModuleEntry and take the result as input for the further trans-
formers for those ISignals. c(SRS_Rte_00247)

434 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Generated Code Configuration

Sending
Application

SWC

ISignal1
Receiving
Application

SWC
ISignal2

Transformer 1

Transformer 2 Transformer 3

Transformer 4

Transformer 5

Transformer 6

Sending
Application

SWC

ISignal1
Receiving
Application

SWC
ISignal2

Transformer 1

Transformer 2 Transformer 3

Transformer 4

Transformer 5

Transformer 6

Transformer 1

Can be
combined

Figure 4.55: Example of a transformer optimization

4.10.3 Buffer Handling

[SWS_Rte_08531] d If the attribute inPlace in the BufferProperties of a Trans-
formationTechnology is set to FALSE, the RTE shall provide a separate buffer to
the transformers in which they can write their output. c(SRS_Rte_00248)

[SWS_Rte_08532] d If the attribute inPlace in the BufferProperties of a Trans-
formationTechnology is set to TRUE, the RTE shall provide one buffer to the trans-
former. c(SRS_Rte_00248)

Rationale: With inplace buffer handling the transformer will read the input data from
a buffer and writes its output into the same buffer. For this, the RTE hands over to
the transformer a pointer and a length which represents the buffer both for input and
output.

[SWS_Rte_08534] d The RTE shall calculate the needed buffer size for the output
buffer size using the formula specified in bufferComputation. c(SRS_Rte_00248)

[SWS_Rte_08535] d The RTE shall interprete the formula specified in the Com-
puScale in the role bufferComputation as a function: OutputBufferLength =
CompuScale(InputBufferLength) c(SRS_Rte_00248)

435 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03867] d The RTE shall calculate the InputBufferLength (used for output
buffer calculation; see [SWS_Rte_08535]) the following way:

• For External Triggers:
The InputBufferLength shall be 0.

• For Sender/Receiver communication:
The InputBufferLength shall be equal to the size needed for VariableDat-
aPrototype of the dataElement of the SenderReceiverInterface that
shall be transformed.

• For Client/Server communication:
The InputBufferLength shall be the sum of

– the size of the TransactionHandle

– for the request: the sizes of the VariableDataPrototypes of all
IN and INOUT arguments of the ClientServerOperation of the
ClientServerInterface

– or for the response:

∗ the sizes of the VariableDataPrototypes of all INOUT and OUT
arguments of the ClientServerOperation of the ClientServer-
Interface

∗ 1 Byte for the return code of the ClientServerOperation of the
ClientServerInterface if at least one possibleError is defined
for the ClientServerInterface.

c(SRS_Rte_00248)

The BufferProperties contain a CompuScale in the role bufferComputation
which describes the computation formula how to create the size of the output buffer
depending of the size of the input buffer. Because transformer chains are modeled for
the sending side, the formula has to be inversed for the receiving side.

The input of this formula is the size of the AUTOSAR data type of the interface.

[SWS_Rte_08536] d The RTE shall consider the headerLength information in the
BufferProperties if inPlace in the BufferProperties is set:

• On the sending side (transformation) the RTE shall increase the buffer from the
beginning by the size given in headerLength.

• On the receiving side (retransformation) the RTE shall decrease the buffer from
the beginning by the size given in headerLength.

c(SRS_Rte_00248)

If a transformer with in-place buffering on the sending side for example is configured to
add a header, the RTE is responsible for handing over a buffer which is large enough.
So the buffer grows beween two transformers if the second of those adds a header

436 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

with in-place buffering. To realize this, the RTE can have a buffer which stays the same
size and is large enough to hold the output of the last transformer but only subsets of
the buffer are handed over to the transformers depending on the buffer size needs of
the specific transformers in the chain. This can be achieved by pointers. A free space
in front of the existing data to insert the header there can be provided by the RTE by
descreasing the pointer address which is handed over to the transformer. This adds
a free space to the beginning of the buffer. It can be determined how long the header
shall be by headerLength of BufferProperties.

The corresponding retransformer on the receiving side (which implements the inverse
operation) has to remove the header. For this, the transformer simply has to make sure
that no part of its output is inside the place of the header which shall be removed. From
this transformer to the next one, the RTE increases the pointer address by the length
of the header and hence removes the header using that mechanism.

[SWS_Rte_08537] d If the attribute inPlace in the BufferProperties of a Trans-
formationTechnology is set and a fanout in the transformer optimization is di-
rectly done before this transformer, the RTE shall duplicate the buffer beforehand. c
(SRS_Rte_00248)

[SWS_Rte_08550] d The RTE shall hand over the original data provided by a software
component to a transformer on the sender side if the attribute needsOriginalData
is set to true. c(SRS_Rte_00248)

4.10.4 Interfaces to Transformer

The interfaces of the transformers depend on the transformer chain in which the trans-
former is placed and the transformed data. They are specified in [26, ASWS Trans-
former General].

Also see chapter 5.10.4.

[SWS_Rte_08538] d The RTE shall determine which data are passed up from a trans-
former to the SWC by using the PortInterfaceMapping or ISignal.Transfor-
mationISignalProps. DataPrototypeTransformationProps.networkRep-
resentationProps (See Chapter 4.3.6.2. c(SRS_Rte_00247)

4.10.5 Error Handling

[SWS_Rte_08539] d The RTE shall evaluate the return codes of transformers. c
(SRS_Rte_00249)

Transformers have a fixed set of errors depending on their transformer class. Each
transformer of a transformer class can only produce those errors.

Errors can be soft errors and hard errors. Soft errors correspond to warnings and hard
errors stop the execution of the transformer chain. For client server communication it

437 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

is possible on the server side to trigger an autonomous error reaction which generates
the response of the client server communication automatically without involvement of
any runnable.

[SWS_Rte_03608] d If there is a PortAPIOption with the attribute errorHan-
dling set to transformerErrorHandling referencing a PortPrototype to
which no data transformation applies, the Rte_TransformerClass shall be set to
RTE_TRANSFORMER_UNSPECIFIED and Rte_TransformerErrorCode to E_OK. c
(SRS_Rte_00249)

Rationale: The generation condition of the optional OUT parameter transformer-
Error only depends on the attribute errorHandling. Nevertheless it is possible to
integrate such SW-Cs supporting transformerErrorHandling without any trans-
formers. And in this case the data transformation is always logically assumed to be
successful.

[SWS_Rte_08540] d The RTE shall continue with the execution of a transformer chain
if a transformer returns a soft error. c(SRS_Rte_00249)

[SWS_Rte_08541] d The RTE shall abort the execution of a transformer chain if a
transformer returns a hard error and executeDespiteDataUnavailability of the
DataTransformation is set to false. c(SRS_Rte_00249)

[SWS_Rte_08424] d The RTE shall continue with the execution of a transformer chain
if a transformer returns a hard error and executeDespiteDataUnavailability of
the DataTransformation is set to true. c(SRS_Rte_00249)

A transformer shall not modify its output buffer, when it returns a hard error to the RTE
(see [SWS_Xfrm_00051]).

To return the transformer errors to the runnables, the RTE APIs which can trigger
transformer executions have a parameter which is written by the RTE and read by the
SWC if the attribute errorHandling of PortAPIOption is set to transformer-
ErrorHandling.

[SWS_Rte_08558] d If a transformer which doesn’t transform the request of a client
server communication on the server side (i.e., a transformer that either transforms the
request of a client server communication on the client side or transforms the response
of a client server communication or transforms an sender receiver communication)
returns a hard error, the Rte shall notify this hard error to the runnable which called the
RTE API that triggered the transformer execution. c(SRS_Rte_00249)

[SWS_Rte_07417] d If a transformer which transforms the request of a client server
communication on the server side returns a hard error, the Rte shall not trigger the
assigned OperationInvokedEvents for the server runnables. c(SRS_Rte_00249)

[SWS_Rte_07418] d If a transformer which transforms the request of a client server
communication on the server side returns a hard error, the Rte shall trigger the as-
signed TransformerHardErrorEvents. c(SRS_Rte_00249)

438 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07419] d If a transformer which transforms the request of a client server
communication on the server side returns a hard error, the transformerClass is
equal to serializer and csErrorReaction is set to autonomous, the Rte shall
trigger an autonomous error reaction. c(SRS_Rte_00249)

[SWS_Rte_07420] d For an autonomous error reaction the Rte shall execute the trans-
former chain of the response of the client server communication on the server side with
the following arguments:

• TransactionHandle shall be handed over in an unaltered fashion

• As return value the error code of the transformer which issued the hard error shall
be used

• All parameters passed by value shall be equal to 0

• All parameters passed by reference shall be equal to NULL_PTR

c(SRS_Rte_00249)

Note: The result of this executed transformer chain can be treated by the Rte like a
regular response.

[SWS_Rte_08559] d If no transformer in the transformer chain returned a hard error
and at least one transformer returned a soft error, the Rte shall notify the first soft error
(in transformer execution order) to the SWC. c(SRS_Rte_00249)

[SWS_Rte_08584] d If multiple custom transformers in a transformer chain (Trans-
formationTechnology with transformerClass set to custom) produce more
than one error and all errors are soft errors, the RTE shall hand over to the SWC
the first soft error of all custom transformers (in execution order). c(SRS_Rte_00249)

[SWS_Rte_08585] d If multiple custom transformers in a transformer chain (Trans-
formationTechnology with transformerClass set to custom) produce more
than one error and on of those is a hard error, the RTE shall hand over to the SWC
this hard error (which caused the abortion of the execution of the transformer chain). c
(SRS_Rte_00249)

4.10.6 COM Based Transformer

The COM Based Transformer approach is an alternative transformation handling which
has several aspects:

• the first transformer is the ’COM Based Transformer’ [23] for the ’serialization’ of
data,

• the further transformers are invoked normally and enhance the array representa-
tion of the data element,

• the handling of the transformed data towards the COM Module [3] is done via a
specific array based signal group API.

439 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The ’COM Based Transformer’ [23] serializes the data elements into the array repre-
sentation exactly as the COM module would have done it.

The System Template [8] provides means to define which data elements shall be han-
dled by the ’COM Based Transformer’ and - via the communication matrix section - also
how the data shall be serialized. This is the basis for the COM module’s configuration
and ’COM Based Transformer’ behavior.

The RTE interacts with the COM module via dedicated array based signal group APIs
for sending and receiving the transformed data.

440 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5 RTE Reference

“Everything should be as simple as possible, but no simpler.”
– Albert Einstein

5.1 Scope

This chapter presents the RTE API from the perspective of AUTOSAR applications
and basic software – the same API applies to all software whether they are AUTOSAR
software-components or basic software.

Section 5.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 5.3 describes the header files used by the
RTE and the files created by an RTE generator. The data types used by the API are
described in Section 5.5 and Sections 5.6 and 5.7 provide a reference to the RTE API
itself including the definition of runnable entities. Section 5.11 defines the events that
can be monitored during VFB tracing.

5.1.1 Programming Languages

The RTE is required to support components written using the C and C++ programming
languages [SRS_Rte_00126] as well as legacy software modules. The ability for mul-
tiple languages to use the same generated RTE is an important step in reducing the
complexity of RTE generation and therefore the scope for errors.

[SWS_Rte_01167] d The RTE shall be generated in C. c(SRS_Rte_00126)

[SWS_Rte_01168] d All RTE code, whether generated or not, shall conform to the
MISRA C standard [27]. In technically reasonable, exceptional cases MISRA viola-
tions are permissible. Except for MISRA rules #5.1 to #5.5 and and directive #1.1,
such violations shall be clearly identified and documented. Specified MISRA violations
are defined in Appendix C. In realistic use cases, the RTE will generate C identifiers
(functions, types, variables, etc) whose name will be longer than the maximum size
supported by the MISRA C standard (rules #5.1 to #5.5 and directive #1.1). Users
should configure the RTE to indicate the maximum C identifiers’ size supported by
their tool chain to make sure that no issues will be caused by these MISRA violations.
c(SRS_BSW_00007)

Specified MISRA violations are defined in Appendix C.

In realistic use cases, the RTE will generate C identifiers (functions, types, variables,
etc) whose name will be longer than the maximum size supported by the MISRA C
standard. Users should configure the RTE to indicate the maximum C identifiers’ size
supported by their tool chain to make sure that no issues will be caused by these
MISRA violation.

441 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07300] d If a RteToolChainSignificantCharacters limit has been configured,
the RTE generator shall provide the list of C RTE identifiers whose name is not unique
when only the first RteToolChainSignificantCharacters characters are considered. c
(SRS_BSW_00007)

The RTE API presented in Section 5.6 is described using C. The API is also directly
accessible from an AUTOSAR software-component written using C++ provided all API
functions and instances of data structures are imported with C linkage.

[SWS_Rte_01011] d The RTE generator shall ensure that, for a component written in
C++, all imported RTE symbols are declared using C linkage. c(SRS_Rte_00138)

For the RTE API for C and C++ components the import of symbols occurs within the
application header file (Section 5.3.3).

5.1.2 Generator Principles

5.1.2.1 Operating Modes

An object-code component is compiled against an application header file that is cre-
ated during the first “RTE Contract” phase of RTE generation. The object code is then
linked against an RTE created during the second “RTE Generation” phase. To ensure
that the object-code component and the RTE code are compatible the RTE generator
supports compatibility mode that uses well-defined data structures and types for the
component data structure. In addition, an RTE generator may support a vendor oper-
ating mode that removes compatibility between RTE generators from different vendors
but permits implementation specific, and hence potentially more efficient, data struc-
tures and types.

[SWS_Rte_01195] d All RTE operating modes shall be source-code compatible at the
SW-C level. c(SRS_Rte_00024, SRS_Rte_00140)

Requirement [SWS_Rte_01195] ensures that a SW-C can be used in any operating
mode as long as the source is available. The converse is not true – for example, an
object-code SW-C compiled after the “RTE Contract” phase must be linked against an
RTE created by an RTE generator operating in the same operating mode. If the vendor
mode is used in the “RTE Contract” phase, an RTE generator from the same vendor
(or one compatible to the vendor-mode features of the RTE generator used in the “RTE
Contract” phase) has to be used for the “RTE Generation” phase.

5.1.2.1.1 Compatibility Mode

Compatibility mode is either enabled in the default operating mode for an RTE genera-
tor or specific for a SW-C that is delivered as object code (i.e. object-code SW-C) and
guarantees compatibility even between RTE generators from different vendors through

442 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the use of well-defined, “standardized”, data structures. The data structures that are
used by the generated RTE in the compatibility mode are defined in Section 5.4.

Support for compatibility mode is required and therefore is guaranteed to be imple-
mented by all RTE generators.

[SWS_Rte_01151] d The compatibility mode shall be the default operating mode and
shall be supported by all RTE generators, whether they are for the “RTE Contract” or
“RTE Generation” phases. c(SRS_Rte_00145)

[SWS_Rte_03871] d The RTE generator shall enable the compatibility mode for all
SW-Cs that are delivered as object code. c(SRS_Rte_00145)

Note: Whether a SW-C is delivered as source code or object code can be determined
from the codeDescriptor of the respective SW-C implementation.

The compatibility mode uses custom (generated) functions with standardized names
and data structures that are defined during the “RTE Contract” phase and used when
compiling object-code components.

[SWS_Rte_01216] d SW-Cs that are compiled against an “RTE Contract” phase ap-
plication header file (i.e. object-code SW-Cs) generated in compatibility mode shall be
compatible with an RTE that was generated in compatibility mode. c(SRS_Rte_00145)

The use of well-defined data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but have the advantage that RTE generators from different
vendors can be used to compile a binary-component and to generate the RTE.

Note that even when an RTE generator is operating in compatibility mode the data
structures used for source-code components are not defined thus permitting vendor-
specific optimizations to be applied.

5.1.2.1.2 Vendor Mode

Vendor mode is an optional operating mode where the data structures defined in the
“RTE Contract” phase and used in the “RTE Generation” phase are implementation
specific rather than “standardized”.

[SWS_Rte_01152] d An RTE generator may optionally support vendor mode. c
(SRS_Rte_00083)

The data structures defined and declared when an RTE generator operates in vendor
mode are implementation specific and therefore not described in this document. This
omission is deliberate and permits vendor-specific optimizations to be implemented for
object-code components. It also means that RTE generators from different vendors
are unlikely to be compatible when run in the vendor mode.

443 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01234] d An AUTOSAR software-component shall be assumed to be
operating in “compatibility” mode unless “vendor mode” is explicitly requested. c
(SRS_Rte_00145, SRS_Rte_00146)

The potential for more efficient implementations of object-code components offered by
the vendor mode comes at the expense of requiring high cohesion between object-
code components (compiled after the “RTE Contract” phase) and the generated RTE.
However, this is not as restrictive as it may seem at first sight since the tight coupling
is also reflected in many other aspects or the AUTOSAR methodology, not least of
which is the requirement that the same compiler (and compatible options) is used when
compiling both the object-code component and the RTE.

5.1.2.2 Optimization Modes

The actual RTE code is generated – based on the input information – for each ECU
individually. To allow optimization during the RTE generation one of the two general
optimization directions can be specified: MEMORY consumption or execution RUNTIME.

[SWS_Rte_05053] d The RTE Generator shall optimize the generated RTE code ei-
ther for memory consumption or execution runtime depending on the provided input
information RteOptimizationMode. c(SRS_Rte_00023)

5.1.2.3 Build support

The generated RTE code has to respect several rules in order to be integrated with
other AUTOSAR software in the build process.

[SWS_Rte_05088] d All memory1 allocated by the RTE shall be wrapped in the Mem-
ory Allocation Keyword as defined in the Specification of Memory Mapping [28] using
RTE_<SCOPE> as the <PREFIX> where <SCOPE> is either

• the shortName of the AtomicSwComponentType

or

• the shortName of the EcucPartition the allocated memory object belongs to

or

• one of the defined <SCOPE>s in [SWS_Rte_07421], [SWS_Rte_07422],
[SWS_Rte_07423], [SWS_Rte_07424], or [SWS_Rte_07425].

c(SRS_Rte_00148, SRS_Rte_00169)

Due to the structure of the AUTOSAR Meta Model the input configuration might contain
several DataPrototypes which are resulting only in one memory object. In this case

1memory refers to all elements in the generated RTE which will later occupy space in the ECU’s
memory and is directly associated with the RTE. This includes code, static data, parameters, etc.

444 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

it is required to define rules which SwAddrMethod is used to allocate the memory and
to decide about its initialization. Therefore precedence rules for SwAddrMethods are
defined by [SWS_Rte_07590] and [SWS_Rte_07591].

In order to ensure proper allocation of the variables and code instantiated by RTE, the
RTE code utilizes the memory mapping mechanism described in document [28]. The
requirements below follow the principles of the document [28], section "Requirements
on implementations using memory mapping header files for BSW Modules and Soft-
ware Components". However the basic granularity of constants and variables created
due to DataPrototypes in the input configuration is driven by the properties of the
applied data types and the applied SwAddrMethods.

[SWS_Rte_07421] d For component data structure (CDS) instances the <SCOPE> for
the Memory Allocation Keyword shall be set to the shortName of the AtomicSwCom-
ponentType they belong to. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07422] d For AutosarDataPrototype implementations the <SCOPE> for
the Memory Allocation Keyword shall be set to the shortName of the AtomicSwCom-
ponentType they belong to. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07423] d For mode machine instance implementations the <SCOPE>
for the Memory Allocation Keyword shall be set to the shortName of the Atomic-
SwComponentType they belong to. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07424] d For RTE APIs implemented as functions the <SCOPE> for the
Memory Allocation Keyword shall be set to the shortName of the AtomicSwCompo-
nentType they belong to. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07425] d For RTE Call-back implementations the <SCOPE> for the Memory
Allocation Keyword shall be set according table 5.1 where:

<sn> is the name of the COM signal,

<sg> is the name of the COM signal group,

<sn> is the name of the LdCom signal/I-PDU,

<c> is the shortName of the NvBlockSwComponentType, and

<d> is the shortName of the NvBlockDescriptor

c(SRS_Rte_00148, SRS_Rte_00169)

Callback Function SCOPE

Rte_PartitionTerminated shortName of the EcucPar-
tition

Rte_PartitionRestarting shortName of the EcucPar-
tition

5

445 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Callback Function SCOPE

Rte_RestartPartition shortName of the EcucPar-
tition

Rte_COMCbkTAck_<sn> SIG_<sn>

Rte_COMCbkTErr_<sn> SIG_<sn>

Rte_COMCbkInv_<sn> SIG_<sn>

Rte_COMCbkRxTOut_<sn> SIG_<sn>

Rte_COMCbkTxTOut_<sn> SIG_<sn>

Rte_COMCbk_<sg> SIG_<sg>

Rte_COMCbkTAck_<sg> SIG_<sg>

Rte_COMCbkTErr_<sg> SIG_<sg>

Rte_COMCbkInv_<sg> SIG_<sg>

Rte_COMCbkRxTOut_<sg> SIG_<sg>

Rte_COMCbkTxTOut_<sg> SIG_<sg>

Rte_COMCbk_<sn> SIG_<sg>

Rte_LdComCbkRxIndication_<sn> SIG_<sn>

Rte_LdComCbkStartOfReception_<sn> SIG_<sn>

Rte_LdComCbkCopyRxData_<sn> SIG_<sn>

Rte_LdComCbkTpRxIndication_<sn> SIG_<sn>

Rte_LdComCbkCopyTxData_<sn> SIG_<sn>

Rte_LdComCbkTpTxConfirmation_<sn> SIG_<sn>

Rte_LdComCbkTriggerTransmit_<sn> SIG_<sn>

Rte_LdComCbkTxConfirmation_<sn> SIG_<sn>

Rte_SetMirror <c>_<d>

Rte_GetMirror NVM_<c>_<d>

Rte_NvMNotifyJobFinished <c>_<d>

Rte_NvMNotifyInitBlock <c>_<d>

Table 5.1: <SCOPE> for the Memory Allocation Keywords of RTE Call-back implementa-
tions

[SWS_Rte_07589] d For AutosarDataPrototype implementations the <SEG-
MENT> infix for the Memory Allocation Keyword shall be set to the shortName of
the preceding SwAddrMethod if there is one defined and if [SWS_Rte_07592] is not
applicable. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07426] d For RTE APIs implemented as functions the <SEGMENT> in-
fix for the Memory Allocation Keyword shall be set to CODE. c(SRS_Rte_00148,
SRS_Rte_00169)

[SWS_Rte_07427] d For RTE Call-back implementations the <SEGMENT> infix
for the Memory Allocation Keyword shall be set to CODE. c(SRS_Rte_00148,
SRS_Rte_00169)

446 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07047] d If the memoryAllocationKeywordPolicy of the preceding
SwAddrMethod is set to addrMethodShortName the <ALIGNMENT> suffix with lead-
ing underscore of the Memory Allocation Keyword used by the AutosarDat-
aPrototype implementations and PerInstanceMemory implementations
shall be omitted. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07048] d If the memoryAllocationKeywordPolicy of the preced-
ing SwAddrMethod is set to addrMethodShortNameAndAlignment the <ALIGN-
MENT> suffix with leading underscore of the Memory Allocation Keyword
used by the AutosarDataPrototype implementations and PerInstance-
Memory implementations shall be set to the resulting alignment as defined in
[SWS_Rte_07049], [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052] and
[SWS_Rte_07053]. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_08303] d The alignment of a PerInstanceMemory shall be set to UN-
SPECIFIED. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07049] d The alignment defined by the preceding (see [SWS_Rte_07196])
swAlignment attribute of a AutosarDataPrototype precedes the alignment
defined by the ImplementationDataType related to the AutosarDataProto-
type as defined in [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052] and
[SWS_Rte_07053]. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07050] d The alignment of a AutosarDataPrototype related to a Prim-
itive Implementation Data Type or Array Implementation Data Type
shall be set to the baseTypeSize of the referred SwBaseType. c(SRS_Rte_00148,
SRS_Rte_00169)

Note: Requirement [SWS_Rte_07050] uses "size" rather than "alignment" as it is con-
sidered to be the integrator’s job to ensure via appropriate memory mapping configura-
tion (i.e. using the proper alignment #pragmas or omitting them at all to let the compiler
decide) that the platform specific alignment requirements of objects of the respective
size are honored.

[SWS_Rte_07051] d The alignment of a AutosarDataPrototype related to
a Structure Implementation Data Type or Union Implementation Data
Type shall be set to to biggest baseTypeSize of the SwBaseTypes used by the ele-
ments. c(SRS_Rte_00148, SRS_Rte_00169)

Note: According [SWS_Rte_07051] structures and unions are aligned according the
size of the biggest primitive element in the structure.

[SWS_Rte_07052] d The alignment of a AutosarDataPrototype related to a Re-
definition Implementation Data Type shall be determined from the rede-
fined ImplementationDataType. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07053] d The alignment of a AutosarDataPrototype related to a
Pointer Implementation Data Type shall be set to PTR. c(SRS_Rte_00148,
SRS_Rte_00169)

447 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03868] d The alignment of an AutosarDataPrototype typed by an
Array Implementation Data Type, or Structure Implementation Data
Type, or Union Implementation Data Type which solely contains elements
typed by Pointer Implementation Data Type shall be set to PTR. c
(SRS_Rte_00148, SRS_Rte_00169)

Note: If the RTE generator does not implement the memory objects related to Vari-
ableDataPrototypes and ParameterDataPrototypes for instance due to com-
munication via IOC the assigned SwAddrMethods might have no effect on the gener-
ated RTE code.

[SWS_Rte_07592] d If the RTE Generator requires several non automatic memory
objects per AutosarDataPrototypes (e.g. due to partitioning) the RTE Genera-
tor is permitted to select the <SEGMENT> infix for the auxiliary memory objects. c
(SRS_Rte_00148, SRS_Rte_00169)

Note: For definitions and declarations for memory objects allocated by the RTE and
implementing AutosarDataPrototypes without an assigned SwAddrMethod the
RTE Generator is permitted to select the <SEGMENT> infix but still has to follow
[SWS_Rte_05088].

[SWS_Rte_08787] d The <NAME> part of the memory allocation keyword shall ad-
here to the following pattern: <SEGMENT>[_<ALIGNMENT>] c(SRS_Rte_00148,
SRS_Rte_00169)

[SWS_Rte_07590] d The SwAddrMethod of a AutosarDataPrototype in the
PPortPrototype precedes the assigned SwAddrMethod(s) of the AutosarDat-
aPrototype in the RPortPrototype and PRPortPrototype. c(SRS_Rte_00148,
SRS_Rte_00169)

[SWS_Rte_06741] d The SwAddrMethod of a AutosarDataPrototype in the PR-
PortPrototype precedes the assigned SwAddrMethod(s) of the AutosarDat-
aPrototype in the RPortPrototype. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07591] d The SwAddrMethod of the ramBlocks has always higher prece-
dence as the assigned SwAddrMethods of the VariableDataPrototypes in the
PortPrototypes. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_05089] d The RTE Generator shall provide information on the used mem-
ory segments and their attributes from [SWS_Rte_05088] in the generated Basic Soft-
ware Module Description(see [SWS_Rte_05086]). The information shall be provided
in the MemorySection elements of the Basic Software Module Description [9]. c
(SRS_Rte_00148, SRS_Rte_00169, SRS_Rte_00170)

[SWS_Rte_05090] d The RTE Generator shall provide information about the gener-
ated artifacts which are produced during the RTE generation, using the generated
Basic Software Module Description(see [SWS_Rte_05086]). The information shall be
provided in the BswImplementation::generatedArtifact elements of the Basic
Software Module Description [9]. c()

448 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.1.2.4 Software Component Namespace

The concept of RTE requires that objects and definitions which are related to one soft-
ware component are generated in a global name space. Nevertheless in this global
name space labels have to be unique for instance to support a correct linkage by
C Linker Locater. To ensure unique labels such objects and definitions related to a
specific software component are typically prefixed or infixed with the component type
symbol.
When AtomicSwComponentTypes of several vendors are integrated in the same
ECU name clashes might occur if the identical component type name is accidentally
used twice. To ease the dissolving of name clashes the RTE supports the supersed-
ing of the AtomicSwComponentType.shortName with the SymbolProps.symbol
attribute.

The resulting name related to an AtomicSwComponentType is called component
type symbol in this document.

[SWS_Rte_06714] d The component type symbol shall be the value of the Sym-
bolProps.symbol attribute of the AtomicSwComponentType if the symbol attribute
is defined. c()

[SWS_Rte_06715] d The component type symbol shall be the shortName of the
AtomicSwComponentType if no symbol attribute for this AtomicSwComponent-
Typeis defined. c()

Please note that the component type symbol is not applied for file names, e.g
Application Header File or includes of Memory Mapping Header files. Its expected that
a build environment can handle two equally named files.

5.1.3 Generator external configuration switches

There are use-cases where there is need to influence the behavior of the RTE Gen-
erator without changing the RTE Configuration description. In order to support such
use-cases this section collects the external configuration switches.

Note: it is not specified how these switches shall be implemented in the actual RTE
Generator implementation.

Unconnected R-Port check

[SWS_Rte_05099] d The RTE Generator shall support the external configuration
switch strictUnconnectedRPortCheck which, when enabled, forces the RTE
Generator to consider unconnected R-Ports as an error. c(SRS_Rte_00139)

Missing input configuration check

[SWS_Rte_05148] d The RTE Generator shall support the external configuration
switch strictConfigurationCheck which, when enabled, forces the RTE Gen-
erator to consider missing input configuration information as an error. If the external

449 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

configuration switch strictConfigurationCheck is not provided the value shall be
considered as true. c()

For Details on the use-cases please refer to section 3.7.

Missing initialization values

[SWS_Rte_07680] d The RTE Generator shall support the external configuration
switch strictInitialValuesCheck. This switch, when enabled, forces the RTE
Generator to check initial values against constraints defined in [TPS_SYST_02011],
[SWS_Rte_07642] and [SWS_Rte_07681]. Not fulfilled constraints shall be consid-
ered as errors by the RTE Generator. c(SRS_Rte_00108)

5.2 API Principles

[SWS_Rte_01316] d The RTE shall be configured and/or generated for each ECU. c
(SRS_Rte_00021)

Part of the process is the customization (i.e. configuration or generation) of the RTE
API for each AUTOSAR software-component on the ECU. The customization of the
API implementation for each AUTOSAR software-component, whether by generation
anew or configuration of library code, permits improved run-time efficiency and reduces
memory overheads.

The design of the RTE API has been guided by the following core principles:

• The API should be orthogonal – there should be only one way of performing a
task.

• [SWS_Rte_01314] d The API shall be compiler independent. c(SRS_Rte_00100)

• [SWS_Rte_03787] d The RTE implementation shall use the compiler abstraction.
c(SRS_Rte_00149)

The consequence of [SWS_Rte_03787] is that no additional memory modifiers
(e.g. volatile) are permitted in the signatures of the RTE APIs.

• [SWS_Rte_01315] d The API shall support components where the source-
code is available [SRS_Rte_00024] and where only object-code is available
[SRS_Rte_00140]. c(SRS_Rte_00024, SRS_Rte_00140)

• The API shall support the multiple instantiation of AUTOSAR software-
components [SRS_Rte_00011] that share code [SRS_Rte_00012].

Two forms of the RTE API are available to software-components; direct and indirect.
The direct API has been designed with regard to efficient invocation and includes an
API mapping that can be used by an RTE generator to optimize a component’s API, for
example, to permit the direct invocation of the generated API functions or even eliding
the generated RTE completely. The indirect API cannot be optimized using the API

450 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

mapping but has the advantage that the handle used to access the API can be stored
in memory and accessed, via an iterator, to apply the same API to multiple ports.

5.2.1 RTE Namespace

All RTE symbols (e.g. function names, global variables, etc.) visible within the global
namespace are required to use the “Rte” prefix.

[SWS_Rte_01171] d All externally visible symbols created by the RTE generator shall
use the prefix Rte_.

This rule shall not be applied for the following symbols:

• type names representing AUTOSAR Data Types (specified in [SWS_Rte_07104],
[SWS_Rte_07109], [SWS_Rte_07110], [SWS_Rte_07111], [SWS_Rte_07148])

• enumeration literals of implementation data types (specified in
[SWS_Rte_03810])

• range limits of ApplicationDataTypes (specified in [SWS_Rte_05052])

This rule shall be applied for RTE internal types to avoid name clashes with other
modules and SWCs. c(SRS_BSW_00307, SRS_BSW_00300, SRS_Rte_00055)

In order to maintain control over the RTE namespace the creation of symbols in the
global namespace using the prefix Rte_ is reserved for the RTE generator.

The generated RTE is required to work with components written in several source lan-
guages and therefore should not use language specific features, such as C++ names-
paces, to ensure symbol name uniqueness.

5.2.2 Direct API

The direct invocation form is the form used to present the RTE API in Section 5.6. The
RTE direct API mapping is designed to be optimizable so that the instance handle is
elided (and therefore imposes zero run-time overhead) when the RTE generator can
determine that exactly one instance of a component is mapped to an ECU.

All runnable entities for a AUTOSAR software-component type are passed the same
instance handle type (as the first formal parameter) and can therefore use the same
type definition from the component’s application header file.

The direct API can also be further optimized for source code components via the API
mapping.

The direct API is typically implemented as macros that are modified by the RTE gen-
erator depending on configuration. This technique places certain restrictions on how
the API can be used within a program, for example, it is not possible in C to take the

451 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

address of a macro and therefore direct API functions cannot be placed within a func-
tion table or array. If it is required by the implementation of a software-component to
derive a pointer to an object for the port API the PortAPIOption enableTakeAd-
dress can be used. For instance in an implementation of an AUTOSAR Service this
feature might be used to setup a constant function pointer table storing the configura-
tion of callback functions per ID. Additionally the indirect API provides support for API
addresses and iteration over ports.

[SWS_Rte_07100] d If a PortPrototype is referenced by PortAPIOption with en-
ableTakeAddress = TRUE the RTE generator shall provide true/native C functions
(as opposed to function-like preprocessor macros) for the API related to this port. c()

The PortAPIOption enableTakeAddress = TRUE is not supported for software-
components supporting multiple instantiation.

5.2.3 Indirect API

The indirect API is an optional form of API invocation that uses indirection through
a port handle to invoke RTE API functions rather than direct invocation. This form
is less efficient (the indirection cannot be optimized away) but supports a different
programming style that may be more convenient. For example, when using the indirect
API, an array of port handles of the same interface and provide/require direction is
provided by RTE and the same RTE API can be invoked for multiple ports by iterating
over the array.

Both direct and indirect forms of API call are equivalent and result in the same gener-
ated RTE function being invoked.

Whether the indirect API is generated or not can be specified for each software com-
ponent and for each port prototype of the software component separately with the
indirectAPI attribute.

The semantics of the port handle must be the same in both the “RTE Contract” and
“RTE Generation” phases since the port handle accesses the standardized data struc-
tures of the RTE.

It is possible to mix the indirect and direct APIs within the same SW-C, if the indirect
API is present for the SW-C.

The indirect API uses port handles during the invocation of RTE API calls. The type
of the port handle is determined by the port interface that types the port which means
that if a component declares multiple ports typed by the same port interface the port
handle points to an array of port data structures and the same API invoked for each
element.

The port handle type is defined in Section 5.4.2.5.

452 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2.3.1 Accessing Port Handles

An AUTOSAR SW-C needs to obtain port handles using the instance handle before the
indirect API can be used. The definition of the instance handle in Section 5.4.2 defines
the “Port API” section of the component data structure and these entries can be used
to access the port handles in either object-code or source-code components.

The API Rte_Ports and Rte_NPorts provides port data handles of a given interface.
Example 5.1 shows how the indirect API can be used to apply the same operation to
multiple ports in a component within a loop.

Example 5.1

The port handle points to an array that can be used within a loop to apply the same
operation to each port. The following example sends the same data to each receiver:

1 void TT1(Rte_Instance instance)
2 {
3 Rte_PortHandle_interface1_P my_array;
4 my_array=Rte_Ports_interface1_P(instance);
5 uint8 s;
6 for(s = 0u; s < Rte_NPorts_interface1_P(instance); s++) {
7 my_array[s].Send_a(23);
8 }
9 }

Note that if csInterface1 is a client/server interface with an operation op, the
mechanism sketched in Example5.1 only works if op is invoked either by all clients
synchronously or by all clients asynchronously, since the signature of Rte_Call
and the existence of Rte_Result depend on the kind of invocation (see restriction
[SWS_Rte_03605].

5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles

The RTE is required to support access to data with implicit semantics. The required
semantics are subject to two constraints:

• For VariableAccess in the dataReadAccess role, the data accessed by a
runnable entity must not change during the lifetime of the runnable entity.

• For VariableAccess in the dataWriteAccess role, the data written by a
runnable entity is only visible to other runnable entities after the accessing runn-
able entity has terminated.

The generated RTE satisfies both requirements through data copies that are created
when the RTE is generated based on the known task and runnable mapping.

Example 5.2

453 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Consider a data element, a, of port p which is accessed using a VariableAc-
cess in the dataReadAccess role by runnable re1 and a VariableAccess in the
dataWriteAccess role by runnable re2. Furthermore, consider that re1 and re2
are mapped to different tasks and that execution of re1 can pre-empt re2.

In this example, the RTE will create two different copies to contain a to prevent updates
from re2 ‘corrupting’ the value access by re1 since the latter must remain unchanged
during the lifetime of re1.

The RTE API includes three API calls to support VariableAccesses in
the dataReadAccess and dataWriteAccess roles for a software-component;
Rte_IRead (see Section 5.6.18), Rte_IWrite, and Rte_IWriteRef (see Section
5.6.19 and 5.6.20). The API calls Rte_IRead and Rte_IWrite access the data
copies (for read and write access respectively). The API call Rte_IWriteRef returns
a reference to the data copy, thus enabling the runnable to write the data directly. This
is especially useful for Structure Implementation Data Type and Array Im-
plementation Data Type. The use of an API call for reading and writing enables
the definition to be changed based on the task and runnable mapping without affecting
the software-component code.

Example 5.3

Consider a data element, a, of port p which is declared as being accessed using
VariableAccesses in the dataWriteAccess role by runnables re1 and re2 within
component c. The RTE API for component c will then contain four API functions to
write the data element;

1 void Rte_IWrite_re1_p_a(Rte_Instance instance, <type> val);
2 void Rte_IWrite_re2_p_a(Rte_Instance instance, <type> val);
3 <type> Rte_IWriteRef_re1_p_a(Rte_Instance instance);
4 <type> Rte_IWriteRef_re2_p_a(Rte_Instance instance);

The API calls are used by re1 and re2 as required. The definitions of the API depend
on where the data copies are defined. If both re1 and re2 are mapped to the same
task then each can access the same copy. However, if re1 and re2 are mapped to
different (pre-emptable) tasks then the RTE will ensure that each API access a different
copy.

The Rte_IRead and Rte_IWrite use the “data handles” defined in the component
data structure (see Section 5.4.2).

5.2.5 Per Instance Memory

The RTE is required to support Per Instance Memory [SRS_Rte_00013].

The component’s instance handle defines a particular instance of a component and is
therefore used when accessing the Per Instance Memory using the Rte_Pim API.

454 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The Rte_Pim API does not impose the RTE to apply a data consistency mechanism
for the access to Per Instance Memory. An application is responsible for consistency
of accessed data by itself. This design decision permits efficient (zero overhead) ac-
cess when required. If a component possesses multiple runnable entities that require
concurrent access to the same Per Instance Memory, an exclusive area can be used to
ensure data consistency, either through explicit Rte_Enter and Rte_Exit API calls
or by declaring that, implicitly, the runnable entities run inside an exclusive area.

Thus, the Per Instance Memory is exclusively used by a particular software-component
instance and needs to be declared and allocated (statically).

In general there are two different kinds of Per Instance Memory available which are
varying in the typing mechanisms. ’C’ typed PerInstanceMemory is typed by
the description of a ’C’ typedef whereas arTypedPerInstanceMemory (AUTOSAR
Typed Per Instance Memory) is typed by the means of an AutosarDataType. Nev-
ertheless both kinds of Per Instance Memory are accessed via the Rte_Pim API.

[SWS_Rte_07161] d The generated RTE shall declare arTypedPerInstanceMem-
ory in accordance to the associated ImplementationDataType of a particular
arTypedPerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

Note: The related AUTOSAR data type will generated in the RTE Types Header File
(see chapter 5.3.6).

[SWS_Rte_02303] d The generated RTE shall declare ’C’ typed PerInstanceMem-
ory in accordance to the attribute type of a particular PerInstanceMemory. c
(SRS_Rte_00013, SRS_Rte_00077)

In addition, the attribute type needs to be defined in the corresponding software-
component header. Therefore, the attribute typeDefinition of the PerInstance-
Memory contains its definition as plain text string. It is assumed that this text is valid
’C’ syntax, because it will be included verbatim in the application header file.

[SWS_Rte_02304] d The generated RTE shall define the type of a ’C’ typed PerIn-
stanceMemory by interpreting the text string of the attribute typeDefinition of
a particular PerInstanceMemory as the ’C’ definition. This type shall be named
according to the attribute type of the PerInstanceMemory. c(SRS_Rte_00013,
SRS_Rte_00077)

[SWS_Rte_07133] d The type of a ’C’ typed PerInstanceMemory shall be defined
in the RTE Types Header File as

typedef <typedefinition> Rte_PimType_<cts>_<type>;

where <typedefinition> is the content of the typeDefinition attribute of the
PerInstanceMemory,
<type> is the type name defined in the type attribute of the the PerInstanceMem-
ory and
<cts> the component type symbol of the AtomicSwComponentType to which
the PerInstanceMemory belongs.. c(SRS_Rte_00013, SRS_Rte_00077)

455 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03782] d The type of a ’C’ typed PerInstanceMemory shall be defined
in the Application Header File as

typedef Rte_PimType_<cts>_<type> <type>;

where <cts> is the component type symbol of the AtomicSwComponentType
to which the PerInstanceMemory belongs and
<type> is the type name defined in the type attribute of the PerInstanceMemory.
c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07134] d The RTE generator shall generate type definitions for ’C’ typed
PerInstanceMemory (see [SWS_Rte_07133] and [SWS_Rte_03782]) only once
for all ’C’ typed PerInstanceMemorys of same Software Component Type defin-
ing identical couples of type and typeDefinition attributes. c(SRS_Rte_00013,
SRS_Rte_00165)

Note: This shall support, that a Software Component Type can define several PerIn-
stanceMemory’s using the identical ’C’ type.

[SWS_Rte_07135] d The RTE generator shall reject configurations, violating [con-
str_2007], where ’C’ typed PerInstanceMemorys with identical type attributes but
different typeDefinition attributes in the same Software Component Type are de-
fined. c(SRS_Rte_00013, SRS_Rte_00018)

Note: This would lead to an compiler error due to incompatible redefinition of a ’C’ type.

[SWS_Rte_02305] d The generated RTE shall instantiate (or allocate) declared
PerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07182] d The generated RTE shall initialize declared PerInstanceMem-
ory according the initValue attribute if

• an initValue is defined

AND

• no SwAddrMethod is defined for PerInstanceMemory.

c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_08304] d Variables implementing PerInstanceMemory shall be initialized
by RTE if

• an initValue is defined

AND

• a SwAddrMethod is defined for PerInstanceMemory

AND

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

456 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07183] d The generated RTE shall instantiate (or allocate) declared
arTypedPerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07184] d The generated RTE shall initialize declared arTypedPerIn-
stanceMemory according the ValueSpecification of the VariableDataPro-
totype defining the arTypedPerInstanceMemory if the general initialization con-
ditions in [SWS_Rte_07046] are fulfilled. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_05062] d In case the PerInstanceMemory or arTypedPerInstance-
Memory is used as a permanent RAM Block for the NvRam manager the name for the
instantiated PerInstanceMemory or arTypedPerInstanceMemory shall be taken
from the input information RteNvmRamBlockLocationSymbol. Otherwise the RTE
generator is free to choose an arbitrary name. c(SRS_Rte_00013, SRS_Rte_00077)

Note that, in cases where a PerInstanceMemory is not initialized due to
[SWS_Rte_07182] or [SWS_Rte_07184], the memory allocated for a PerInstance-
Memory is not initialized by the generated RTE, but by the corresponding software-
component instances.

[SWS_Rte_07693] d In case a ParameterDataPrototype in the role perInstan-
ceParameter is used as a ROM Block for the NVRam Manager, then the name for
the instantiated ParameterDataPrototype shall be taken from the input information
RteNvmRomBlockLocationSymbol. Otherwise the RTE generator is free to choose
an arbitrary name. c(SRS_Rte_00154)

Example 5.4

This description of a software component
<AR-PACKAGE>

<SHORT-NAME>SWC</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>TheSwc</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>TheSwcInternalBehavior</SHORT-NAME>
<PER-INSTANCE-MEMORYS>

<PER-INSTANCE-MEMORY>
<SHORT-NAME>MyPIM</SHORT-NAME>
<TYPE>MyMemType</TYPE>
<TYPE-DEFINITION>struct {uint16 val1; uint8 * val2;}</

TYPE-DEFINITION>
</PER-INSTANCE-MEMORY>

</PER-INSTANCE-MEMORYS>
</SWC-INTERNAL-BEHAVIOR>

</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>

457 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

will e. g. result in the following code:

In the RTE Types Header File:
1 /* typedef to ensure unique typename */
2 /* according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef struct{
5 uint16 val1;
6 uint8 * val2;
7 } Rte_PimType_TheSwc_MyMemType;

In the respective Application Header File:
1 /* typedef visible within the scope */
2 /* of the component according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef Rte_PimType_TheSwc_MyMemType MyMemType;

In Rte.c:
1 /* declare and instantiate mem1 */
2 /* "mem1" name may be taken from RteNvmRamBlockLocationSymbol */
3 Rte_PimType_TheSwc_MyMemType mem1;

Note that the name used for the definition of the PerInstanceMemory may be used
outside of the RTE. One use-case is to support the definition of the link between the
NvRam Manager’s permanent blocks and the software-components. The name in
RteNvmRamBlockLocationSymbol is used to configure the location at which the
NvRam Manager shall store and retrieve the permanent block content. For a detailed
description please refer to the AUTOSAR Software Component Template [2].

5.2.6 API Mapping

The RTE API is implemented by macros and generated API functions that are created
(or configured, depending on the implementation) by the RTE generator during the
“RTE Generation” phase. Typically one customized macro or function is created for
each “end” of a communication though the RTE generator may elide or combine custom
functions to improve run-time efficiency or memory overheads.

[SWS_Rte_01274] d The API mapping shall be implemented in the application header
file. c(SRS_BSW_00330, SRS_Rte_00027, SRS_Rte_00051, SRS_Rte_00083,
SRS_Rte_00087)

The RTE generator is required to provide a mapping from the RTE API name to the
generated function [SRS_Rte_00051]. The API mapping provides a level of indirec-
tion necessary to support binary components and multiple component instances. The
indirection is necessary for two reasons. Firstly, some information may not be known
when the component is created, for example, the component’s instance name, but
are necessary to ensure that the names of the generated functions are unique. Sec-
ondly, the names of the generated API functions should be unique (so that the ECU

458 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

image can link correctly) and the steps taken to ensure this may make the names not
“user-friendly”. Therefore, the primary rationale for the API mapping is to provide the
required abstraction that means that a component does not need to concern itself with
the preceding problems.

The requirements on the API mapping depend on the phase in which an RTE gen-
erator is operating. The requirements on the API mapping are only binding for RTE
generators operating in compatibility mode.

5.2.6.1 “RTE Contract” Phase

Within the “RTE Contract” phase the API mapping is required to convert from the
source API call (as defined in Section 5.6) to the runnable entity provided by a software-
component or the implementation of the API function created by the RTE generator.

When compiled against a “RTE Contract” phase header file a software-component that
can be multiple instantiated is required to use a general API mapping that uses the
instance handle to access the function table defined in the component data structure.

[SWS_Rte_03706] d If a software-component supportsMultipleInstantiation,
the “RTE Contract” phase API mapping shall access the generated RTE functions using
the instance handle to indirect through the generated function table in the component
data structure. c(SRS_Rte_00051)

Example 5.5

For a require client-server port ‘p1’ with operation ‘a’ with a single argument, the gen-
eral form of the API mapping would be:

1 #define Rte_Call_p1_a(instance,v) ((instance)->p1.Call_a(v))

Where s is the instance handle.

[SWS_Rte_06516] d The RTE Generator shall wrap each API mapping and API func-
tion definition of a variant existent API according table 4.17 if the variability shall be
implemented.

1 #if (<condition> [||<condition>])
2

3 <API Mapping>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rel-
evant for the conditional existence of the RTE API (see table 4.17), API Map-
ping is the code according an invariant API Mapping (see also [SWS_Rte_01274],
[SWS_Rte_03707], [SWS_Rte_03837], [SWS_Rte_01156]) c(SRS_Rte_00201)

459 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: In case of explicit communication any existent access points in the meta model
might result in the related API which results in a or condition for the pre processor.

Example 5.6

For a require client-server port ‘p1’ with operation ‘a’ with a single argument of the
component ‘c1’ defining a ServerCallPoint which is subject of variability in runn-
able ‘run1’, the general form of the conditional API mapping would be:

1

2 #if (Rte_VPCon_c1_run1_p1_a==TRUE)
3

4 #define Rte_Call_p1_a(instance,v) ((instance)->p1.Call_a(v))
5

6 #endif

[SWS_Rte_03707] d If a software-component does not supportsMultipleInstan-
tiation, the “RTE Contract” phase API mapping shall access the generated RTE
functions directly. c(SRS_Rte_00051)

[SWS_Rte_08073] d In compatibility mode or “RTE Contract” phase, the API mapping
for Rte_PBCon shall access the generated RTE functions directly. c(SRS_Rte_00051)

When accessed directly, the names of the generated functions are formed according
to the following rule:

[SWS_Rte_03837] d The function generated for API calls
Rte_<name>_<api_extension> that are intended to be called by the software
component shall be

Rte_<name>_<cts>_<api_extension>,

where <name> is the API root (e.g. Receive),
<cts> the component type symbol of the AtomicSwComponentType,
and <api_extension> is the extension of the API dependent on <name> (e.g.
<re>_<p>_<o>). c(SRS_Rte_00051)

[SWS_Rte_01156] d In compatibility mode, the following API calls shall be imple-
mented as macros:

• Rte_Pim

• Rte_IrvIRead

• Rte_IrvIWrite

• Rte_IrvIWriteRef

The generated macros for these API calls shall map to the relevant fields of the com-
ponent data structure. c(SRS_Rte_00051)

For APIs not mentioned in [SWS_Rte_01156], and not subject to enableTakeAd-
dress, requirement [SWS_Rte_03707] means that in contract phase a function must

460 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

be generated for single instantiated SWCs. Likewise for multiple instantiated SWCs a
function must also be generated in contract phase as the relevant fields in the CDS
are omitted and therefore macros cannot be used in the API mapping. In compatibility
mode and RTE phase the same limitations apply due to the constraints of the CDS.

Note that the rule described in [SWS_Rte_03837] does not apply for the life cycle
APIs, nor for the callback APIs, nor for the APIs that are implemented as macros
(see [SWS_Rte_01156]).

[SWS_Rte_06831] d In compatibility mode, the following API calls shall be imple-
mented either as macros (that map directly to the relevant field of the component data
structure) or as a C function (that may use the fields of the component data structure)
based on the state of the enableTakeAddress attribute [SWS_Rte_07100]:

• Rte_IRead

• Rte_IWrite

• Rte_IWriteRef

• Rte_IStatus

• Rte_IFeedback

• Rte_IInvalidate

c(SRS_Rte_00051)

Note: For [SWS_Rte_01156] and [SWS_Rte_06831] when the APIs are implemented
as macros the API mapping in the application header file directly uses relevant fields of
the component data structure. However the enableTakeAddress attribute only ap-
plies for single instantiated SWCs and therefore the body of the generated function can
directly access the relevant data if required without indirection through the component
data structure.

The functions generated that are the destination of the API mapping, which is created
during the “RTE Contract” phase, are created by the RTE generator during the second
“RTE Generation” phase.

[SWS_Rte_01153] d The generated function (or runnable) shall take the same param-
eters, in the same order, as the API mapping. c(SRS_Rte_00051)

Example 5.7

For a require client-server port ‘p1’ with operation ‘a’ with a single argument for compo-
nent type ‘c1’ for which multiple instantiation is forbidden, the following mapping would
be generated:

1 #define Rte_Call_p1_a Rte_Call_c1_p1_a

461 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2.6.2 “RTE Generation” Phase

There are no requirements on the form that the API mapping created during the “RTE
Generation” phase should take. This is because the application header files defined
during this phase are used by source-code components and therefore compatibility
between the generated RTE and source-code components is automatic.

The RTE generator is required to produce the component data structure instances re-
quired by object-code components and multiple instantiated source-code components.

If multiple instantiation of a software-component is forbidden, then the API mapping
specified for the “RTE Contract” phase (Section 5.2.6.1) defines the names of the
generated functions. If multiple instantiation is possible, there are no corresponding
requirements that define the name of the generated function since all accesses to the
generated functions are performed via the component data structure which contains
well-defined entries (Sections 5.4.2.5 and 5.4.2.5).

5.2.6.3 Function Elision

Using the “RTE Generation” phase API mapping, it is possible for the RTE generator
to elide the use of generated RTE functions.

[SWS_Rte_01146] d If the API mapping elides an RTE function the “RTE Generation”
phase API mapping mechanism shall ensure that the invoking component still receives
a “return value” so that no changes to the AUTOSAR software-component are neces-
sary. c(SRS_Rte_00051)

In C, the elision of API calls can be achieved using a comma expression2

Example 5.8

As an example, consider the following component code:
1 Std_ReturnType s;
2 s = Rte_Send_p1_a(instance,23);

Furthermore, assume that the communication attributes are specified such that the
sender-receiver communication can be performed as a direct assignment and there-
fore no RTE API call needs to be generated. However, the component source cannot
be modified and expects to receive an Std_ReturnType as the return. The “RTE
Generation” phase API mapping could then be rewritten as:

1 #define Rte_Send_p1_a(s,a) (<var> = (a), RTE_E_OK)

Where <var> is the implementation dependent name for an RTE created cache be-
tween sender and receiver.

2This is contrary to MISRA Rule 12.3 “The comma operator should not be used ”.However, a comma
expression is valid, legal, C and the elision cannot be achieved without a comma expression and there-
fore the rule must be relaxed.

462 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2.6.4 API Naming Conventions

An AUTOSAR software-component communicates with other components (including
basic software) through ports and therefore the names that constitute the RTE API are
formed from the combination of the API call’s functionality (e.g. Call, Send) that defines
the API root name and the access point through which the API operates.

For any API that operates through a port, the API’s access point includes the port
name.

A SenderReceiverInterface can support multiple data items and a
ClientServerInterface can support multiple operations, any of which can
be invoked through the requiring port by a client. The RTE API therefore needs a
mechanism to indicate which data item/operation on the port to access and this is
implemented by including the data item/operation name in the API’s access point.

As described above, the RTE API mapping is responsible for mapping the RTE API
name to the correct generated RTE function. The API mapping permits an RTE gener-
ator to include targeted optimization as well as removing the need to implement func-
tions that act as routing functions from generic API calls to particular functions within
the generated RTE.

For C and C++ the RTE API names introduce symbols into global scope and therefore
the names are required to be prefixed with Rte_ [SWS_Rte_01171].

5.2.6.5 API Parameters

All API parameters fall into one of two classes; parameters that are strictly read-only
(“In” parameters) and parameters whose value may be modified by the API function
(“In/Out” and “Out” parameters).

The type of these parameters is taken from the data element prototype or operation
prototype in the interface that characterizes the port for which the API is being gener-
ated.

In the following, requirement [SWS_Rte_06806] reflects the standard defined by [29].
The remaining requirements are include to ensure the consistency between different
RTE implementations. The rules described below regarding the default argument pass-
ing strategy may be overwritten by more specific requirements, e.g. ServerArgu-
mentImplPolicy.

[SWS_Rte_06804] d All input parameters using the P2CONST macro shall
use memclass AUTOMATIC and ptrclass RTE_APPL_DATA. c(SRS_Rte_00060,
SRS_BSW_00007)

[SWS_Rte_06805] d All parameters using the VAR macro shall use memclass AUTO-

MATIC. c(SRS_Rte_00059, SRS_BSW_00007)

463 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06806] d All output and bi-directional parameters (i.e. both input and out-
put) parameters shall use the P2VAR macro. c(SRS_Rte_00061, SRS_BSW_00007)

[SWS_Rte_06807] d All parameters using the P2VAR macro shall use memclass

AUTOMATIC and ptrclass RTE_APPL_DATA. c(SRS_Rte_00059, SRS_Rte_00060,
SRS_BSW_00007)

• “In” Parameters

[SWS_Rte_01017] d All input parameters that are a Primitive Imple-
mentation Data Type shall be passed by value. c(SRS_Rte_00059,
SRS_Rte_00061)

[SWS_Rte_01018] d All input parameters that are of type Structure Imple-
mentation Data Type or Union Implementation Data Type shall be
passed by reference. c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_05107] d All input parameters that are an Array Implementation
Data Type shall be passed as an array expression (that is a pointer to the array
base type). c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_07661] d All input parameters that are a data type of category
DATA_REFERENCE shall be passed as a pointer to the data type specified by
the SwPointerTargetProps. c(SRS_Rte_00059, SRS_Rte_00061)

[SWS_Rte_07086] d All input parameters that are passed by reference
([SWS_Rte_01018]) or passed as an array expression ([SWS_Rte_05107]) shall
be declared as pointer to const with the means of the P2CONST macro. c
(SRS_Rte_00060, SRS_BSW_00007)

Please note that the description of the P2CONST macro can be found in [30].

• “Out” Parameters

[SWS_Rte_01019] d All output parameters that are of type Primitive Imple-
mentation Data Type shall be passed by reference. c(SRS_Rte_00061)

[SWS_Rte_07082] d All output parameters that are of type Structure Im-
plementation Data Type or Union Implementation Data Type shall
be passed by reference. c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_05108] d All output parameters that are an Array Implementa-
tion Data Type shall be passed as an array expression (that is a pointer to
the array base type). c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_07083] d All output parameters that are of type Pointer Imple-
mentation Data Type shall be passed as a pointer to the Pointer Imple-
mentation Data Type. c(SRS_Rte_00059, SRS_Rte_00061)

• “In/Out” Parameters

464 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01020] d All bi-directional parameters (i.e. both input and output) that
are of type Primitive Implementation Data Type or Structure Im-
plementation Data Type or Union Implementation Data Type shall
be passed by reference. c(SRS_Rte_00059, SRS_Rte_00061)

[SWS_Rte_05109] d All bi-directional parameters (i.e. both input and output) that
are an Array Implementation Data Type shall be passed as an array ex-
pression (that is a pointer to the array base type). c(SRS_Rte_00061)

[SWS_Rte_07084] d All input, output and bi-directional parameters which re-
lated DataPrototype is typed or mapped to an Redefinition Implemen-
tation Data Type shall be treated according the kind of data type rede-
fined by the Redefinition Implementation Data Type. The possible
kinds of data types supported by RTE are listed in 5.3.4.2. c(SRS_Rte_00059,
SRS_Rte_00060, SRS_Rte_00061)

In order to indicate the direction of the individual API parameters, the descriptions
of the API signatures in this API reference chapter use the direction qualifiers ”IN”,
”OUT”, and ”INOUT”. These direction qualifiers are not part of the actual API proto-
types. Especially, the user cannot expect that these direction qualifiers are available
for the application.

Example 5.9

This would be the Rte_Write API generated for the example 5.5 (example of a two
dimension array typed by an ImplementationDataType):

1 FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<p>_<o>(P2CONST(uint8,
AUTOMATIC, AUTOMATIC) data)

Which can be used in the SWC code:
1 status = Rte_Write_<p>_<o> (&array[0][0]);

5.2.6.6 Return Values

A subset of the RTE API’s returning the values instead of using OUT Parameters. In
the API section these API signatures defining a <return> value. In addition to the
following rules some of the APIs might specify additionally const qualifiers.

[SWS_Rte_07069] d The RTE Generator shall determine the <return> type accord-
ing the applicable ImplementationDataType of the DataPrototype for which the
API provides access. c(SRS_Rte_00059)

[SWS_Rte_08300] d A pointer return value of an RTE API shall be declared as pointer
to const with the means of the FUNC_P2CONST macro or P2CONST if the pointer is not
used to modify the addressed object. c(SRS_Rte_00059)

465 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note that the FUNC_P2CONSTmacro is applicable if the RTE API is implemented
as an real function and the P2CONST might be used if the RTE API is implemented as
a macro.

Requirement [SWS_Rte_08300] applies for instance for the RTE APIs Rte_Prm,
Rte_CData, Rte_IrvRead, Rte_IrvIRead in the cases where the API grants ac-
cess to composite data (arrays, structures, unions).

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[SWS_Rte_07070] d If the DataPrototype is associated to a Primitive Imple-
mentation Data Type the RTE API shall return the value of the DataPrototype
for which the API provides access. The type name shall be equal to the shortName
of these ImplementationDataType. c(SRS_Rte_00059)

Example 5.10

Consider an RTE API call return a primitive as defined in the example 5.2 for a singly
instantiated SW-C. The signature of the API will be:

1 MyUint8 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[SWS_Rte_07071] d If the DataPrototype is associated to a Structure Imple-
mentation Data Type or Union Implementation Data Type, the RTE API
shall return a pointer to a variable holding the DataPrototype value provided by the
API. The type name shall be equal to the shortName of these Implementation-
DataType. c(SRS_Rte_00059)

Example 5.11

Consider an RTE API call return a structure as defined in the example 5.6 for a singly
instantiated SW-C. The signature of the API will be:

1

2 FUNC_P2CONST(RecA, RTE_VAR_FAST_INIT, RTE_CODE)
3 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_FAST_INIT"’. Further
on the example does not respect the principles of API mapping.

[SWS_Rte_07072] d If the DataPrototype is associated to an Array Implemen-
tation Data Type the RTE API shall return an array expression (that is a pointer
to the array base type) pointing to variable holding the value of the DataPrototype
for which the API provides access. If the leaf ImplementationDataTypeElement

466 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

is typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to
the shortName of this ImplementationDataType. If the leaf Implementation-
DataTypeElement is of category STRUCTURE or UNION the type name shall be equal
to the shortName of this ImplementationDataTypeElement. c(SRS_Rte_00059)

Example 5.12

Consider an RTE API call return an array as defined in the example 5.4 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(unsigned char, RTE_VAR_POWER_ON_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_POWER_ON_INIT"’.
Further on the example does not respect the principles of API mapping.

Example 5.13

Consider an RTE API call return an array as defined in the example 5.5 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(uint8, RTE_VAR_NO_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_NO_INIT"’. Further on
the example does not respect the principles of API mapping.

[SWS_Rte_07073] d If the DataPrototype is associated to a Pointer Implemen-
tation Data Type the RTE API shall return the value of the DataPrototype for
which the API provides access. The type name shall be equal to the shortName of
these ImplementationDataType. c(SRS_Rte_00059) Please not that in this case
the value is a pointer.

[SWS_Rte_07074] d If the DataPrototype is associated to a Redefinition Im-
plementation Data Type the RTE Generator shall determine the API return value
behaviour as described in [SWS_Rte_07070], [SWS_Rte_07071], [SWS_Rte_07072],
[SWS_Rte_07073], [SWS_Rte_07074] according the referenced Implementation-
DataType. Nevertheless except for Array Implementation Data Type the type
name shall be equal to the shortName of these ImplementationDataType. c
(SRS_Rte_00059)

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

467 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2.6.7 Return References

A subset of the RTE API’s returning a reference to the memory location where the data
can be accessed instead of using IN/OUT Parameters. In the API section these API
signatures defining a <return reference> value.

[SWS_Rte_06808] d A <return reference> shall use the FUNC_P2VAR or P2VAR
macro. c(SRS_BSW_00007)

[SWS_Rte_06809] d A <return reference> which uses either the P2VAR or
the FUNC_P2VAR macro shall use memclass AUTOMATIC and ptrclass RTE_DATA. c
(SRS_BSW_00007)

[SWS_Rte_07076] d The RTE Generator shall determine the <return reference>
type according the applicable ImplementationDataType of the DataPrototype
for which the API provides access. c(SRS_Rte_00059)

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[SWS_Rte_07077] d If the DataPrototype is associated to a Primitive Imple-
mentation Data Type the RTE API shall return a pointer to variable holding the
data of the value of the DataPrototype for which the API provides access. The
type name shall be equal to the shortName of these ImplementationDataType. c
(SRS_Rte_00059)

Example 5.14

Consider an RTE API call return a reference to a primitive as defined in the example
5.2 for a singly instantiated SW-C. The signature of the API will be:

1 MyUint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[SWS_Rte_07078] d If the DataPrototype is associated to a Structure Imple-
mentation Data Type or Union Implementation Data Type the RTE API
shall return a pointer to variable holding the value of the DataPrototype for which
the API provides access. The type name shall be equal to the shortName of these
ImplementationDataType. c(SRS_Rte_00059)

Example 5.15

Consider an RTE API call return a reference to a structure as defined in the example
5.6 for a singly instantiated SW-C. The signature of the API will be:

1 RecA * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

468 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07079] d If the DataPrototype is associated to an Array Implemen-
tation Data Type the RTE API shall return an array expression (that is a pointer
to the array base type) pointing to variable holding the value of the DataPrototype
for which the API provides access. If the leaf ImplementationDataTypeElement
is typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to the
shortName of these ImplementationDataType. c(SRS_Rte_00059)

Example 5.16

Consider an RTE API call return a reference to an array as defined in the example 5.4
for a singly instantiated SW-C. The signature of the API will be:

1 unsigned char * Rte_IWriteRef_<re>_<p>_<o>(void);

Example 5.17

Consider an RTE API call return a reference to an array as defined in the example 5.5
for a singly instantiated SW-C. The signature of the API will be:

1 uint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the examples.

[SWS_Rte_07080] d If the DataPrototype is associated to a Pointer Implemen-
tation Data Type the RTE API shall return a pointer pointing to variable hold-
ing the value of the DataPrototype for which the API provides access. The type
name shall be equal to the shortName of these ImplementationDataType. c
(SRS_Rte_00059) Please not that in this case the value is a pointer again.

[SWS_Rte_07081] d If the DataPrototype is associated to a Redefinition Im-
plementation Data Type the RTE Generator shall determine the API return value
behaviour as described in [SWS_Rte_07077], [SWS_Rte_07078], [SWS_Rte_07079],
[SWS_Rte_07080], [SWS_Rte_07081] according the referenced Implementation-
DataType. Nevertheless except for Array Implementation Data Type the type
name shall be equal to the shortName of these ImplementationDataType. c
(SRS_Rte_00059)

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

5.2.6.8 Error Handling

In RTE, error and status information is defined with the data type Std_ReturnType,
see Section 5.5.1.

469 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

It is possible to distinguish between infrastructure errors and application errors. Infras-
tructure errors are caused by a resource failure or an invalid input parameter. Infras-
tructure errors usually occur in the basic software or hardware along the communica-
tion path of a data element. Application errors are reported by a SW-C or by AUTOSAR
services. RTE has the capability to treat application errors that are forwarded

• by return value in client server communication or

• by signal invalidation in sender receiver communication with data semantics.

Errors that are detected during an RTE API call are notified to the caller using the API’s
return value.

[SWS_Rte_01034] d Error states (including ’no error’) shall only be passed as return
value of the RTE API to the AUTOSAR SW-C. c(SRS_Rte_00094)

Requirement [SWS_Rte_01034] ensures that, irrespective of whether the API is block-
ing or non-blocking, the error is collected at the same time the data is made available
to the caller thus ensuring that both items are accessed consistently.

Certain RTE API calls operate asynchronously from the underlying communication
mechanism. In this case, the return value from the API indicates only errors detected
during that API call. Errors detected after the API has terminated are returned using a
different mechanism [SWS_Rte_01111]. RTE also provides an ’implicit’ API for direct
access to virtually shared memory. This API does not return any errors. The underlying
communication is decoupled. Instead, an API is provided to pick up the current status
of the corresponding data element.

5.2.6.9 Success Feedback

The RTE supports the notification of results of transmission attempts to an AUTOSAR
software-component.

The Rte_Feedback API [SWS_Rte_01083] or the Rte_IFeedback API
[SWS_Rte_07367] can be configured to return the transmission result as either
a blocking or non-blocking API or via activation of a runnable entity.

5.2.7 Unconnected Ports

[SWS_Rte_01329] d The RTE shall handle both require and provide ports that are not
connected. c(SRS_Rte_00139)

The handling of require ports as an error is described in requirement
[SWS_Rte_05099].

[SWS_Rte_06030] d The RTE shall consider a PRPortPrototype as always con-
nected. c(SRS_Rte_00139)

470 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: [SWS_Rte_06030] is the consequence of [TPS_SWCT_01573]. This is because
a PRPortPrototype is logically an overlay of require and provide semantics hence
the PRPortPrototype needs no further explicitly defined connection in the form of
an SwConnector or signal mapping.

RTE event handling and the API calls for unconnected ports are specified to behave
as if the port was connected but the remote communication point took no action.

Unconnected require ports are regarded by the RTE generator as an invalid
configuration (see [SWS_Rte_03019]) if the strict handling has been enabled
(see [SWS_Rte_05099]).

5.2.7.1 Data Elements

5.2.7.1.1 Explicit Communication

[SWS_Rte_01330] d A Rte_Read API for an unconnected require port typed
by a SenderReceiverInterface or NvDataInterface shall return the
RTE_E_UNCONNECTED code and provide the initValue as if a sender was
connected but did not transmit anything. c(SRS_Rte_00094, SRS_Rte_00139,
SRS_Rte_00200)

[SWS_Rte_07663] d A Rte_DRead API for an unconnected require port typed by a
SenderReceiverInterface or NvDataInterface shall return the initValue
as if a sender was connected but did not transmit anything. c(SRS_Rte_00139,
SRS_Rte_00200)

Requirements [SWS_Rte_01330] and [SWS_Rte_07663] apply to elements with
"‘data"’ semantics and therefore "last is best"’ semantics. This means that the initial
value will be returned.

[SWS_Rte_01331] d A blocking or non-blocking Rte_Receive API for an
unconnected require port typed by a SenderReceiverInterface shall re-
turn RTE_E_UNCONNECTED immediately. c(SRS_Rte_00094, SRS_Rte_00107,
SRS_Rte_00110, SRS_Rte_00139, SRS_Rte_00200)

The existence of blocking and non-blocking Rte_Read, Rte_DRead and
Rte_Receive API calls is controlled by the presence of VariableAccesses in the
dataReceivePointByValue or dataReceivePointByArgument role, DataRe-
ceivedEvents and WaitPoints within the SW-C description [SWS_Rte_01288],
[SWS_Rte_01289] and [SWS_Rte_01290].

[SWS_Rte_01344] d A blocking or non-blocking Rte_Feedback API for a Variable-
DataPrototype of an unconnected provide port shall return RTE_E_UNCONNECTED
immediately. c(SRS_Rte_00094, SRS_Rte_00122, SRS_Rte_00139)

471 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The existence of blocking and non-blocking Rte_Feedback API is controlled by the
presence of VariableAccesses in the dataSendPoint role, DataSendComplet-
edEvents and WaitPoints within the SW-C description for a VariableDataPro-
totype with acknowledgement enabled, see [SWS_Rte_01283], [SWS_Rte_01284],
[SWS_Rte_01285] and [SWS_Rte_01286].

[SWS_Rte_01332] d The Rte_Send or Rte_Write API for an unconnected provide
port typed by a SenderReceiverInterface or NvDataInterface shall discard
the input parameters and return RTE_E_OK. c(SRS_Rte_00139)

The existence of Rte_Send or Rte_Write is controlled by the presence of
VariableAccesses in the dataSendPoint role within the SW/C description
[SWS_Rte_01280] and [SWS_Rte_01281].

[SWS_Rte_03783] d The Rte_Invalidate API for an unconnected provide port
typed by a SenderReceiverInterface shall return RTE_E_OK. c(SRS_Rte_00139)

The existence of Rte_Invalidate is controlled by the presence of VariableAc-
cesses in the dataSendPoint role within the SW/C description for a Variable-
DataPrototype which is marked as invalidatable by an associated Invalidation-
Policy. The handleInvalid attribute of the InvalidationPolicy has to be set
to keep, replace or externalReplacement to enable the invalidation support for
this dataElement ([SWS_Rte_01282]).

5.2.7.1.2 Implicit Communication

[SWS_Rte_07378] d An Rte_IFeedback API for a VariableDataPrototype of
an unconnected provide port shall return RTE_E_UNCONNECTED immediately. c
(SRS_Rte_00139, SRS_Rte_00185)

The existence of an Rte_IFeedback API is controlled by the presence of Vari-
ableAccesses in the dataWriteAccess role, and DataWriteCompletedEvents
within the SWC description for a VariableDataPrototype with acknowledgement
enabled, see [SWS_Rte_07646], [SWS_Rte_07647].

[SWS_Rte_01346] d An Rte_IRead API for an unconnected require port typed by a
SenderReceiverInterface or NvDataInterface shall return the initial value. c
(SRS_Rte_00139)

The existence of Rte_IRead is controlled by the presence of a VariableAccess in
the dataReadAccess role in the SW-C description [SWS_Rte_01301].

[SWS_Rte_01347] d An Rte_IWrite API for an unconnected provide port typed by a
SenderReceiverInterface or NvDataInterface shall discard the written data.
c(SRS_Rte_00139)

The existence of Rte_IWrite is controlled by the presence of a VariableAccess in
the dataWriteAccess role in the SW-C description [SWS_Rte_01302].

472 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03784] d An Rte_IInvalidate API for an unconnected provide port
typed by a SenderReceiverInterface shall perform no action. c(SRS_Rte_00139)

The existence of Rte_IInvalidate is controlled by the presence of a VariableAc-
cess in the dataWriteAccess role in the SW-C description for a VariableDat-
aPrototype which is marked as invalidatable by an associated InvalidationPol-
icy. The handleInvalid attribute of the InvalidationPolicy has to be set to
keep, replace or externalReplacement to enable the invalidation support for this
dataElement ([SWS_Rte_03801]).

[SWS_Rte_03785] d An Rte_IStatus API for an unconnected require port
typed by a SenderReceiverInterface shall return RTE_E_UNCONNECTED. c
(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

The existence of Rte_IStatus is controlled by the presence of a VariableAc-
cess in the dataReadAccess role in the SW-C description for a VariableDat-
aPrototype with data element outdated notification or data element invalidation
[SWS_Rte_02600].

5.2.7.2 Mode Switch Ports

For the mode user an unconnected mode switch port behaves as if it was connected
to a mode manager that never sends a mode switch notification.

[SWS_Rte_02638] d A Rte_Mode API for an unconnected mode switch port of a mode
user shall return the initial state. c(SRS_Rte_00139)

[SWS_Rte_02639] d Regarding the modes of an unconnected mode switch port of a
mode user, the mode disabling dependencies on the initial mode shall be permanently
active and the mode disabling dependencies on all other modes shall be inactive. c
(SRS_Rte_00139)

[SWS_Rte_02640] d Regarding the modes of an unconnected mode switch port of a
mode user, RTE will only generate a SwcModeSwitchEvent for entering the initial
mode which occurs directly after startup. c(SRS_Rte_00139)

[SWS_Rte_02641] d The Rte_Switch API for an unconnected mode switch port
of the mode manager shall discard the input parameters and return RTE_E_OK. c
(SRS_Rte_00139)

[SWS_Rte_02642] d A blocking or non blocking Rte_SwitchAck API for an uncon-
nected mode switch port of the mode manager shall return RTE_E_UNCONNECTED
immediately. c(SRS_Rte_00139)

[SWS_Rte_01375] d A provided mode switch port of a mode manager shall be
considered unconnected only if there are no connections at the composition level and
no ModeAccessPoint exists for the provided mode switch port and no synchro-
nizedModeGroup refers to the provided mode switch port. c(SRS_Rte_00139)

473 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.2.7.3 Client-Server

[SWS_Rte_01333] d The Rte_Result API for an unconnected asynchronous require
port typed by a ClientServerInterface shall return RTE_E_UNCONNECTED imme-
diately. c(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

[SWS_Rte_01334] d The Rte_Call API for an unconnected require port typed by
a ClientServerInterface shall return RTE_E_UNCONNECTED immediately. c
(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

[SWS_Rte_04530] d If a client/server communication is inter-ECU, then for each
ClientServerOperation the DataMappings element shall contain a mapping to at least
one COM signal or being referenced at least by a LdCom I-PDU, otherwise the
ClientServerOperation shall be treated as if it is part of an unconnected port. c
(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

5.2.7.4 External Triggers

For unconnected RPortPrototypes the associated ExternalTriggerOccurre-
dEvents will never get fired (i.e. it behaves as if the remote communication partner
never triggers the event).

[SWS_Rte_06210] d The Rte_Trigger API for an unconnected PPortProto-
types typed by a TriggerInterface shall discard the trigger request and return
RTE_E_OK. c(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00162, SRS_Rte_00200)

5.2.8 Non-identical port interfaces

Two ports are permitted to be connected provided that they are characterized by com-
patible, but not necessarily identical, interfaces. For the full definition of whether two
interfaces are compatible, see the Software Component Template [2].

[SWS_Rte_01368] d The RTE generator shall report an error if the [constr_1036] and
the [constr_1069] are violated so if two connected ports are connected by incompatible
interfaces. c(SRS_Rte_00137)

A significant issue in determining whether two interfaces are compatible is that the
interface characterizing the require port may be a strict subset of the interface char-
acterizing the provide port. This means that there may be provided data elements or
operations for which there is no corresponding element in the require port. This can be
imagined as a multi-strand wire between the two ports (the assembly connector) where
each strand represents the connection between two data elements or operations, and
where some of the strands from the ‘provide’ end are not connected to anything at the
‘require’ end.

474 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Define, for the purposes of this section, an “unconnected element” as a data element
or operation that occurs in the provide interface, but for which no corresponding data
element or operation occurs in a particular R-Port’s interface.

[SWS_Rte_01369] d For each data element or operation within the provide interface,
every connected requirer with an “unconnected element” must be treated as if it were
not connected. c(SRS_Rte_00137)

Note that requirement [SWS_Rte_01369] means that in the case of a 1:n Sender-
Receiver the Rte_Write call may transmit to some but not all receivers.

The extreme is if all connected requirers have an “unconnected element”:

[SWS_Rte_01370] d For a data element or operation in a provide interface which
is an unconnected element in every connected R-Port, the generated Rte_Send,
Rte_Write, Rte_IWrite, or Rte_IWriteRef APIs must act as if the port were
unconnected. c(SRS_Rte_00137)

See Section 5.2.7 for the required behavior in this case.

5.3 RTE Modules

Figure 5.1 defines the relationship between header files and how those files are in-
cluded by modules implementing AUTOSAR software-components and by general,
non-component, code.

Figure 5.1: Relationships between RTE Header Files

The output of an RTE generator can consist of both generated code and configuration
for “library” code that may be supplied as either object code or source code. Both

475 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

configured and generated code reference standard definitions that are defined in the
RTE Header File.

The relationship between the RTE header file, Application Header Files, the Lifecycle
Header File and AUTOSAR software-components is illustrated in Figure 5.1.

In general a RTE can be partitioned in several files. The partitioning depends from
the RTE vendors software design and generation strategy. Nevertheless it shall be
possible to clearly identify code and header files which are part of the RTE module.

[SWS_Rte_07139] d Every file of the RTE beside Rte.h and Rte.c shall be named with
the prefix Rte_. c(SRS_BSW_00300)

5.3.1 RTE Header File

The RTE header file defines fixed elements of the RTE that do not need to be generated
or configured for each ECU.

[SWS_Rte_01157] d For C/C++ AUTOSAR software-components, the name of the
RTE header file shall be Rte.h. c(SRS_BSW_00300)

Typically the contents of the RTE header file are fixed for any particular implementation
and therefore it is not created by the RTE generator. However, customization for each
generated RTE is not forbidden.

[SWS_Rte_01164] d The RTE header file shall include the file Std_Types.h. c
(SRS_Rte_00149, SRS_Rte_00150, SRS_BSW_00353)

The file Std_Types.h is the standard AUTOSAR file [31] that defines basic data types
including platform specific definitions of unsigned and signed integers and provides
access to the compiler abstraction.

The contents of the RTE header file are not restricted to standardized elements that
are defined within this document – it can also contain definitions specific to a particular
implementation.

5.3.2 Lifecycle Header File

[SWS_Rte_08309] d The RTE generator shall provide declarations for RTE and
SchM Lifecycle APIs (see Section 5.8 and 6.7) through the Lifecycle header file. c
(SRS_Rte_00051)

[SWS_Rte_01158] d For C/C++ AUTOSAR software-components, the name of the life-
cycle header file shall be Rte_Main.h. c(SRS_BSW_00300)

[SWS_Rte_01159] d The lifecycle header file shall include the RTE header file. c
(SRS_Rte_00051)

476 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.3 Application Header File

The application header file [SRS_Rte_00087] is central to the definition of the RTE API.
An application header file defines the RTE API and any associated data structures that
are required by the SW-C to use the RTE implementation. But the application header
file is not allowed to create objects in memory.

[SWS_Rte_01000] d The RTE generator shall create an application header file for each
software-component type (excluding ParameterSwComponentTypes and NvBlock-
SwComponentTypes) defined in the input. c(SRS_Rte_00087, SRS_Rte_00024,
SRS_Rte_00140)

[SWS_Rte_03786] d The application header file shall not contain code that creates
objects in memory. c(SRS_Rte_00087, SRS_BSW_00308)

RTE generation consists of two phases; an initial “RTE Contract” phase and a second
“RTE Generation” phase (see Section 2.3). Object-code components are compiled
after the first phase of RTE generation and therefore the application header file should
conform to the form of definitions defined in Sections 5.4.1 and 5.5.2. In contrast,
source-code components are compiled after the second phase of RTE generation and
therefore the RTE generator produces an optimized application header file based on
knowledge of component instantiation and deployment.

5.3.3.1 File Name

[SWS_Rte_01003] d The name of the Application Header File of an AUTOSAR soft-
ware component shall be Rte_[Byps_]<name>.h. <name> is the AUTOSAR soft-
ware component type name. [Byps_] is an optional infix used when component
wrapper method for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00300)

Example 5.18

The following declaration in the input XML:
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>Source</SHORT-NAME>
</APPLICATION-SW-COMPONENT-TYPE>

should result in the application header file Rte_Source.h being generated when the
component wrapper method for bypass support is disabled.

The component type name is used rather than the component instance name for two
reasons; firstly the same component code is used for all component instances and,
secondly, the component instance name is an internal identifier, and should not appear
outside of generated code.

477 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.3.2 Scope

RTE supports two approaches for the scope of the application header file, a SW-C
based, and a runnable based approach.

1. Always, the application header file provides only the API that is specific for one
atomic SW-C, see [SWS_Rte_01004].

2. The scope of the application header file can be further reduced to one runnable
by using the mechanism described in [SWS_Rte_02751].

Many of the RTE APIs are specific to runnables. The restrictions for the usage of the
generated APIs are defined in the ‘Existence’ parts of each API subsection in 5.6. To
prevent run time errors by the misuse of APIs that are not supported for a runnable, it
is recommended to use the runnable based approach of the application header file.

[SWS_Rte_01004] d The application header file for a component shall contain
only information relevant to that component. c(SRS_Rte_00087, SRS_Rte_00017,
SRS_Rte_00167)

[SWS_Rte_02751] d If the pre-compiler Symbol RTE_RUNNABLEAPI_<rn> is defined
for a runnable with short name <rn> when the application header file is included,
the application header file shall not declare APIs that are not valid to be used by the
runnable rn. c(SRS_Rte_00017)

For example, to restrict the application header file of the SW-C mySwc to the API of the
runnable myRunnable, the following sequence can be used:

1 #define RTE_RUNNABLEAPI_myRunnable
2 #include <Rte_mySwc.h>
3

4 // runnable source code

Note that this mechanism does not support to restrict the application header file to the
super set of two or more runnable APIs. In other words, runnables should be kept in
separate source files, if the runnable based approach is used.

Requirements [SWS_Rte_01004] and [SWS_Rte_02751] mean that compile time
checks ensure that a component (or runnable) that uses the application header file
only accesses the generated data structures and functions to which it has been con-
figured. Any other access, e.g. to fields not defined in the customized data structures
or RTE API, will fail with a compiler error [SRS_Rte_00017].

The definitions of the RTE API contained in the application header file can be opti-
mized during the “RTE Generation” phase when the mapping of software-components
to ECUs and the communication matrix is known. Consequently multiple application
header files must not be included in the same source module to avoid conflicting defi-
nitions of the RTE API definitions that the files contains.

Listing 5.1 illustrates the code structure for the declaration of the entry point of a
runnable entity that provides the implementation for a ServerPort in component c1.
The RTE generator is responsible for creating the API and tasks used to execute the

478 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

server and the symbol name of the entry point is extracted from the attribute symbol
of the runnable entity. The example shows that the first parameter of the entry point
function is the software-component’s instance handle [SWS_Rte_01016].

Listing 5.1: Skeleton server runnable entity
1 #include <Rte_c1.h>
2

3 void runnable_entry(Rte_Instance instance)
4 {
5 /* ... server code ... */
6 }

Listing 5.1 includes the component-specific application header file Rte_c1.h created
by the RTE generator. The RTE generator will also create the supporting data struc-
tures and the task body to which the runnable is mapped.

The RTE is also responsible for preventing conflicting concurrent accesses when the
runnable entity implementing the server operation is triggered as a result of a request
from a client received via the communication service or directly via inter-task commu-
nication.

5.3.3.3 File Contents

Multiple application header file must not be included in the same module
([SWS_Rte_01004]) and therefore the file contents should contain a mechanism to
enforce this requirement.

[SWS_Rte_01006] d An application header file shall include the following mechanism
before any other definitions.

1 #ifdef RTE_APPLICATION_HEADER_FILE
2 #error Multiple application header files included.
3 #endif /* RTE_APPLICATION_HEADER_FILE */
4 #define RTE_APPLICATION_HEADER_FILE

c(SRS_Rte_00087)

[SWS_Rte_07131] d The application header file shall include the Application Types
Header File. c(SRS_Rte_00087)

The name of the Application Types Header File is defined in Section 5.3.6.

[SWS_Rte_07924] d The application header file shall include the RTE Data Handle
Types Header File (see Section 5.3.5). c(SRS_Rte_00087)

[SWS_Rte_01005] d The application header file shall be valid for both C and C++

source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_01005] is met by ensuring that all definitions within the appli-
cation header file are defined using C linkage if a C++ compiler is used.

479 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03709] d All definitions within in the application header file shall be pre-
ceded by the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_03710] d All definitions within the application header file shall be suffixed
by the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

5.3.3.3.1 Instance Handle

The RTE uses an instance handle to identify different instances of the same component
type. The definition of the instance handle type [SWS_Rte_01148] is unique to each
component type and therefore should be included in the application header file.

[SWS_Rte_01007] d The application header file shall define the type of the instance
handle for the component. c(SRS_Rte_00012)

All runnable entities for a component are passed the same instance handle type (as
the first formal parameter [SWS_Rte_01016]) and can therefore use the same type
definition from the component’s application header file.

The example 5.24 illustrates the definition of an instance handle.

5.3.3.3.2 Runnable Entity Prototype

The application header file also includes a prototype for each runnable entity entry
point ([SWS_Rte_01132]) and the API mapping ([SWS_Rte_01274]).

5.3.3.3.3 Initial Values

[SWS_Rte_05078] d The Application Header File shall define the init value of non-
queued VariableDataPrototypes of sender receiver or non volatile data ports and
typed by an ImplementationDataType or ApplicationDataType of category
VALUE.

1 #define Rte_InitValue_<Port>_<DEPType> <initValue><suffix>

480 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <Port> is the PortPrototype shortName, <DEPType> is the short-
Name of the VariableDataPrototype, and <initValue> is the initValue spec-
ified in the NonqueuedReceiverComSpec respectively NonqueuedSenderCom-
Spec. <suffix> shall be "U" for unsigned data types and empty for signed data
types. c(SRS_Rte_00068, SRS_Rte_00087, SRS_Rte_00108)

Note that the initValue defined may be subject to change due to the fact that for
COM configuration it may be possible to change this value during ECU Configuration
or even post-build time.

5.3.3.3.4 PerInstanceMemory

The Application Header File shall type definitions for PerInstanceMemory’s as defined
in Chapter 5.2.5, [SWS_Rte_07133].

5.3.3.3.5 RTE-Component Interface

The application header file defines the “interface” between a component and the RTE.
The interface consists of the RTE API for the component and the prototypes for runn-
able entities. The definition of the RTE API requires that both relevant data structures
and API calls are defined.

The data structures required to support the API are defined in the Application Header
file (CDS) (see chapter 5.3.3), in the Application Types Header file (see chapter 5.3.6),
in the RTE Types Header file (see chapter 5.3.1) and in the RTE Data Handle Types
Header file (see chapter 5.3.5).

The data structure types are declared in the header files whereas the instances are
defined in the generated RTE. The necessary data structures for object-code software-
components are defined in chapter 5.5.2 and chapter 5.4.2.

The RTE generator is required [SWS_Rte_01004] to limit the contents of the applica-
tion header file to only that information that is relevant to that component type. This
requirement includes the definition of the API mapping. The API mapping is described
in chapter 5.2.6.

Requirement [SWS_Rte_01004] and [SWS_Rte_01006] ensure that attempts to invoke
invalid API calls will be rejected as a compile-time error [SRS_Rte_00017].

5.3.3.3.6 Application Errors

The concept of client server supports application specific error codes. Symbolic
names for Application Errors are defined in the application header file to avoid con-
flicting definitions between several AtomicSwComponentTypes mapped one ECU.
See [SWS_Rte_02575] and [SWS_Rte_02576].

481 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.4 RTE Types Header File

The RTE Types Header File includes the RTE specific type declarations derived from
the ImplementationDataTypes created from the definitions of AUTOSAR meta-
model classes within the RTE generator’s input. The available meta-model classes
are defined by the AUTOSAR software-component template and include classes for
defining primitive values, structures, arrays and pointers.

The types declared in the RTE Types Header File intend to be used for the implemen-
tation of RTE internal data buffers as well as for RTE API.

[SWS_Rte_01160] d The RTE generator shall create the RTE Types Header File in-
cluding the type declarations corresponding to the ImplementationDataTypes de-
fined in the input configuration as well as the RTE implementation types. c()

The RTE Data Types header file should be output for “RTE Contract” and “RTE Gener-
ation” phases.

5.3.4.1 File Contents

[SWS_Rte_02648] d The RTE Types Header File shall include the type declarations,
structure defintions, and union definitions for all the AUTOSAR Data Types according
to [SWS_Rte_07104], [SWS_Rte_07110], [SWS_Rte_06706], [SWS_Rte_06707],
[SWS_Rte_06708] [SWS_Rte_07111], [SWS_Rte_07114], [SWS_Rte_06812],
[SWS_Rte_07144], [SWS_Rte_06813], [SWS_Rte_07109] and [SWS_Rte_07148]
depending on the values of attributes typeEmitter and nativeDeclaration but
irrespective of their use by the generated RTE. c()

The attribute typeEmitter controls which part of the AUTOSAR toolchain is sup-
posed to provide data type definitions. For legacy reasons the RTE generator is sup-
posed to generate the corresponding data type if the ImplementationDataType
defines no typeEmitter.

[SWS_Rte_06709] d The RTE generator shall generate the corresponding data type
definition if the value of attribute typeEmitter is NOT defined. c()

[SWS_Rte_06710] d The RTE generator shall generate the corresponding data type
definition if the value of attribute typeEmitter is set to "RTE". c()

[SWS_Rte_06711] d The RTE generator shall reject configurations where the attribute
typeEmitter is not defined or set to "RTE", and the ImplementationDataType
references a SwBaseType without defined nativeDeclaration. c()

[SWS_Rte_06712] d The RTE generator shall silently not generate the corresponding
data type definition if the value of attribute typeEmitter is set to anything else but
"RTE". c()

This requirement ensures the availability of ImplementationDataTypes for the in-
ternal use in AUTOSAR software components.

482 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Nevertheless the RTE Types Header File does not contain any data type belonging
to an ImplementationDataType where typeEmitter is set to anything else but
"RTE" regardless if the ImplementationDataType references SwBaseTypes and if
this SwBaseTypes define nativeDeclarations.

[SWS_Rte_08732] d The RTE generator shall generate the type
Rte_Cs_TransactionHandleType of the transaction handle for inter-ECU
Client-Server communication as a structure:

typedef struct {
uint16 clientId;
uint16 sequenceCounter;

} Rte_Cs_TransactionHandleType;

where clientId and sequenceCounter contain the client identifier and sequence
counter as specified in [SWS_Rte_02649].

c()

The types header file may need types in terms of BSW types (from the file
Std_Types.h) or from the implementation specific RTE header file to declare types.
However, since the RTE header file includes the file Std_Types.h already so only the
RTE header file needs direct inclusion within the types header file.

[SWS_Rte_01163] d The RTE Types Header File shall include the RTE Header File. c
(SRS_BSW_00353)

5.3.4.2 Classification of Implementation Data Types

The type model ImplementationDataTypes is able to express following kinds of
data types:

• Primitive Implementation Data Type

• Array Implementation Data Type

• Structure Implementation Data Type

• Union Implementation Data Type

• Redefinition Implementation Data Type

• Pointer Implementation Data Type

A Primitive Implementation Data Type is classified that it directly refers by its Sw-
DataDefProps to a SwBaseType in the role baseType. The category attribute
is set to VALUE.

An Array Implementation Data Type is classified that it defines Implementation-
DataTypeElements for each dimension of the array. The swArraySize specifies

483 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the number of array elements of the dimension. The category attribute Array Imple-
mentation Data Type is set to ARRAY.

A Structure Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to STRUCTURE. Each ImplementationDataTypeElement it self can be one
of the listed kinds again.

A Union Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to UNION. Each ImplementationDataTypeElement it self can be one of the
listed kinds again.

A Redefinition Implementation Data Type is classified that it refers to other Imple-
mentationDataTypes. The category attribute of the referring Implementation-
DataType has to be set to TYPE_REFERENCE.

A Pointer Implementation Data Type is classified that its SwDataDefProps has a sw-
PointerTargetProps attribute. The swDataDefProps in the role swPointer-
TargetProps is specifying the target to which the pointer refers. The category
attribute of the ImplementationDataType has to be set to DATA_REFERENCE.

5.3.4.3 Primitive Implementation Data Type

The RTE Types Header File declares C types for all Primitive Implementation
Data Types where the referred BaseType has a nativeDeclaration attribute.

[SWS_Rte_07104] d For each Primitive Implementation Data Type with a
nativeDeclaration attribute, the RTE Types Header File shall include the corre-
sponding type declaration as:

typedef <nativeDeclaration> <name>;

where <nativeDeclaration> is the nativeDeclaration attribute of the re-
ferred BaseType and <name> is the Implementation Data Type symbol of the
Primitive Implementation Data Type. c(SRS_Rte_00055, SRS_Rte_00166,
SRS_Rte_00168, SRS_BSW_00353)

MyUint8:
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned char

������� �	
��	�� ���

����	������	�������

+baseType+swDataDefProps

Figure 5.2: Primitive Implementation Data Type

484 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: All Primitive Implementation Data Types where the referred Base-
Type has no nativeDeclaration attribute resulting not in a type declaration. This
is intended to prevent the redeclaration of the predefined Standard Types and Platform
Types.

uint8:
ImplementationDataType

category = VALUE

:SwDataDefProps uint8: SwBaseType

category = FIXED_LENGTH

�� �� ���	
	� � �	�	���	
� ����	�	������� �	 ��	 ���� ������������	�� ��

+swDataDefProps +baseType

Figure 5.3: Primitive Implementation Data Type included from Platform_Types.h

[SWS_Rte_07105] d If more than one Primitive Implementation Data Type
with equal shortName and equal nativeDeclaration attribute of the referred
BaseType are defined, the RTE Types Header File shall include only once the cor-
responding type declaration according to [SWS_Rte_07104]. c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Primitive Implementation Data Types in the ECU extract.

5.3.4.4 Array Implementation Data Type

In addition to the primitive data-types defined in the previous section, it is also neces-
sary for the RTE generator to declare composite data-types: arrays and records.

An array definition following information:

• the array type

• the number of dimensions

• the number of elements for each dimension.

[SWS_Rte_07110] d For each Array Implementation Data Type which leaf
ImplementationDataTypeElement is typed by a BaseType, the RTE Types
Header File shall include the corresponding type declaration as:

typedef <nativeDeclaration> <name>[<size 1>]{[<size 2>]...
[<size n>]};

where <nativeDeclaration> is the nativeDeclaration attribute of the referred
BaseType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.

485 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension def-
initions [<size 1>], [<size 2>] ... [<size n>] ordered from the root to the
leaf ImplementationDataTypeElement. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07111] d For each Array Implementation Data Type which leaf
ImplementationDataTypeElement is typed by an ImplementationDataType,
the RTE Types Header File shall include the corresponding type declaration as:

typedef <type> <name>[<size 1>]{[<size 2>]...[<size n>]};

where <type> is the shortName of the referred ImplementationDataType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>]
ordered from the root to the leaf ImplementationDataTypeElement. c
(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_03609] d For each Array Implementation Data Type which last
ImplementationDataTypeElement is of category STRUCTURE, the RTE Types
Header File shall include the corresponding type declaration as:

typedef struct { <elements> } <name>;

where <elements> is the record element specification and

<name> is the Implementation Data Type Element shortName of the Array
Implementation Data Type.

For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataTypeEle-
ments in the input configuration.
Sequent record elements are separated with a semicolon. c(SRS_Rte_00055,
SRS_Rte_00164)

The definition of the record element specification is defined in section 5.3.4.5.

[SWS_Rte_06706] d For each Array Implementation Data Type which last
ImplementationDataTypeElement is of category STRUCTURE, the RTE Types
Header File shall include the corresponding type declaration as:

typedef <type> <name>[<size 1>]{[<size 2>]...[<size n>]};

486 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <type> is the Implementation Data Type Element shortName,
<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type, [<size x>] is the arraySize of the Array’s Implementa-
tionDataTypeElement.

For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>]
ordered from the root to the last ImplementationDataTypeElement belonging to
the array definition. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_03610] d For each Array Implementation Data Typewhich last Im-
plementationDataTypeElement is of category UNION, the RTE Types Header File
shall include the corresponding type declaration as:

typedef union { <elements> } <name>;
where <elements> is the union element specification and <name> is the Imple-
mentation Data Type Element shortName of the Array Implementation
Data Type.

For each union element defined by one ImplementationDataTypeElement one
union element specification <elements> is defined. The union element specifications
are ordered according the order of the related ImplementationDataTypeElements
in the input configuration.
Sequent union elements are separated with a semicolon. c(SRS_Rte_00055,
SRS_Rte_00164)

The definition of the union element specification is defined in section 5.3.4.6.

[SWS_Rte_06707] d For each Array Implementation Data Typewhich last Im-
plementationDataTypeElement is of category UNION, the RTE Types Header File
shall include the corresponding type declaration as:

typedef <type> <name>[<size 1>]{[<size 2>] ... [<size n>]};

where <type> is the Implementation Data Type Element shortName,
<name> is the Implementation Data Type symbol of the Array Imple-
mentation Data Type, [<size x>] is the arraySize of the Array’s Imple-
mentationDataTypeElement. For each array dimension defined by one Array’s
ImplementationDataTypeElement one array dimension definition [<size x>]
is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>]
ordered from the root to the last ImplementationDataTypeElement belonging to
the array definition. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_06708] d For each Array Implementation Data Typewhich last Im-
plementationDataTypeElement is of category DATA_REFERENCE, the RTE Types
Header File shall include the corresponding type declaration as:

487 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name> [<size
1>]{[<size 2>]...[<size n>]};

where <name> is the Implementation Data Type symbol of the Array Im-
plementation Data Type and

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension
definitions [<size 1>], [<size 2>] ... [<size n>] ordered from the root
to the last ImplementationDataTypeElement belonging to the array definition. c
(SRS_Rte_00055, SRS_Rte_00164)

For the definition of <tqlA> and <tqlB> see [SWS_Rte_07149] and
[SWS_Rte_07166].

For the definition of <addtqlA> and <addtqlB> see [SWS_Rte_07036] and
[SWS_Rte_07037].

[SWS_Rte_07112] d If more than one Array Implementation Data Type with
equal shortName of the ImplementationDataType and equal nativeDeclara-
tion attribute of the referred BaseType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07110].
c(SRS_Rte_00165)

[SWS_Rte_07113] d If more than one Array Implementation Data Type with
equal shortName of the ImplementationDataType and equal shortName of the
referred ImplementationDataType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07111].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Array Implementation Data Types in the ECU extract.

ArrA: ImplementationDataType

category = ARRAY

:SwDataDefProps MyUint8Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned char

������� �	
��	�� ��� ��������

ArrAElement:
ImplementationDataTypeElement

category = VALUE
arraySize = 5

+subElement

+swDataDefProps

+baseType

Figure 5.4: Example of a single dimension array typed by an BaseType

488 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ArrArrD:
ImplementationDataType

category = ARRAY

FirstDim:
ImplementationDataTypeElement

category = ARRAY
arraySize = 15

SecondDim:
ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 10

������� �	
�� ������������

:SwDataDefProps
uint8:

ImplementationDataType

category = VALUE

+implementationDataType

+subElement

+swDataDefProps

+subElement

Figure 5.5: Example of a two dimension array typed by an ImplementationDataType

ANSI C does not allow a type declaration to have zero elements and therefore we
require that the “number of elements” to be a positive integer.

[SWS_Rte_CONSTR_09042] Array Implementation Data Types needs at
least one element d The arraySize defining number of elements in one dimension of
an Array Implementation Data Type shall be an integer that is ≥ 1 for each dimension.
c()

5.3.4.5 Structure Implementation Data Type

[SWS_Rte_07114] d For each Structure Implementation Data Type, the RTE
Types Header File shall include the corresponding structure declaration as:

struct Rte_struct_<name> { <elements> };

where <elements> is the record element specification and <name> is the Implemen-
tation Data Type symbol of the Structure Implementation Data Type.

For each record element defined by one ImplementationDataTypeElement one record
element specification <elements> is defined. The record element specifications are
ordered according the order of the related ImplementationDataTypeElements in
the input configuration. Sequent record elements are separated with a semicolon. c
(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_06812] d For each Structure Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef struct Rte_struct_<name> <name>;

where <name> is the Implementation Data Type symbol of the Structure
Implementation Data Type. c(SRS_Rte_00055, SRS_Rte_00164)

An example is listed as ARXML and ’C’-code in Appendix F.4.

489 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.4.6 Union Implementation Data Type

[SWS_Rte_07144] d For each Union Implementation Data Type, the RTE
Types Header File shall include the corresponding union declaration as:

union Rte_union_<name> { <elements> };

where <elements> is the union element specification and <name> is the Implemen-
tation Data Type symbol of the Union Implementation Data Type.

For each union element defined by one ImplementationDataTypeElement one
union element specification <elements> is defined. The union element specifications
are ordered according the order of the related ImplementationDataTypeElements
in the input configuration. Sequent union elements are separated with a semicolon. c
(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_06813] d For each Union Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef union Rte_union_<name> <name>;

where <name> is the Implementation Data Type symbol of the Union Im-
plementation Data Type. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07115] d Record and Union element specifications <elements> shall be
generated as

<nativeDeclaration> <name>;

if the ImplementationDataTypeElement has the category attribute set to
VALUE and if it refers to an BaseType. The meaning of the fields is identical to
[SWS_Rte_07104] c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07116] d Record and Union element specifications <elements> shall be
generated as

<type> <name>;

if the ImplementationDataTypeElement has the category attribute set to
TYPE_REFERENCE and if it refers to an ImplementationDataType. <type>
is the Implementation Data Type symbol of the referred Implementation-
DataType and <name> is the shortName of the ImplementationDataTypeEle-
ment. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07117] d Record and Union element specifications <elements> shall be
generated as

<nativeDeclaration> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to ARRAY
and which leaf ImplementationDataTypeElement has the category attribute set

490 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

to VALUE and is typed by an BaseType. The meaning and order of the fields is identical
to [SWS_Rte_07110] c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07118] d Record and Union element specifications <elements> shall be
generated as

<type> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to AR-
RAY and which leaf ImplementationDataTypeElement has the category at-
tribute set to TYPE_REFERENCE and is typed by an ImplementationDataType. The
meaning and order of the fields is identical to [SWS_Rte_07111] c(SRS_Rte_00055,
SRS_Rte_00164)

[SWS_Rte_07119] d Record and Union element specifications <elements> shall be
generated as

struct { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
STRUCTURE. The meaning and order of the fields is identical to [SWS_Rte_07114] Se-
quent elements are separated with a semicolon. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07145] d Record and Union element specifications <elements> shall be
generated as

union { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
UNION. The meaning and order of the fields is identical to [SWS_Rte_07144]. Sequent
elements are separated with a semicolon. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07146] d Pointer element specifications <elements> shall be generated
as

<tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

if the ImplementationDataTypeElement has the category attribute set to
DATA_REFERENCE where <name> is the shortName of the Implementation-
DataTypeElement. c(SRS_Rte_00055, SRS_Rte_00164)

For the definition of <tqlA> and <tqlB> see [SWS_Rte_07149] and
[SWS_Rte_07166].

For the definition of <addtqlA> and <addtqlB> see [SWS_Rte_07036] and
[SWS_Rte_07037].

For the definition of <type> see [SWS_Rte_07162], [SWS_Rte_07163].

491 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RecA: ImplementationDataType

category = STRUCTURE

M: ImplementationDataTypeElement

category = TYPE_REFERENCE

N: ImplementationDataTypeElement

category = VALUE

O: ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8:
ImplementationDataType

category = VALUE

uint8:
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned short

:SwDataDefProps

:SwDataDefProps

������� ��	
��

�

������ �

������� ���	� ��

���� ��

� �����

+subElement

+swDataDefProps

+swDataDefProps

+baseType

+subElement

+subElement

+implementationDataType

+swDataDefProps
+implementationDataType

Figure 5.6: Example of a structure type

492 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RecA:
ImplementationDataType

category = STRUCTURE

M: ImplementationDataTypeElement

category = TYPE_REFERENCE

N:
ImplementationDataTypeElement

category = VALUE

O:
ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8:
ImplementationDataType

category = VALUE

uint8:
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned short

:SwDataDefProps

:SwDataDefProps

������� ��	
��

�

������ �

������� ���	� ��

���� ��

��	
��

�

���� ���

������� ���	� ���

� ��

� �����

P:
ImplementationDataTypeElement

category = STRUCTURE

:SwDataDefProps

PA:
ImplementationDataTypeElement

category = TYPE_REFERENCE

PB:
ImplementationDataTypeElement

category = VALUE

:SwDataDefProps

+swDataDefProps

+swDataDefProps
+implementationDataType

+subElement

+implementationDataType

+subElement

+swDataDefProps

+swDataDefProps

+implementationDataType

+subElement

+subElement

+baseType

+baseType

+subElement

+swDataDefProps

+subElement

Figure 5.7: Example of a nested structure type

493 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

UnionFoo: ImplementationDataType

category = UNION

TheWord:
ImplementationDataTypeElement

category = VALUE

TheBytes:
ImplementationDataTypeElement

category = STRUCTURE

FirstByte:
ImplementationDataTypeElement

category = VALUE

SecondByte:
ImplementationDataTypeElement

category = VALUE

MyUint16Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned short

MyUint8Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned char

������� �	
�	

�

�	
�	�� ���� ��������

�����

�

�	
�	�� ���� �
�������

�	
�	�� ���� ����	������

���������

��	
�	����

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

+baseType

+subElement

+subElement

+baseType

+swDataDefProps

+swDataDefProps

+baseType

+swDataDefProps+subElement

+subElement

Figure 5.8: Example of a union type

[SWS_Rte_07107] d If more than one Structure Implementation Data Type
or Union Implementation Data Type with equal shortName of the Implemen-
tationDataType are defined, the RTE Types Header File shall include only once the
corresponding type declaration according to [SWS_Rte_07114] or [SWS_Rte_07144].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Structure Implementation Data Types and Union Implementation
Data Types in the ECU extract.

ANSI C does not allow a struct to have zero elements and therefore we require that
a record include at least one element.

[SWS_Rte_CONSTR_09043] Structure Implementation Data Types needs
at least one element d A structure shall include at least one element defined by a
ImplementationDataTypeElement. c()

A union data type describes a kind of structural overlay. Defining only one sub element
of a union ist therefore not reasonable and indicates an error.

494 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.4.7 Implementation Data Type redefinition

[SWS_Rte_07109] d For each Redefinition Implementation Data Type
which is typed by an ImplementationDataType, the RTE Types Header File shall
include the corresponding type declaration as:

typedef <type> <name>;

where <type> is the Implementation Data Type symbol of the referred
ImplementationDataType and <name> is the Implementation Data Type
symbol of the Primitive Implementation Data Type. c(SRS_Rte_00055,
SRS_Rte_00166)

������� �	
���
�����

EngSpd: ImplementationDataType

category = TYPE_REFERENCE

uint16:
ImplementationDataType

:SwDataDefProps+swDataDefProps +implementationDataType

Figure 5.9: Example of an Implementation Data Type redefinition

[SWS_Rte_07167] d If more than one Redefinition Implementation Data
Types with equal shortNames which are referring to compatible Implementation-
DataTypes with identical shortNames are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07109].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Redefinition Implementation Data Type in the ECU extract.

5.3.4.8 Pointer Implementation Data Type

[SWS_Rte_07148] d For each Pointer Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

where <name> is the Implementation Data Type symbol of the Pointer Im-
plementation Data Type. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07149] d <tqlA> (type qualifier A) of a Pointer Implemen-
tation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to const if the swImplPolicy of the sw-
PointerTargetProps is set to const and shall be omitted for all other values of
swImplPolicy. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07166] d <tqlB> (type qualifier B) of a Pointer Implemen-
tation Data Type ([SWS_Rte_07148]) or Pointer element specifications

495 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

([SWS_Rte_07146]) shall be set to const if the swImplPolicy of the Sw-
DataDefProps of the ImplementationDataType respectively Implementa-
tionDataTypeElement is set to const and shall be omitted for all other values of
swImplPolicy. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07036] d <addtqlA> (additional type qualifier A) of a Pointer Im-
plementation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to the content of the additionalNativeType-
Qualifier attribute of the swPointerTargetProps if the attribute exists and shall
be omitted if such additionalNativeTypeQualifier attribute dose not exist. c
(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07037] d <addtqlB> (additional type qualifier B) of a Pointer Im-
plementation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to the content of the additionalNativeType-
Qualifier attribute of the SwDataDefProps of the ImplementationDataType
respectively ImplementationDataTypeElement and shall be omitted if such ad-
ditionalNativeTypeQualifier attribute dose not exist. c(SRS_Rte_00055,
SRS_Rte_00166)

[SWS_Rte_07162] d <type> shall be set to the nativeDeclaration attribute of the
referred BaseType if the targetCategory of a Pointer Implementation Data
Type ([SWS_Rte_07148]) or Pointer element specifications ([SWS_Rte_07146]) is set
to VALUE c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07163] d <type> shall be the Implementation Data Type sym-
bol of the referred ImplementationDataType if the targetCategory of a
Pointer Implementation Data Type ([SWS_Rte_07148]) or Pointer element
specifications ([SWS_Rte_07146]) is set to TYPE_REFERENCE c(SRS_Rte_00055,
SRS_Rte_00166)

[SWS_Rte_07169] d If more than one Pointer Implementation Data Types
with equal shortNames which are resulting in the same C pointer type declaration
are defined, the RTE Types Header File shall include only once the corresponding type
declaration according to [SWS_Rte_07148]. c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Pointer Implementation Data Type in the ECU extract.

TheRecAPointer:
ImplementationDataType

category = DATA_REFERENCE

:SwDataDefProps

:SwPointerTargetProps

targetCategory = TYPE_REFERENCE

:SwDataDefProps

swImplPolicy = const

������� �	
�� ��� � �������	�
����

RecA: ImplementationDataType

category = STRUCTURE

+swDataDefProps

+implementationDataType

+swPointerTargetProps

+swDataDefProps

Figure 5.10: Example of a Pointer Implementation Data Type

496 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.4.9 ImplementationDataTypes with VariationPoints

[SWS_Rte_06539] d

The RTE Generator shall wrap each code related to ImplementationDataType-
Elements which are subject to variability in Structure Implementation Data
Type and Union Implementation Data Type (see 4.24 if the variability shall be
implemented.

1 #if (<condition>)
2

3 <elements>
4

5 #endif

where <condition> are the condition value macro(s) of the VariationPoints ac-
cording table 4.24 and

<elements> is the code according invariant ImplementationDataType-
Elements (see also [SWS_Rte_07115], [SWS_Rte_07116], [SWS_Rte_07117],
[SWS_Rte_07118], [SWS_Rte_07119], [SWS_Rte_07145], [SWS_Rte_07146])

c(SRS_Rte_00201)

[SWS_Rte_06540] d The RTE Generator shall implement the <size x> of an Array
Implementation Data Type for each arraySize which is subject to variability
with the corresponding attribute value macro according table 4.24 if the variability shall
be implemented. c(SRS_Rte_00201)

5.3.4.10 Naming of data types

The Implementation Data Type symbol is defined as follows:

[SWS_Rte_06716] d The Implementation Data Type symbol shall be the
shortName of the ImplementationDataType if no symbol attribute for this Im-
plementationDataTypeis defined. c(SRS_Rte_00167)

Example 5.19

The Primitive Implementation Data Type in example 5.2 results in the type
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8;

[SWS_Rte_06717] d The Implementation Data Type symbol shall be the value
of the SymbolProps.symbol attribute of the ImplementationDataType if the sym-
bol attribute is defined. c(SRS_Rte_00167)

497 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06718] d If the RTE Types Header File contains a generated C data type
whose Implementation Data Type symbol differs from the Implementation-
DataType shortName, the Application Type Header Files of each software com-
ponent using the type shall contain a definition which redefines the Implementa-
tion Data Type symbol to the shortName of the ImplementationDataType.
c(SRS_Rte_00167)

MyUint8:
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base: SwBaseType

category = FIXED_LENGTH
nativeDeclaration = unsigned char

������� �	
��	�� ��� ����	������	�������

:SymbolProps

symbol = MyUint8OfVendorNil

+baseType

+symbolProps

+swDataDefProps

Figure 5.11: Primitive Implementation Data Type with SymbolProps

Example 5.20

If the input configuration contains a two ImplementationDataTypes with same
name but different definition the SymbolProps can be used to avoid the name clash.
The Primitive Implementation Data Type in example 5.11 results in following
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8OfVendorNil;

The Application Types Header File an using component contain the remapping to the
original name:

1 /* Application Types Header File */
2 define MyUint8 MyUint8OfVendorNil;

[SWS_Rte_06719] d The RTE generator shall reject configurations where Implemen-
tationDataTypes result in the same Implementation Data Type symbol but
whose definition would not resulting in the same type declaration. c(SRS_Rte_00018)

Note: This would result in compiler errors due to incompatible redefinition of C types.

[SWS_Rte_06724] d The RTE generator shall reject configurations where the same
software component uses ImplementationDataTypes with equal shortNames
which would result in the mapping to different Implementation Data Type sym-
bols. c(SRS_Rte_00018)

Note: This would result in compiler errors due to incompatible redefinition of the
mapping from ImplementationDataType.shortName to Implementation Data
Type symbol

498 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.4.11 C/C++

The following requirements apply to RTEs generated for C and C++.

[SWS_Rte_01161] d The name of the RTE Types Header File shall be Rte_Type.h.
c(SRS_BSW_00300)

[SWS_Rte_01162] d Within the RTE Types Header File, each data type shall be de-
clared using typedef. c(SRS_Rte_00126)

A typedef is used when declaring a new data type instead of a #define even though
C only provides weak type checking since other static analysis tools can then be used
to overlay strong type checking onto the C before it is compiled and thus detect type
errors before the module is even compiled.

5.3.5 RTE Data Handle Types Header File

The RTE Data Handle Types Header File contains the Data Handle type declarations
necessary for the component data structures (see Section 5.4.2). The RTE Data
Handle Types Header File code is not allowed to create objects in memory.

[SWS_Rte_07920] d The RTE generator shall create the RTE Data Handle Types
Header File including the type declarations of

data element without status ([SWS_Rte_01363], [SWS_Rte_01364],
[SWS_Rte_02607]),

data element with status ([SWS_Rte_01365], [SWS_Rte_01366],
[SWS_Rte_03734], [SWS_Rte_02666], [SWS_Rte_02589], [SWS_Rte_02590]),

and data element with extended status ([SWS_Rte_06817],
[SWS_Rte_06818], [SWS_Rte_06819], [SWS_Rte_06820], [SWS_Rte_06821],
[SWS_Rte_06822], [SWS_Rte_06823], [SWS_Rte_06824], [SWS_Rte_06825],
[SWS_Rte_06826]). c()

[SWS_Rte_07921] d The RTE Data Handle Types Header File shall not contain code
that creates object in memory. c(SRS_BSW_00308)

The RTE Data Handle Types Header File should be an output of the “RTE Contract”
and “RTE Generation” phases.

5.3.5.1 File Name

[SWS_Rte_07922] d The name of the RTE Data Handle Types Header File shall be
Rte_DataHandleType.h. c(SRS_BSW_00300)

499 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.5.2 File Contents

The RTE Data Handle Types Header File contains the type declarations of data el-
ement without status and data element with status (see Section 5.4.2).

[SWS_Rte_07923] d The RTE Data Handle Types Header File shall include the follow-
ing mechanism to prevent multiple inclusions.

1 #ifndef RTE_DATA_HANDLE_TYPE_H
2 #define RTE_DATA_HANDLE_TYPE_H
3

4 /* File contents */
5

6 #endif /* RTE_DATA_HANDLE_TYPE_H */

c(SRS_Rte_00126)

5.3.6 Application Types Header File

The Application Types Header File provides a component local name space for enu-
meration literals and range values. The Application Types Header File is not allowed to
create objects in memory.

The Application Types Header File file should be identical output for “RTE Contract”
and “RTE Generation” phases.

[SWS_Rte_07120] d The RTE generator shall create an Application Types Header
File for each software-component type (excluding ParameterSwComponentTypes
and NvBlockSwComponentTypes) defined in the input. c(SRS_Rte_00024,
SRS_Rte_00140, SRS_BSW_00447)

[SWS_Rte_07121] d The Application Types Header File shall not contain code that
creates objects in memory. c(SRS_BSW_00308)

5.3.6.1 File Name

[SWS_Rte_07122] d The name of the Application Types Header File shall be formed
by prefixing the AUTOSAR software-component type name with Rte_[Byps_] and
appending the result with _Type.h. [Byps_] is an optionnal infix used when compo-
nent wrapper method for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00300, SRS_Rte_00167)

Example 5.21

The following declaration in the input XML:
1 <APPLICATION-SW-COMPONENT-TYPE>
2 <SHORT-NAME>Source</SHORT-NAME>
3 </APPLICATION-SW-COMPONENT-TYPE>

500 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

should result in the Application Types Header File Rte_Source_Type.h being gen-
erated when the component wrapper method for bypass support is disabled.

5.3.6.2 Scope

[SWS_Rte_07123] d The Application Types Header File for a component shall contain
only information relevant for that component. c(SRS_Rte_00167, SRS_Rte_00017)

[SWS_Rte_07124] d The Application Types Header File shall be valid for both C and
C++ source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07124] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07125] d All definitions within in the Application Types Header File shall be
preceded by the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07126] d All definitions within the application types header file shall be
suffixed by the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07678] d The Application Types Header File shall be protected against
multiple inclusions:

1 #ifndef RTE_<SWC>_TYPE_H
2 #define RTE_<SWC>_TYPE_H
3 ...
4 /*
5 * Contents of file
6 */
7 ...
8 #endif /* !RTE_<SWC>_TYPE_H */

Where <SWC> is the AUTOSAR software-component type name.3 c(SRS_Rte_00126)

3No additional capitalization is applied to the names.

501 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.6.3 File Contents

In contrast to the Application Header File the Application Types Header File supports
that multiple Application Types Header File’s are included in the same module. This is
necessary if for instance a BSW module uses several AUTOSAR Services.

[SWS_Rte_07127] d The Application Types Header File shall include the RTE Types
Header File. c(SRS_Rte_00087)

The name of the RTE Types Header File is defined in Section 5.3.4.

5.3.6.4 RTE Modes

The Application Types Header File shall contain identifiers for the ModeDeclarations
and type definitions for ModeDeclarationGroup’s as defined in Chapter 5.5.4

5.3.6.5 Enumeration Data Types

The Application Types Header File shall contain the enumeration constants as defined
in Chapter 5.5.5

5.3.6.6 Range Data Types

The Application Types Header File shall contain definitions of Range constants as
defined in Chapter 5.5.6

5.3.6.7 Implementation Data Type symbols

The Application Types Header File may contain definitions to redefine the Imple-
mentation Data Type symbol to the shortName of the Implementation-
DataType in order to provide the expected type name to the software component
implementation. See section 5.3.4.10.

5.3.6.8 Macros for accessing Availability Information in Structs for optional
Members

AUTOSAR supports that elements of Structure Implementation Data Types are defined
as optional. In the meta model, the attribute isOptional of those Implementa-
tionDataTypeElements is set to True. These members may or may not exist at
runtime.

502 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Structure Implementation Data Types with optional members have to fulfill special
structural requirements (see [2] for details). The availability information is stored in
a special ImplementationDataTypeElement with the shortName availabili-
tyBitfield which is a fixed-size array of uint8.

The software component needs support to evaluate and set the availability information
for optional members.

[SWS_Rte_03617] DRAFT d A macro to access the availability information shall be
generated for each ImplementationDataTypeElement of an Implementation-
DataType where the attribute isOptional is set true. The macro shall be generated
in the Application Types Header File of each software component using this type as
follows:

1 #define Rte_IsAvailable_<i>_<e>(data) (((data)->availabilityBitfield[<
pos/8>]) & (1<<(<pos mod 8>)) != 0)

Where

• <i> is the shortName of the ImplementationDataType

• <e> is the shortName of the ImplementationDataTypeElement

• <pos> is the position of the optional ImplementationDataTypeElement
among all optional ImplementationDataTypeElements within the Imple-
mentationDataType starting with pos = 0.

c(SRS_Rte_00261)

[SWS_Rte_03618] DRAFT d A macro to set the availability information shall be
generated for each ImplementationDataTypeElement of an Implementation-
DataType where the attribute isOptional is set true. The macro shall be generated
in the Application Types Header File of each software component using this type as
follows:

1 #define Rte_SetAvailable_<i>_<e>(data, available) \
2 (\
3 (data)->availabilityBitfield[<pos/8>] = ((available) ? \
4 (data)->availabilityBitfield[<pos/8>] | (1<<(<pos mod 8>)) : \
5 (data)->availabilityBitfield[<pos/8>] & ~(1<<(<pos mod 8>))) \
6)

Where

• <i> is the shortName of the ImplementationDataType

• <e> is the shortName of the ImplementationDataTypeElement

• <pos> is the position of the optional ImplementationDataTypeElement
among all optional ImplementationDataTypeElements within the Imple-
mentationDataType starting with pos = 0.

c(SRS_Rte_00261)

503 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: Non-optional ImplementationDataTypeElements do not count since they
do not need a bit in the availabilityBitfield. So the bit position within the
availabilityBitfield is determined by the order of the optional Implementa-
tionDataTypeElements.

Examples:

• 1st optional ImplementationDataTypeElement (pos=0): (availabilityBitfield[0] &
0x01) != 0

• 8th optional ImplementationDataTypeElement (pos=7): (availabilityBitfield[0] &
0x08) != 0

• 9th optional ImplementationDataTypeElement (pos=8): (availabilityBitfield[1] &
0x01) != 0

5.3.7 VFB Tracing Header File

The VFB Tracing Header File defines the configured VFB Trace events.

[SWS_Rte_01319] d The VFB Tracing Header File shall be created by the RTE Gen-
erator during RTE Generation Phase or Basic Software Scheduler Generation Phase
only. c(SRS_Rte_00045)

The VFB Tracing Header file is included by the generated RTE and by the user in the
module(s) that define the configured hook functions. The header file includes proto-
types for the configured functions to ensure consistency between the invocation by the
RTE and the definition by the user.

5.3.7.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[SWS_Rte_01250] d The name of the VFB Tracing Header File shall be Rte_Hook.h.
c(SRS_Rte_00045)

5.3.7.2 File Contents

[SWS_Rte_01251] d The VFB Tracing header file shall include the RTE Configuration
Header File (Section 5.3.8). c(SRS_Rte_00045)

[SWS_Rte_01357] d The VFB Tracing header file shall include the RTE Types Header
file (Section 5.3.4). c(SRS_Rte_00003, SRS_Rte_00004)

[SWS_Rte_03607] d The VFB Tracing header file shall include Os.h. c
(SRS_Rte_00005, SRS_Rte_00008)

504 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01320] d The VFB Tracing header file shall contain the following code im-
mediately after the include of the RTE Configuration Header File.

1 #ifndef RTE_VFB_TRACE
2 #define RTE_VFB_TRACE (FALSE)
3 #endif /* RTE_VFB_TRACE */

c(SRS_Rte_00008, SRS_Rte_00005)

Requirement [SWS_Rte_01320] enables VFB tracing to be globally enabled/disabled
within the RTE Configuration Header File and ensures that it defaults to ‘disabled’.

[SWS_Rte_01236] d For each trace event hook function defined in Section 5.11.5, the
RTE generator shall define the following code sequence in the VFB Tracing header file:

1 #if defined(<trace event>) && (RTE_VFB_TRACE == FALSE)
2 #undef <trace event>
3 #endif
4 #if defined(<trace event>)
5 #undef <trace event>
6 extern void <trace event>(<params>);
7 #else
8 #define <trace event>(<params>) ((void)(0))
9 #endif /* <trace event> */

where <trace event> is the name of trace event hook function and <params> is
the list of parameter names of the trace event hook function prototype as defined in
Section 5.11.5. c(SRS_Rte_00008)

The code fragment within [SWS_Rte_01236] benefits from a brief analysis of its struc-
ture. The first #if block ensures that an individually configured trace event in the RTE
Configuration Header File [SWS_Rte_01324] is disabled if tracing is globally disabled
[SWS_Rte_01323]. The second #if block emits the prototype for the hook function
only if enabled in the RTE Configuration file and thus ensures that only configured trace
events are prototyped. The #undef is required to ensure that the trace event function
is invoked as a function by the generated RTE. The #else block comes into effect if the
trace event is disabled, either individually [SWS_Rte_01325] or globally, and ensures
that it has no run-time effect. Within the #else block the definition to ((void)(0))
enables the hook function to be used within the API Mapping in a comma-expression.

An individual trace event defined in Section 5.11.5 actually defines a class of hook
functions. A member of the class is created for each RTE object created (e.g. for each
API function, for each task) and therefore an individual trace event may give rise to
many hook function definitions in the VFB Tracing header file.

Example 5.22

Consider an API call Rte_Write_p1_a for an instance of SW-C c. This will result in
two trace event hook functions being created by the RTE generator:

1 Rte_WriteHook_c_p1_a_Start

and

505 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 Rte_WriteHook_c_p1_a_Return

5.3.8 RTE Configuration Header File

The RTE Configuration Header File contains user definitions that affect the behavior of
the generated RTE.

The directory containing the required RTE Configuration Header File should be in-
cluded in the compiler’s include path when using the VFB tracing header file. The RTE
Configuration Header File is generated by the RTE generator.

5.3.8.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[SWS_Rte_01321] d The name of the RTE Configuration Header File shall be
Rte_Cfg.h. c(SRS_Rte_00008, SRS_Rte_00045)

5.3.8.2 File Contents

[SWS_Rte_07641] d The RTE Configuration Header File shall include the file
Std_Types.h. c(SRS_Rte_00149, SRS_Rte_00150, SRS_BSW_00353)

5.3.8.2.1 VFB tracing configuration

[SWS_Rte_01322] d The RTE generator shall globally enable VFB tracing when
RTE_VFB_TRACE is defined in the RTE Configuration Header File as a vale which
does not evaluate as FALSE. c(SRS_Rte_00008, SRS_Rte_00005)

Note that, as observed in Section 5.11, VFB tracing enables debugging of software
components, not the RTE itself.

[SWS_Rte_01323] d The RTE generator shall globally disable VFB tracing when
RTE_VFB_TRACE is defined in the RTE configuration header file as FALSE. c
(SRS_Rte_00008, SRS_Rte_00005)

As well as globally enabling or disabling VFB tracing, the RTE Configuration header
file also configures those individual VFB tracing events that are enabled.

[SWS_Rte_01324] d The RTE generator shall enable VFB tracing for a given hook
function when there is a #define in the RTE Configuration Header File for the hook
function name and tracing is globally enabled. c(SRS_Rte_00008)

506 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note that the particular value assigned by the #define, if any, is not significant.

[SWS_Rte_01325] d The RTE generator shall disable VFB tracing for a given hook
function when there is no #define in the RTE Configuration Header File for the hook
function name even if tracing is globally enabled. c(SRS_Rte_00008)

Example 5.23

Consider the trace events from Example 5.22. The trace event for API start is enabled
by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Start

And the trace event for API termination is enabled by the following definition;
1 #define Rte_WriteHook_i1_p1_a_Return

5.3.8.2.2 Condition Value Macros

The Condition Value Macros are generated in the PreBuild Data Set Contract Phase
and PreBuild Data Set Generation Phase. To do this a particular variant out of the
pre-build variability of the input configuration has to be chosen by the means
described in by [SWS_Rte_06500].

[SWS_Rte_06514] d If evaluated BooleanValueVariationPoints or Condi-
tionByFormulas are resulting to true the <value> for Condition Value Macros shall
be coded as TRUE and if these are resulting to false the value shall be coded as FALSE.
c(SRS_Rte_00201, SRS_Rte_00203)

[SWS_Rte_06513] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Configuration Header File shall contain a definition of a Con-
dition Value Macro in the RTE PreBuild Data Set Contract Phase and RTE PreBuild
Data Set Generation Phase

#define Rte_SysCon_<cts>_<name> <value><suffix>

Where <cts> is the component type symbol of the AtomicSwComponentType,

<name> is the shortName of the VariationPointProxy,

<value> is the evaluated value of the AttributeValueVariationPoint or Con-
ditionByFormula

and <suffix> shall

• be set to "U" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to NONE and the
baseTypeSize <= 16

507 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• be set to "UL" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to NONE and the
baseTypeSize > 16 and <= 32

• be set to "ULL" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to NONE and the
baseTypeSize > 32

• be set to "L" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to 2C and the base-
TypeSize > 16 and <= 32

• be set to "LL" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to 2C and the base-
TypeSize > 32

• be set to "F" if the VariationPointProxy’s implementationDataType
boils down to a SwBaseType with baseTypeEncoding set to IEEE754 and
the baseTypeSize <= 32

• be left empty if

– the VariationPointProxy’s implementationDataType boils down to
a SwBaseType with baseTypeEncoding set to BOOLEAN

or

– a SwBaseType with baseTypeEncoding set to IEEE754 and the base-
TypeSize > 32

or

– to a SwBaseType with baseTypeEncoding set to 2C and baseTypeSize
<= 16

.

c(SRS_Rte_00203, SRS_Rte_00167)

This requirements makes the SwSystemconst values available to resolve the pre-
build variability in the software components via the Preprocessor. This might
be used to

• read the actual value of the value assigned to a SwSystemconst

• read the setting of an attribute (e.g. array size) dependent from a SwSystem-
const

• check the existence of a conditional existent object, e.g. an code fragment imple-
menting a particular functionality

Please note the Rte_SysCon macro holds the internal value of the evaluated At-
tributeValueVariationPoint or ConditionByFormula. Therefore the RTE

508 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

does not perform value conversions for SwSystemconst using a compuMethod. See
[TPS_GST_00262].

[SWS_Rte_03854] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Application Header File shall contain a definition

#define Rte_SysCon_<name> Rte_SysCon_<cts>_<name>

where <cts> is the component type symbol of the AtomicSwComponentType
and

<name> is the shortName of the VariationPointProxy. c(SRS_Rte_00203,
SRS_Rte_00167)

[SWS_Rte_06515] d For each RTE API which is subject to variability and following the
form component port or entity port in table 4.17 the RTE Configuration Header File
shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<p>_<o>[_<psl>] <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity,

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<p> is the name of the PortPrototype,

<o> is the short name of the PortInterface element and

<psl> is the shortLabel of the PortPrototype’s VariationPoint which is re-
ferred by the VariableAccess

If there is no VariationPoint at the RunnableEntity owning the VariableAc-
cess the <resl> with leading underscore is omitted ([_<resl>]).

If there is no VariationPoint at the PortPrototype referred by the Vari-
ableAccess the <psl> with leading underscore is omitted ([_<psl>]).

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint vary the existence of the RTE API in table 4.17. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_08789] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Configuration Header File shall contain a definition of a Con-
dition Value Macro in the RTE PreBuild Data Set Contract Phase and RTE PreBuild
Data Set Generation Phase

#define SchM_SysCon_<bsnp>[_<vi>_<ai>]_<ki>_<name> <value>

Where

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

509 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.28,

<name> is the short name of the element which is subject to variability in table 4.28
defining the Basic Software Scheduler API name infix and

<value> is the evaluated value of the AttributeValueVariationPoint or Con-
ditionByFormula.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

This requirement makes the SwSystemconst value available to resolve the pre-
build variability in the BSW module via the Preprocessor. This might be used
to

• read the actual value of the value assigned to a SwSystemconst

• read the setting of an attribute (e.g. array size) dependent from a SwSystem-
const

• check the existence of a conditional existent object, e.g. a code fragment imple-
menting a particular functionality

[SWS_Rte_06518] d For each RTE API which is subject to variability and following the
form component internal in table 4.17 the RTE Configuration Header File shall contain
one definition of a Condition Value

#define Rte_VPCon_<cts>_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<ki> is the kind infix according table 4.17,

<name> is the short name of the element which is subject to variability in table 4.17
and is defining the API name infix,

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.17. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_06519] d For each RTE API which is subject to variability and which vari-
ability shall be implemented and which is following the form entity internal in table 4.17
the RTE Configuration Header File shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

510 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<re> is the short name of the RunnableEntity,

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<ki> is the kind infix according table 4.17 and

<name> is the short name of the element which is subject to variability in table 4.17
and is defining the API name infix.

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

If there is no VariationPoint at the RunnableEntity owning the reference ele-
ment (e.g. a VariableAccess) to the PortInterface element the <resl> with
leading underscore is omitted ([_<resl>]).

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.17. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_06520] d For each PortPrototype which is subject to variability and
which variability shall be implemented the RTE Configuration Header File shall con-
tain one definition of a Condition Value

#define Rte_VPCon_<cts>_<p>_<psl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<p> is the short name of the PortPrototype and

<psl> is the shortLabel of the PortPrototype’s VariationPoint and

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the PortPrototype in table 4.17. c
(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06530] d For each RunnableEntity which is subject to variability and
which variability shall be implemented the RTE Configuration Header File shall contain
one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>_<resl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RunnableEntity in table 4.20. c
(SRS_Rte_00201, SRS_Rte_00167)

511 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06541] d For each arraySize which subject to variability the RTE Con-
figuration Header File shall contain one definition of a Attribute Value

#define Rte_VPVal_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement with the arraySize being subject to variability and

<value> is the evaluated value of the AttributeValueVariationPoint of the
arraySize c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06542] d For each Array’s ImplementationDataTypeElement which
subject to variability the RTE Configuration Header File shall contain one definition of
a Condition Value

#define Rte_VPCon_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement being subject to variability and

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the conditional existence of the Array’s ImplementationDataType-
Element c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06551] d For each DataConstr referenced by a ApplicationPrimi-
tiveDataTypewhere the upperLimit is subject to PreCompileTime variabil-
ity the RTE Configuration Header File shall contain one definition of a Attribute Value
Macro

#define Rte_VPVal_<cts>_<prefix><t>_UpperLimit <upperValue><suffix>

where <cts> is the component type symbol of the AtomicSwComponentType,

<t> is the shortName of the ApplicationPrimitiveDataType,

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs,

<upperValue> are the upperLimit value of the dataConstr referenced by the
ApplicationPrimitiveDataType onto which the corresponding CompuMethod
has been applied (see [SWS_Rte_07038]). The value in the macro definitions shall
always reflect the closed interval, regardless of the interval type specified by the Dat-
aConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00201, SRS_Rte_00167)

512 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06552] d For each DataConstr referenced by a ApplicationPrimi-
tiveDataTypewhere the lowerLimit is subject to PreCompileTime variabil-
ity the RTE Configuration Header File shall contain one definition of a Attribute Value
Macro

#define Rte_VPVal_<cts>_<prefix><t>_LowerLimit <lowerValue><suffix>

where <cts> is the component type symbol of the AtomicSwComponentType,

<t> is the shortName of the ApplicationPrimitiveDataType,

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs,

<lowerValue> are the lowerLimit value of the dataConstr referenced by the
ApplicationPrimitiveDataType onto which the corresponding CompuMethod
has been applied (see [SWS_Rte_07038]). The value in the macro definitions shall
always reflect the closed interval, regardless of the interval type specified by the Dat-
aConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06535] d For each Basic Software Scheduler API which is subject to vari-
ability and following the form module internal in table 4.28 the RTE Configuration
Header File shall contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_<name>_<sl> <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.28,

<name> is the short name of the element which is subject to variability in table 4.28
defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.28.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

513 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06536] d For each Basic Software Scheduler API which is subject to vari-
ability and which variability shall be implemented and which is following the form mod-
ule external and entity internal in table 4.28 the RTE Configuration Header File shall
contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_
<entity>[_<esl>]_<name>[_<sl>] <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.28,

entity is the shortName of the BswModuleEntity

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint containing
the subject to variability,

<name> is the shortName of the element/referenced element which is subject to vari-
ability in table 4.28 defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’s VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.28.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528].

If there is no VariationPoint at the BswModuleEntity referring to the subject to
variability in table 4.28 the <esl> with leading underscore is omitted ([_<esl>]).

If there is no VariationPoint at the elements defining the Basic Software Sched-
uler API name infix 4.28 the <sl> with leading underscore is omitted ([_<sl>]). c
(SRS_Rte_00229, SRS_BSW_00347)

[SWS_Rte_06532] d For each BswSchedulableEntity which is subject to variability
and which variability shall be implemented the RTE Configuration Header File shall
contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<entry>_<esl> <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

514 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<entry> is the shortName of the implemented (implementedEntry) entry point
and

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the BswSchedulableEntity in table 4.30.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

An example about the usage of condition value macros is shown in 5.6.

5.3.9 Generated RTE

Figure 5.1 defines the relationship between generated and standardized header files.
It is not necessary to standardize the relationship between the C module, Rte.c,
and the header files since when the RTE is generated the application header files are
created anew along with the RTE. This means that details of which header files are
included by Rte.c can be left as an implementation detail.

5.3.9.1 Header File Usage

[SWS_Rte_01257] d In compatibility mode, the Generated RTE module shall include
Os.h. c(SRS_Rte_00145)

[SWS_Rte_03794] d In compatibility mode, the generated RTE module shall include
Com.h. c(SRS_Rte_00145)

[SWS_Rte_01279] d In compatibility mode, the Generated RTE module shall include
Rte.h. c(SRS_Rte_00145)

[SWS_Rte_01326] d In compatibility mode, the Generated RTE module shall include
the VFB Tracing header file. c(SRS_Rte_00045, SRS_Rte_00145)

[SWS_Rte_03788] d Except for the declaration of entry points for components
(see [SWS_Rte_07194]), the RTE shall map its memory objects with the file
Rte_MemMap.h, using the AUTOSAR memory mapping mechanism (see [28]). c
(SRS_Rte_00148)

[SWS_Rte_07692] d The Generated RTE module shall perform Inter Module Checks
to avoid integration of incompatible files. The imported included files shall be checked
by preprocessing directives.

515 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The following version numbers shall be verified:

• <MODULENAME>_AR_RELEASE_MAJOR_VERSION

• <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules which
provide header files included by the Generated RTE module.

If the values are not identical to the expected values, an error shall be reported. c
(SRS_BSW_00004)

Figure 5.12 provides an example of how the RTE header and generated header files
could be used by a generated RTE.

Figure 5.12: Example of header file use by the generated RTE.

In the example in Figure 5.12, the generated RTE C module requires access to the data
structures created for each AUTOSAR software-component and therefore includes
each application header file4. In the example, the generated RTE also includes the
RTE header file and the lifecycle header file in order to obtain access to RTE and
lifecycle related definitions.

Note: Inclusion of Application Header Files of different software components into the
RTE C module needs support in the Application Header Files in order to avoid that
some local definitions of software components are producing name clashes. If the
RTE C module does not include any Application Header File, some type definitions
(e.g. component data structure) might have to be generated twice.

4The requirement that a software module include at most one application header file applies only to
modules that actually implement a software-component and therefore does not apply to the generated
RTE.

516 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.9.2 C/C++

The following requirements apply to RTEs generated for C and C++.

Note: The <PartitionName>s referred to in requirements [SWS_Rte_02712],
[SWS_Rte_02713] and [SWS_Rte_02740] are implementation-specific identifiers for
the modules. They need not be the same as the CoreId identifiers configured for the
multi core OS. Refer to section 4.3.4 for a discussion of the allocation of ECU execution
logic to partitions and the allocation of partitions to cores.

[SWS_Rte_01169] d The name of the C module containing the generated RTE
code that is shared by all cores of an ECU shall be Rte.c. c(SRS_BSW_00300,
SRS_Rte_00126)

[SWS_Rte_02711] d On a multi core ECU, RTE shall only use global and static vari-
ables in the Rte.c module, if it is used in a single image system that supports shared
memory. In this case, RTE shall guarantee consistency of this memory, e.g. by using
OS mechanisms. c()

[SWS_Rte_02712] d On a multi partition ECU, there shall be additional code and
header files named Rte_Partition_<PartitionName> for the core specific code
parts of RTE where <PartitionName> is the shortName of the container Ecuc-
Partition. c()

[SWS_Rte_02713] d There shall not be symbol redefinitions between different
Rte_Partition_<PartitionName> files. c()

These requirements makes sure, that all Rte modules can be linked in one image. On
a multi core ECU, the RTE may be linked in one image or distributed over separate
images, one per core.

An RTE that includes configured code from an object-code or source-code library may
use additional modules. Further on due to the encapsulation of a component local
name space [SRS_Rte_00167], it might be required to encapsulate part of the gener-
ated RTE code in component specific files as well to avoid name clashes in the RTE’s
implementation.

[SWS_Rte_07140] d The RTE generator is allowed to partition the
generated RTE module in several files additionally to Rte.c and
Rte_Partition_<PartitionName>. c(SRS_Rte_00167)

5.3.9.3 File Contents

By its very nature the contents of the generated RTE is largely vendor specific. It is
therefore only possible to define those common aspects that are visible to the “outside
world” such as the names of generated APIs and the definition of component data
structures that apply any operating mode.

517 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.9.3.1 Component Data Structures

The Component Data Structure (Section 5.4.2) is a per-component data type used to
define instance specific information required by the generated RTE.

[SWS_Rte_03711] d The generated RTE shall contain an instance of the relevant Com-
ponent Data Structure for each software-component instance on the ECU for which the
RTE is generated. c(SRS_Rte_00011)

[SWS_Rte_03712] d The name of a Component Data Structure instantiated by the
RTE generator shall be Rte_Instance_<name> where <name> is an automatically
generated name, created in some manner such that all instance data structure names
are unique. The name of a Component Data Structure instantiated by the RTE gener-
ator shall be Rte_Instance_<name> where <name> is an automatically generated
name, created in some manner such that all instance data structure names are unique.
c(SRS_BSW_00307)

The software component instance name referred to in [SWS_Rte_03712] is never
made visible to the users of the generated RTE. There is therefore no need to specify
the precise form that the unique name takes. The Rte_Instance_ prefix is mandated
in order to ensure that no name clashes occur and also to ensure that the structures
are readily identifiable in map files, debuggers, etc.

The Rte_Instance_ prefix does NOT mean that the Component Data Structure
instance is identical to the instance handle type Rte_Instance described in sec-
tion 5.5.2; the prefix is mandated in order to ensure that no name clashes occur and
also to ensure that the structures are readily identifiable in map files, debuggers, etc.

5.3.9.3.2 Generated API

[SWS_Rte_01266] d The RTE module shall define the generated functions that will
be invoked when an AUTOSAR software-component makes an RTE API call. c
(SRS_Rte_00051)

The semantics of the generated functions are not defined (since these will obviously
vary depending on the RTE API call that it is implementing) nor are the implementation
details (which are vendor specific). However, the names of the generated functions
defined in Section 5.2.6.1.

The signature of a generated function is the same as the signature of the relevant RTE
API call (see Section 5.6) with the exception that the instance handle can be omitted
since the generated function is applicable to a specific software-component instance.

518 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.9.3.3 Callbacks

In addition to the generated functions for the RTE API, the RTE module includes call-
backs invoked by COM when signal events (receptions, transmission acknowledge-
ment, etc.) occur.

[SWS_Rte_01264] d The RTE module shall define COM callbacks for relevant signals.
c(SRS_Rte_00019)

The required callbacks are defined in Section 5.9.

[SWS_Rte_03795] d The RTE generator shall generate a separate header file contain-
ing the prototypes of callback functions. c(SRS_Rte_00019)

[SWS_Rte_03796] d The name of the header file containing the callback prototypes
shall be Rte_Cbk.h in a C/C++ environment. c(SRS_Rte_00019)

[SWS_Rte_03796] refers to the callbacks defined in section 5.9.

5.3.9.3.4 Task bodies

The RTE module define task bodies for tasks created by the RTE generator only in
compatibility mode.

[SWS_Rte_01277] d In compatibility mode [SWS_Rte_01257], the RTE module shall
define all task bodies created by the RTE generator. c(SRS_Rte_00145)

Note that in vendor mode it is assumed that greater knowledge of the OS is available
and therefore the above requirement does not apply so that specific optimizations,
such as creating each task in a separate module, can be applied.

5.3.9.3.5 Lifecycle API

[SWS_Rte_01197] d The RTE module shall define the RTE lifecycle API. c
(SRS_Rte_00051)

The RTE lifecycle API is defined in Section 5.8.

5.3.9.4 Reentrancy

All code invoked by generated RTE code that can be subject to concurrent execution
must be reentrant. This requirement for reentrancy can be overridden if the gener-
ated code is not subject to concurrent execution, for example, if protected by a data
consistency mechanism to ensure that access to critical regions is call serialized.

519 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.10 RTE Post Build Variant Sets

[SWS_Rte_06620] d The RTE generator shall generate in the Rte_PBcfg.h file the
SchM_ConfigType type declaration of the predefined post build variants data struc-
ture. This header file must be used by other RTE modules to resolve their runtime
variabilities. c(SRS_Rte_00201)

[SWS_Rte_06638] d The RTE generator must generate a Rte_PBcfg.c file containing
the declarations and initializations of one or more RTE post build variants. Only one of
these variants can be active at runtime. c(SRS_Rte_00201, SRS_BSW_00346)

Within an RTE with post build variants, one active RtePostBuildVariantConfig-
uration will exist. It is a pointer to this structure that shall be passed to SchM_Init.
Also note that the container PredefinedVariant is only a Meta Model construct to
allow the designer to create a validated collection of values assigned to a criterion. It
is up to the implementer of the RTE generator to optimize variant configurations either
for size and/or performance by using different levels of indirection to the PostBuild-
VariantCriterionValues. For the least amount of indirection for example one can
have the criterion values at the level of the Sch_ConfigType. If you use post build
loadable then you may want to reduce memory storage by reusing variant sets if they
remain unchanged across two or more predefined variants.

The following subsections provide examples for the SchM_ConfigType declaration
and instantiation only for demonstration purposes. No requirement what so ever is
implied.

5.3.10.1 Example 1: File Contents Rte_PBcfg.h

An example of a flat data structure to represent the criterion values defined in the
Rte_PBcfg.h file containing theSchM_ConfigType type which can contain the list of
unique PostBuildVariantCriterion members. This approach immediately en-
forces that only one single criterion assignment can exist. The member names can,
for example, follow the template defined below where <sn> is the PostBuildVari-
antCriterion shortName.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

520 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.3.10.2 Example 2: File Contents Rte_PBcfg.h

An example showing an additional level of indirection and as such allows for reuse of
variant sets to optimize memory storage acorss for example several predefined vari-
ants is shown below. The RTE generator in this case can reuse some PostBuild-
VariantCriterionValueSets to reduce the memory resource consumption of an
ECU. The RTE generator can declare in the Rte_PBcfg.h file a structure type for each
distinct unique collection of PostBuildVariantCriterionValueSets containing
the PostBuildVariantCriterions as members. This implies that if two Prede-
finedVariants are defined each referring to a named PostBuildVariantCri-
terionValueSet and the list of PostBuildVariantCriterions in each of these
PostBuildVariantCriterionValueSets is identical that only one type is defined
for these two named PostBuildVariantCriterionValueSets. The name of the
type can, for example, follow the pattern below where the <id> is a unique identifier
for that type (e.g. a counter).

1 struct Rte_VarSet_<id>_t {
2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

Now the SchM_ConfigType type can be declared with pointers to these variant sets.
The member names of this struct can, for example, follow the template below where
<id> is a unique identifier.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 Rte_VarSet_<id>_t* VarSet_<id>_Ptr;
4 .
5 .
6 .
7 };

5.3.10.3 Examples: File Contents Rte_PBcfg.c

In correlation with example 1 of the header file the RTE generator can declare and op-
tionally initialize a default variant configuration named Rte_VarCfg in the Rte_PBcfg.c
file of the SchM_ConfigType type.

For example (the initializers are the criterion values):
1 const struct SchM_ConfigType Rte_VarCfg = {1,2,3,4,5};

And likewise for the example 2 header file the RTE generator can declare and initialize
in the Rte_PBcfg.c file all possible PostBuildVariantCriterionValueSets and
the RtePostBuildVariantConfiguration using references to these variant sets.

For example:

521 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 const struct Rte_VarSet_1_t Rte_VarSet_1a = {1,2,3};
2 const struct Rte_VarSet_1_t Rte_VarSet_1b = {1,4,1};
3 const struct Rte_VarSet_2_t Rte_VarSet_2 = {2,5,7,3,2};
4 .
5 .
6 .

1 const struct SchM_ConfigType Rte_VarCfg_1 =
2 {&Rte_VarSet_1a,&Rte_VarSet_2};
3 const struct SchM_ConfigType Rte_VarCfg_2 =
4 {&Rte_VarSet_1b,&Rte_VarSet_2};
5 .
6 .
7 .

When SchM_Init is called, a pointer to the active SchM_ConfigType will be
passed along which shall be assigned to the named Rte_VarCfgPtr which is of type
SchM_ConfigType*. This pointer shall be used to determine the values for actual
used PostBuildVariantCriterions and for variant validation when the DET is
enabled.

Example 1 pseudo code evaluating the criterions
1 switch(Rte_VarCfg->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Example 2 pseudo code evaluating the criterions
1 switch(Rte_VarCfgPtr->VarSet_1_Ptr->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Another type of optimization strategy (besides flattening) that can be applied is double
buffering for frequently used variant criterion values. The additional buffer can then be
used in the conditions to optimize the performance of the RTE, e.g.

1 BufferedVarCri_1 = Rte_VarCfgPtr->VarSet_1->VarCri_1;

.

522 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.4 RTE Data Structures

Object-code software components are compiled against an application header file cre-
ated during the “RTE Contract” phase but are linked against an RTE (and application
header file) created during the “RTE Generation” phase. When generated in com-
patibility mode, an RTE has to work for object-code components compiled against an
application header file created in compatibility mode, even if the application header file
was created by a different RTE generator. It is thus necessary to define the data struc-
tures and naming conventions for the compatibility mode to ensure that the object-code
is compatible with the generated RTE. An RTE generated in vendor mode only has to
work for those object-code components that were compiled against application header
files created in vendor mode by a compatible RTE generator (which in general would
mean an RTE generator supplied by the same vendor).

The use of standardized data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but has the advantage that RTE generators from different
vendors can be used to compile an object-code software-component and to generate
the RTE. No such restrictions apply for the vendor mode. If an RTE generator operating
in vendor mode is used for an object-code component in both phases, vendor-specific
optimizations can be used.

Note that with the exception of data structures required for support object-code soft-
ware components in compatibility mode, the data structures used for “RTE Generation”
phase are not defined. This permits vendor specific API mappings and data structures
to be used for a generated RTE without loss of portability.

The following definitions only apply to RTE generators operating in compatibility mode –
in this mode the instance handle and the component data structure have to be defined
even for those (object-code) software components for which multiple instantiation is
forbidden to ensure compatibility.

5.4.1 Instance Handle

The RTE is required to support object-code components as well as multiple instances
of the same AUTOSAR software-component mapped to an ECU [SRS_Rte_00011].
To minimise memory overhead all instances of a component on an ECU share code
[SRS_Rte_00012] and therefore both the RTE and the component instances require a
means to distinguish different instances.

Support for both object-code components and multiple instances requires a level of
indirection so that the correct generated RTE custom function is invoked in response to
a component action. The indirection is supplied by the instance handle in combination
with the API mapping defined in Section 5.2.6.

[SWS_Rte_01012] d The component instance handle shall identify particular instances
of a component. c(SRS_BSW_00312, SRS_Rte_00011)

523 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The instance handle is passed to each runnable entity in a component when it is ac-
tivated by the RTE as the first parameter of the function implementing the runnable
entity [SWS_Rte_01016]. The instance handle is then passed back by the runnable
entity to the RTE, as the first parameter of each direct RTE API call, so that the RTE
can identify the correct component instance making the call. This scheme permits
multiple instances of a component on the same ECU to share code.

The instance handle indirection permits the name of the RTE API call that is used within
the component to be unique within the scope of a component as well as independent
of the component’s instance name. It thus enables object-code AUTOSAR software-
components to be compiled before the final “RTE Generation” phase when the instance
name is fixed.

[SWS_Rte_01013] d For the RTE C/C++ API, any call that can operate on differ-
ent instances of a component that supports multiple instantiation supportsMulti-
pleInstantiation shall have an instance handle as the first formal parameter. c
(SRS_Rte_00011)

[SWS_Rte_03806] d If a component does not support multiple instantiation, the in-
stance handle parameter shall be omitted in the RTE C/C++ API and in the signature
of the RTE Hook functions. c(SRS_Rte_00011)

If the component does not support multiple instantiation, the instance handle is not
passed to the API calls and runnable entities as parameters. In order to support access
to the component data structure the name of the CDS is specified.

[SWS_Rte_03793] d If a software component does not support multiple instantia-
tion, the name of the component data instance shall be Rte_Inst_<cts>, where
<cts> is the component type symbol of the AtomicSwComponentType. c
(SRS_Rte_00011)

The data type of the instance handle is defined in Section 5.5.2.

Example 5.24

1 // --------------------------------------
2 // Application header file
3 // --------------------------------------
4

5 // ComponentDataStructure declaration
6 // [SWS_Rte_02310],[SWS_Rte_03733]
7 struct Rte_CDS_c
8 {
9 Rte_DE_uint8* re1_p_a;

10 Rte_DES_uint8* re2_p_a;
11 ...
12 };
13

14 // [SWS_Rte_02311]
15 typedef struct Rte_CDS_c Rte_CDS_c;
16

17 // Instance handle type
18 // [SWS_Rte_01007], [SWS_Rte_01148],[SWS_Rte_01150],[SWS_Rte_06810]

524 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

19 typedef CONSTP2CONST(Rte_CDS_c, AUTOMATIC, RTE_CONST) Rte_Instance;
20

21 // Instance handle declaration for swc without multiple instantiation
22 // [SWS_Rte_03793]
23 #define RTE_START_SEC_CONST_UNSPECIFIED
24 #include "Rte_MemMap.h"
25 extern CONSTP2CONST(Rte_CDS_c, RTE_CONST, RTE_CONST) Rte_Inst_c;
26 #define RTE_STOP_SEC_CONST_UNSPECIFIED
27 #include "Rte_MemMap.h"
28

29 //Api
30 #define Rte_IWrite_re1_p_a(v) ((Rte_Inst_c)->re1_p_a->value = (v))
31 #define Rte_IRead_re2_p_a() ((Rte_Inst_c)->re2_p_a->value)
32 #define Rte_IStatus_re2_p_a() ((Rte_Inst_c)->re2_p_a->status)
33

34 // -----------------------------------
35 // Rte.c file
36 // -----------------------------------
37

38 // ComponentDataStructure definition
39 // [SWS_Rte_03711],[SWS_Rte_03712],[SWS_Rte_03715]
40 const Rte_CDS_c Rte_Instance_c1 =
41 {
42 ...
43 };
44

45 // Instance handle definition for swc without multiple instantiation
46 // [SWS_Rte_03793]
47 #define RTE_START_SEC_CONST_UNSPECIFIED
48 #include "Rte_MemMap.h"
49 CONSTP2CONST(Rte_CDS_c, RTE_CONST, RTE_CONST) Rte_Inst_c = &

Rte_Instance_c1;
50 #define RTE_STOP_SEC_CONST_UNSPECIFIED
51 #include "Rte_MemMap.h"

5.4.2 Component Data Structure

Different component instances share many common features - not least of which is
support for shared code. However, each instance is required to invoke different RTE
API functions and therefore the instance handle is used to access the component data
structure that defines all instance specific data.

It is necessary to define the component data structure to ensure compatibility between
the two RTE phases when operating in compatibility mode – for example, a “clever”
compiler and linker may encode type information into a pointer type to ensure type-
safety. In addition, the structure definition cannot be empty since this is an error in
ANSI C.

[SWS_Rte_02310] d The Application Header File shall include a structure declaration
for the component data structure as follows:

525 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 struct Rte_[Byps_]CDS_<cts> { <component data sections> };

where <cts> is the component type symbol of the AtomicSwComponentType.
[Byps_] is an optional infix used when component wrapper method for bypass
support is enabled for the related software componenttype (See chapter 4.9.2). c
(SRS_BSW_00305, SRS_Rte_00011, SRS_Rte_00167)

[SWS_Rte_02311] d The Application Header File shall include a type declaration for
the component data structure type as follows:

1 typedef struct Rte_[Byps_]CDS_<cts> Rte_[Byps_]CDS_<cts>;

where <cts> is the component type symbol of the AtomicSwComponent-
Type.[Byps_] is an optional infix used when component wrapper method for by-
pass support is enabled for the related software componenttype (See chapter 4.9.2). c
(SRS_BSW_00305, SRS_Rte_00011, SRS_Rte_00167)

The members of the component data structure include function pointers. It is important
that such members are not subject to run-time modification and therefore the compo-
nent data structure is required to be placed in read-only memory.

[SWS_Rte_03715] d All instances of the component data structure shall be defined as
“const” (i.e. placed in read-only memory). c(SRS_BSW_00007)

The elements of the component data structure are sorted into sections, each of which
defines a logically related section. The sections defined within the component data
structure are:

• [SWS_Rte_03718] d Data Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_03719] d Per-instance Memory Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_01349] d Inter-runnable Variable Handles section. c
(SRS_Rte_00011, SRS_Rte_00051)

• [SWS_Rte_03720] d Calibration Parameter Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_03721] d Exclusive-area API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_03716] d Port API section. c(SRS_Rte_00011, SRS_Rte_00051)

• [SWS_Rte_03717] d Inter Runnable Variable API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_07225] d Inter Runnable Triggering API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_07837] d Instance Id section. c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

526 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_08091] d RAM Block Data Updated Handles section. c
(SRS_Rte_00011, SRS_Rte_00051, SRS_Rte_00245)

• [SWS_Rte_03722] d Vendor specific section. c(SRS_Rte_00011)

The order of elements within each section of the component data structure is defined
as follows;

[SWS_Rte_03723] d Section entries shall be sorted alphabetically (ASCII / ISO 8859-1
code in ascending order) unless stated otherwise. c(SRS_Rte_00051)

The sorting of entries is applied to each section in turn.

Note that there is no prefix associated with the name of each entry within a section;
the component data structure as a whole has the prefix and therefore there is no need
for each member to have the same prefix.

ANSI C does not permit empty structure definitions yet an instance handle is required
for the RTE to function. Therefore if there are no API calls then a single dummy entry
is defined for the RTE.

[SWS_Rte_03724] d If all sections of the Component Data Structure are empty
the Component Data Structure shall contain a uint8 with name Rte_Dummy. c
(SRS_Rte_00126)

5.4.2.1 Data Handles Section

The data handles section is required to support the Rte_IRead and Rte_IWrite
calls (see Section 5.2.4).

[SWS_Rte_03733] d Data Handles shall be named <re>_<p>_<o> where <re> is the
runnable entity name that reads (or writes) the data item, <p> the port name, <o> the
data element. c(SRS_BSW_00305, SRS_Rte_00051)

A RunnableEntity can read and write to the same port/data element in case of a
PRPortPrototypes where as PPortPrototypes and RPortPrototypes are in-
herently uni-directional (a provide port can only be written, a require port can only be
read). Please note that for read and write access of a runnable to data in a PRPort-
Prototype only one data handle exist.

[SWS_Rte_06827] d The Data Handle shall be a pointer to a data element with
extended status if and only if the runnable has write access via a PRPortPro-
totype and acknowledgement is enabled for this data element. c(SRS_Rte_00051,
SRS_Rte_00185)

[SWS_Rte_02608] d The Data Handle shall be a pointer to a data element with
status if and only if either

• the runnable has read access (via a RPortPrototype or PRPortPrototype)
and either

527 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

– data element outdated notification or

– data element invalidation or

– data element never received status or

– data element range check or

– handleDataStatus

is activated for this data element, or

• the runnable has write access via a PPortPrototype and acknowledgement is
enabled for this data element.

c(SRS_Rte_00051, SRS_Rte_00185)

[SWS_Rte_02588] d Otherwise, the data type for a Data Handle shall be a pointer to
a data element without status. c(SRS_Rte_00051)

See below for the definitions of these terms.

[SWS_Rte_06529] d The RTE Generator shall wrap each entry of Data Handles Sec-
tion in the component data structure of a variant existent Rte_IRead or Rte_IWrite
API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Data Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant for
the variant existence of the Rte_IRead or Rte_IWrite API (see [SWS_Rte_06515]),
Data Handles Section Entry is the code according an invariant Data Handles
Section Entry (see also [SWS_Rte_03733], [SWS_Rte_02608], [SWS_Rte_02588]) c
(SRS_Rte_00201)

[SWS_Rte_08777] d If the software component does not support multiple instanti-
ation nor requires compatibility mode, the data handles section shall be empty. c
(SRS_Rte_00051)

5.4.2.1.1 Data Element without Status

[SWS_Rte_01363] d The data type for a “data element without status” shall be named
Rte_DE_<dt> where <dt> is the data element’s ImplementationDataType name.
c(SRS_Rte_00051)

[SWS_Rte_01364] d A data element without status shall be a structure con-
taining a single member named value. c(SRS_Rte_00051)

528 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02607] d The value member of a data element without status
shall have the same data type as the corresponding data element. c(SRS_Rte_00051,
SRS_Rte_00147, SRS_Rte_00078)

Note that requirements [SWS_Rte_01364] and [SWS_Rte_02607] together imply that
creating a variable of data type Rte_DE_<dt> allocates enough memory to store the
data copy.

5.4.2.1.2 Data Element with Status

[SWS_Rte_01365] d The data type for a “data element with status” shall be named
Rte_DES_<dt> where <dt> is the data element’s ImplementationDataType
name. c(SRS_Rte_00051)

[SWS_Rte_01366] d A data element with status shall be a structure containing
exactly two members. c(SRS_Rte_00051)

[SWS_Rte_03734] d The first member of each data element with status shall
be named ’value’ c(SRS_Rte_00051)

[SWS_Rte_02666] d The value member of a data element with status
shall have the type of the corresponding data element. c(SRS_Rte_00051,
SRS_Rte_00147, SRS_Rte_00078, SRS_Rte_00185)

[SWS_Rte_02589] d The second member of each data element with status
shall be named ’status’. c(SRS_Rte_00051, SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_02590] d The status member of a data element with status
shall be of the Std_ReturnType type. c(SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_02609] d In case of read access, the status member of a data element
with status shall contain the error status corresponding to the value member. c
(SRS_Rte_00147, SRS_Rte_00078)

[SWS_Rte_03836] d In case of write access, the status member of a data element
with status shall contain the transmission status corresponding to the value mem-
ber. c(SRS_Rte_00185)

5.4.2.1.3 Data Element with Extended Status

[SWS_Rte_06817] d The data type for a data element with extended status
(applies only for PRPortPrototypes) shall be named Rte_DEX_<dt> where <dt>

is the data element’s ImplementationDataType name. c(SRS_Rte_00051)

[SWS_Rte_06818] d A data element with extended status shall be a struc-
ture containing exactly three members. c(SRS_Rte_00051)

529 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06819] d The first member of each data element with extended
status shall be named ’value’. c(SRS_Rte_00051)

[SWS_Rte_06820] d The value member of a data element with extended
status shall have the type of the corresponding data element. c(SRS_Rte_00051,
SRS_Rte_00147, SRS_Rte_00078, SRS_Rte_00185)

[SWS_Rte_06821] d The second member of each data element with ex-
tended status shall be named ’status’. c(SRS_Rte_00051, SRS_Rte_00147,
SRS_Rte_00078, SRS_Rte_00185)

[SWS_Rte_06822] d The status member of a data element with extended
status shall be of the Std_ReturnType type. c(SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_06823] d The third member of each data element with ex-
tended status shall be named ’feedback’. c(SRS_Rte_00051, SRS_Rte_00147,
SRS_Rte_00078, SRS_Rte_00185)

[SWS_Rte_06824] d The feedback member of a data element with extended
status shall be of the Std_ReturnType type. c(SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_06825] d In case of read access, the status member of a data element
with extended status shall contain the error status corresponding to the value
member. c(SRS_Rte_00147, SRS_Rte_00078)

[SWS_Rte_06826] d In case of write access, the feedback member of a data ele-
ment with extended status shall contain the transmission status corresponding
to the value member. c(SRS_Rte_00185)

5.4.2.1.4 Usage

A definition for every required data element with status, every data element
without status, and every data element with extended status is emitted
in the RTE Data Handle Types Header File (see Section 5.3.5).

Example 5.25

Consider a uint8 data element, a, of port p which is accessed using a VariableAc-
cess in the dataWriteAccess role by runnables re1 and re2 and a VariableAc-
cess in the dataReadAccess role by runnable re2 within component c. data el-
ement outdated is defined for this dataElement.

The required data types within the RTE Data Handle Types Header File would be:
1 typedef struct {
2 uint8 value;
3 } Rte_DE_uint8;
4

5 typedef struct {

530 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6 uint8 value;
7 Std_ReturnType status;
8 } Rte_DES_uint8;

Considering additionally a uint16 data element d, of a port being a PRPortPro-
totype pr which is accessed using a VariableAccess in the dataWriteAccess
role and a dataReadAccess role by runnable re3 within component c. data ele-
ment outdated is defined for this dataElement and additionally acknowledgement
(transmissionAcknowledge) is requested.

The required data type within the RTE Data Handle Types Header File would be:
1 typedef struct {
2 uint16 value;
3 Std_ReturnType status;
4 Std_ReturnType feedback;
5 } Rte_DEX_uint16;

The component data structure for c would also include:
1 Rte_DE_uint8* re1_p_a;
2 Rte_DES_uint8* re2_p_a;
3 Rte_DEX_uint16* re3_pr_d;

A software-component that is supplied as object-code or is multiple instantiated re-
quires “general purpose” definitions of Rte_IRead, Rte_IWrite, Rte_IStatus and
Rte_IFeedback that use the data handles to access the data copies created within
the generated RTE. For example:

1 #define Rte_IWrite_re1_p_a(instance,v) ((instance)->re1_p_a->value = (v
))

2 #define Rte_IWrite_re2_p_a(instance,v) ((instance)->re2_p_a->value = (v
))

3 #define Rte_IRead_re2_p_a(instance,v) ((instance)->re2_p_a->value)
4 #define Rte_IStatus_re2_p_a(instance) ((instance)->re2_p_a->status)
5 #define Rte_IWrite_re3_pr_d(instance,v) ((instance)->re3_pr_d->value =

(v))
6 #define Rte_IRead_re3_pr_d(instance) ((instance)->re3_pr_d->value)
7 #define Rte_IStatus_re3_pr_d(instance) ((instance)->re3_pr_d->status)
8 #define Rte_IFeedback_re3_pr_d(instance) ((instance)->re3_pr_d->

feedback)

The definitions of Rte_IRead, Rte_IWrite, Rte_IStatus, and Rte_IFeedback
are type-safe since an attempt to assign an incorrect type will be detected by the com-
piler.

For source code component that does not use multiple instantiation the definitions
of Rte_IRead, Rte_IWrite, Rte_IStatus, and Rte_IFeedback can remain as
above or vendor specific optimizations can be applied without loss of portability.

The values assigned to data handles within instances of the component data structure
created within the generated RTE depend on the mapping of tasks and runnables –
See Section 5.2.4.

531 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.4.2.2 Per-instance Memory Handles Section

The Per-instance Memory Section Handles section enables to access instance specific
memory (sections).

[SWS_Rte_02301] d The CDS shall contain a handle for each Per-instance Memory.
This handle member shall be named Pim_<name> where <name> is the per-instance
memory name. c(SRS_BSW_00305, SRS_Rte_00051, SRS_Rte_00013)

The Per-instance Memory Handles are typed; [SWS_Rte_02302] d The data type
of each Per-instance Memory Handle shall be a pointer to the type of the per in-
stance memory that is defined in the Application Header file. c(SRS_Rte_00051,
SRS_Rte_00013)

The RTE supports the access to the per-instance memories by the Rte_Pim API.

[SWS_Rte_06527] d The RTE Generator shall wrap each entry of Per-instance Mem-
ory Handles Section in the component data structure of a variant existent PerIn-
stanceMemory or arTypedPerInstanceMemory if the variability shall be imple-
mented.

1 #if (<condition>)
2

3 <Per-instance Memory Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant for
the variant existence of the Rte_Pim API (see [SWS_Rte_06518]), Per-instance
Memory Handles Section Entry is the code according an invariant Per-instance
Memory Handles Section Entry (see also [SWS_Rte_02301], [SWS_Rte_02302]) c
(SRS_Rte_00201)

Example 5.26

Referring to the specification items [SWS_Rte_02301], [SWS_Rte_02302], and
[SWS_Rte_07133] Example 5.4 can be extended –

with respect to the software-component header:
1 struct Rte_CDS_c {
2 ...
3 /* per-instance memory handle section */
4 Rte_PimType_c_MyMemType *Pim_mem;
5

6 ...
7 };
8

9 typedef struct Rte_CDS_c Rte_CDS_c;
10

11 #define Rte_Pim_mem(instance) ((instance)->Pim_mem)

and in Rte.c:

532 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 Rte_PimType_c_MyMemType mem1;
2

3 const Rte_CDS_c Rte_Instance_c1 = {
4 ...
5 /* per-instance memory handle section */
6 /* Rte_PimType_c_MyMemType Pim_mem */
7 &mem1
8 ...
9 };

[SWS_Rte_08778] d If the software component does not support multiple instantiation
nor requires compatibility mode, the per-instance memory handles section shall be
empty. c(SRS_Rte_00051)

5.4.2.3 Inter Runnable Variable Handles Section

Each runnable may require separate handling for the inter runnable variables that it
accesses. The indirection required for explicit access to inter runnable variables is
described in section 5.4.2.7. The inter runnable variable handles section within the
component data structure contains pointers to the (shadow) memory of inter runn-
able variables that can be directly accessed with the implicit API macros. The inter
runnable variable handles section does not contain pointers for memory to
handle inter runnable variables that are accessed with explicit API only.

[SWS_Rte_02636] d For each runnable and each inter runnable variable that is ac-
cessed implicitly by the runnable, there shall be exactly one inter runnable handle
member within the component data structure and this inter runnable variable handle
shall point to the (shadow) memory of the inter runnable variable for the runnable. c
(SRS_Rte_00142)

[SWS_Rte_01350] d The name of each inter runnable variable handle member within
the component data structure shall be Irv_<re>_<o> where <o> is the Inter-
Runnable Variable short name and <re> is short name of the runnable name. c
(SRS_Rte_00142)

[SWS_Rte_01351] d The data type of each inter runnable variable handle member
shall be a pointer to the type of the inter runnable variable. c(SRS_Rte_00142)

[SWS_Rte_06528] d The RTE Generator shall wrap each entry of Inter Runnable
Variable Handles Section in the component data structure of a variant existent
Rte_IrvRead or Rte_IrvWrite if the variability shall be implemented.

1 #if (<condition> [|| <condition>])
2

3 <Inter Runnable Variable Handles Section Entry>
4

5 #endif

533 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where condition are the condition value macro(s) of the VariationPoint rele-
vant for the variant existence of the Rte_IrvRead or Rte_IrvWrite API access-
ing the same Inter Runnable Variable (see [SWS_Rte_06519]), Inter Runnable
Variable Handles Section Entry is the code according an invariant Inter Runn-
able Variable Handles Section Entry (see also [SWS_Rte_02636], [SWS_Rte_01350],
[SWS_Rte_01351]) c(SRS_Rte_00201)

[SWS_Rte_08779] d If the software component does not support multiple instantiation
nor requires compatibility mode, the inter runnable variable handles section shall be
empty. c(SRS_Rte_00051)

5.4.2.4 Exclusive-area API Section

The exclusive-area API section includes exclusive areas that are accessed explicitly,
using the RTE API, by the SW-C. Each entry in the section is a function pointer to the
relevant RTE API function generated for the SW-C instance.

[SWS_Rte_03739] d If the according SwcExclusiveAreaPolicy.apiPrinciple
of the ExclusiveArea is set to "common", the name of each Exclusive-area
API section entry shall be <root>_<name> where <root> is either Entry or
Exit and <name> is the shortName of the ExclusiveArea. c(SRS_Rte_00051,
SRS_Rte_00032)

[SWS_Rte_04545] d If the according SwcExclusiveAreaPolicy.apiPrinciple
of the ExclusiveArea is set to "perExecutable", the name of each Exclusive-area
API section entry shall be <root>_<re>_<name> where <root> is either Entry or
Exit, <re> is the shortName of the RunnableEntity with the canEnterExclu-
siveArea association, and <name> is the shortName of the ExclusiveArea. c
(SRS_Rte_00051, SRS_Rte_00032)

[SWS_Rte_03740] d The data type of each Exclusive-area API section entry shall be
a function pointer that points to the generated RTE API function. c(SRS_Rte_00051,
SRS_Rte_00032)

[SWS_Rte_06521] d The RTE Generator shall wrap each definition of a variant existent
Rte_Enter and Rte_Exit in the Exclusive-area API section according table 4.17 if
the variability shall be implemented.

1 #if (<condition>)
2

3 <Exclusive-area API section entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the Rte_Enter and Rte_Exit API (see
[SWS_Rte_06518]), Exclusive-area API section entry is the code ac-
cording an invariant Exclusive-area section entry (see also [SWS_Rte_03739],
[SWS_Rte_03740]) c(SRS_Rte_00201)

534 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03812] d Entries in the Exclusive-area API section shall be sorted al-
phabetically (ASCII / ISO 8859-1 code in ascending order). c(SRS_Rte_00051,
SRS_Rte_00032)

Note that two function pointers will be required for each accessed exclusive area; one
for the Entry function and one for the Exit function.

[SWS_Rte_08780] d If the software component does not support multiple instantia-
tion nor requires compatibility mode, the exclusive-area API section shall be empty. c
(SRS_Rte_00051)

5.4.2.5 Port API Section

Port API section comprises zero or more function references within the component
data structure type that defines all API functions that access a port and can be invoked
by the software-component (instance).

[SWS_Rte_02616] d The function table entries for port access shall be grouped by the
port names into port data structures. c(SRS_Rte_00051)

Each entry in the port API section of the component data structure is a “port data
structure”.

[SWS_Rte_02617] d The name of each port data structure in the component data
structure shall be <p> where <p> is the port short-name. c(SRS_Rte_00051)

[SWS_Rte_03799] d The component data structure shall contain a port data structure
for port p only if at least one API from table 5.2 is present and either the component
supports multiple instantiation, or the component requires compatibility mode, or if the
indirectAPI attribute for p is set to ’true’. c(SRS_Rte_00051)

[SWS_Rte_06522] d The RTE Generator shall wrap each port data structure of a vari-
ant existent PortPrototype if the variability shall be implemented.

1 #if (<condition>)
2

3 <port data structure>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant
for the variant existence of the PortPrototype (see [SWS_Rte_06520], port
data structure is the code according an invariant port data structures (see also
[SWS_Rte_02617], [SWS_Rte_03799]) c(SRS_Rte_00201)

[SWS_Rte_03731] d The data type name for a port data structure shall be
struct Rte_PDS_<cts>_<i>_<P/R/PR>

where <cts> is the component type symbol of the AtomicSwComponentType,

<i> is the port interface name and

535 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

‘P’, ’R’ or ‘PR’ are literals to indicate provide, require or provide-require ports respec-
tively. c(SRS_BSW_00305, SRS_Rte_00051)

[SWS_Rte_CONSTR_09080] The shortNames of PortInterfaces shall be unique
within a software component if it supports multiple instantiation or indirec-
tAPI attribute is set to ’true’ d The shortNames of PortInterfaces shall be unique
within a software component for each set of PPortPrototypes or RPortPrototypes if the
software component supports multiple instantiation or if the indirectAPI attribute is
set to ’true’ for at least one require or provide port.

This is required to generate distinguishable Port Data Structure data types. c()

[SWS_Rte_08312] d The RTE generator shall reject a configuration violating the
[SWS_Rte_CONSTR_09080]. c(SRS_Rte_00051)

[SWS_Rte_07137] d The port data structure type(s) shall be defined in the Application
Header file. c(SRS_Rte_00051)

A port data structure type is defined for each port interface that types a port. Thus
different ports typed by the same port interface structure share the same port data
structure type.

[SWS_Rte_07138] d The Application Header file shall contain a definition of a port
data structure type for interface i and port type R, P, PR only if the component supports
multiple instantiation or at least one require, provide or provide-require port exists that
has the indirectAPI attribute set to ’true’. c(SRS_Rte_00051)

[SWS_Rte_06523] d The RTE Generator shall wrap each port data structure type re-
lated to variant existent PortPrototypes if the variability shall be implemented and if
all require PortPrototypes or all provide PortPrototypes are variant.

1 #if (<condition> [|| <condition>])
2

3 <port data structure type>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see [SWS_Rte_06520]), port data structure type is the code according
an invariant port data structure type (see also [SWS_Rte_03731], [SWS_Rte_07138],
[SWS_Rte_03730] [SWS_Rte_02620]) c(SRS_Rte_00201)

Note: If any invariant PortPrototype requires the port data structure type it shall be
defined unconditional.

[SWS_Rte_07677] d The RTE shall support an indirect API for the port access func-
tions listed in table 5.2. c(SRS_Rte_00051)

[SWS_Rte_03730] d A port data structure shall contain a function table entry for each
API function associated with the port as referenced in table 5.2. Pure API macros,

536 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

like Rte_IRead and other implicit API functions, do not have a function table entry. c
(SRS_Rte_00051)

API function reference
Rte_Send_<p>_<o> 5.6.5
Rte_Write_<p>_<o> 5.6.5
Rte_Switch_<p>_<o> 5.6.6
Rte_Invalidate_<p>_<o> 5.6.7
Rte_Feedback_<p>_<o> 5.6.8
Rte_SwitchAck_<p>_<o> 5.6.9
Rte_Read_<p>_<o> 5.6.10
Rte_DRead_<p>_<o> 5.6.10
Rte_Receive_<p>_<o> 5.6.12
Rte_Call_<p>_<o> 5.6.13
Rte_Result_<p>_<o> 5.6.14
Rte_Prm_<p>_<o> 5.6.17
Rte_Mode_<p>_<o> 5.6.30
Rte_Trigger_<p>_<o> 5.6.32
Rte_IsUpdated_<p>_<o> 5.6.35

Table 5.2: Table of API functions that are referenced in the port API section.

[SWS_Rte_02620] d An API function shall only be included in a port data structure, if
it is required at least by one port. c(SRS_Rte_00051)

[SWS_Rte_02621] d If a function table entry is available in a port data structure, the
corresponding function shall be implemented for all ports that use this port data struc-
ture type. API functions related to ports that are not required by the AUTOSAR config-
uration shall behave like those for an unconnected port. c(SRS_Rte_00051)

APIs may be required only for some ports of a software component instance
due to differences in for example the need for transmission acknowledgement.
[SWS_Rte_02621] is necessary for the concept of the indirect API. It allows iteration
over ports.

[SWS_Rte_01055] d The name of each function table entry in a port data structure
shall be <name>_<o> where <name> is the API root (e.g. Call, Write) and <o> the
data element or operation name. c(SRS_BSW_00305, SRS_Rte_00051)

Requirement [SWS_Rte_01055] does not include the port name in the function table
entry name since the port is implicit when using a port handle.

[SWS_Rte_03726] d The data type of each function table entry in a port data
structure shall be a function pointer that points to the generated RTE function. c
(SRS_Rte_00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

Example 5.27

537 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

This example shows a port data structure for the provide ports of the interface type i2
in an AUTOSAR SW-C c.

i2 is a SenderReceiverInterface which contains a data element prototype of type
uint8 with data semantics.

If one of the provide ports of c for the interface i2 has a transmission acknowledge-
ment defined and i2 is not used with data element invalidation, the Applica-
tion Header file would include a port data structure type like this:

1 struct Rte_PDS_c_i2_P {
2 Std_ReturnType (*Feedback_a)(uint8);
3 Std_ReturnType (*Write_a)(uint8);
4 }

If the provide port p1 of the AUTOSAR SW-C c is of interface i2, the generated Ap-
plication Header file would include the following macros to provide the direct API func-
tions Rte_Feedback_p1_a and Rte_Write_p1_a:

1 /*direct API*/
2 #define Rte_Feedback_p1_a(inst,data)
3 ((inst)->p1.Feedback_a)(data)
4 #define Rte_Write_p1_a(inst,data) ((inst)->p1.Write_a)(data)

[SWS_Rte_02618] d The port data structures within a component data structure shall
first be sorted on the port data structure type name and then on the short name of the
port. c(SRS_Rte_00051)

The requirements [SWS_Rte_03731] and [SWS_Rte_02618] guarantee, that all port
data structures within the component data structure are grouped by their interface type
and require/provide-direction.

Example 5.28

This example shows the grouping of port data structures within the component data
structure.

The Application Header file for an AUTOSAR SW-C c with three provide ports p1, p2,
and p3 of interface i2 would include a block of port data structures like this:

1 struct Rte_CDS_c {
2 ...
3 struct Rte_PDS_c_i1_R z;
4

5 /* port data structures *
6 * for provide ports of interface i2 */
7 struct Rte_PDS_c_i2_P p1;
8 struct Rte_PDS_c_i2_P p2;
9 struct Rte_PDS_c_i2_P p3;

10

11 /* further port data structures */
12 struct Rte_PDS_c_i2_R c;
13 ...
14 }

538 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

15

16 typedef struct Rte_CDS_c Rte_CDS_c;

If inst is a pointer to a component data structure, and ph is defined by
1 struct Rte_PDS_c_i2_P *ph = &(inst->p1);

ph points to the port data structure p1 of the instance handle inst. Since the three
provide port data structures p1, p2, and p3 of interface i2 are ordered sequentially
in the component data structure, ph can also be interpreted as an array of port data
structures. E.g., ph[2] is equal to inst->p3.

In the following, ph will be called a port handle.

[SWS_Rte_01343] d RTE shall create port handle types for each port data structure
using typedef to a pointer to the appropriate port data structure. c(SRS_Rte_00051)

[SWS_Rte_01342] d The port handle type name shall be
Rte_PortHandle_<i>_<P/R/PR> where <i> is the port interface name and
‘P’, ‘R’ or ‘PR’ are literals to indicate provide, require or provide-require ports
respectively. c(SRS_Rte_00051)

[SWS_Rte_06524] d The RTE Generator shall wrap each port handle type related
to variant existent PortPrototypes if the variability shall be implemented and if all
require PortPrototypes or all provide PortPrototypes are variant.

1 #if (<condition> [|| <condition>])
2

3 <port handle type>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see [SWS_Rte_06520]), port data structure type is the code according
an invariant port data structure type (see also [SWS_Rte_01343], [SWS_Rte_01342])
c(SRS_Rte_00201)

[SWS_Rte_01053] d The port handle types shall be written to the application header
file. c(SRS_Rte_00051)

RTE provides port handles for access to the arrays of port data structures of the same
interface type and provide/receive direction by the macro Rte_Ports, see section
5.6.1, and to the number of similar ports by the macro Rte_NPorts, see 5.6.1.

Example 5.29

For the provide port i2 of AUTOSAR SW-C c from example 5.27, the following port
handle type will be defined in the Application Header file:

1 typedef struct Rte_PDS_c_i2_P *Rte_PortHandle_i2_P;

539 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The macros to access the port handles for the indirect API might look like this in the
generated Application Header file:

1 /*indirect (port oriented) API*/
2 #define Rte_Ports_i2_P(inst) &((inst)->p1)
3 #define Rte_NPorts_i2_P(inst) 3

So, the port handle ph of the previous example 5.28 could be defined by a user as:
1 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);

To write ‘49’ on all ports p1 to p3, the indirect API can be used within the software
component as follows:

1 uint8 p;
2 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);
3 for(p=0;p<Rte_NPorts_i_P(inst);p++) {
4 ph[p].Write_a(49);
5 }

Software components may also want to set up their own port handle arrays to
iterate over a smaller sub group than all ports with the same interface and direction.
Rte_Port can be used to pick the port handle for one specific port, see 5.6.3.

5.4.2.6 Calibration Parameter Handles Section

The RTE is required to support access to calibration parameters derived by per-
instance ParameterDataPrototypes (see 4.2.8.3) using the Rte_CData (see sec-
tion 5.6.16).

[SWS_Rte_03835] d The name of each Calibration parameter handle shall be
CData_<name> where <name> is the ParameterDataPrototype name. c
(SRS_Rte_00051, SRS_Rte_00154, SRS_Rte_00155)

[SWS_Rte_03949] d The type of each calibration parameter handle shall be a
function pointer that points to the generated RTE function. c(SRS_Rte_00051,
SRS_Rte_00154, SRS_Rte_00155)

Note that accesses to ParameterDataPrototypes within ParameterSwCompo-
nentTypes do not result in any handles within this section since the generated
Rte_Prm (see section 5.6.17) API is accessed either directly (single instantiation) or
through handles in the port API section (multiple instantiation). Likewise, access to
shared ParameterDataPrototypes does not result in any handle in the Calibration
Parameter Handles Section since, by definition, no per-instance data is present.

[SWS_Rte_08782] d If the software component does not support multiple instantiation
nor requires compatibility mode, the calibration parameter handles section shall be
empty. c(SRS_Rte_00051)

540 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.4.2.7 Inter Runnable Variable API Section

The Inter Runnable Variable API section comprises zero or more function table entries
within the component data structure type that defines all explicit API functions to access
an inter runnable variable by the software-component (instance). The API for implicit
access of inter runnable variables does not have any function table entries, since the
implicit API uses macro’s to access the inter runnable variables or their shadow mem-
ory directly, see section 5.4.2.3.

Since the entries of this section are only required to access the explicit InterRunnable-
Variable API if a software component supports multiple instantiation, it shall be omitted
for software components which do not support multiple instantiation.

[SWS_Rte_03725] d If the component supports multiple instantiation, the member
name of each function table entry within the component data structure shall be
<name>_<re>_<o> where <name> is the API root (e.g. IrvRead), <re> the runnable
name, and <o> the inter runnable variable name. c(SRS_Rte_00051)

[SWS_Rte_03752] d The data type of each function table entry shall be a function
pointer that points to the generated RTE function. c(SRS_Rte_00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

[SWS_Rte_02623] d If the component supports multiple instantiation or requires com-
patibility mode, the Inter Runnable Variable API Section shall contain pointers to API
functions as listed in table 5.3. c(SRS_Rte_00051)

API function reference
Rte_IrvRead_<re>_<o> 5.6.26
Rte_IrvWrite_<re>_<o> 5.6.27

Table 5.3: Table of API functions that are referenced in the inter runnable variable API
section

[SWS_Rte_06525] d The RTE Generator shall wrap each entry of Inter Runnable Vari-
able API Section in the component data structure of a variant existent Rte_IrvRead
or Rte_IrvWrite API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rele-
vant for the variant existence of the Rte_IrvRead or Rte_IrvWrite API (see
[SWS_Rte_06519]), Inter Runnable Variable API Section Entry is the
code according an invariant Inter Runnable Variable API Section Entry (see also
[SWS_Rte_03725], [SWS_Rte_03752], [SWS_Rte_02623]) c(SRS_Rte_00201)

541 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03791] d If the software component does not support multiple instantiation,
the inter runnable variable API section shall be empty. c(SRS_Rte_00051)

[SWS_Rte_08783] d If the software component does not support multiple instantiation,
the inter runnable variable API section shall be empty. c(SRS_Rte_00051)

5.4.2.8 Inter Runnable Triggering API Section

The Inter Runnable Triggering API Section includes the Inter Runnable Triggering API
handles. Each entry in the section is a function pointer to the relevant RTE API function
generated for the SW-C instance.

[SWS_Rte_07226] d The name of each Inter Runnable Triggering handle shall be
Rte_IrTrigger_<re>_<name> where <re> is the name of the runnable entity the
API might be used and <name> is the name of the InternalTriggeringPoint. c
(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_07227] d The data type of each Inter Runnable Triggering handle entry
shall be a function pointer that points to the generated RTE API function defined in
5.6.33. c(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_06526] d The RTE Generator shall wrap each entry of Inter Runnable Trig-
gering handle in the component data structure of a variant existent Rte_IrTrigger
API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rele-
vant for the variant existence of the Rte_IrTrigger API (see [SWS_Rte_06519],
Inter Runnable Variable API Section Entry is the code according an in-
variant Inter Runnable Variable API Section Entry (see also [SWS_Rte_03725],
[SWS_Rte_03752], [SWS_Rte_02623]) c(SRS_Rte_00201)

[SWS_Rte_07228] d Entries in the Inter Runnable Triggering handles section
shall be sorted alphabetically (ASCII / ISO 8859-1 code in ascending order). c
(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_08784] d If the software component does not support multiple instantia-
tion nor requires compatibility mode, the inter runnable triggering API section shall be
empty. c(SRS_Rte_00051)

542 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.4.2.9 Instance Id Section

[SWS_Rte_07838] d If a software component type supports multiple instantiation,
the RTE generator shall add in the Component Data Structure Instance Id Section
an element named Instance_Id of type uint8. c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

[SWS_Rte_07839] d For each prototype of a software component type that supports
multiple instantiation, the RTE generator shall set the value of the element Instance_Id
from 0 to N-1 according to the number (N) of software component prototypes and
according to the names of the software component prototypes sorted alphabetically
(ASCII / ISO 8859-1 code in ascending order). c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

Example: Two prototypes (instances) named A and B of a software component type
exist:

• Instance_Id for instance A takes the value 0.

• Instance_Id for instance B takes the value 1.

Note: The Instance_Id should not be used by the runnable implementation. The In-
stance_Id has been created to support implementation of bypass on software compo-
nent that supports multiple instantiation.

[SWS_Rte_08785] d If the software component does not support multiple instantiation,
the instance id section shall be empty. c(SRS_Rte_00051)

5.4.2.10 RAM Block Data Updated Handles Section

The RAM Block Data Updated Handles section is required to express an update of
implicit written NV data in case the NvBlockSwComponentType is used (see section
4.2.9.2). For that purpose each RAM Block Updated Handle accesses a separate "dirty
flag".

[SWS_Rte_08092] d The CDS shall contain a handle for each SwcServiceDepen-
dency defining a RoleBasedPortAssignment in the role NvDataPort. This handle
member shall be named DF_<name> where <name> is the SwcServiceDependency
name. c(SRS_Rte_00051, SRS_Rte_00245)

[SWS_Rte_08093] d The data type of each RAM Block Data Updated Handle shall be
a pointer to boolean. c(SRS_Rte_00051, SRS_Rte_00245)

The RTE supports the access to dirty flags for implicit communication by invoking the
Rte_IWrite and Rte_IWriteRef APIs.

[SWS_Rte_08094] d The invocation of any Rte_IWrite or Rte_IWriteRef API of
a data belonging to a PPortPrototype / PRPortPrototype referenced in the role
NvDataPort by a SwcServiceDependency shall set the related dirty flag addressed
by the RAM Block Updated Handle to TRUE. c(SRS_Rte_00051, SRS_Rte_00245)

543 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07416] d For a VariableDataPrototype belonging to a PPortPro-
totype / PRPortPrototype referenced in the role NvDataPort by a SwcSer-
viceDependency the RTE shall, after the NvM has been informed, set the related
dirty flag addressed by the RAM Block Updated Handle to FALSE. c(SRS_Rte_00051,
SRS_Rte_00245)

The NvM is informed of the status change through either the invocation of
NvM_SetRamBlockStatus [SWS_Rte_08081] or directly through NvM_WriteBlock
[SWS_Rte_08085]. The invocation of either is guarded by a check on the dirty flag.

[SWS_Rte_08095] d The RTE Generator shall wrap each entry of RAM Block Data
Updated Handles Section related to variant existent PPortPrototypes / PRPort-
Prototypes referenced in the role NvDataPort by a SwcServiceDependency if
the variability shall be implemented.

1 #if (<condition>)
2

3 <RAM Block Data Updated Handles Section Entry>
4

5 #endif

where condition are the condition value macros of the VariationPoints rele-
vant for the variant existence of the Rte_IWrite and Rte_IWriteRef APIs (see
[SWS_Rte_06518]); the single condition value macros are concatenated with logical
or (‖) operators to ensure the availability of the handle if any relevant API is existent,
RAM Block Data Updated Handles Section Entry is the code according an
invariant RAM Block Data Updated Handles Section Entry where condition are the
condition value macros of the VariationPoints concatenated with logical or (‖)
operators (see also [SWS_Rte_08092], [SWS_Rte_08093]). c(SRS_Rte_00201)

[SWS_Rte_03872] d If the software component does not support multiple instantiation
nor requires compatibility mode, the RAM Block Data Updated Handles Section shall
be empty. c(SRS_Rte_00051)

5.4.2.11 Vendor Specific Section

The vendor specific section is used to contain any vendor specific data required to be
supported for each instances. By definition the contents of this section are outside the
scope of this chapter and only available for use by the RTE generator responsible for
the “RTE Generation” phase.

[SWS_Rte_08786] d If the software component does not support multiple instantia-
tion nor requires compatibility mode, the vendor specific section shall be empty. c
(SRS_Rte_00051)

544 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.5 API Data Types

Besides the API functions for accessing RTE services, the API also contains RTE-
specific data types.

5.5.1 Std_ReturnType

The specification in [31] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

0 1 2 3 4 5 6 7

Im
m

e
d

ia
te

 In
fra

s
tru

c
tu

re

E
rro

r F
la

g

O
v
e

rla
y
e

d
 E

rro
r F

la
g

6
 b

its

a
v
a

ila
b

le
 fo

r

e
rro

r c
o

d
e

s

LSB MSB

Figure 5.13: Bit-Layout of the Std_ReturnType

Figure 5.13 shows the general layout of Std_ReturnType.

The two most significant bits of the Std_ReturnType are reserved flags:

• The most significant bit 7 of Std_ReturnType is the “Immediate Infrastructure
Error Flag” with the following values

– “1” the error code indicates an immediate infrastructure error.

– “0” the error code indicates no immediate infrastructure error.

• The second most significant bit 6 of Std_ReturnType is the Overlayed Error
Flag. The use of this flag depends on the context and will be explained in table
5.5.

In order to avoid explicit access to bit numbers in the code, the RTE provides the three
following macros that enables an application to check the return value of an API:

• [SWS_Rte_07404] d For infrastructure errors, this macro is a boolean expression
that is true if the corresponding bit is set:

1 #define Rte_IsInfrastructureError(status) ((status & 128U) !=
0)

c()

545 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_07405] dFor overlayed errors, this macro is a boolean expression that
is true if the corresponding bit is set:

1 #define Rte_HasOverlayedError(status) ((status & 64U) != 0)

c()

• [SWS_Rte_07406] dFor reading only the application error code without the even-
tual overlayed error, the following macro returns the lower 6 bits of the error code:

1 #define Rte_ApplicationError(status) (status & 63U)

c()

5.5.1.1 Infrastructure Errors

Infrastructure errors are split into two groups:

• “Immediate Infrastructure Errors” can be associated with the currently available
data set. These Immediate Infrastructure Errors are mutually exclu-
sive. Only one of these errors can be notified to a SW-C with one API call.

[SWS_Rte_02593] d Immediate Infrastructure Errors shall override
any application level error. c(SRS_Rte_00084, SRS_Rte_00123)

Immediate Infrastructure Error codes are used on the receiver side for
errors that result in no reception of application data and application errors.

An Immediate Infrastructure Error is indicated in the
Std_ReturnType by the Immediate Infrastructure Error Flag
being set.

• “Overlayed Errors” are associated with communication events that happened af-
ter the reception of the currently available data set, e.g., data element out-
dated notification, or loss of data elements due to queue overflow.

[SWS_Rte_01318] d Overlayed Error Flags shall be reported using the
unique bit of the Overlayed Error Flag within the Std_ReturnType type.
c(SRS_Rte_00084, SRS_Rte_00094)

An Overlayed Error can be combined with any other application or infrastruc-
ture error code.

5.5.1.2 Application Errors

[SWS_Rte_02573] d RTE shall support application errors with the following format def-
inition: Application errors are coded in the least significant 6 bits of Std_ReturnType
with the Immediate Infrastructure Error Flag set to “0”. The application er-
ror code does not use the Overlayed Error Flag. c(SRS_Rte_00124)

546 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

This results in the following value range for application errors:

range minimum value maximum value
application errors 1 63

Table 5.4: application error value range

In client server communication, the server may return any value within the application
error range. The client will then receive one of the following:

• An Immediate Infrastructure Error to indicate that the communication
was not successful, or

• The server return code, or

• The server return code might be overlayed by the Overlayed Error Flag in
a future release of RTE. In this release, there is no overlayed error defined for
client server communication.

The client can filter the return value, e.g., by using the following code:

Std_ReturnType status;
status = Rte_Call_<p>_<o>(<instance>, <parameters>);
if (Rte_HasOverlayedError(status)) {

/* handle overlayed error flag *
* in this release of the RTE, the flag is reserved *
* but not used for client server communication */

}

if(Rte_IsInfrastructureError(status)) {
/* handle infrastructure error */

}
else {

/* handle application error with error code status */
status = Rte_ApplicationError(status);

}

5.5.1.3 Predefined Error Codes

For client server communication, application error values are defined per client server
interface and shall be passed to the RTE with the interface configuration.

The following standard error and status identifiers are defined:

Symbolic name Value Comments
RTE_E_OK 0 [SWS_Rte_01058]

Standard Application Error Values:
RTE_E_INVALID 1 [SWS_Rte_02594]

547 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Symbolic name Value Comments
To be defined by the corresponding
AUTOSAR Service

1 Returned by AUTOSAR Services to indicate a
generic application error.

Immediate Infrastructure Error codes
RTE_E_COM_STOPPED 128 [SWS_Rte_01060]
RTE_E_TIMEOUT 129 [SWS_Rte_01064]
RTE_E_LIMIT 130 [SWS_Rte_01317]
RTE_E_NO_DATA 131 [SWS_Rte_01061]
RTE_E_TRANSMIT_ACK 132 [SWS_Rte_01065]
RTE_E_NEVER_RECEIVED 133 [SWS_Rte_07384]
RTE_E_UNCONNECTED 134 [SWS_Rte_07655]
RTE_E_IN_EXCLUSIVE_AREA 135 [SWS_Rte_02739]
RTE_E_SEG_FAULT 136 [SWS_Rte_02757]
RTE_E_OUT_OF_RANGE 137 [SWS_Rte_08065]
RTE_E_SERIALIZATION_
ERROR, RTE_E_HARD_TRANSFORMER_
ERROR

138 [SWS_Rte_08725]

RTE_E_SERIALIZATION_
LIMIT, RTE_E_TRANSFORMER_
LIMIT

139 [SWS_Rte_08726]

RTE_E_SOFT_TRANSFORMER_
ERROR

140 [SWS_Rte_08551]

RTE_E_COM_BUSY 141 [SWS_Rte_01389]

Overlayed Errors
These errors do not refer to the data returned with the API. They can be overlayed
with other Application- or Immediate Infrastructure Errors.
RTE_E_LOST_DATA 64 [SWS_Rte_02571]
RTE_E_MAX_AGE_EXCEEDED 64 [SWS_Rte_02702]

Table 5.5: RTE Error and Status values

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility – it avoids RTEs from different vendors assuming a different size if an enum
was the underlying type. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType;
2

3 #define RTE_E_OK 0U

[SWS_Rte_01269] d The standard errors as defined in table 5.5 including RTE_E_OK
shall be defined in the RTE Header File. c(SRS_Rte_00051)

[SWS_Rte_02575] d Application Error Identifiers with exception of RTE_E_INVALID
shall be defined in the Application Header File. c(SRS_Rte_00124, SRS_Rte_00167)

[SWS_Rte_02576] d The application errors shall have a symbolic name defined as
follows:

1 #define RTE_E_<interface>_<error> <error value>U

548 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <interface> PortInterface and <error> ApplicationError are the
interface and error names from the configuration.5 c(SRS_Rte_00123)

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

[SWS_Rte_07143] d The RTE generator shall generate symbolic name for application
errors with equal <interface> name, <error> name and <error value> only
once. c(SRS_Rte_00165)

5.5.1.3.1 No Error

5.5.1.3.1.1 RTE_E_OK

[SWS_Rte_01058] d
Symbolic name: RTE_E_OK
Value: 0
Comments: No error occurred. c(SRS_BSW_00327)

5.5.1.3.2 Standard Application Error Values

5.5.1.3.2.1 RTE_E_INVALID

[SWS_Rte_02594] d
Symbolic name: RTE_E_INVALID
Value: 1
Comments: Generic application error indicated by signal invalidation in sender
receiver communication with data semantics on the receiver side. c
(SRS_BSW_00327, SRS_Rte_00078)

5.5.1.3.3 Immediate Infrastructure Error Codes

5.5.1.3.3.1 RTE_E_COM_STOPPED

[SWS_Rte_01060] d
Symbolic name: RTE_E_COM_STOPPED
Value: 128
Comments: An IPDU group was disabled while the application was waiting for the
transmission acknowledgment. No value is available. This is not considered a fault,
since the IPDU group is switched off on purpose.

This semantics are as follows:
5No additional capitalization is applied to the names.

549 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• the OUT buffers of a client are not modified,

• the explicit read APIs read the last known value (or init value),

• no runnable with startOnEvent on a DataReceivedEvent for this, VariableDat-
aPrototype is triggered,

• the buffers for implicit read access will keep the previous value.

c(SRS_BSW_00327)

5.5.1.3.3.2 RTE_E_TIMEOUT

[SWS_Rte_01064] d
Symbolic name: RTE_E_TIMEOUT
Value: 129
Comments: A blocking API call returned due to expiry of a local timeout rather than
the intended result. OUT buffers are not modified. The interpretation of this being an
error depends on the application. c(SRS_BSW_00327, SRS_Rte_00069)

5.5.1.3.3.3 RTE_E_LIMIT

[SWS_Rte_01317] d
Symbolic name: RTE_E_LIMIT
Value: 130
Comments: An internal RTE limit has been exceeded. Request could not be handled.
OUT buffers are not modified. c(SRS_BSW_00327)

5.5.1.3.3.4 RTE_E_NO_DATA

[SWS_Rte_01061] d
Symbolic name: RTE_E_NO_DATA
Value: 131
Comments: An explicit read API call returned no data. (This is no error.) c
(SRS_BSW_00327)

5.5.1.3.3.5 RTE_E_TRANSMIT_ACK

[SWS_Rte_01065] d
Symbolic name: RTE_E_TRANSMIT_ACK
Value: 132
Comments: Transmission acknowledgement received. c(SRS_BSW_00327)

550 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.5.1.3.3.6 RTE_E_NEVER_RECEIVED

[SWS_Rte_07384] d
Symbolic name: RTE_E_NEVER_RECEIVED
Value: 133
Comments: No data received for the corresponding unqueued data element since
system start or partition restart. c(SRS_BSW_00327, SRS_Rte_00184)

5.5.1.3.3.7 RTE_E_UNCONNECTED

[SWS_Rte_07655] d
Symbolic name: RTE_E_UNCONNECTED
Value: 134
Comments: The port used for communication is not connected. c(SRS_BSW_00327,
SRS_Rte_00139, SRS_Rte_00200)

5.5.1.3.3.8 RTE_E_IN_EXCLUSIVE_AREA

[SWS_Rte_02739] d
Symbolic name: RTE_E_IN_EXCLUSIVE_AREA
Value: 135
Comments: The error is returned by a blocking API and indicates that the runn-
able could not enter a wait state. This could be for example because one Exe-
cutableEntity of the current task’s call stack has entered an ExclusiveArea.
c(SRS_BSW_00327)

5.5.1.3.3.9 RTE_E_SEG_FAULT

[SWS_Rte_02757] d
Symbolic name: RTE_E_SEG_FAULT
Value: 136
Comments: The error can be returned by an RTE API, if the parameters contain a
direct or indirect reference to memory that is not accessible from the callers partition.
c(SRS_BSW_00327)

5.5.1.3.3.10 RTE_E_OUT_OF_RANGE

[SWS_Rte_08065] d
Symbolic name: RTE_E_OUT_OF_RANGE
Value: 137
Comments: The received data is out of range. c(SRS_BSW_00327, SRS_Rte_00180)

551 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.5.1.3.3.11 RTE_E_SERIALIZATION_ERROR, RTE_E_HARD_TRANSFORMER_ERROR

[SWS_Rte_08725] d
Symbolic name: RTE_E_SERIALIZATION_ERROR,
RTE_E_HARD_TRANSFORMER_ERROR
Value: 138
Comments: An error during transformation occured. c(SRS_Rte_00091,
SRS_BSW_00327)

5.5.1.3.3.12 RTE_E_SERIALIZATION_LIMIT, RTE_E_TRANSFORMER_LIMIT

[SWS_Rte_08726] d
Symbolic name: RTE_E_SERIALIZATION_LIMIT, RTE_E_TRANSFORMER_LIMIT
Value: 139
Comments: Buffer for transformation operation could not be created. c
(SRS_Rte_00091, SRS_BSW_00327)

5.5.1.3.3.13 RTE_E_SOFT_TRANSFORMER_ERROR

[SWS_Rte_08551] d
Symbolic name: RTE_E_SOFT_TRANSFORMER_ERROR
Value: 140
Comments: An error during transformation occured which shall be notified to the SWC
but still produces valid data as output (comparable to a warning). c(SRS_Rte_00091,
SRS_BSW_00327)

5.5.1.3.3.14 RTE_E_COM_BUSY

[SWS_Rte_01389] d
Symbolic name: RTE_E_COM_BUSY
Value: 141
Comments: The transmission/reception could not be performed due to another trans-
mission/reception currently ongoing for the same signal. c(SRS_Rte_00246)

5.5.1.3.4 Overlayed Error

These errors do not refer to the data returned with the API. They can be overlayed with
other Application- or Immediate Infrastructure Errors.

552 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.5.1.3.4.1 RTE_E_LOST_DATA

[SWS_Rte_02571] d
Symbolic name: RTE_E_LOST_DATA
Value: 64
Comments: An API call for reading received data with event semantics indicates
that some incoming data has been lost due to an overflow of the receive queue
or due to an error of the underlying communication stack. c(SRS_BSW_00327,
SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

5.5.1.3.4.2 RTE_E_LOST_DATA

[SWS_Rte_02702] d
Symbolic name: RTE_E_MAX_AGE_EXCEEDED
Value: 64
Comments: An API call for reading received data with data semantics indicates
that the available data has exceeded the aliveTimeout limit. A COM signal outdated
callback will result in this error. c(SRS_BSW_00327, SRS_Rte_00078)

5.5.2 Rte_Instance

The Rte_Instance data type defines the handle used to access instance specific
information from the component data structure.

[SWS_Rte_01148] d The underlying data type for an instance handle shall be a pointer
to a Component Data Structure. c(SRS_Rte_00011, SRS_Rte_00051)

The component data structure (see Section 5.4.2) is uniquely defined for a component
type and therefore the data type for the instance handle is automatically unique for
each component type.

The instance handle type is defined in the application header file [SWS_Rte_01007].

To avoid long and complex type names within SW-C code the following requirement
imposes a fixed name on the instance handle data type.

[SWS_Rte_01150] d The name of the instance handle type shall be defined, using
typedef as Rte_[Byps_]Instance. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related software compo-
nent type (See chapter 4.9.2). c(SRS_BSW_00305)

[SWS_Rte_06810] d The instance handle typedef shall use the CONSTP2CONST macro
with memclass AUTOMATIC and ptrclass RTE_CONST. c(SRS_BSW_00007)

Requirement [SWS_Rte_06810] uses memclass AUTOMATIC rather than memclass

TYPEDEF because the instance handle is used as a function parameter and hence
automatic. This means the typedef is guaranteed to be compatible when the RTE

553 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

implementation must use a pointer to the component data structure rather than the
instance handle typedef.

The example 5.24 illustrates the definition of the instance handle typedef.

5.5.3 Rte_TransformerError

The data type Rte_TransformerError is a struct which contains the error code and
the transformer class to which the error belongs.

[SWS_Rte_08560] d The data type Rte_TransformerError shall be defined as
follows:

1 struct Rte_TransformerError {
2 Rte_TransformerErrorCode errorCode,
3 Rte_TransformerClass transformerClass
4 };

c(SRS_Rte_00249)

The Rte_TransformerErrorCode represents a transformer error in the con-
text of a certain transformer chain. The specific meaning of the values of
Rte_TransformerErrorCode are always to be seen for the specific transformer
chain for which the data type represents the transformer error.

The values are specified for each transformer class in [26, ASWS Transformer Gen-
eral].

[SWS_Rte_08545] d The underlying data type of the type
Rte_TransformerErrorCode shall be uint8. c(SRS_Rte_00249)

The Rte_TransformerClass represents the transformer class in which the error
occurred.

[SWS_Rte_08543] d The underlying data type of the type Rte_TransformerClass
shall be uint8. c(SRS_Rte_00249)

[SWS_Rte_08544] d The type Rte_TransformerClass shall be an enumeration
with the following elements where each element represents a transformer class:

• RTE_TRANSFORMER_UNSPECIFIED (0x00) – Transformer of a unspecified trans-
former class.

• RTE_TRANSFORMER_SERIALIZER (0x01) – Transformer of a serializer class.

• RTE_TRANSFORMER_SAFETY (0x02) – Transformer of a safety class.

• RTE_TRANSFORMER_SECURITY (0x03) – Transformer of a security class.

• RTE_TRANSFORMER_CUSTOM (0xff) – Transformer of a custom class not stan-
dardized by AUTOSAR.

c(SRS_Rte_00249)

554 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08561] d The transformer class RTE_TRANSFORMER_UNSPECIFIED shall
be used if no transformer error occured. c(SRS_Rte_00249)

[SWS_Rte_08575] d The mapping from transformerClass of Transformation-
Technology to value of data type Rte_TransformerClass shall be:

• transformerClass serializer – RTE_TRANSFORMER_SERIALIZER

• transformerClass safety – RTE_TRANSFORMER_SAFETY

• transformerClass security – RTE_TRANSFORMER_SECURITY

• transformerClass custom – RTE_TRANSFORMER_CUSTOM

c(SRS_Rte_00249)

5.5.4 RTE Modes

[SWS_Rte_02659] d For each ModeDeclarationGroup of category
"ALPHABETIC_ORDER", used in the SW-C’s ports, the Application Types Header
File shall contain a definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> <n>U
3 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<n> is the number of modes declared within the group.6 c(SRS_Rte_00144)

[SWS_Rte_03858] d For each ModeDeclarationGroup of category
"EXPLICIT_ORDER", used in the SW-C’s ports, the Application Types Header
File shall contain a definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <onTransitionValue>U
4 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<onTransitionValue> is the onTransitionValue of the ModeDeclarationGroup.
c(SRS_Rte_00144)

6No additional capitalization is applied to the names.

555 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07640] d The RTE Generator shall reject configurations where two Mode-
DeclarationGroups, used in the SW-C’s ports, with the same name but different
ModeDeclarations exists. c(SRS_Rte_00144, SRS_Rte_00018)

The rational for [SWS_Rte_07640] is to protect against conditions which would lead to
[SWS_Rte_02659] to generate conflicting types or macro definitions.

[SWS_Rte_02568] d For each mode of a ModeDeclarationGroup of category
"ALPHABETIC_ORDER", used in the SW-C’s ports, the Application Types Header File
shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <index> is
the index of the ModeDeclarations in alphabetic ordering (ASCII / ISO 8859-1 code
in ascending order) of the shortNames within the ModeDeclarationGroup7.
The lowest index shall be ‘0’ and therefore the range of assigned values is 0..<n-1>
where <n> is the number of modes declared within the group. c(SRS_Rte_00144)

[SWS_Rte_03859] d For each mode of a ModeDeclarationGroup of category
"EXPLICIT_ORDER", used in the SW-C’s ports, the Application Types Header File shall
contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <value>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <value> is
the value specified at the ModeDeclaration. c(SRS_Rte_00144)

5.5.5 Enumeration Data Types

Enumeration is not a plain primitive ImplementationDataType. Rather a range of
integers can be used as a structural description. The mapping of integers on "labels"

7No additional capitalization is applied to the names.

556 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

in the enumeration is actually modeled in the SwC-T with the semantics class Com-
puMethod of a SwDataDefProps [2]. Enumeration data types are modeled as Im-
plementationDataTypes having a SwDataDefProps referencing a CompuMethod
that contains only CompuScales with point ranges (i. e. lower and upper limit of a Com-
puScale are identical).

[SWS_Rte_03809] d The Application Types Header File shall include the def-
initions of all constants of ImplementationDataTypes and Application-
DataTypes for each ImplementationDataType/ApplicationDataTypes used
(See [SWS_Rte_08802] for the meaning of the term "used") by this software compo-
nent.

This includes constants for CompuMethods referenced by Implementation-
DataTypeElements of ImplementationDataTypes directly referenced by the soft-
ware component and constants for CompuMethods of ImplementationDataTypes
which are referenced indirectly via ImplementationDataTypes / Implementa-
tionDataTypeElements of category TYPE_REFERENCE. c(SRS_Rte_00167)

[SWS_Rte_03809] is applicable regardless if the AutosarDataType is referenced
by an DataPrototypes in PortInterfaces used for SwComponentTypes Ports,
DataPrototypes defined in the InternalBehavior of the SwComponentType or
AutosarDataTypes which are only referenced by the IncludedDataTypeSet.

This requirement ensures the availability of AutosarDataType constants for the in-
ternal use in AUTOSAR software components, for example enumeration constants.

The name of those constants bases on the CompuScale symbolic name as de-
fined in [TPS_SWCT_01569].

[SWS_Rte_03810] d For each CompuScale which has a point range and is
located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType according
[SWS_Rte_03809] with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE, the Application
Types Header File file shall contain a definition

1 #ifndef <prefix><EnumLiteral>
2 #define <prefix><EnumLiteral> <value><suffix>
3 #endif /* <prefix><EnumLiteral> */

where the name of the enumeration literal <EnumLiteral> is derived according to the
following rule:

if (attribute symbol of CompuScale is available and not empty) {
<EnumLiteral> := C identifier specified in symbol attribute of CompuScale

} else {
if (string specified in the VT element of the CompuConst of the CompuScale

is a valid C identifier) {
<EnumLiteral> :=

string specified in the VT element of the CompuConst of the CompuScale
} else {

557 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

if (attribute shortLabel of CompuScale is available and not empty) {
<EnumLiteral> :=

string specified in shortLabel attribute of CompuScale
}

}
}

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<value> is the value representing the CompuScale’s point range.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00167)

Please note that the IncludedDataTypeSet.literalPrefix applies only to the
AutosarDataType(s) explicitly referenced by the IncludedDataTypeSet and
does not automatically propagate to other AutosarDataType(s) associated via
DataTypeMaps. Both ApplicationDataType and mapped Implementation-
DataType must be explicitly referenced if all associated labels are to have the prefix.

[SWS_Rte_03810] implies that the RTE does add prefix to the names of the enumer-
ation constants on explicit demand only. This is necessary in order to handle enu-
meration constants supplied by Basic Software modules which all use their own prefix
convention. Such Enumeration constant names have to be unique in the whole AU-
TOSAR system.

[SWS_Rte_08401] d In the case that the same ImplementationDataType
or ApplicationPrimitiveDataType is referenced via different Included-
DataTypeSets with different literalPrefix attributes, the definition according to
[SWS_Rte_03810] has to be provided once for each different literalPrefix. c
(SRS_Rte_00167)

[SWS_Rte_03851] d If the input of the RTE generator contains a Com-
puMethod with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE that contains a
CompuScale with a point range, and

• neither the attribute symbol of the CompuScale is available and not empty,

• nor the string specified in the VT element of the CompuConst of the CompuScale
is a valid C identifier,

• nor the attribute shortLabel of CompuScale is available and not empty,

the RTE generator shall reject this input as an invalid configuration. c(SRS_Rte_00018)

[SWS_Rte_03813] d The RTE shall reject configurations where the
same software component type uses ImplementationDataTypes and
ApplicationPrimitiveDataTypes referencing two or more Com-
puMethods with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE that both contain
a CompuScale with a different point range and an identical CompuScale symbolic

558 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

names as an invalid configuration. The only exception is that the usage of the Imple-
mentationDataTypes and ApplicationPrimitiveDataTypes are defined with
non identical <literalPrefix>es. c(SRS_Rte_00018)

[SWS_Rte_07175] d The RTE generator shall reject configurations violating the [con-
str_1434]. c(SRS_Rte_00018)

This rejects configurations where an ImplementationDataType or
an ApplicationPrimitiveDataType references a CompuMethod
which is of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE and has Com-
puScales with identical CompuScale Value symbolic names.

Note that there might exist additional CompuScales with non-point ranges inside
a CompuMethod of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE , but for those no
enumeration literals are generated by the RTE generator.

The RTE generator does not support the use of C enums for DataPrototypes used
in application software.

[SWS_Rte_03862] d The RTE generator shall reject configurations violating the [con-
str_1244], so where a DataPrototype that is used in an AtomicSwComponentType
has set the swDataDefProps.additionalNativeTypeQualifier attribute set to
enum. c(SRS_Rte_00018)

[SWS_Rte_08802] The meaning of the term "used" with respect to Autosar-
DataTypes d An AutosarDataType is used if it meets any one of the following con-
ditions:

• it is referenced by a DataPrototype in the SwcInternalBehavior, or

• it is referenced by a VariationPointProxy in the SwcInternalBehavior,
or

• it is referenced by a DataPrototype in a PortInterface referenced by a
PortPrototype, or

• it is referenced by an IncludedDataTypeSet in the SwcInternalBehavior,
or

• it is the ImplementationDataType mapped to an ApplicationDataType
(i.e. via the DataTypeMappingSet) that is used in one of the above ways, or

• it is an ImplementationDataTypeElement of a complex Implementation-
DataType that is used in one of the above ways, or

• it is referenced as the target type of an ImplementationDataType or Imple-
mentationDataTypeElement of category TYPE_REFERENCE that is used in
one of the above ways, or

559 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• it is an ApplicationDataType referenced as the type of a sub-element of a
complex ApplicationDataType that is used in one of the above ways.

c()

5.5.6 Range Data Types

For the ApplicationPrimitiveDataType a Range might be specified by referenc-
ing a data constraint (dataConstr) giving the lowerLimit and the upperLimit. To
allow a Software Component the access to these values two definitions for these values
shall be generated.

[SWS_Rte_05051] d The Application Types Header File shall include the definitions
of all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component once per ApplicationPrimitive-
DataType if the ApplicationPrimitiveDataType is not referenced via different
IncludedDataTypeSets. c(SRS_Rte_00167)

[SWS_Rte_08402] d The Application Types Header File shall include the definitions
of all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component for each combination of different lit-
eralPrefix and ApplicationPrimitiveDataType when the same Implemen-
tationDataType or ApplicationPrimitiveDataType is referenced via different
IncludedDataTypeSets. c(SRS_Rte_00167)

[SWS_Rte_05052] d The lowerLimit and upperLimit constants for Application-
PrimitiveDataType referencing a DataConstr shall be generated by RTE generator in
the Application Type Header File as:

1 #define <prefix><DataType>_LowerLimit <lowerValue><suffix>
2 #define <prefix><DataType>_UpperLimit <upperValue><suffix>

where <DataType> is the name of the ApplicationPrimitiveDataType used by
the software component.

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs.

<lowerValue> and <upperValue> are the values lowerLimit and upperLimit
of the dataConstr referenced by the ApplicationPrimitiveDataType onto which the
corresponding CompuMethod has been applied (see [SWS_Rte_07038]). The values
in the macro definitions shall always reflect the closed interval, regardless of the interval
type specified by the dataConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00167)

Please note that [SWS_Rte_07196] is not applicable for [SWS_Rte_05052]. Further
on it’s possible that a DataPrototype using an ApplicationPrimitiveDataType might

560 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

reference additional dataConstr (see [SWS_Rte_07196]). In this case the upper-
Limit and lowerLimit definitions according [SWS_Rte_05052] do not reflect the
real applicable range of the DataPrototype. No macros are generated for Dat-
aPrototype specific data constraints.

Please note that the prefix can either be defined that the IncludedDataType-
Set with a literalPrefix attribute references the ApplicationDataType or it
references the ImplementationDataType.

Rationale: ApplicationPrimitiveDataType is taken as the basis for the gener-
ation of limits (as opposed to take the corresponding ImplementationDataType)
because the limits defined on the ImplementationDataType) may be wider than
the limits of the ApplicationPrimitiveDataType ((see subsection "Data Types
for Single Values" in the AUTOSAR SW-C Template [2]).

[SWS_Rte_08403] d For AUTOSAR data types which have an invalidValue speci-
fied, the Application Types header file shall contain the definition

1 #define InvalidValue_<prefix><DataType> <invalidValue><suffix>

where

<prefix> is the optional literalPrefix attribute defined by the Included-DataTypeSet
referring the AutosarDataType

<DataType> is the short name of the data type.

<invalidValue> is the value defined as invalidValue for the data type.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c()

[SWS_Rte_08416] d The Application Types Header File shall include the definitions of
all invalidValue constants used by this software component for each combination of
different literalPrefix and ApplicationPrimitiveDataType when the same
ImplementationDataType or ApplicationPrimitiveDataType is referenced
via different IncludedDataTypeSets. c(SRS_Rte_00167)

5.5.7 Data Types with bitfield conversions

AutosarDataTypes associated with a CompuMethod of category BIT-
FIELD_TEXTTABLE support the concatenation of a value set inside a single
scalar variable. Thereby single bits may get an individual (boolean) meaning or a set of
bits is used carry an enumeration. Please note that those data types are not mapped
to C bit fields rather than to scalars (e.g. uint8). Thereby the RTE Generator provides
a set of definitions for the "Bit Mask", "Bit Start Position" and the "Number of Bits"
in order to support the usage of the AUTOSAR Bit Handling Routines [32] for those
kind of data types. For some operations on a set of bits (the set may contain only 1
bit) the AUTOSAR bitfield library requires a single contiguous bit field which means
that all bits set to 1 in the in the CompuScale.mask attribute value are adjoining, e.g.
0b00010000 or 0b00111100.

561 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07410] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale which is located in the compuInternal-
ToPhys container of a CompuMethod referenced by an ImplementationDataType
or ApplicationPrimitiveDataType according [SWS_Rte_03809] with category
BITFIELD_TEXTTABLE the Application Types Header File shall contain a definition
for the bit field mask

1 #ifndef <prefix><BflMaskLabel>_BflMask
2 #define <prefix><BflMaskLabel>_BflMask <mask><suffix>
3 #endif /* <prefix><BflMaskLabel>_BflMask */

where
<BflMaskLabel> is the value of the attribute CompuScale.shortLabel
<mask> is the value of the attribute mask
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00167)

[SWS_Rte_07411] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which
is located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType accord-
ing [SWS_Rte_03809] with category BITFIELD_TEXTTABLE the Application Types
Header File shall contain a definition for the bit start position

1 #ifndef <prefix><BflStartPnLabel>_BflPn
2 #define <prefix><BflStartPnLabel>_BflPn <BflStartPnNumber><suffix>
3 #endif /* <prefix><BflStartPnLabel>_BflPn */

where
<BitStartPnLabel> is the value of the attribute CompuScale.shortLabel
<BflStartPnNumber> is the number of the first bit in the attribute value CompuS-
cale.mask which is set to 1. Thereby the bit counting starts from 0 (LSB) to n (MSB).
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00167)

[SWS_Rte_07412] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which
is located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType accord-
ing [SWS_Rte_03809] with category BITFIELD_TEXTTABLE the Application Types
Header File shall contain a definition for the bit field length

1 #ifndef <prefix><BflLengthLabel>_BflLn
2 #define <prefix><BflLengthLabel>_BflLn <BflLength><suffix>
3 #endif /* <prefix><BflLengthLabel>_BflLn */

562 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where
<BflLengthLabel> is the value of the attribute shortLabel <BflLength> is the
number of contiguous bits set to 1 in the attribute value CompuScale.mask. <prefix>
is the optional literalPrefix attribute defined by the IncludedDataTypeSet re-
ferring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00167)

Please note the example in section F.3.

[SWS_Rte_07414] d The requirements [SWS_Rte_07410], [SWS_Rte_07411], and
[SWS_Rte_07412] are only applied to CompuScales where the attribute shortLabel
is defined. c(SRS_Rte_00167)

5.6 API Reference

The functions described in this section are organized by the RTE API mapping name
used by C and C++ AUTOSAR software-components to access the API. The API map-
ping hides from the AUTOSAR software-component programmer any need to be aware
of the steps taken by the RTE generator to ensure that the generated API functions
have unique names.

The instance handle as the first parameter of the API calls is marked as an optional
parameter in this section. If an AUTOSAR software-component supports multiple in-
stantiation, the instance handle shall be passed [SWS_Rte_01013].

Note that [SWS_Rte_03806] requires that the instance handle parameter does not
exist if the AUTOSAR software-component does not support multiple instantiation.

5.6.1 Rte_Ports

Purpose: Provide an array of the ports of a given interface type and a given
provide / require usage that can be accessed by the indirect API.

Signature: [SWS_Rte_02619] d
Rte_PortHandle_<i>_<R/P/PR>
Rte_[Byps_]Ports_<i>_<R/P/PR>([IN Rte_Instance <instance>])

Where here <i> is the port interface name and ‘P’,‘R’ or ‘PR’ are lit-
erals to indicate provide, require or provide-require ports respectively.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_Rte_00051)

Existence: [SWS_Rte_02613] d An Rte_Ports API shall be created for each
interface type and usage by a port in at least one PreCompileTime

563 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

variant when the indirectAPI attribute of that port is set to true. c
(SRS_Rte_00051)

Please note that the usage of the Rte_Ports API is not restricted
to particular runnables of the software component. Nevertheless the
constraints with respect to RTE API usage by specific runnables are
applicable for the according elements in the port data structure.

Description: The Rte_Ports API provides access to an array of ports for the port
oriented API.

[SWS_Rte_03602] d Rte_Ports API shall return an array of ports
which contains only those ports for which the indirect API was gen-
erated or it shall return a NULL_PTR if the port data structure for this
port interface does not exist. c(SRS_Rte_00051)

Return Value: Array of port data structures of the corresponding interface type and
usage.

Notes: The existence condition for the port data structure is specified in
[SWS_Rte_03799].

5.6.2 Rte_NPorts

Purpose: Provide the number of ports of a given interface type and provide /
require usage that can be accessed through the indirect API.

Signature: [SWS_Rte_02614] d
uint8
Rte_[Byps_]NPorts_<i>_<R/P/PR>([IN Rte_Instance <instance>])

Where here <i> is the port interface name and ‘P’, ‘R’ or ‘PR’ are
literals to indicate provide, require or provide-require ports respec-
tively. [Byps_] is an optional infix used when component wrapper
method for bypass support is enabled for the related software com-
ponent type (See chapter 4.9.2). c(SRS_Rte_00051)

Existence: [SWS_Rte_02615] d An Rte_NPorts API shall be created for each
interface type and usage by a port in at least one PreCompileTime
variant when the indirectAPI attribute of the port is set to true. c
(SRS_Rte_00051)

Description: The Rte_NPorts API supports access to an array of ports for the
port oriented API.

[SWS_Rte_03603] d The Rte_NPorts shall return the number of
ports of a given interface and provide / require usage for which the
indirect API was generated or 0 if the port port data structure for this
port interface does not exist. c(SRS_Rte_00051)

564 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Return Value: Number of port data structures of the corresponding interface type
and usage.

Notes: The existance condition for the port data structure is specified in
[SWS_Rte_03799].

5.6.3 Rte_Port

Purpose: Provide access to the port data structure for a single port of a particu-
lar software component instance. This allows a software component
to extract a sub-group of ports characterized by the same interface in
order to iterate over this sub-group.

Signature: [SWS_Rte_01354] d
Rte_PortHandle_<i>_<R/P/PR>
Rte_[Byps_]Port_<p>([IN Rte_Instance <instance>])

where <i> is the port interface name and <p> is the name of the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_Rte_00051)

Existence: [SWS_Rte_01355] d An Rte_Port API shall be created for each
port of an AUTOSAR SW-C, for which the indirectAPI attribute is
set to true. c(SRS_Rte_00051)

Please note that the usage of the Rte_Port API is not restricted
to particular runnables of the software component. Nevertheless the
constraints with respect to RTE API usage by specific runnables are
applicable for the according elements in the port data structure.

Description: The Rte_Port API provides a pointer to a single port data structure,
in order to support the indirect API.

Return Value: Pointer to port data structure for the appropriate port.

Notes: None.

5.6.4 Rte_Write

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “data” semantic (swImplPolicy different from queued).

Signature: [SWS_Rte_01071] d
Std_ReturnType
Rte_[Byps_]Write_<p>_<o>([IN Rte_Instance <instance>],

IN <data>,
[OUT Rte_TransformerError transformerError])

565 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00098,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01280] d The presence of a VariableAccess in
the dataSendPoint role for a provided VariableDataProto-
type with data semantics shall result in the generation of an
Rte_Write API for the provided VariableDataPrototype. c
(SRS_Rte_00051)

[SWS_Rte_CONSTR_09015] Rte_Write API may only be used
by the runnable that describe its usage d The Rte_Write API
may only be used by the runnable that contains the corresponding
VariableAccess in the dataSendPoint role c()

[SWS_Rte_08574] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Write API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Write API call includes the IN parameter <data> to pass
the data element to write.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

The RTE generator shall take into account the kind of connected re-
quire port which might not be just a variable but also a NV data. The
table 4.7 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Write.

• [SWS_Rte_07820] d RTE_E_OK – data passed to communica-
tion service successfully. c(SRS_Rte_00094)

566 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_07822] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the communication service
is currently not available (inter ECU communication only). RTE
shall return RTE_E_COM_STOPPED when:

– in case of COM the corresponding service returns
COM_SERVICE_NOT_AVAILABLE

– in case of LdCom the corresponding LdCom_Transmit re-
turns E_NOT_OK

c(SRS_Rte_00094)

• [SWS_Rte_02756] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

• [SWS_Rte_01390] d RTE_E_COM_BUSY – The transmission is
rejected due to a currently ongoing transmission. The transmis-
sion is not executed. c(SRS_Rte_00246)

Note: API call can be retried after the currently ongoing request
has finished.

• [SWS_Rte_08546] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08557] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

Notes: The Rte_Write call is used to transmit “data” (swImplPolicy not
queued).

[SWS_Rte_07824] d In case of inter ECU communication, the
Rte_Write shall cause an immediate transmission request. c
(SRS_Rte_00028, SRS_Rte_00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[SWS_Rte_07826] d In case of inter ECU communication, the
Rte_Write API shall return when the signal has been passed to
the communication service for transmission. c(SRS_Rte_00028,
SRS_Rte_00131)

567 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[SWS_Rte_02635] d In case of intra ECU communication, the
Rte_Write API call shall return after copying the data to RTE local
memory or using IOC buffers. c(SRS_Rte_00028, SRS_Rte_00131)

[SWS_Rte_01080] d If the transmission acknowledgement is en-
abled, the RTE shall notify component when the transmission is ac-
knowledged or a transmission error occurs. c(SRS_Rte_00122)

[SWS_Rte_01082] d If a provide port typed by a sender-receiver in-
terface has multiple require ports connected (i.e. it has multiple re-
ceivers), then the RTE shall ensure that writes to all receivers are
independent. c(SRS_Rte_00028)

Requirement [SWS_Rte_01082] ensures that an error detected by
the RTE when writing to one receiver, e.g. communication is stopped,
does not prevent the transmission of this message to other compo-
nents.

[SWS_Rte_08413] d If a provide port typed by a sender-receiver in-
terface has multiple require ports connected (i.e. it has multiple re-
ceivers), then the RTE shall return RTE_E_OK only if no error at all
occurred. c(SRS_Rte_00028)

[SWS_Rte_08414] d In case of multiple faults during a call of
Rte_Write the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_SEG_FAULT

2. RTE_E_HARD_TRANSFORMER_ERROR

3. RTE_E_COM_STOPPED

4. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00028)

5.6.5 Rte_Send

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “event” semantic (swImplPolicy equal to queued).

Signature: [SWS_Rte_01072] d
Std_ReturnType
Rte_[Byps_]Send_<p>_<o>([IN Rte_Instance <instance>],

IN <data>,
[OUT Rte_TransformerError transformerError])

568 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01281] d The presence of a VariableAccess in
the dataSendPoint role for a provided VariableDataProto-
type with event semantics shall result in the generation of an
Rte_Send API for the provided VariableDataPrototype. c
(SRS_Rte_00051)

[SWS_Rte_CONSTR_09016] Rte_Send API may only be used by
the runnable that describes its usage d The Rte_Send API may
only be used by the runnable that contains the corresponding Vari-
ableAccess in the dataSendPoint role c()

[SWS_Rte_08562] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Send API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Send API call includes the IN parameter <data> to pass
the data element to send.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

The RTE generator has to take into account the kind of connected
require port which might not be just a variable but also a NV data.
The table 4.7 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Send.

• [SWS_Rte_07821] d RTE_E_OK – data passed to communica-
tion service successfully. c(SRS_Rte_00094)

569 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_07823] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the communication service
is currently not available (inter ECU communication only). RTE
shall return RTE_E_COM_STOPPED when:

– in case of COM the corresponding service returns
COM_SERVICE_NOT_AVAILABLE

– in case of LdCom the corresponding LdCom_Transmit re-
turns E_NOT_OK

c(SRS_Rte_00094)

• [SWS_Rte_02634] d RTE_E_LIMIT – an ‘event’ has been dis-
carded due to a full queue by one of the ECU local receivers
(intra ECU communication only). c(SRS_Rte_00143)

• [SWS_Rte_02754] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

• [SWS_Rte_08547] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08553] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

Notes: The Rte_Send call is used to transmit “events” (swImplPolicy =
queued).

[SWS_Rte_07825] d In case of inter ECU communication, the
Rte_Send shall cause an immediate transmission request. c
(SRS_Rte_00028, SRS_Rte_00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[SWS_Rte_07827] d In case of inter ECU communication, the
Rte_Send API shall return when the signal has been passed to
the communication service for transmission. c(SRS_Rte_00028,
SRS_Rte_00131)

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

570 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02633] d In case of intra ECU communication, the
Rte_Send API call shall return after attempting to enqueue the
data in the IOC or RTE internal queues. c(SRS_Rte_00028,
SRS_Rte_00131)

If the transmission acknowledgement is enabled, the RTE has to no-
tify component when the transmission is acknowledged or a trans-
mission error occurs. [SWS_Rte_01080]

If a provide port typed by a sender-receiver interface has multi-
ple require ports connected (i.e. it has multiple receivers), then
the RTE shall ensure that writes to all receivers are independent.
[SWS_Rte_01082]

Requirement [SWS_Rte_01082] ensures that an error detected by
the RTE when writing to one receiver, e.g. an overflow in one compo-
nent’s queue, does not prevent the transmission of this message to
other components.

If a provide port typed by a sender-receiver interface has multi-
ple require ports connected (i.e. it has multiple receivers), then
the RTE shall return RTE_E_OK only if no error at all occurred.
[SWS_Rte_08413]

[SWS_Rte_08415] d In case of multiple faults during a call of
Rte_Send the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_SEG_FAULT

2. RTE_E_LIMIT (only in case of Intra-ECU communication)

3. RTE_E_HARD_TRANSFORMER_ERROR

4. RTE_E_COM_STOPPED

5. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00028)

5.6.6 Rte_Switch

Purpose: Initiate a mode switch. The Rte_Switch API call is used for ‘explicit’
sending of a mode switch notification.

Signature: [SWS_Rte_02631] d
Std_ReturnType
Rte_[Byps_]Switch_<p>_<o>([IN Rte_Instance <instance>],

IN <mode>)

571 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Where <p> is the port name and <o> the ModeDeclarationGroup-
Prototype within the ModeSwitchInterface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00143,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_02632] d The existence of a ModeSwitchPoint shall result
in the generation of a Rte_Switch API. c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09017] Rte_Switch API may only be used
by the runnable that describes its usage d The Rte_Switch API
may only be used by the runnable that contains the corresponding
ModeSwitchPoint c()

Description: The Rte_Switch triggers a mode switch for all connected require
ModeDeclarationGroupPrototypes.

The Rte_Switch API call includes exactly one IN parameter for the
next mode <mode>. The IN parameter <mode> is passed by value
according to the ImplementationDataType on which the Mode-
DeclarationGroup is mapped. The type name shall be equal to the
shortName of the ImplementationDataType.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Switch call.

• [SWS_Rte_02674] d RTE_E_OK – data passed to service suc-
cessfully. c(SRS_Rte_00094)

• [SWS_Rte_02675] d RTE_E_LIMIT – a mode switch has been
discarded by the receiving partition due to a full queue. c
(SRS_Rte_00143)

Notes: Rte_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then
the Rte_Switch API will attempt to queue the request and re-
turn [SWS_Rte_02667]. However if no transition is in progress
for the mode instance, the mode disablings and the activations
of on-entry, on-transition, and on-exit ExecutableEntities for this
mode instance are executed before the Rte_Switch API returns
[SWS_Rte_02665].

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see [SWS_Rte_02675].

572 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.6.7 Rte_Invalidate

Purpose: Invalidate a data element for an “explicit” sender-receiver transmis-
sion.

Signature: [SWS_Rte_01206] d
Std_ReturnType
Rte_[Byps_]Invalidate_<p>_<o>(

[IN Rte_Instance <instance>],
[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00078)

Existence: [SWS_Rte_01282] d An Rte_Invalidate API shall be created for
any VariableAccess in the dataSendPoint role that references
a provided VariableDataPrototype which associated Invali-
dationPolicy is set to keep, replace or externalReplace-
ment. c(SRS_Rte_00051, SRS_Rte_00078)

[SWS_Rte_CONSTR_09018] Rte_Invalidate API may only
be used by the runnable that describe its usage d The
Rte_Invalidate API may only be used by the runnable that con-
tains the corresponding VariableAccess in the dataSendPoint
role c()

[SWS_Rte_08582] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Invalidate API takes the instance handle as input pa-
rameter. The return value is used to indicate the success, or other-
wise, of the API call to the caller.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The return value is used to indicate the “OK” status or errors detected
by the RTE during execution of the Rte_Invalidate call.

• [SWS_Rte_01207] d RTE_E_OK – No error occurred. c
(SRS_Rte_00094)

• [SWS_Rte_01339] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the communication service

573 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

is currently not available (inter ECU communication only). RTE
shall return RTE_E_COM_STOPPED when:

– in case of COM the corresponding service returns
COM_SERVICE_NOT_AVAILABLE

– in case of LdCom the corresponding LdCom_Transmit re-
turns E_NOT_OK

c(SRS_Rte_00094)

• [SWS_Rte_08576] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08577] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

[SWS_Rte_08583] d In case of multiple faults during a call of
Rte_Invalidate the resulting return value shall be derived ac-
cording to the following priority rules (highest priority first): (1)
RTE_E_HARD_TRANSFORMER_ERROR, (2) RTE_E_COM_STOPPED,
(3) RTE_E_SOFT_TRANSFORMER_ERROR. c(SRS_Rte_00122)

Notes: The API name includes an identifier <p>_<o> that is formed from the
port and operation item names. See Section 5.2.6.4 for details on the
naming convention.

The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.8 Rte_Feedback

Purpose: Provide access to acknowledgement notifications for explicit sender-
receiver communication and to pass error notification to senders.

Signature: [SWS_Rte_01083] d
Std_ReturnType
Rte_[Byps_]Feedback_<p>_<o>(

[IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00122)

574 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Existence: [SWS_Rte_01283] d Acknowledgement is enabled for a provided
VariableDataPrototype by the existence of a Transmis-
sionAcknowledgementRequest in the SenderComSpec. c
(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_01284] d A blocking Rte_Feedback API shall be gener-
ated for a provided VariableDataPrototype if acknowledgement
is enabled and a WaitPoint references a DataSendCompletedE-
vent that in turn references the VariableAccess which in turn
references the VariableDataPrototype. c(SRS_Rte_00051,
SRS_Rte_00122)

[SWS_Rte_07850] d A blocking Rte_Feedback API shall block
when a transmission of the related VariableDataPrototype is
ongoing. c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_07851] d A blocking Rte_Feedback API shall return:

• if the sender port is not connected or

• if the calling runnable runs in an exclusive area or

• if no transmission of the related VariableDataPrototype is
ongoing or

• when the wait point timeout occurs or

• when the related DataSendCompletedEvent is triggered.

c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_01285] d A non-blocking Rte_Feedback API shall be
generated for a provided VariableDataPrototype if acknow-
ledgement is enabled and a VariableAccess in the dataSend-
Point role references the VariableDataPrototype but no
WaitPoint references the DataSendCompletedEvent that ref-
erences the VariableAccess which in turn references the Vari-
ableDataPrototype. c(SRS_Rte_00051, SRS_Rte_00122)

Please note that a non-blocking Rte_Feedback API does not
require the existence of a DataSendCompletedEvent. If the
DataSendCompletedEvent exists it can be used to trigger
the execution of a RunnableEntity in which the non-blocking
Rte_Feedback API function may be called.

[SWS_Rte_01286] d If acknowledgement is enabled for a provided
VariableDataPrototype and a DataSendCompletedEvent refer-
ences a runnable entity as well as the VariableAccess which in
turn references the VariableDataPrototype, the runnable entity
shall be activated when the transmission acknowledgement occurs
or when a timeout was detected by the RTE. [SWS_Rte_01137]. c
(SRS_Rte_00051, SRS_Rte_00122)

575 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Requirement [SWS_Rte_01286] merely affects when the runnable is
activated – an API call should still be created, according to require-
ment [SWS_Rte_01285] to actually read the data.

[SWS_Rte_01287] d A DataSendCompletedEvent that references
a RunnableEntity and is referenced by a WaitPoint shall be
an invalid configuration which is rejected by the RTE generator. c
(SRS_Rte_00051, SRS_Rte_00122, SRS_Rte_00018)

[SWS_Rte_CONSTR_09019] Rte_Feedback API may only be
used by the runnable that describe its usage d A blocking
Rte_Feedback API may only be used by the runnable that contains
the corresponding WaitPoint c()

[SWS_Rte_07634] d A call to Rte_Feedback shall not change the
status returned by Rte_Feedback. c(SRS_Rte_00122)

The Rte_Feedback API return value is only changed when a new
transmission is requested (Rte_Send or Rte_Write) or when the
notification from COM is received.

[SWS_Rte_07635] d After a Rte_Send or Rte_Write transmission
request, only the first notification from COM shall be taken into ac-
count for a given Signal or SignalGroup. c(SRS_Rte_00122)

[SWS_Rte_07635] is needed in case of cyclic transmission which
could result in multiple transmissions with different status.

Description: The Rte_Feedback API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledge-
ment status to the caller.

The Rte_Feedback API applies only to explicit sender-receiver
communication.

Return Value: The return value is used to indicate the status of the transmission and
errors detected by the RTE.

• [SWS_Rte_01084] d RTE_E_NO_DATA – No acknowledgments
or error notifications were received from COM when the
Rte_Feedback API was called (non-blocking call) or when the
WaitPoint timeout expired (blocking call). c(SRS_Rte_00094,
SRS_Rte_00122)

• RTE_E_COM_STOPPED – returned in one of these cases:

– [SWS_Rte_07636] d (Inter-ECU communication
only) The last transmission was rejected (when the
Rte_Send or Rte_Write API was called), with an
RTE_E_COM_STOPPED return code. c(SRS_Rte_00094,
SRS_Rte_00122)

576 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

– [SWS_Rte_03774] d (Inter-ECU communication only) An
error notification from COM was received before any timeout
notification. c(SRS_Rte_00094, SRS_Rte_00122)

• [SWS_Rte_07637] d RTE_E_TIMEOUT – (Inter-ECU and Inter-
Partition only) A timeout notification was received from COM
or IOC before any error notification. c(SRS_Rte_00094,
SRS_Rte_00122)

• [SWS_Rte_01086] d RTE_E_TRANSMIT_ACK – In case of
inter-ECU communication, a transmission acknowledgment was
received from COM; or in case of intra-ECU communica-
tion, even if a queue overflow occurred. c(SRS_Rte_00094,
SRS_Rte_00122)

• RTE_E_UNCONNECTED – Indicates that the sender port is not
connected [SWS_Rte_01344].

• [SWS_Rte_02740] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08318]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08578] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08579] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_08318] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02740]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

The RTE_E_NO_DATA, RTE_E_TRANSMIT_ACK and
RTE_E_UNCONNECTED return values are not considered to be
an error but rather indicates correct operation of the API call.

[SWS_Rte_07652] d The initial return value of the
Rte_Feedback API, before any attempt to write some data shall
be RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00128, SRS_Rte_00185)

577 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08075] d In case of multiple faults during a call
of Rte_Feedback the resulting return value shall be derived
according to the following priority rules (highest priority first):
(1) RTE_E_UNCONNECTED, (2) RTE_E_IN_EXCLUSIVE_AREA,
(3) RTE_E_TIMEOUT, (4) RTE_E_HARD_TRANSFORMER_ERROR,
(5) RTE_E_COM_STOPPED, (6) RTE_E_NO_DATA, (7)
RTE_E_SOFT_TRANSFORMER_ERROR, (8) RTE_E_TRANSMIT_ACK.
c(SRS_Rte_00122)

Notes: If multiple transmissions on the same port/element are outstanding
it is not possible to determine which is acknowledged first. If this is
important, transmissions should be call serialized with the next oc-
curring only when the previous transmission has been acknowledged
or has timed out.

A transmission acknowledgment (or error and timeout) notification is
not always provided by COM (the bus or PDU Router may not sup-
port transmission acknowledgment for this PDU, or COM may not be
configured to perform transmission deadline monitoring).

In case of a blocking Rte_Feedback the value of the WaitPoint
timeout depends on the timeout defined at the COM level.

5.6.9 Rte_SwitchAck

Purpose: Provide access to mode switch completed acknowledgements and
error notifications to mode managers.

Signature: [SWS_Rte_02725] d
Std_ReturnType
Rte_[Byps_]SwitchAck_<p>_<o>(

[IN Rte_Instance <instance>])

Where <p> is the port name and <o> the ModeDeclara-
tionGroupPrototype within the ModeSwitchInterface cate-
gorizing the port. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00122)

Existence: [SWS_Rte_02676] d Acknowledgement is enabled for a provided
ModeDeclarationGroupPrototype by the existence of a Mod-
eSwitchedAckRequest in the ModeSwitchSenderComSpec. c
(SRS_Rte_00051, SRS_Rte_00122)

578 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02677] d A blocking Rte_SwitchAck API shall be gen-
erated for a provided ModeDeclarationGroupPrototype if ack-
nowledgement is enabled and a WaitPoint references a Mod-
eSwitchedAckEvent that in turn references the ModeDeclara-
tionGroupPrototype. c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_07846] d A blocking Rte_SwitchAck API shall block
when a mode switch in the related mode machine instance is on-
going. c(SRS_Rte_00122, SRS_Rte_00092)

[SWS_Rte_07847] d A blocking Rte_SwitchAck API shall return:

• if the mode machine instance behaves as unconnected or

• if the calling runnable runs in an exclusive area or

• if no mode switch in the related mode machine instance is on-
going or

• when the wait point timeout occurs or

• when the related ModeSwitchedAckEvent is triggered.

c(SRS_Rte_00122, SRS_Rte_00092, SRS_Rte_00139)

[SWS_Rte_02678] d A non-blocking Rte_SwitchAck API shall
be generated for a provided ModeDeclarationGroupPrototype
if acknowledgement is enabled but no WaitPoint references
a ModeSwitchedAckEvent that references the ModeDeclara-
tionGroupPrototype.

Please note that a non-blocking API does not require the existence
of a ModeSwitchedAckEvent. If the ModeSwitchedAckEvent
exists it can be used to trigger the execution of a RunnableEn-
tity in which the non-blocking API function may be called. c
(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_CONSTR_09020] The blocking Rte_SwitchAck API
may only be used by the runnable that describes its usage. d
A blocking Rte_SwitchAck API must only be used by the runnable
that contains the corresponding WaitPoint c()

Description: The Rte_SwitchAck API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledge-
ment status to the caller.

Return Value: The return value is used to indicate the status of a mode switch and
errors detected by the RTE.

• [SWS_Rte_02727] d RTE_E_NO_DATA – (non-blocking read)
The mode switch is still in progress. c(SRS_Rte_00094,
SRS_Rte_00122)

579 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02728] d RTE_E_TIMEOUT – The configured time-
out exceeds before the mode transition was completed. c
(SRS_Rte_00094, SRS_Rte_00210)

• [SWS_Rte_03853] d RTE_E_TIMEOUT – Any mode users
partition is stopped or restarting or has been restarted
while the mode switch was requested. c(SRS_Rte_00094,
SRS_Rte_00210)

• [SWS_Rte_02729] d RTE_E_TRANSMIT_ACK – The mode
switch has been completed (see [SWS_Rte_02587]). c
(SRS_Rte_00094, SRS_Rte_00122)

• [SWS_Rte_07659] d RTE_E_UNCONNECTED – Indicates that
the mode provider port is not connected. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00139)

• [SWS_Rte_02741] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08319]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08319] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02741]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

The RTE_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When RTE_E_NO_DATA occurs, a component is free to re-invoke
Rte_SwitchAck and thus repeat the attempt to read the status of
the mode switch.

[SWS_Rte_07848] d The initial return value of the Rte_SwitchAck
API before any attempt to switch a mode shall be
RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094, SRS_Rte_00122)

[SWS_Rte_07849] d In case of multiple faults during
a call of Rte_SwitchAck the resulting return value
shall be derived according to the following priority rules
(highest priority first): (1) RTE_E_UNCONNECTED, (2)
RTE_E_IN_EXCLUSIVE_AREA, (3) RTE_E_TIMEOUT, (4)
RTE_E_NO_DATA, (5) RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094,
SRS_Rte_00122)

580 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Notes: If multiple mode switches of the same mode machine instance
are outstanding, it is not possible to determine which is acknowl-
edged first. If this is important, switches should be serialized with
the next switch occurring only when the previous switch has been
acknowledged. The queue length should be 1.

5.6.10 Rte_Read

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By
compatibility, the port may also have a ParameterInterface or
a NvDataInterface. The Rte_Read API is used for explicit read
by argument.

Signature: [SWS_Rte_01091] d
Std_ReturnType
Rte_[Byps_]Read_<p>_<o>(

[IN Rte_Instance <instance>],
OUT <data>,
[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01289] d A non-blocking Rte_Read API shall be gen-
erated if a VariableAccess in the dataReceivePointByArgu-
ment role references a required VariableDataPrototype with
‘data’ semantics. c(SRS_Rte_00051)

[SWS_Rte_07396] d The RTE shall ensure that direct explicit read
accesses will not deliver undefined data item values. In case there
may be an explicit read access before the first data reception an initial
value shall be provided as the result of this explicit read access. c
(SRS_Rte_00051, SRS_Rte_00183)

A WaitPoint cannot reference a DataReceivedEvent that
in turn references a required VariableDataPrototype with
‘data’ semantics shall be considered an invalid configuration (see
[SWS_Rte_03018]). Hence there are no blocking Rte_Read API.

[SWS_Rte_CONSTR_09021] Rte_Read API may only be used by
the runnable that describe its usage d The Rte_Read API may
only be used by the runnable that contains the corresponding Vari-
ableAccess in the dataReceivePointByArgument role c()

581 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01313] d A DataReceivedEvent that references a
runnable entity and is referenced by a WaitPoint shall be an in-
valid configuration. c(SRS_Rte_00051, SRS_Rte_00018)

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.7 gives an overview of compatibility rules.

[SWS_Rte_08563] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Read API call includes the OUT parameter <data> to pass
back the received data.

The pointer to the OUT parameter <data> must remain valid until
the API call returns.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The return value is used to indicate errors detected by the RTE dur-
ing execution of the Rte_Read API call or errors detected by the
communication system.

• [SWS_Rte_01093] d RTE_E_OK – data read successfully. c
(SRS_Rte_00094)

• [SWS_Rte_02626] d RTE_E_INVALID – data element in-
valid. c(SRS_Rte_00078)

• [SWS_Rte_02703] d RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be com-
bined with any other error code. c(SRS_Rte_00147)

• [SWS_Rte_07643] d RTE_E_NEVER_RECEIVED – No
data received since system start or partition restart. c
(SRS_Rte_00184, SRS_Rte_00224)

• [SWS_Rte_01371] d RTE_E_OUT_OF_RANGE – data ele-
ment out of range. c(SRS_Rte_00180)

• [SWS_Rte_01391] d RTE_E_COM_BUSY – The read request is
rejected due to a currently ongoing reception. No received data
can be provided. c(SRS_Rte_00246)

Note: API call can be retried after the currently ongoing request
has finished.

582 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_06830] d RTE_E_COM_STOPPED – The RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. In case of stopped
I-PDUS the last known value (or init value) is given back as
data. c(SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_01330].

• [SWS_Rte_08548] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08554] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

[SWS_Rte_08592] d In case of multiple faults during a call of
Rte_Read the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_UNCONNECTED

2. RTE_E_COM_STOPPED

3. RTE_E_NEVER_RECEIVED

4. RTE_E_COM_BUSY

5. RTE_E_HARD_TRANSFORMER_ERROR

6. RTE_E_INVALID

7. RTE_E_OUT_OF_RANGE

8. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00028)

Please note that RTE_E_MAX_AGE_EXCEEDED is an overlay error
and could be combined with any other error. Nevertheless in case
of RTE_E_UNCONNECTED or RTE_E_COM_STOPPED time out mon-
itoring is NOT active which in turn excludes the coincidence of
RTE_E_MAX_AGE_EXCEEDED.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

583 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.6.11 Rte_DRead

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By
compatibility, the port may also have a ParameterInterface or
a NvDataInterface. The Rte_DRead API is used for explicit read
by value.

Signature: [SWS_Rte_07394] d
<return>
Rte_[Byps_]DRead_<p>_<o>([IN Rte_Instance <instance>],

[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131, SRS_Rte_00183)

Existence: [SWS_Rte_07395] d A non-blocking Rte_DRead API shall be gen-
erated if a VariableAccess in the dataReceivePointByValue
role references a required VariableDataPrototype with ‘data’
semantics. This requirement is applicable only for primitive data
types. c(SRS_Rte_00051, SRS_Rte_00183)

The RTE shall ensure that direct explicit read accesses will not de-
liver undefined data item values. In case there may be an explicit
read access before the first data reception an initial value has to be
provided as the result of this explicit read access. [SWS_Rte_07396]

A WaitPoint cannot reference a DataReceivedEvent that in turn
references a required VariableDataPrototype with ‘data’ se-
mantics. Such a configuration has to be considered as invalid (see
[SWS_Rte_03018]). Hence there are no blocking Rte_DRead API.

[SWS_Rte_CONSTR_09022] Rte_DRead API may only be used
by the runnable that describe its usage d The Rte_DRead API
may only be used by the runnable that contains the corresponding
VariableAccess in the dataReceivePointByValue role c()

A DataReceivedEvent that references a runnable entity and
is referenced by a WaitPoint shall be an invalid configuration.
[SWS_Rte_01313]

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.7 gives an overview of compatibility rules.

584 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08565] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_DRead API returns the received data as a return value.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The Rte_DRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_DRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype. Thus the com-
ponent does not need to use type casting to convert access to the
VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_DRead API only supports VariableDat-
aPrototypes typed by a Primitive Implementation Data
Type or Redefinition Implementation Data Type redefin-
ing a Primitive Implementation Data Type.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

5.6.12 Rte_Receive

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “event” semantics (swImplPolicy = queued).

[SWS_Rte_01092] d
Std_ReturnType
Rte_[Byps_]Receive_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>,
[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the data element within the
sender-receiver interface categorizing the port. [Byps_] is an op-
tional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141, SRS_Rte_00028,
SRS_Rte_00131)

585 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Existence: [SWS_Rte_01288] d A non-blocking Rte_Receive API shall be
generated if a VariableAccess in the dataReceivePointB-
yArgument role references a required VariableDataPrototype
with ‘event’ semantics. c(SRS_Rte_00051)

[SWS_Rte_07638] d The RTE Generator shall reject configurations
were a VariableDataPrototype with ‘event’ semantics is refer-
enced by a VariableAccess in the dataReceivePointByValue
role. c(SRS_Rte_00018)

[SWS_Rte_01290] d A blocking Rte_Receive API shall be gener-
ated if a VariableAccess in the dataReceivePointByArgu-
ment role references a required VariableDataPrototype with
‘event’ semantics that is, in turn, referenced by a DataReceivedE-
vent and the DataReceivedEvent is referenced by a WaitPoint.
c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09023] Rte_Receive API may only be
used by the runnable that describe its usage d The Rte_Receive
API may only be used by the runnable that contains the correspond-
ing VariableAccess in the dataReceivePointByArgument role
c()

A DataReceivedEvent that references a runnable entity and is refer-
enced by a WaitPoint has to be treated as an invalid configuration.
[SWS_Rte_01313]

[SWS_Rte_08564] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Receive API call includes the OUT parameter <data> to
pass back the received data element.

The pointers to the OUT parameters must remain valid until the API
call returns.

[SWS_Rte_07673] d In case return value is
RTE_E_NO_DATA, RTE_E_TIMEOUT, RTE_E_UNCONNECTED or
RTE_E_IN_EXCLUSIVE_AREA, the OUT parameters shall remain
unchanged. c(SRS_Rte_00094, SRS_Rte_00141)

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Receive API call or errors detected by the
communication system.

586 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02598] d RTE_E_OK – data read successfully. c
(SRS_Rte_00094)

• [SWS_Rte_01094] d RTE_E_NO_DATA – (explicit non-blocking
read) no events were received and no other error occurred when
the read was attempted. c(SRS_Rte_00094)

• [SWS_Rte_01095] d RTE_E_TIMEOUT – (explicit blocking read)
no events were received and no other error occurred when the
read was attempted. c(SRS_Rte_00094, SRS_Rte_00069)

• [SWS_Rte_02572] d RTE_E_LOST_DATA – Indicates that some
incoming data has been lost due to an overflow of the receive
queue or due to an error of the underlying communication layers.
This is not an error of the data returned in the parameters. This
Overlayed Error can be combined with any other error. c
(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_01331].

Unlike RTE_E_NO_DATA, there is no need to retry receiving an
event in this case.

• [SWS_Rte_02743] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08320]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08320] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02743]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08549] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08552] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

The RTE_E_NO_DATA, RTE_E_TIMEOUT and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

587 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08593] d In case of multiple faults during a call of
Rte_Receive the resulting return value shall be derived according
to the following priority rules (highest priority first):

1. RTE_E_UNCONNECTED

2. RTE_E_IN_EXCLUSIVE_AREA

3. RTE_E_TIMEOUT

4. RTE_E_HARD_TRANSFORMER_ERROR

5. RTE_E_SOFT_TRANSFORMER_ERROR

6. RTE_E_NO_DATA

c(SRS_Rte_00028)

Please note that RTE_E_LOST_DATA is an overlay error and could
be combined with any other error. Nevertheless in case of
RTE_E_UNCONNECTED its not possible to lose data which in turn ex-
cludes the coincidence of RTE_E_LOST_DATA.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.13 Rte_Call

Purpose: Initiate a client-server communication.

Signature: [SWS_Rte_01102] d
Std_ReturnType
Rte_[Byps_]Call_<p>_<o>([IN Rte_Instance <instance>],

[IN|IN/OUT|OUT] <data_1>...
[IN|IN/OUT|OUT] <data_n>,
[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. [Byps_] is an optional infix
used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2). c
(SRS_BSW_00310, SRS_Rte_00029)

Existence: [SWS_Rte_01293] d A synchronous Rte_Call API shall be gen-
erated if a SynchronousServerCallPoint references a required
ClientServerOperation. c(SRS_Rte_00051, SRS_Rte_00111)

588 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01294] d An asynchronous Rte_Call API shall
be generated if an AsynchronousServerCallPoint refer-
ences a required ClientServerOperation. c(SRS_Rte_00051,
SRS_Rte_00111)

A configuration that includes both synchronous and asynchronous
ServerCallPoints for a given ClientServerOperation is invalid
([SWS_Rte_03014]).

[SWS_Rte_CONSTR_09024] Rte_Call API may only be used
by the runnable that describe its usage d The Rte_Call API
may only be used by the runnable that contains the corresponding
ServerCallPoint c()

[SWS_Rte_08566] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: Client function to initiate client-server communication. The
Rte_Call API is used for both synchronous and asynchronous calls.

The Rte_Call API includes zero or more IN, IN/OUT and OUT pa-
rameters.

[SWS_Rte_06639] d IN/OUT parameters are passed by value when
they are "Primitive Implementation Data Type"s and the call is asyn-
chronous. c(SRS_Rte_00051, SRS_Rte_00111)

Rational: In case of an asynchronous call, the IN/OUT parameters
are only IN parameters.

The IN, IN/OUT and OUT parameters are passed by value or refer-
ence according to the ImplementationDataType as described in
the section 5.2.6.5.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: [SWS_Rte_01103] d The return value shall be used to indicate
infrastructure errors detected by the RTE during execution of the
Rte_Call call and, for synchronous communication, infrastruc-
ture and application errors during execution of the server. c
(SRS_Rte_00094, SRS_Rte_00123, SRS_Rte_00124)

• [SWS_Rte_01104] d RTE_E_OK – The API call completed suc-
cessfully. c(SRS_Rte_00094)

589 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: This means that RTE_E_OK is returned when neither an
infrastructure error nor an overlay error occurred at the invoca-
tion of the server runnable and the invoked server runnable was
returning a value equal to E_OK.

• [SWS_Rte_01105] d RTE_E_LIMIT – The client has multi-
ple outstanding asynchronous client-server invocations of the
same operation in the same port. The server invocation shall
be discarded, the buffers of the return parameters shall not
be modified (see also [SWS_Rte_02658]). c(SRS_Rte_00094,
SRS_Rte_00079)

• [SWS_Rte_08727] d RTE_E_TRANSFORMER_LIMIT – The RTE
is not able to allocate the buffer needed to transform the data. c
(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_08728] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08555] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_01106] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the communication service
is currently not available (inter ECU communication only). RTE
shall return RTE_E_COM_STOPPED when:

– in case of COM the corresponding service returns
COM_SERVICE_NOT_AVAILABLE

– in case of LdCom the corresponding LdCom_Transmit re-
turns E_NOT_OK

The buffers of the return parameters shall not be modified. c
(SRS_Rte_00094)

• [SWS_Rte_01107] d RTE_E_TIMEOUT – (synchronous inter-
task and inter-ECU only) No reply was received within the con-
figured timeout. The buffers of the return parameters shall not
be modified. c(SRS_Rte_00094, SRS_Rte_00069)

• RTE_E_UNCONNECTED – Indicates that the client port is not con-
nected [SWS_Rte_01334].

590 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02744] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08321]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08321] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02744]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_02755] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

• [SWS_Rte_02577] d The application error (synchronous client-
server) from a server shall only be returned if none of the above
infrastructure errors (other than RTE_E_OK) have occurred. c
(SRS_Rte_00123)

• [SWS_Rte_01392] d RTE_E_COM_BUSY – The transmission is
rejected due to a currently ongoing transmission. The transmis-
sion is not executed. c(SRS_Rte_00246)

• [SWS_Rte_04553] d RTE_E_TIMEOUT – if the call is ignored
according to [SWS_Rte_02535] c()

Note: API call can be retried after the currently ongoing request
has finished.

[SWS_Rte_08594] d In case of multiple faults during a call of
Rte_Call the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_UNCONNECTED

2. RTE_E_IN_EXCLUSIVE_AREA

3. RTE_E_LIMIT

4. RTE_E_SEG_FAULT

5. RTE_E_TRANSFORMER_LIMIT

6. RTE_E_HARD_TRANSFORMER_ERROR

7. RTE_E_COM_STOPPED / RTE_E_COM_BUSY

8. RTE_E_TIMEOUT

591 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

9. "application error"

10. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00028)

Note that the RTE_E_OK return value indicates that the Rte_Call
API call completed successfully. In case of a synchronous client
server call it also indicates successful processing of the request by
the server.

An asynchronous server invocation is considered to be outstanding,
if alternatively

1. no timeout has occurred, an AsynchronousServerCallRe-
sultPoint exists, and the client has not retrieved the result
successfully yet.

2. no timeout has occurred, no AsynchronousServerCallRe-
sultPoint exists, and the server has not finished to process
the last request of the client yet.

3. a timeout has been detected by the RTE in inter-ECU and inter-
partition communication.

4. the server runnable has terminated after a timeout was detected
in intra-ECU communication.

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see [SWS_Rte_02657]).

Notes: [SWS_Rte_01109] d The interface operation’s OUT parameters
shall be omitted for an asynchronous call. c(SRS_Rte_00029,
SRS_Rte_00079)

In case of asynchronous communication:

• the Rte_Call only includes IN and IN/OUT parameters.

• the Rte_Result only includes IN/OUT and OUT parameters to
collect the result of the server call.

• the IN/OUT parameters provided during the Rte_Call can be
a different addresse than the IN/OUT parameter passed during
the Rte_Result.

5.6.14 Rte_Result

Purpose: Get the result of an asynchronous client-server call.

Signature: [SWS_Rte_01111] d

592 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Std_ReturnType
Rte_[Byps_]Result_<p>_<o>([IN Rte_Instance <instance>],

[IN/OUT|OUT <param 1>]...
[IN/OUT|OUT <param n>],
[OUT Rte_TransformerError transformerError])

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. [Byps_] is an optional infix
used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2). c
(SRS_BSW_00310)

The signature can include zero or more IN/OUT and OUT parame-
ters depending on the signature of the operation in the client-server
interface.

Existence: [SWS_Rte_01296] d A non-blocking Rte_Result API shall be gen-
erated if an AsynchronousServerCallResultPoint exists for
the specific RunnableEntity and this AsynchronousServer-
CallResultPoint references an AsynchronousServerCall-
Point which according to [SWS_Rte_01294] leads to the genera-
tion of an asynchronous Rte_Call API but no WaitPoint (of the
RunnableEntity) references an AsynchronousServerCallRe-
turnsEvent that references the AsynchronousServerCallRe-
sultPoint. c(SRS_Rte_00051)

Please note that a non-blocking Rte_Result API does not require
the existence of a AsynchronousServerCallReturnsEvent. If
the AsynchronousServerCallReturnsEvent exists it can be
used to trigger the execution of a RunnableEntity in which the
non-blocking Rte_Result API function may be called.

[SWS_Rte_01297] d A blocking Rte_Result API shall be gen-
erated if an AsynchronousServerCallResultPoint exists for
the specific RunnableEntity and this AsynchronousServer-
CallResultPoint references an AsynchronousServerCall-
Point which according to [SWS_Rte_01294] leads to the genera-
tion of an asynchronous Rte_Call API and a WaitPoint (of the
RunnableEntity) references an AsynchronousServerCallRe-
turnsEvent that references the AsynchronousServerCallRe-
sultPoint. c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09025] Blocking Rte_Result API may only
be used by the runnable that describe the WaitPoint d The
blocking Rte_Result API may only be used by the runnable that
contains the corresponding WaitPoint c()

[SWS_Rte_01298] d If an AsynchronousServerCallRe-
turnsEvent references a RunnableEntity and a required

593 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ClientServerOperation, the RunnableEntity shall be acti-
vated when the operation’s result is available or when a timeout was
detected by the RTE [SWS_Rte_01133]. c(SRS_Rte_00051)

Requirement [SWS_Rte_01298] merely affects when the runnable is
activated – an API call should still be created to actually read the
reply based on requirement [SWS_Rte_01296].

[SWS_Rte_01312] d An AsynchronousServerCallReturnsEv-
ent that references a runnable entity and is referenced by a Wait-
Point is invalid. c(SRS_Rte_00051)

[SWS_Rte_08567] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_Result API is used by a client to collect the result of an
asynchronous client-server communication.

The Rte_Result API includes zero or more IN/OUT and OUT pa-
rameters to pass back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The return value is used to indicate errors from either the
Rte_Result call itself or communication errors detected before the
API call was made.

• [SWS_Rte_01112] d RTE_E_OK – The API call completed suc-
cessfully. c(SRS_Rte_00094)

Note: This means that RTE_E_OK is returned when neither an
infrastructure error nor an overlay error occurred at the invoca-
tion of the server runnable and the invoked server runnable was
returning a value equal to E_OK.

• [SWS_Rte_08591] d RTE_E_TRANSFORMER_LIMIT – The RTE
is not able to allocate the buffer needed to transform the data. c
(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_08729] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

594 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_08556] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_01113] d RTE_E_NO_DATA – (non-blocking read)
The server’s result is not available but no other error occurred
within the API call or the server was not called since Rte_Start
or the restart of the Partition. The buffers for the IN/OUT and
OUT parameters shall not be modified. c(SRS_Rte_00094)

• [SWS_Rte_08301] d RTE_E_NO_DATA – (non-
blocking read) The previous Rte_Call returned an
RTE_E_SEG_FAULT, RTE_E_TRANSFORMER_LIMIT,
RTE_E_HARD_TRANSFORMER_ERROR. c(SRS_Rte_00094)

• [SWS_Rte_01114] d RTE_E_TIMEOUT – The server’s result is
not available within the specified timeout but no other error oc-
curred within the API call. The buffers for the IN/OUT and
OUT parameters shall not be modified. c(SRS_Rte_00094,
SRS_Rte_00069)

• [SWS_Rte_03606] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall re-
turn RTE_E_COM_STOPPED when the corresponding COM ser-
vice returns COM_SERVICE_NOT_AVAILABLE. The server’s re-
sult has not been successfully retrieved from the communication
service. The buffers of the return parameters shall not be modi-
fied. c(SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the client port is not con-
nected [SWS_Rte_01333].

• [SWS_Rte_02745] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08322]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08322] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02745]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

[SWS_Rte_02746] d Rte_Result shall not return
RTE_E_IN_EXCLUSIVE_AREA, if the wait is resolved by a

595 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

mapping of the server runnable to a task with higher priority
on the same core. c(SRS_Rte_00092, SRS_Rte_00046,
SRS_Rte_00032)

• [SWS_Rte_08302] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00094)

• [SWS_Rte_01393] d RTE_E_COM_BUSY – The query for the re-
sult is rejected due to a currently ongoing reception. No result
data can be provided. c(SRS_Rte_00246)

• [SWS_Rte_04554] d RTE_E_TIMEOUT – if the call is ignored
according to [SWS_Rte_02535] c()

Note: API call can be retried after the currently ongoing request
has finished.

• [SWS_Rte_02578] d Application Errors – The error code of the
server shall only be returned, if none of the above infrastruc-
ture errors or indications have occurred. c(SRS_Rte_00094,
SRS_Rte_00123)

[SWS_Rte_08595] d In case of multiple faults during a call of
Rte_Result the resulting return value shall be derived according
to the following priority rules (highest priority first):

1. RTE_E_UNCONNECTED

2. RTE_E_IN_EXCLUSIVE_AREA

3. RTE_E_SEG_FAULT

4. RTE_E_COM_STOPPED / RTE_E_COM_BUSY / RTE_E_TIMEOUT

5. RTE_E_TRANSFORMER_LIMIT

6. RTE_E_HARD_TRANSFORMER_ERROR

7. "application error"

8. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00028)

The RTE_E_NO_DATA, RTE_E_TIMEOUT, and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

When the RTE_E_TIMEOUT error occurs, RTE has to discard any
subsequent responses to that request, (see [SWS_Rte_02657]).

596 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When RTE_E_NO_DATA occurs, a component is free to invoke
Rte_Result again and thus repeat the attempt to read the server’s
result.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

If a AsynchronousServerCallPoint exists which is not refer-
enced by a WaitPoint, a non-blocking Rte_Result API shall be
generated. In this case Rte_Result has to return RTE_E_NO_DATA
until the timeout expires and RTE_E_TIMEOUT afterwards.

5.6.15 Rte_Pim

Purpose: Provide access to the defined per-instance memory (section) of a
software component.

Signature: [SWS_Rte_01118] d
<type>/<return reference>
Rte_[Byps_]Pim_<name>([IN Rte_Instance <instance>])

Where <name> is the (short) name of the per-instance name.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00075)

Existence: [SWS_Rte_01299] d An Rte_Pim API shall be created for
each defined PerInstanceMemory or arTypedPerInstance-
Memory within the AUTOSAR software-component (description). c
(SRS_Rte_00051)

Description: The Rte_Pim API provides access to the per-instance memory
(section) defined in the context of a SwcInternalBehavior of a
software-component description.

Return Value: [SWS_Rte_01119] d The API returns a typed reference (in C a
typed pointer) to the per-instance memory. c(SRS_Rte_00051,
SRS_Rte_00075)

Notes: For a ’C’ typed PerInstanceMemory, the name of the re-
turn type <type> has to be defined in the type attribute of the
PerInstanceMemory. The type itself is defined using the type-
Definition attribute of the PerInstanceMemory. It is as-
sumed that this attribute contains a string that represents a C
type definition (typedef) in valid C syntax (see [SWS_Rte_02304]
and [SWS_Rte_07133]). For an arTypedPerInstanceMemory

597 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the <return reference> is defined by the associated Autosar-
DataType (see [SWS_Rte_07161]). For details of the <return
reference> definition see section 5.2.6.7.

5.6.16 Rte_CData

Purpose: Provide access to the calibration parameter an AUTOSAR software-
component defined internally. The ParameterDataPrototype in
the role perInstanceParameter or sharedParameter is used
to define software component internal calibration parameters. Inter-
nal because the ParameterDataPrototype cannot be reused out-
side the software-component. Access is read-only. It can be config-
ured for each calibration parameter individually if it is shared by all
instances of an AUTOSAR software-component or if each instance
has an own data value associated with it.

Signature: [SWS_Rte_01252] d
<return>
Rte_[Byps_]CData_<name>([IN Rte_Instance <instance>])

Where <name> is the calibration parameter name. [Byps_] is an
optional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00155)

Existence: [SWS_Rte_01300] d An Rte_CData API shall be generated if a
ParameterAccess references a ParameterDataPrototype in
the role perInstanceParameter or sharedParameter within the
SwcInternalBehavior of an AUTOSAR software-component. c
(SRS_Rte_00051, SRS_Rte_00155)

Description: The Rte_CData API provides access to the defined calibration pa-
rameter within a software-component. The actual data values for a
software-component instance may be set after component compila-
tion.

Return Value: The Rte_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter
or sharedParameter.

The return type of Rte_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

598 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03927] d If a ParameterDataPrototype is aggre-
gated by an SwcInternalBehavior in the role of sharedParam-
eter, the return value of the corresponding Rte_CData API shall
provide access to the calibration parameter value common to all
instances of the AtomicSwComponentType. c(SRS_Rte_00051,
SRS_Rte_00155)

[SWS_Rte_03952] d If a ParameterDataPrototype is aggre-
gated by an SwcInternalBehavior in the role of perInstan-
ceParameter, the return value of the corresponding Rte_CData
API shall provide access to the calibration parameter value specific to
the instance of the AtomicSwComponentType. c(SRS_Rte_00051,
SRS_Rte_00155)

Notes: None.

5.6.17 Rte_Prm

Purpose: Provide access to the parameters defined by an AUTOSAR Param-
eterSwComponentType. Access is read-only.

Signature: [SWS_Rte_03928] d
<return>
Rte_[Byps_]Prm_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> is the name of the Param-
eterDataPrototype within the ParameterInterface catego-
rizing the port. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00155)

Existence: [SWS_Rte_03929] d A Rte_Prm API shall be generated if a Param-
eterAccess references a ParameterDataPrototype in a require
PortPrototype. c(SRS_BSW_00310, SRS_Rte_00155)

Description: The Rte_Prm API provides access to the defined parameter within a
ParameterSwComponentType.

In the case of a standard parameter (swImplPolicy = stan-
dard), i.e. a calibration, the actual data values for a Parameter-
SwComponentType instance may be set after ParameterSwCom-
ponentType compilation.

In the case of fixed parameter or constant parameter, the value
is set during compilation time.

Return Value: [SWS_Rte_03930] d For primitive data types, the Rte_Prm API shall
return the parameter value. For composite data types, the Rte_Prm

599 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

API shall return a reference (in C, a pointer) to the parameter, which
shall be const. With fixed parameters, only primitive data is possi-
ble.

The return type of Rte_Prm is specified by the Implementa-
tionDataType associated to the ParameterDataPrototype.
Thus the component does not need to use type casting to access
the calibration parameter. c(SRS_Rte_00051, SRS_Rte_00155,
SRS_Rte_00171) The Rte_Prm return value provide access to the
data value of the ParameterDataPrototype.

The return type of Rte_Prm is dependent on the Implementation-
DataType of the ParameterDataPrototype and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The Rte_Prm API should not be used within a pre-compilation direc-
tive, e.g. #if. For such case, the coder should use the Rte_SysCon
definitions which are dedicated to variant handling.

5.6.18 Rte_IRead

Purpose: Provide read access to the VariableDataPrototype referenced
by VariableAccess in the dataReadAccess role.

Signature: [SWS_Rte_03741] d
<return>
Rte_[Byps_]IRead_<re>_<p>_<o>(

[IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00128)

Existence: [SWS_Rte_01301] d An Rte_IRead API shall be created for a re-
quired VariableDataPrototype if the RunnableEntity has a
VariableAccess in the dataReadAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09083] Rte_IRead API may only be used
by the runnable that describe its usage d The Rte_IRead API
may only be used by the runnable that contains the corresponding
VariableAccess in the dataReadAccess role. c()

600 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: The Rte_IRead API provides access to the VariableDataPro-
totypes declared as accessed by a runnable using VariableAc-
cesses in the dataReadAccess role. As the APIcan also be used
in context of category 1A runnables an implementation has to ensure
finite and constant execution times.

No error information is provided by this API. If required, the error
status can be picked up with a separate API, see 5.6.22

The data value can always be read. To provide the required consis-
tency the API provides access to a copy of the data data element for
which it’s guaranteed that it never changes during the actual execu-
tion of the runnable entity.

Implicit data read access by a SW-C should always return defined
data.

[SWS_Rte_01268] d The RTE shall ensure that implicit read
accesses will not deliver undefined data item values. c
(SRS_Rte_00108, SRS_Rte_00051, SRS_Rte_00128)

[SWS_Rte_01394] d In case read access is not possible due to a
currently ongoing reception the invalidValue shall be provided as
the result of this implicit read access. c(SRS_Rte_00246)

In case where there may be an implicit read access before the first
data reception an initial value has to be provided as the result of this
implicit read access.

Return Value: The Rte_IRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_IRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: None.

5.6.19 Rte_IWrite

Purpose: Provide write access to the VariableDataPrototypes referenced
by VariableAccesses in the dataWriteAccess role.

Signature: [SWS_Rte_03744] d
void
Rte_[Byps_]IWrite_<re>_<p>_<o>(

601 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[IN Rte_Instance <instance>],
IN <data>)

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00129)

Existence: [SWS_Rte_01302] d An Rte_IWrite API shall be created for a
provided VariableDataPrototype if the RunnableEntity has a
VariableAccess in the dataWriteAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09084] Rte_IWrite API may only be used
by the runnable that describe its usage d The Rte_IWrite API
may only be used by the runnable that contains the corresponding
VariableAccess in the dataWriteAccess role. c()

Description: The Rte_IWrite API provides write access to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The API function
is guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

No access error information is required for the user – the value can
always be written. To provide the required write-back semantics the
RTE only makes written values available to other entities after the
writing runnable entity has terminated.

[SWS_Rte_03746] d The Rte_IWrite API call includes the
IN parameter <data> to pass the data element to write. c
(SRS_Rte_00051, SRS_Rte_00129)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: None.

Notes: None.

5.6.20 Rte_IWriteRef

Purpose: Provide a reference to the VariableDataPrototype referenced
by a VariableAccess in the dataWriteAccess role.

602 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Signature: [SWS_Rte_05509] d
<return reference>
Rte_[Byps_]IWriteRef_<re>_<p>_<o>(

[IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00129)

Existence: [SWS_Rte_05510] d An Rte_IWriteRef API shall be created for a
provided VariableDataPrototype if the RunnableEntity has
a VariableAccess in the dataWriteAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

[SWS_Rte_CONSTR_09085] Rte_IWriteRef API may only
be used by the runnable that describe its usage d The
Rte_IWriteRef API may only be used by the runnable that con-
tains the corresponding VariableAccess in the dataWriteAc-
cess role. c()

Description: The Rte_IWriteRef API returns a reference to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The reference
can be used by the runnable to directly update the correspond-
ing data elements. This is especially useful for data elements
of Structure Implementation Data Type or Array Imple-
mentation Data Type. The API function is guaranteed to be have
constant execution time and therefore can also be used within cate-
gory 1A runnable entities.

No error information is required for the user. To provide the required
write-back semantics the RTE only makes written values available to
other entities after the writing runnable entity has terminated.

[SWS_Rte_CONSTR_09026] Rte_IWriteRefmay not return val-
ues written in previous executions d The reference returned by
Rte_IWriteRef shall not be used by the runnables for reading the
value previously written. c()

The rationale for [SWS_Rte_CONSTR_09026] is that
Rte_IWriteRef has a write semantic. Also, in case of an un-
connected port, the written data shall be discarded (similarly to
[SWS_Rte_01347]), and implementations may return a reference
to the same buffer for all Rte_IWriteRef of unconnected provide
ports.

Return Value: The Rte_IWriteRef return value provide access to the data write
buffer of the VariableDataPrototype.

603 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_05511] d Rte_IWriteRef returns a reference to the
corresponding VariableDataPrototype. c(SRS_Rte_00051)

The return reference type of Rte_IWriteRef is dependent on
the ImplementationDataType of the VariableDataProto-
type and is a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return reference> definition see section
5.2.6.7.

Notes: None.

5.6.21 Rte_IInvalidate

Purpose: Invalidate a VariableDataPrototype referenced by a Vari-
ableAccess in the dataWriteAccess role.

Signature: [SWS_Rte_03800] d
void Rte_[Byps_]IInvalidate_<re>_<p>_<o>(

[IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00078)

Existence: [SWS_Rte_03801] d An Rte_IInvalidate API shall be created for
a provided VariableDataPrototype if the RunnableEntity has
VariableAccesses in the dataWriteAccess role referring to this
VariableDataPrototype and the associated Invalidation-
Policy of the VariableDataPrototype is set to keep, replace
or externalReplacement. c(SRS_Rte_00051, SRS_Rte_00078)

[SWS_Rte_CONSTR_09086] Rte_IInvalidate API may only be
used by the runnable that is describing an write access to
the data d The Rte_IInvalidate API may only be used by the
runnable that contains the corresponding VariableAccess in the
dataWriteAccess role to the VariableDataPrototype where
the associated InvalidationPolicy of the VariableDataPro-
totype is set to keep or replace. c()

Description: The Rte_IInvalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

604 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03802] d In case of a primitive VariableDataProto-
type the Rte_IInvalidate shall be implemented as a macro that
writes the invalidValue to the buffer. c(SRS_Rte_00078)

[SWS_Rte_05064] d In case of a composite VariableDataProto-
type the Rte_IInvalidate shall be implemented as a macro that
writes the invalidValue of every primitive part of the composition
to the buffer. c(SRS_Rte_00078)

[SWS_Rte_03778] d If Rte_IInvalidate is followed by an
Rte_IWrite call for the same VariableDataPrototype or vice
versa, the RTE shall use the last value written before the runnable
entity terminates (last-is-best semantics). c(SRS_Rte_00078)

[SWS_Rte_03778] states that an Rte_IWrite overrules an
Rte_IInvalidate call if it occurs after the Rte_IInvalidate,
since Rte_IWrite overwrites the contents of the internal buffer for
the data element prototype before it is made known to other runnable
entities.

Return Value: None.

Notes: The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.22 Rte_IStatus

Purpose: Provide the error status of a VariableDataPrototype referenced
by a VariableAccess in the dataReadAccess role.

Signature: [SWS_Rte_02599] d
Std_ReturnType
Rte_[Byps_]IStatus_<re>_<p>_<o>(

[IN Rte_Instance <instance>],
[OUT Rte_TransformerError transformerError])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00147, SRS_Rte_00078)

Existence: [SWS_Rte_02600] d An Rte_IStatus API shall be created for a
required VariableDataPrototype if a RunnableEntity has a
VariableAccess in the dataReadAccess role referring to this
VariableDataPrototype, and

605 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• if at the RPortPrototype or PRPortPrototype a Non-
queuedReceiverComSpec with either

– the attribute aliveTimeout set to a value greater than zero
and/or

– the attribute handleNeverReceived set to TRUE and/or

– the attribute handleOutOfRange not set to none and/or

– the attribute handleDataStatus set to TRUE

and/or

• if at the SenderReceiverInterface classifying the RPort-
Prototype or PRPortPrototype an InvalidationPolicy
set to keep

is specified for this VariableDataPrototype. c(SRS_Rte_00147,
SRS_Rte_00078)

[SWS_Rte_CONSTR_09027] Rte_IStatus API shall only be
used by a RunnableEntity describing an read access to
the related data d The Rte_IStatus API shall only be used
by a RunnableEntity that has a VariableAccess in the
dataReadAccess role referring to the VariableDataPrototype
to which the status belongs. c()

[SWS_Rte_08568] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

Description: The Rte_IStatus API provides access to the current status of the
data elements declared as accessed by a runnable using a Vari-
ableAccess in the dataReadAccess role. The API function is
guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

To provide the required consistency access by a runnable is to a copy
of the status together with the data that is guaranteed never to be
modified by the RTE during the lifetime of the runnable entity.

The OUT parameter transformerError contains the transformer
error which occured during execution of the transformer chain. See
chapter 4.10.5.

Return Value: The return value is used to indicate errors detected by the communi-
cation system.

606 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_02602] d RTE_E_OK – no errors. c
(SRS_Rte_00094)

• [SWS_Rte_02603] d RTE_E_INVALID – data element in-
valid. c(SRS_Rte_00078)

• [SWS_Rte_02604] d RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be com-
bined with any other error code. c(SRS_Rte_00147)

• [SWS_Rte_07644] d RTE_E_NEVER_RECEIVED – No
data received since system start or partition restart. c
(SRS_Rte_00184, SRS_Rte_00224)

• [SWS_Rte_01372] d RTE_E_OUT_OF_RANGE – data ele-
ment out of range. c(SRS_Rte_00180)

• [SWS_Rte_06828] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the communication service
is currently not available (inter ECU communication only). RTE
shall return RTE_E_COM_STOPPED when:

– in case of COM the corresponding service returns
COM_SERVICE_NOT_AVAILABLE

– in case of LdCom the corresponding LdCom_Transmit re-
turns E_NOT_OK

In case of stopped I-PDUS the last known value (or init value)
is given back as data by the according Rte_IRead API. c
(SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_03785].

• [SWS_Rte_08572] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_08573] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

Notes: [SWS_Rte_06829] d In case of multiple faults during reception of
the related data the resulting return value of Rte_IStatus shall be
derived according to the following priority rules (highest priority first):

1. RTE_E_UNCONNECTED

2. RTE_E_COM_STOPPED

607 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3. RTE_E_NEVER_RECEIVED

4. RTE_E_HARD_TRANSFORMER_ERROR

5. RTE_E_INVALID

6. RTE_E_OUT_OF_RANGE

7. RTE_E_SOFT_TRANSFORMER_ERROR

c(SRS_Rte_00147, SRS_Rte_00078, SRS_Rte_00184,
SRS_Rte_00180)

Please note that RTE_E_MAX_AGE_EXCEEDED is an overlay error
and could be combined with any other error. Nevertheless in case
of RTE_E_UNCONNECTED or RTE_E_COM_STOPPED time out mon-
itoring is NOT active which in turn excludes the coincidence of
RTE_E_MAX_AGE_EXCEEDED.

5.6.23 Rte_IrvIRead

Purpose: Provide read access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03550] d
<return> Rte_[Byps_]IrvIRead_<re>_<o>(

[IN RTE_Instance <instance>])

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the VariableDataPrototype in role
implicitInterRunnableVariable. [Byps_] is an optional in-
fix used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2). c
(SRS_BSW_00310, SRS_Rte_00142)

Existence: [SWS_Rte_01303] d An Rte_IrvIRead API shall be created
for each VariableAccess in role readLocalVariable to
an implicitInterRunnableVariable. c(SRS_Rte_00051,
SRS_Rte_00142)

[SWS_Rte_CONSTR_09087] Rte_IrvIRead API may only be
used by the runnable that describe its usage d The
Rte_IrvIRead API may only be used by the runnable that contains
the corresponding VariableAccess in the readLocalVariable
role. c()

Description: The Rte_IrvIRead API provides read access to the defined Inter-
RunnableVariables with implicit behavior within a component descrip-
tion.

608 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The return value is used to deliver the requested data value. The
return value is not required to pass error information to the user be-
cause no inter-ECU communication is involved and there will always
be a readable value present.

Return Value: The Rte_IrvIRead return value provide access to the data value of
the InterRunnableVariable.

The return type of Rte_IrvIRead is dependent on the Implemen-
tationDataType of the InterRunnableVariable and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the InterRunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. More details about InterRunnableVariables with implicit be-
havior is explained in section 4.2.5.6.1.

5.6.24 Rte_IrvIWrite

Purpose: Provide write access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03553] d
void Rte_[Byps_]IrvIWrite_<re>_<o>(

[IN RTE_Instance <instance>],
IN <data>)

Where <re> is the name of the RunnableEntity the API might
be used in, <o> is the name of the VariableDataPrototype
in the role implicitInterRunnableVariable to access and
<data> is the placeholder for the data the InterRunnableVariable
shall be set to. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00142)

Existence: [SWS_Rte_01304] d An Rte_IrvIWrite API shall be created
for each VariableAccess in role writtenLocalVariable
to an implicitInterRunnableVariable. c(SRS_Rte_00142,
SRS_Rte_00051)

[SWS_Rte_CONSTR_09088] Rte_IrvIWrite API may only
be used by the runnable that describe its usage d The

609 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rte_IrvIWrite API may only be used by the runnable that con-
tains the corresponding VariableAccess in the writtenLocal-
Variable role. c()

Description: The Rte_IrvIWrite API provides write access to the InterRunnabl-
eVariables with implicit behavior within a component description. The
runnable entity name in the signature allows runnable context specific
optimizations.

The data given by Rte_IrvIWrite is dependent on the Inter-
RunnableVariable data type. Thus the component does not need to
use type casting to write the InterRunnableVariable.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

Return Value: None.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with implicit
behavior are explained in Section 4.2.5.6.1.

5.6.25 Rte_IrvIWriteRef

Purpose: Provide a reference to the VariableDataPrototype defined
with the implicitInterRunnableVariable role referenced by
a VariableAccess in the writtenLocalVariable role.

Signature: [SWS_Rte_06207] d
<return reference> Rte_[Byps_]IrvIWriteRef_<re>_<o>(

[IN RTE_Instance <instance>])

Where <re> is the name of the RunnableEntity the API might
be used in, <o> is the name of the VariableDataPrototype in
the role implicitInterRunnableVariable to access. [Byps_]
is an optional infix used when component wrapper method for by-
pass support is enabled for the related software component type (See
chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00142)

Existence: [SWS_Rte_06208] d An Rte_IrvIWriteRef API shall be cre-
ated for each VariableAccess in role writtenLocalVariable

610 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

to an implicitInterRunnableVariable. c(SRS_Rte_00142,
SRS_Rte_00051)

[SWS_Rte_CONSTR_09092] Rte_IrvIWriteRef API may only
be used by the runnable that describe its usage d The
Rte_IrvIWriteRef API may only be used by the runnable that
contains the corresponding VariableAccess in the writtenLo-
calVariable role. c()

Description: The Rte_IrvIWriteRef API returns a reference to the Variable-
DataPrototypes declared as accessed by a runnable using Vari-
ableAccesss in the writtenLocalVariable role. The reference
can be used by the runnable to directly update the corresponding
data elements. This is especially useful for data elements of Struc-
ture Implementation Data Type or Array Implementation Data Type.
The API function is guaranteed to have constant execution time and
therefore can also be used within category 1A runnable entities.

No error information is required for the user. To provide the required
write-back semantics the RTE only makes written values available to
other entities after the writing runnable entity has terminated.

[SWS_Rte_CONSTR_09093] Rte_IrvIWriteRef may not return
values written in previous executions d The reference returned by
Rte_IrvIWriteRef shall not be used by the runnables for reading
the value previously written. c()

Return Value: The Rte_IrvIWriteRef return value provides access to the data
write buffer of the VariableDataPrototype.

[SWS_Rte_06209] d Rte_IrvIWriteRef returns a reference to the
corresponding VariableDataPrototype. c(SRS_Rte_00051)

The return reference type of Rte_IrvIWriteRef is dependent
on the ImplementationDataType of the VariableDataProto-
type and is a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data. For details
of the <return reference> definition see section 5.2.6.7.

Notes: None.

5.6.26 Rte_IrvRead

Purpose: Provide read access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03560] d
primitive type signature:

611 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<return> Rte_[Byps_]IrvRead_<re>_<o>(
[IN RTE_Instance <instance>])

complex type signature:

void Rte_[Byps_]IrvRead_<re>_<o>(
[IN RTE_Instance <instance>],
OUT <data>)

Where <re> is the name of the runnable entity the API might be used
in, <o> is the name of the InterRunnableVariables. [Byps_] is an
optional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2).

The complex type signature is used, if the Implementation-
DataType of the InterRunnableVariable resolves to Array
Implementation Data Type or Structure Implementation
Data Type, otherwise the primitive type signature is used. c
(SRS_BSW_00310, SRS_Rte_00142)

Existence: [SWS_Rte_01305] d An Rte_IrvRead API shall be created
for each read InterRunnableVariable using explicit access. c
(SRS_Rte_00142, SRS_Rte_00051)

[SWS_Rte_CONSTR_09089] Rte_IrvRead API may only be
used by the runnable that describe its usage d The Rte_IrvRead
API may only be used by the runnable that contains the correspond-
ing VariableAccess in the readLocalVariable role. c()

Description: The Rte_IrvRead API provides read access to the defined Inter-
RunnableVariables with explicit behavior within a component descrip-
tion.

The return value is not required to pass error information to the user
because no inter-ECU communication is involved and there will al-
ways be a readable value present.

For the primitive type signature, the return value is used to deliver
the requested data value. For the complex type signature, the return
value is void.

For the complex type signature, the Rte_IrvRead API call includes
the OUT parameter <data> to pass back the received data. The
OUT parameter <data> is typed as reference (pointer) to the type
of the InterRunnableVariable. The pointer to the OUT parameter
<data> must remain valid until the API call returns.

Return Value: The Rte_IrvRead return value provide access to the data value of
the InterRunnableVariable.

612 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The return type of Rte_IrvRead is dependent on the Implementa-
tionDataType of the InterRunnableVariable. Thus the component
does not need to use type casting to convert access to the Inter-
RunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_IrvRead API Signature only has a
return value if the InterRunnableVariable is typed by a Primi-
tive Implementation Data Type or Redefinition Imple-
mentation Data Type redefining a Primitive Implementa-
tion Data Type.

[SWS_Rte_03562] d For the primitive type signature, the
Rte_IrvRead call shall return the value of the accessed Inter-
RunnableVariable. c(SRS_Rte_00142, SRS_Rte_00051)

For complex type signature, the Rte_IrvRead call does not return
any value (void).

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

5.6.27 Rte_IrvWrite

Purpose: Provide write access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03565] d
void Rte_[Byps_]IrvWrite_<re>_<o>(

[IN RTE_Instance <instance>],
IN <data>)

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the InterRunnableVariable to access
and <data> is the placeholder for the data the InterRunnableVari-
able shall be set to. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00142)

Existence: [SWS_Rte_01306] d An Rte_IrvWrite API shall be created
for each written InterRunnableVariable using explicit access. c
(SRS_Rte_00142, SRS_Rte_00051)

613 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_CONSTR_09090] Rte_IrvWrite API may only be
used by the runnable that describe its usage d The
Rte_IrvWrite API may only be used by the runnable that contains
the corresponding VariableAccess in the writtenLocalVari-
able role. c()

Description: The Rte_IrvWrite API provides write access to the InterRunnabl-
eVariables with explicit behavior within a component description.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

[SWS_Rte_03567] d The Rte_IrvWrite API call include the
IN parameter <data> to pass the data element to write. c
(SRS_Rte_00142, SRS_Rte_00051)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: None.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

5.6.28 Rte_Enter

Purpose: Enter an exclusive area.

Signature: [SWS_Rte_01120] d
void
Rte_[Byps_]Enter_[<re_>]<name>(

[IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <name> is the exclusive
area name. The sub part in squared brackets [<re>_] is emitted
if the attribute SwcExclusiveAreaPolicy.apiPrinciple is set
to "perExecutable". [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00046, SRS_Rte_00115)

614 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Existence: [SWS_Rte_01307] d An Rte_Enter API shall be created for each
ExclusiveArea that is declared and which has an canEnterExclu-
siveArea association. c(SRS_Rte_00115, SRS_Rte_00051)

Description: The Rte_Enter API call is invoked by an AUTOSAR software-
component to define the start of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Enter
for the same exclusive area.

[SWS_Rte_01122] d The RTE shall permit calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are
exited in the reverse order they were entered. c(SRS_Rte_00046,
SRS_Rte_00032, SRS_Rte_00115)

[SWS_Rte_CONSTR_09028] Rte_Enter and Rte_Exit API may
only be used by runnables describing its usage d The
Rte_Enter and Rte_Exit API may only be used by Runnable Enti-
ties that contain a corresponding canEnterExclusiveArea association
c()

[SWS_Rte_CONSTR_09029] Nested call of Rte_Enter and
Rte_Exit is restricted d The Rte_Enter and Rte_Exit API may
only be called nested if different exclusive areas are invoked; in this
case exclusive areas shall exited in the reverse order they were en-
tered. c()

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

5.6.29 Rte_Exit

Purpose: Leave an exclusive area.

Signature: [SWS_Rte_01123] d
void
Rte_[Byps_]Exit_[<re_>]<name>(

[IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <name> is the exclusive
area name. The sub part in squared brackets [<re>_] is emitted
if the attribute SwcExclusiveAreaPolicy.apiPrinciple is set
to "perExecutable". [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related

615 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00046, SRS_Rte_00051)

Existence: [SWS_Rte_01308] d An Rte_Exit API shall be created for each
ExclusiveArea that is declared and which has an canEnterExclu-
siveArea association. c(SRS_Rte_00115, SRS_Rte_00051)

Description: The Rte_Exit API call is invoked by an AUTOSAR software-
component to define the end of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Exit
for the same exclusive area.

Requirement [SWS_Rte_01122] permits calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are ex-
ited in the reverse order they were entered.

5.6.30 Rte_Mode

There exist two versions of the Rte_Mode API. Depending on the attribute enhanced-
ModeApi in the software component description there shall be provided different ver-
sions of this API (see also 5.6.31).

Purpose: Provides the currently active mode of a mode switch port.

Signature: [SWS_Rte_02628] d
<return>
Rte_[Byps_]Mode_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name, and <o> the ModeDeclara-
tionGroupPrototype name within the ModeSwitchInterface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_Rte_00144)

Existence: [SWS_Rte_02629] d If a ModeAccessPoint exists and if the at-
tribute enhancedModeApi of the ModeSwitchSenderComSpec
resp. ModeSwitchReceiverComSpec is set to false or does not
exist a Rte_Mode API according to [SWS_Rte_02628] shall be gen-
erated. c(SRS_Rte_00147, SRS_Rte_00078)

[SWS_Rte_CONSTR_09030] Rte_Mode API may only be used by
the runnable that describe its usage d The Rte_Mode API may
only be used by the runnable that contains the corresponding Mod-
eAccessPoint c()

616 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the mode dis-
abling dependency’s. A new mode will not be indicated imme-
diately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see [SWS_Rte_02630]).

It is supported to have ModeAccessPoint(s) referring the provide
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
mode disabling dependency’s.

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return
the value of the ModeDeclarationGroupPrototype. The type
name shall be equal to the shortName of the Implementation-
DataType.

The return value of the Rte_Mode is used to inform the caller about
the current mode of the mode machine instance. The Rte_Mode
API shall return the following values:

[SWS_Rte_07666] d During a transition of the
mode machine instance, Rte_Mode shall return
RTE_TRANSITION_<ModeDeclarationGroup>, where
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144)

[SWS_Rte_02660] d When the mode machine in-
stance is in a defined mode, Rte_Mode shall return
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,
where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration. c(SRS_Rte_00144)

[SWS_Rte_06742] d The API Rte_Mode shall return the value
RTE_TRANSITION_<ModeDeclarationGroup> for a mode ma-
chine instance assigned to the RTE ([SWS_Rte_07533]) un-
til the RTE has been initialized and where <ModeDeclaration-
Group> is the short name of the ModeDeclarationGroup. c
(SRS_Rte_00144)

617 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06781] d If modeManagerErrorBehavior.errorRe-
actionPolicy is set to defaultMode the API Rte_Mode shall re-
turn the value RTE_TRANSITION_<ModeDeclarationGroup> for
a mode machine instance while the partition of the mode users
is stopped or restarting and until the RTE dequeues the next mode
switch notifications.
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a transition
and therefore the behavior is identical as during the initialization of
the RTE (see [SRS_Rte_00144]).

[SWS_Rte_06782] d If the modeManagerErrorBe-
havior.errorReactionPolicy is set to lastMode,
the API enhanced Rte_Mode shall return the value
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode for a mode machine instance while the partition
of the mode users is stopped or restarting and until the RTE
dequeues the next mode switch notifications.
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a stable
mode during the re-initialization of the partition until the RTE is
capable to dequeue the first mode switch notification after
the partition restart.

[SWS_Rte_06743] d The Rte_Mode API shall return the values
according [SWS_Rte_07666] and [SWS_Rte_02660] for a common
mode machine instance already after initialization of the Basic
Software Scheduler. c(SRS_Rte_00144)

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[SWS_Rte_02732] d In inter partition mode management, the return
value of the Rte_Mode API to the mode manager shall be consis-
tent with the start of a transition by the Rte_Switch API and the
inter partition communication of the ModeSwitchedAckEvent. c
(SRS_Rte_00144, SRS_Rte_00210)

Notes: The Rte_Mode API may already indicate the next ModeDeclaration,
before the mode manager has picked up the ModeSwitchedAck-
Event with the Rte_SwitchAck. This is not in contradiction to
[SWS_Rte_02732].

[SWS_Rte_06744] d The RTE shall support calls of Rte_Mode after
initialization of the Basic Software Scheduler but before the RTE is
initialized. c(SRS_Rte_00144)

618 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.6.31 Enhanced Rte_Mode

Purpose: Provides the currently active mode of a mode switch port. If the mode
machine instance is in transition additionally the values of the
previous and the next mode are provided.

Signature: [SWS_Rte_08500] d
<return>
Rte_[Byps_]Mode_<p>_<o>([IN Rte_Instance <instance>,]

OUT <previousmode>,
OUT <nextmode>)

Where <p> is the port name, and <o> the ModeDeclara-
tionGroupPrototype name within the ModeSwitchInterface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_Rte_00144)

Existence: [SWS_Rte_08501] d The existence of a ModeAccessPoint given
that the attribute enhancedModeApi of the ModeSwitchSender-
ComSpec resp. ModeSwitchReceiverComSpec is set to true
shall result in the generation of a Rte_Mode API according to
[SWS_Rte_08500]. c(SRS_Rte_00147, SRS_Rte_00078)

[SWS_Rte_CONSTR_09031] Rte_Mode API may only be used by
the runnable that describe its usage d The Rte_Mode API may
only be used by the runnable that contains the corresponding Mod-
eAccessPoint c()

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the mode dis-
abling dependency’s. A new mode will not be indicated imme-
diately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>. The parameter
<previousmode> than contains the mode currently being left,the
parameter <nextmode> the mode being entered.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see [SWS_Rte_02630]).

It is supported to have ModeAccessPoint(s) referring the provided
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
mode disabling dependency’s.

619 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return
the value of the ModeDeclarationGroupPrototype. The type
name shall be equal to the shortName of the Implementation-
DataType. The return value of the Rte_Mode and the parameters
<previousmode> and <nextmode> are used to inform the caller
about the current mode of the mode machine instance.

[SWS_Rte_08504] d During a transition of a mode machine in-
stance Rte_Mode shall return the following values

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the ModeDeclaration. c(SRS_Rte_00144, SRS_Rte_00210)

[SWS_Rte_08505] d When the mode machine instance is in a
defined mode, Rte_Mode shall return the following values

• the return value shall contain the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration. c(SRS_Rte_00144)

[SWS_Rte_06745] d The API enhanced Rte_Mode shall return the
following values for a mode machine instance assigned to the
RTE ([SWS_Rte_07533]) until the RTE has been initialized:

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

620 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144)

[SWS_Rte_06783] d If modeManagerErrorBehavior.error-
ReactionPolicy is set to defaultMode the API enhanced
Rte_Mode shall return the following values for a mode machine
instance while the partition of the mode users is stopped or restart-
ing and until the RTE dequeues the next mode switch notifica-
tions.

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the modeUserErrorBehavior.defaultMode of the Mode-
DeclarationGroup

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the modeUserErrorBehavior.defaultMode of the Mode-
DeclarationGroup

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a transition
from and to the defaultMode. If the defaultMode is identical to
the initialMode the behavior is identical as during the initialization
of the RTE (see [SRS_Rte_00144]).

[SWS_Rte_06784] d If the modeManagerErrorBehavior.er-
rorReactionPolicy is set to lastMode, the API enhanced
Rte_Mode shall return the following values for a mode machine
instance while the partition of the mode users is stopped or restart-
ing and until the RTE dequeues the next mode switch notifica-
tions.

• the return value shall be
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode

621 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a stable
mode during the re-initialization of the partition until the RTE is ca-
pable to dequeue the first mode switch notification after the
partition restart.

[SWS_Rte_06746] d The enhanced Rte_Mode API shall return the
values according [SWS_Rte_08504] and [SWS_Rte_08505] for a
common mode machine instance already after initialization of
the Basic Software Scheduler. c(SRS_Rte_00144)

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[SWS_Rte_08506] d In inter partition mode management, the return
value and the contents of the parameters <previousmode> and
<nextmode> of the Rte_Mode API to the mode manager shall be
consistent with the start of a transition by the Rte_Switch API and
the inter partition communication of the ModeSwitchedAckEvent.
c(SRS_Rte_00144, SRS_Rte_00210)

Notes: The Rte_Mode API may already indicate the next ModeDecla-
ration, before the mode manager has picked up the Mod-
eSwitchedAckEvent with the Rte_SwitchAck. This is not in con-
tradiction to [SWS_Rte_02732].

[SWS_Rte_06747] d The RTE shall support calls of the enhanced
Rte_Mode after initialization of the Basic Software Scheduler but be-
fore the RTE is initialized. c(SRS_Rte_00144)

5.6.32 Rte_Trigger

Purpose: Raise an external trigger of a trigger port.

Signature: [SWS_Rte_07200] d
signature without queuing support:

void Rte_[Byps_]Trigger_<p>_<o>(
[IN Rte_Instance <instance>],
[OUT Rte_TransformerError transformerError])

signature with queuing support:

Std_ReturnType Rte_[Byps_]Trigger_<p>_<o>(
[IN Rte_Instance <instance>])

Where <p> is the port name and <o> the Trigger within the trigger
interface categorizing the port. [Byps_] is an optional infix used

622 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

when component wrapper method for bypass support is enabled for
the related software component type (See chapter 4.9.2).

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated Trigger is set to
queued. c(SRS_Rte_00162)

Data Transformation of external triggers is only supported for external
triggers without queueing support.

Existence: [SWS_Rte_07201] d The existence of an ExternalTriggering-
Point shall result in the generation of a Rte_Trigger API. c
(SRS_Rte_00162)

[SWS_Rte_05300] d The optional OUT parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

[SWS_Rte_CONSTR_09032] Rte_Trigger API may only be
used by the runnable that describe its usage d The Rte_Trigger
API may only be used by the runnable that contains the correspond-
ing ExternalTriggeringPoint. c()

Description: The Rte_Trigger API triggers an execution for all runnables whose
ExternalTriggerOccurredEvent is associated to the Trigger.
The OUT parameter transformerError contains the transformer
error which occurred during execution of the transformer chain. See
chapter 4.10.5.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06720] d The Rte_Trigger API shall return the follow-
ing values:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

5.6.33 Rte_IrTrigger

Purpose: Raise an internal trigger to activate Runnable entities of the same
software component instance.

Signature: [SWS_Rte_07203] d

623 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

signature without queuing support:

void Rte_[Byps_]IrTrigger_<re>_<o>(
[IN Rte_Instance <instance>])

signature with queuing support:

Std_ReturnType Rte_[Byps_]IrTrigger_<re>_<o>(
[IN Rte_Instance <instance>])

Where <re> is the name of the runnable entity the API might be
used in and <o> is the name of the InternalTriggeringPoint.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2).

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated InternalTrig-
geringPoint is set to queued. c(SRS_Rte_00163)

Existence: [SWS_Rte_07204] d The existence of an InternalTriggering-
Point shall result in the generation of a Rte_IrTrigger API. c
(SRS_Rte_00163)

[SWS_Rte_CONSTR_09033] Rte_IrTrigger API may only
be used by the runnable that describe its usage d The
Rte_IrTrigger API may only be used by the runnable that con-
tains the corresponding InternalTriggeringPoint. c()

Description: The Rte_IrTrigger triggers an execution for all runnables whose
InternalTriggerOccurredEvent is associated to the In-
ternalTriggeringPoint.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06721] d The Rte_Trigger API shall return the follow-
ing values:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: None.

5.6.34 Rte_IFeedback

Purpose: Provide access to acknowledgement notifications for implicit sender
receiver communication and to pass error notification to senders.

624 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Signature: [SWS_Rte_07367] d
Std_ReturnType
Rte_[Byps_]IFeedback_<re>_<p>_<o> (

[IN RTE_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype within the sender-receiver interface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

Existence: Note: according to [SWS_Rte_01283], acknowledgment is enabled
for a provided VariableDataPrototype by the existence of a
TransmissionAcknowledgementRequest in the SenderCom-
Spec.

[SWS_Rte_07646] d An Rte_IFeedback API shall be created for
a provided VariableDataPrototype if acknowledgment is en-
abled and the RunnableEntity has a VariableAccess in the
dataWriteAccess role referring to this VariableDataProto-
type. c(SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

[SWS_Rte_07647] d An Rte_IFeedback API shall be created for a
provided VariableDataPrototype if acknowledgment is enabled
and a DataWriteCompletedEvent references the RunnableEn-
tity as well as the VariableAccess which in turn references the
VariableDataPrototype. c(SRS_Rte_00122, SRS_Rte_00129,
SRS_Rte_00185)

[SWS_Rte_07648] d If acknowledgment is enabled for a provided
VariableDataPrototype and a DataWriteCompletedEvent
references a runnable entity as well as the VariableAccess which
in turn references the VariableDataPrototype, the runnable en-
tity shall be activated when the transmission acknowledgment occurs
or when a timeout was detected by the RTE. See [SWS_Rte_07379].
c(SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

[SWS_Rte_CONSTR_09000] Rte_IFeedback API may only be
used by the RunnableEntitys that describe its usage d The
Rte_IFeedback API shall only be used by a RunnableEntity
that either has a VariableAccess in the dataWriteAccess role
referring to the VariableDataPrototype or is triggered by a
DataWriteCompletedEvent referring to the VariableAccess
which in turn references the VariableDataPrototype. c()

Description: The Rte_IFeedback API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledg-
ment status to the caller.

625 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The Rte_IFeedback API applies only to implicit sender-receiver
communication.

The Rte_IFeedback API provides access to the transmission feed-
back of the data elements, declared as sent by a runnable using a
VariableAccess in the dataWriteAccess role, and sent after the
previous invocation of the runnable. The API function is guaranteed
to be have constant execution time and therefore can also be used
within category 1A runnable entities.

The required consistency access by a runnable can be provided by
copying of the status before the execution of the runnable so that it
cannot be modified by the RTE during the lifetime of the runnable
entity.

Return Value: The return value is used to indicate the “status” status and errors
detected by the RTE during execution of the Rte_IFeedback call.

• [SWS_Rte_07374] d RTE_E_NO_DATA – No acknowledgments
or error notifications were received from COM when the runn-
able entity was started. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07375] d RTE_E_COM_STOPPED – (Inter-ECU com-
munication only) The last transmission was rejected (when the
local buffer was sent), with an RTE_E_COM_STOPPED return
code or an error notification was received from COM before
any timeout notification. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07650] d RTE_E_TIMEOUT – (Inter-ECU only)
A timeout notification was received from COM before
any error notification. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07376] d RTE_E_TRANSMIT_ACK – A transmission
acknowledgment was received. This error code is valid for both
inter-ECU and intra-ECU communication. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07660] d RTE_E_UNCONNECTED – Indicates
that the sender port is not connected. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185,
SRS_Rte_00139)

• [SWS_Rte_08580] d RTE_E_HARD_TRANSFORMER_ERROR –
The return value of one transformer in the transformer chain
represented a hard transformer error. c(SRS_Rte_00094,
SRS_Rte_00091)

626 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_08581] d RTE_E_SOFT_TRANSFORMER_ERROR –
The return value of at least one transformer in the transformer
chain was a soft error and no hard error occurred in the trans-
former chain. c(SRS_Rte_00094, SRS_Rte_00091)

The RTE_E_NO_DATA, RTE_E_TRANSMIT_ACK and
RTE_E_UNCONNECTED return values are not considered to be
an error but rather indicates correct operation of the API call.

[SWS_Rte_07651] d The initial return value of the
Rte_IFeedback API, when the runnable entity is executed before
any attempt to write some data shall be RTE_E_TRANSMIT_ACK.
c(SRS_Rte_00094, SRS_Rte_00122, SRS_Rte_00129,
SRS_Rte_00185)

[SWS_Rte_08074] d In case of multiple faults during a call
of Rte_IFeedback the resulting return value shall be de-
rived according to the following priority rules (highest prior-
ity first): (1) RTE_E_UNCONNECTED, (2) RTE_E_TIMEOUT, (3)
RTE_E_HARD_TRANSFORMER_ERROR, (4) RTE_E_COM_STOPPED,
(5) RTE_E_NO_DATA, (6) RTE_E_SOFT_TRANSFORMER_ERROR, (7)
RTE_E_TRANSMIT_ACK. c(SRS_Rte_00122)

Notes: See the notes for the Rte_Feedback API in section 5.6.8.

5.6.35 Rte_IsUpdated

Purpose: Provide access to the update flag for an explicit receiver.

Signature: [SWS_Rte_07390] d
boolean Rte_[Byps_]IsUpdated_<p>_<o>(

[IN RTE_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00179)

Existence: [SWS_Rte_07391] d An Rte_IsUpdated API shall be created for
a required VariableDataPrototype if a RunnableEntity has
a VariableAccess in the dataReceivePointByArgument or
dataReceivePointByValue role referring to the VariableDat-
aPrototype and the enableUpdate attribute is enabled in the
NonqueuedReceiverComSpec of the VariableDataPrototype.
c(SRS_Rte_00179)

627 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_CONSTR_09034] Rte_IsUpdated API may only be
used by the runnable that describe the access to the corre-
sponding data d The Rte_IsUpdated API may only be used by
the runnable that contains the corresponding VariableAccess in
the dataReceivePointByArgument or dataReceivePointBy-
Value role. c()

Description: The Rte_IsUpdated API takes no parameters other than the in-
stance handle – the return value is used to indicate if the Vari-
ableDataPrototype has been updated or not.

The Rte_IsUpdated API applies only to sender-receiver communi-
cation.

Return Value: The return value is used to indicate if the VariableDataProto-
type has been updated or not.

• [SWS_Rte_07392] d TRUE – Data element updated since last
read. c(SRS_Rte_00094, SRS_Rte_00179)

• [SWS_Rte_07393] d FALSE – Data element not updated since
last read. c(SRS_Rte_00094, SRS_Rte_00179)

Notes: None.

5.6.36 Rte_PBCon

Purpose: Provide access to the individual post-build artifacts of a Variation-
PointProxy for SWCs of a system containing different variants.

Signature: [SWS_Rte_08066] d
<return>
Rte_[Byps_]PBCon_<vpp> ()

Where <vpp> is the shortName of the VariationPointProxy.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_Rte_00191)

Existence: [SWS_Rte_08067] d A Rte_PBCon API shall be generated, if a
PostBuildVariantCriterion or at least one PostBuildVari-
antCondition is defined for the VariationPointProxy. c
(SRS_Rte_00191)

Description: Depending on the category of the VariationPointProxy (see
Software Component Template [2]), the Rte_PBCon API provides ei-
ther access to the PostBuildVariantCriterion or to the result
of the evaluation of the PostBuildVariantConditions against
the PostBuildVariantCriterion.

628 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Return Value: [SWS_Rte_08068] d For VariationPointProxys of category
VALUE the return value of Rte_PBCon shall be an integer value
yielding from the VariationPointProxy.postBuildValueAc-
cess.

The return type of Rte_PBCon shall be in this case conform with
the ImplementationDataType defined by VariationPoint-
Proxy.implementationDataType. c(SRS_Rte_00191)

[SWS_Rte_08069] d For VariationPointProxys of category
CONDITION the return value of Rte_PBCon shall be the result
of the evaluated expression PBExp:

∧
PBV arCon(VariationPoint-

Proxy.postBuildValueAccess = PostBuildVariantCondi-
tion.value), where PBVarCon is the set of all postBuildVari-
antConditions of the VariationPointProxy. If a pre-build con-
dition is defined in addition the return value shall be the result of
the evaluated expression PPBExp:VariationPointProxy.con-
ditionAccess

∧
PBExp.

The return type of Rte_PBCon shall be in this case the Platform Type
boolean. c(SRS_Rte_00191)

Notes: [SWS_Rte_08070] d For VariationPointProxys of category
CONDITION that are using both conditionAccess and post-
BuildVariantCondition the RTE shall ensure in Rte_PBCon
that pre-build conditions have precedence over post-build conditions.
c(SRS_Rte_00191)

More details regarding Rte_PBCon API can be found in section 4.7.5.

5.6.37 Rte_IsAvailable

Purpose: Provide access to the availability information for an optional member
of an ImplementationDataType of category STRUCTURE.

Signature: [SWS_Rte_03611] DRAFT d
boolean
Rte_IsAvailable_<i>_<e>(IN <data>)

Where <i> is the shortName of the ImplementationDataType
of category STRUCTURE and <e> the shortName of the Implemen-
tationDataTypeElement. c(SRS_Rte_00261)

Existence: [SWS_Rte_03612] DRAFT d An Rte_IsAvailable API shall
be generated for an ImplementationDataTypeElement of an
ImplementationDataType when the attribute isOptional of
the ImplementationDataTypeElement is set to true. c
(SRS_Rte_00261)

629 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: The Rte_IsAvailable API takes a concrete variable as input by
reference (e.g. the returned data of Rte_Read). The variable must
be of type <i>. The return value is used to indicate whether the
optional member <e> is available within the variable of type <i>.

Return Value: • [SWS_Rte_03613] DRAFT d TRUE – The optional member <i>
is available. c(SRS_Rte_00261)

• [SWS_Rte_03614] DRAFT d FALSE – The optional member
<i> is not available. c(SRS_Rte_00261)

Notes: None.

5.6.38 Rte_SetAvailable

Purpose: Sets the availability information for an optional member of an Imple-
mentationDataType of category STRUCTURE.

Signature: [SWS_Rte_03615] DRAFT d
void
Rte_SetAvailable_<i>_<e>(IN/OUT <data>, boolean available)

Where <i> is the shortName of the ImplementationDataType
of category STRUCTURE and <e> the shortName of the Implemen-
tationDataTypeElement. c(SRS_Rte_00261)

Existence: [SWS_Rte_03616] DRAFT d An Rte_SetAvailable API shall
be generated for an ImplementationDataTypeElement of an
ImplementationDataType when the attribute isOptional of
the ImplementationDataTypeElement is set to true. c
(SRS_Rte_00261)

Description: The Rte_SetAvailable API takes a concrete variable as input by
reference (e.g. a variable which will be passed to an Rte_Write
call). The variable must be of type <i>. The API sets the availability
of the struct member <e> within the variable to the value defined by
the available parameter.

Return Value: None.

Notes: None.

5.7 Runnable Entity Reference

An AUTOSAR component defines one or more “runnable entities”. A runnable entity
is a piece of code with a single entry point and an associate set of data. A software-
component description provides definitions for each runnable entity within the software-
component.

630 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

For components implemented using C or C++ the entry point of a runnable entity is
implemented by a function with global scope defined within a software-component’s
source code. The following sections consider the function signature and prototype.

5.7.1 Signature

The definition of all runnable entities, whatever the RTEEvent that triggers their exe-
cution, follows the same basic form.

[SWS_Rte_01126] d
<void|Std_ReturnType> [Byps_]<prefix><name>(

[IN Rte_Instance <instance>],
[IN Rte_ActivatingEvent_<name> <activation>],
[role parameters])

Where <name> 8 is the symbol describing the runnable’s entry point and <prefix> is
the optional SymbolProps.symbol attribute of the AtomicSwComponentType own-
ing the RunnableEntity, i.e. <prefix> will only appear if the attribute Symbol-
Props.symbol exists. The usage of Rte_ActivatingEvent is optional and de-
fined in [SWS_Rte_08051]. The definition of the role parameters is defined in Sec-
tion 5.7.3. [Byps_] is an optional infix used when component wrapper method for by-
pass support is enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00031, SRS_Rte_00011, SRS_Rte_00238)

Section 5.2.6.4 contains details on a recommended naming conventions for runnable
entities based on the RTEEvent that triggers the runnable entity. The recommended
naming convention makes explicit the functions that implement runnable entities as well
as clearly associating the runnable entity and the applicable data element or operation.

5.7.2 Entry Point Prototype

The RTE determines the required role parameters, and hence the prototype of the
entry point, for a runnable entity based on information in the input information. The
entry point defined in the component source must be compatible with the parameters
passed by the RTE when the runnable entity is triggered by the RTE and therefore the
RTE generator is required to emit a prototype for the function.

[SWS_Rte_01132] d The RTE generator shall emit a prototype for the runnable entity’s
entry point in the Application Header File, if the RunnableEntity is triggered by
an RTEEvent and no SwcBswRunnableMapping exists for it. c(SRS_Rte_00087,
SRS_Rte_00051, SRS_Rte_00031)

8Runnable entities have two “names” associated with them in the AUTOSAR Software Component
Template; the runnable’s identifier and the entry point’s symbol. The identifier is used to reference
the runnable entity within the input data and the symbol used within code to identify the runnable’s
implementation. In the context of a prototype for a runnable entity, “name” is the runnable entity’s entry
point symbol.

631 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The prototype for a function implementing the entry point of a runnable entity is emitted
for both “RTE Contract” and “RTE Generation” phases. The function name for the
prototype is the runnable entity’s entry point. The prototype of the entry point function
includes the runnable entity’s instance handle and its role parameters, see Listing 5.1.

[SWS_Rte_07194] d The RTE Generator shall wrap each RunnableEntity’s Entry
Point Prototype in the Application Header File with the Memory Mapping and Compiler
Abstraction macros.

1 #define [Byps_]<c>_START_SEC_<sadm>
2 #include "[Byps_]<c>_MemMap.h"
3

4 FUNC(<void|Std_ReturnType>, <c>_<sadm>) [Byps_]<prefix><name> (
5 [IN Rte_Instance <instance>],
6 [IN Rte_ActivatingEvent_<name> <activation>],
7 [role parameters]);
8

9 #define [Byps_]<c>_STOP_SEC_<sadm>
10 #include "[Byps_]<c>_MemMap.h"

where <c> is the shortName of the software component type,

<sadm> is the shortName of the referred swAddrMethod.

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSwCompo-
nentType owning the RunnableEntity, i.e. <prefix> will only appear if the at-
tribute SymbolProps.symbol exists.

<name> is the attribute symbol describing the RunnableEntity’s entry point.

The usage of Rte_ActivatingEvent is optional and defined in [SWS_Rte_08051].
The definition of the role parameters is defined in Section 5.7.3. The Memory Map-
ping macros could wrap several Entry Point Prototype if these are referring to the
same swAddrMethod. If RunnableEntity does not refer a swAddrMethod the
<sadm> is set to default CODE. [Byps_] is an optionnal infix used when compo-
nent wrapper method for bypass support is enabled for the related software compo-
nent type (See chapter 4.9.2). c(SRS_Rte_00148, SRS_Rte_00149, SRS_Rte_00238,
SRS_Rte_00011)

[SWS_Rte_06531] d The RTE Generator shall wrap each Entry Point Prototype in the
Application Header File of a variant existent RunnableEntity if the variability shall
be implemented. c(SRS_Rte_00201)

1 #if (<condition>)
2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint rele-
vant for the variant existence of the RunnableEntity (see table 4.20), Entry
Point Prototype is the code according an invariant Entry Point Prototype (see
also [SWS_Rte_01131], [SWS_Rte_07177], [SWS_Rte_02512], [SWS_Rte_01133],

632 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01359], [SWS_Rte_01166], [SWS_Rte_01135], [SWS_Rte_01137],
[SWS_Rte_07207], [SWS_Rte_07208], [SWS_Rte_07379]).

[SWS_Rte_01016] d The function implementing the entry point of a runnable entity
shall define an instance handle as the first formal parameter if and only if the soft-
ware component’s supportsMultipleInstantiation attribute is set to TRUE. c
(SRS_Rte_00011, SRS_Rte_00031)

The RTE will ensure that when the runnable entity is triggered the instance handle pa-
rameter indicates the correct component instance. The remaining parameters passed
to the runnable entity depend on the RTEEvent that triggers execution of the runnable
entity.

Due to the global name space of a C Linker Locater symbols of RunnableEntitys
have to be unique in the ECU. When AtomicSwComponentTypes of several vendors
are integrated in the same ECU name clashes might occur if the same symbol is ac-
cidentally used twice. To ease the dissolving of name clashes the RTE supports an
abstraction of the RunnableEntity symbol in the implementation of the software
component.

[SWS_Rte_06713] d The RTE generator shall emit for each RunnableEntity a de-
fine for a symbolic name of the RunnableEntity.

1 #define RTE_RUNNABLE_<name> <prefix><symbol>

where <name> is the shortName of the RunnableEntity,

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSwCompo-
nentType owning the RunnableEntity.

<symbol> is the attribute symbol describing the RunnableEntity’s entry point.

c(SRS_Rte_00087, SRS_Rte_00051, SRS_Rte_00031)

This symbolic name of the RunnableEntity can be used as follows in the software
component implementation.

Example 5.30

For software component "‘HugeSwc"’ with a runnable "‘FOO"’ where the Symbol-
Props.symbol is set to "‘TinySwc"’ the Application Header File contains the definition:

1 /* Application Header File of HugeSwc*/
2 #define RTE_RUNNABLE_FOO TinySwcfoo

This can be used in the software components c file for the definition of the runnable:
1 /* software component c file */
2 RTE_RUNNABLE_FOO()
3 {
4 /* The algorithm of foo */
5 return;
6 }

633 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A change of the SymbolProps.symbol valued would have no effect on the c imple-
mentation of the software component but it would change the contract and the used
labels in a object code delivery.

In case that the RunnableEntity is mapped to BswModuleEntity the RTE Gener-
ator has to additionally respect the definitions in 6.3.2.3.4.

5.7.3 Role Parameters

The role parameters are optional and their presence and types depend on the RTE-
Event that triggers the execution of the runnable entity. The role parameters that are
necessary for each triggering RTEEvent are defined in Section 5.7.5.

[SWS_Rte_06703] d The RTE Generator shall name role parameters according to the
value of the symbol attribute of RunnableEntityArguments if RunnableEntit-
yArguments are defined for the related RunnableEntity and if no mapping to a
BswModuleEntry is defined. c(SRS_Rte_00087)

[SWS_Rte_06704] d The RTE Generator shall name role parameters according to the
shortName of the SwServiceArgs of the mapped BswModuleEntry if a mapping
of the RunnableEntity to a BswModuleEntry is defined. c(SRS_Rte_00087)

Please note that RunnableEntityArguments defined for a RunnableEntity
which is mapped to a BswModuleEntry are irrelevant.

[SWS_Rte_06705] d The RTE Generator shall generate nameless role parameters if
neither RunnableEntityArguments nor a mapping to a BswModuleEntry is de-
fined for the RunnableEntity. c(SRS_Rte_00087)

Further details about the mapping of RunnableEntitys and BswModuleEntry can
be found section "‘Synchronization with a Corresponding SWC"’ of the document [9]

5.7.4 Return Value

A function in C or C++ is required to have a return type. The RTE only uses the function
return value to return application error codes of a server operation.

[SWS_Rte_01130] d A function implementing a runnable entity entry point shall only
have the return type Std_ReturnType, if the runnable entity represents a server oper-
ation and the AUTOSAR interface description of that client server communication lists
potential application errors. All other functions implementing a runnable entity entry
point shall have a return type of void. c(SRS_Rte_00124, SRS_Rte_00031)

Note: If the potential application errors include RTE_E_OK, this shall also lead to a
return type of Std_ReturnType.

634 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_CONSTR_09045] The upper two bits of the of the server return value
are reserved d Only the least significant six bit of the return value of a server runnable
shall be used by the application to indicate an error. The upper two bit shall be zero. c
()

See also [SWS_Rte_02573].

5.7.5 Triggering Events

The RTE is the sole entity that can trigger the execution of a runnable entity. The RTE
triggers runnable entities in response to different RTEEvents.

The most basic RTEEvent that can trigger a runnable entity is the TimingEvent
that causes a runnable entity to be periodically triggered by the RTE. In contrast, the
remaining RTEEvents that can trigger runnable entities all occur as a result of com-
munication activity or as a result of mode switches.

The following subsections describe the conditions that can trigger execution of a runn-
able entity. For each triggering event the signature of the function (the “entry point”)
that implements the runnable entity is defined. The signature definition includes two
classes of parameters for each function;

1. The instance handle – the parameter type is always Rte_Instance.
([SWS_Rte_01016])

2. The role parameters – used to pass information required by the runnable entity
as a consequence of the triggering condition. The presence (and number) of role
parameters depends solely on the triggering condition.

5.7.5.1 TimingEvent

Purpose: Trigger a runnable entity periodically at a rate defined within the
software-component description.

Signature: [SWS_Rte_01131] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072)

5.7.5.2 BackgroundEvent

Purpose: A recurring RTEEvent which is used to perform background activi-
ties. It is similar to a TimingEvent but has no fixed time period and
is activated only with low priority.

Signature: [SWS_Rte_07177] d

635 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072)

5.7.5.3 SwcModeSwitchEvent

Purpose: Trigger of a runnable entity as a result of a mode switch. See also
sections 4.4.4 and 4.4.7 for reference.

Signature: [SWS_Rte_02512] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00143)

5.7.5.4 AsynchronousServerCallReturnsEvent

Purpose: Triggers a runnable entity used to “collect” the result and status infor-
mation of an asynchronous client-server operation.

Signature: [SWS_Rte_01133] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00029, SRS_Rte_00079)

Notes: The runnable entity triggered by an AsynchronousServerCall-
ReturnsEvent RTEEvent should use the Rte_Result API to ac-
tually receive the result and the status of the server operation.

5.7.5.5 DataReceiveErrorEvent

Purpose: Triggers a runnable entity used to “collect” the error status of a data
element with “data” semantics on the receiver side.

Signature: [SWS_Rte_01359] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00029, SRS_Rte_00079)

Notes: The runnable entity triggered by a DataReceiveErrorEvent RTE-
Event should use the Rte_IStatus API to actually read the status.

5.7.5.6 OperationInvokedEvent

Purpose: An RTEEvent that causes the RTE to trigger a runnable entity whose
entry point provides an implementation for a client-server operation.

636 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

This event occurs in response to a received request from a client to
execute the operation.

Signature: [SWS_Rte_01166] d
<void|Std_ReturnType> <name>

([IN Rte_Instance <instance>],
[IN <portDefArg 1>, ...
IN <portDefArg n>],
[IN|INOUT|OUT] <param 1>, ...
[IN|INOUT|OUT] <param n>,
[IN Rte_TransformerError transformerError])

Where <portDefArg 1>, ..., <portDefArg n> represent the
port-defined argument values (see Section 4.3.2.4) and
<param 1>, ... <param n> indicates the operation IN, IN-
OUT and OUT parameters. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072, SRS_Rte_00152)

The data type of each port defined argument is taken from the soft-
ware component template, as defined in valueType.

Note that the port-defined argument values are optional, depending
upon the server’s internal behavior.

[SWS_Rte_07023] d The operation parameters <param 1>, ...
<param n> are the specified ArgumentDataPrototypes of the
ClientServerOperation that is associated with the Opera-
tionInvokedEvent. The operation parameters shall be ordered
according to the ClientServerOperation’s ordered list of the Ar-
gumentDataPrototypes. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072)

[SWS_Rte_07024] d If the ServerArgumentImplPolicy is set to
useArgumentType the data type of the <param> is derived from
the ArgumentDataPrototype’s ImplementationDataType. c
(SRS_Rte_00029, SRS_Rte_00079, SRS_Rte_00072)

In case of [SWS_Rte_07024] the RunnableEntitys parameter are
equally typed as the parameter for the Rte_Call API described in
section 5.2.6.5

[SWS_Rte_08569] d The optional IN parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

The IN parameter transformerError contains the transformer er-
ror which occured during execution of the transformer chain. See
chapter 4.10.5. Because the runnable can only be triggered if the
error is no hard error, the error given here is always a soft error.

637 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Hard errors are notified via TransformerHardErrorEvents.

[SWS_Rte_07026] d The RTE-Generator shall reject configura-
tions violating [constr_1297]. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072, SRS_Rte_00018)

[SWS_Rte_07027] d If the ServerArgumentImplPolicy is set
to useVoid the data type of the <param> is set to void *
for any kind of data type. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072)

It is considered an invalid configuration if ServerArgumentIm-
plPolicy uses void in case of primitive IN arguments. See [con-
str_1286] in Software Component Template specification.

[SWS_Rte_08800] d The RTE-Generator shall reject configurations
violating [constr_1286]. c(SRS_Rte_00079, SRS_Rte_00018)

Return Value: If the AUTOSAR interface description of the client server commu-
nication lists possible error codes, these are returned by the func-
tion using the return type Std_ReturnType. If no error codes
are defined for this interface, the return type shall be void (see
[SWS_Rte_01130]).

This means that even if a runnable entity implementing a server "only"
returns E_OK, application errors have to be defined. Else the return
types do not match.

5.7.5.7 DataReceivedEvent

Purpose: A runnable entity triggered by the RTE to receive and process a signal
received on a sender-receiver interface.

Signature: [SWS_Rte_01135] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00028, SRS_Rte_00131,
SRS_Rte_00107)

Notes: The data or event is not passed as an additional parameter. Instead,
the previously described reception API should be used to access the
data/event. This approach permits the same signature for runnables
that are triggered by time (TimingEvent) or data reception.

Caution: For intra-ECU communication, the DataReceivedEvent
is fired after each completed write operation to the shared data. In
case of implicit access, write operation is considered to be completed
when the runnable ends. While for inter-ECU communication, the
DataReceivedEvent is fired by the RTE after a callback from COM

638 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

or LdCom due to data reception. Over a physical network, ‘data’ is
commonly transmitted periodically and hence not only will the latency
and jitter of DataReceivedEvents vary depending on whether a
configuration uses intra or inter-ECU communication, but also the
number and frequency of these RTEEvents may change significantly.
This means that a TimingEvent should be used to periodically ac-
tivation of a runnable rather than relying on the periodic transmission
of data.

5.7.5.8 DataSendCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications.

Signature: [SWS_Rte_01137] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

Notes: The runnable entity triggered by a DataSendCompletedEvent
RTEEvent should use the Rte_Feedback API to actually receive
the status of the acknowledgment.

5.7.5.9 ModeSwitchedAckEvent

Purpose: A runnable entity triggered by the RTE to receive and process mode
switched acknowledgment notifications.

Signature: [SWS_Rte_02758] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

Notes: The runnable entity triggered by an ModeSwitchedAckEvent
should use the Rte_SwitchAck API to actually receive the status
of the acknowledgment.

5.7.5.10 SwcModeManagerErrorEvent

Purpose: A runnable entity triggered by the RTE to react on errors occurring
during mode handling.

Signature: [SWS_Rte_06771] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

639 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Notes: –

5.7.5.11 ExternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE at the occurrence of an exter-
nal event.

Signature: [SWS_Rte_07207] d
void <name>([IN Rte_Instance <instance>],

[IN Rte_TransformerError transformerError])

c(SRS_Rte_00162, SRS_Rte_00072)

[SWS_Rte_05301] d The optional IN parameter transformer-
Error of the API shall be generated if the PortPrototype of
port <p> is referenced by a PortAPIOption which has the at-
tribute errorHandling set to transformerErrorHandling. c
(SRS_Rte_00249)

The IN parameter transformerError contains the transformer er-
ror which occurred during execution of the transformer chain. See
chapter 4.10.5. Because the RunnableEntity can only be trig-
gered if the error is no hard error, the error given here is always a soft
error. Hard errors are notified via TransformerHardErrorEvents.

Notes: –

5.7.5.12 InternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE by an inter runnable trigger.

Signature: [SWS_Rte_07208] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00163, SRS_Rte_00072)

Notes: –

5.7.5.13 DataWriteCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications for implicit communication.

Signature: [SWS_Rte_07379] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00185)

640 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Notes: The runnable entity triggered by a DataWriteCompletedEvent
RTEEvent should use the Rte_IFeedback API to actually receive
the status of the acknowledgment.

5.7.5.14 InitEvent

Purpose: A runnable entity triggered by the RTE for initialization.

Signature: [SWS_Rte_06748] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00240)

Notes: The runnable entity triggered by an InitEvent RTEEvent is sup-
posed to be used for initialization purposes, i.e. for starting and
restarting a partition. It is not guaranteed that all RunnableEn-
titys referenced by this InitEvent are executed before the ’regu-
lar’ RunnableEntitys are executed for the first time.

5.7.5.15 TransformerErrorEvent

Purpose: A RunnableEntity triggered by the RTE because a transforma-
tion error occurred during the transformation of a server runnable’s
arguments or during the transformation of an external trigger event
(external trigger sink).

Signature: [SWS_Rte_08791] d
void <name>([IN Rte_Instance <instance>],

IN Rte_TransformerError transformerError)

c(SRS_Rte_00072, SRS_Rte_00249)

Notes: The RunnableEntity triggered by a TransformerHardEr-
rorEvent RTEEvent is supposed to be used for reaction on a hard
transformer error on the server side of a client/server comumunica-
tion or in the external trigger sink. The IN parameter transformer-
Error contains the transformer error which occured during execution
of the transformer chain. See chapter 4.10.5.

5.7.6 Reentrancy

A runnable entity is declared within a software-component type. The RTE ensures
that concurrent activation of same instance of a runnable entity is only allowed if the
runnables attribute "canBeInvokedConcurrently" is set to TRUE (see Section 4.2.6).

641 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

When a software-component is multiple instantiated each separate instance has its
own instance of the runnable entities in the software-component. Whilst instances of a
software-component are independent, the runnable entities instances share the same
code ([SWS_Rte_03015]).

Example 5.31

Consider a component c1 with runnable entity re1 and entry point ep that is instanti-
ated twice on the same ECU.

The two instances of c1 each has a separate instance of re1. Software-component
instances are scheduled independently and therefore each instance of re1 could be
concurrently executing ep.

The potential for concurrent execution of runnable entities when multiple instances of
a software-component are created means that each entry point should be reentrant.

5.8 RTE Lifecycle API Reference

This section documents the API functions used to start and stop the RTE. RTE Lifecy-
cle API functions are not invoked from AUTOSAR software-components – instead they
are invoked from other basic software module(s).

5.8.1 Rte_Start

The API Rte_Start initializes the RTE itself.

Service name: Rte_Start
Syntax: Std_ReturnType Rte_Start(

void
)

Service ID[hex]: 0x70
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType RTE_E_OK: No error occurred.

RTE_E_LIMIT: An internal limit has been exceeded.
The allocation of a required resource has failed.

Description: Rte_Start is intended to allocate and initialize system resources and
communication resources used by the RTE.

Available via: Rte.h

Table 5.6: Rte_Start

642 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.1.1 Signature

[SWS_Rte_02569] d
Std_ReturnType Rte_Start(void)

c(SRS_BSW_00310, SRS_Rte_00116)

5.8.1.2 Existence

[SWS_Rte_01309] d The Rte_Start API is always created. c(SRS_Rte_00051)

5.8.1.3 Description

[SWS_Rte_CONSTR_09035] Rte_Start shall be called only once d Rte_Start
shall be called only once by the EcuStateManager from trusted OS context on a core
after the basic software modules required by RTE are initialized. c()

These modules include:

• OS

• COM

• memory services

The Rte_Start API shall not be invoked from AUTOSAR software components.

[SWS_Rte_CONSTR_09036] Rte_Start API may only be used after call of
SchM_Init d The Rte_Start API may only be used after the Basic Software Sched-
uler is initialized (after termination of the SchM_Init). c()

[SWS_Rte_CONSTR_09037] Rte_Start API shall be called on every core d
The Rte_Start API shall be called on every core that hosts AUTOSAR software-
components of the ECU. c()

[SWS_Rte_02585] d Rte_Start shall return within finite execution time – it must not
enter an infinite loop. c(SRS_Rte_00116)

Rte_Start may be implemented as a function or a macro.

5.8.1.4 Return Value

If the allocation of a resource fails, Rte_Start shall return with an error.

• [SWS_Rte_01261] d RTE_E_OK – No error occurred. c(SRS_Rte_00094)

• [SWS_Rte_01262] d RTE_E_LIMIT – An internal limit has been exceeded. The
allocation of a required resource has failed. c(SRS_Rte_00094)

643 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.1.5 Notes

Rte_Start is declared in the lifecycle header file Rte_Main.h. The initialization of
AUTOSAR software-components takes place after the termination of Rte_Start and
is triggered by a mode change event on entering run state.

5.8.2 Rte_Stop

The API Rte_Stop finalizes the RTE itself.

Service name: Rte_Stop
Syntax: Std_ReturnType Rte_Stop(

void
)

Service ID[hex]: 0x71
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType RTE_E_OK: No error occurred.

RTE_E_LIMIT: A resource could not be released.
Description: Rte_Stop is used to finalize the RTE on the core it is called. This service

releases all system and communication resources allocated by the RTE
on that core.

Available via: Rte.h

Table 5.7: Rte_Stop

5.8.2.1 Signature

[SWS_Rte_02570] d
Std_ReturnType Rte_Stop(void)

c(SRS_Rte_00116)

5.8.2.2 Existence

[SWS_Rte_01310] d The Rte_Stop API is always created. c(SRS_Rte_00051)

5.8.2.3 Description

[SWS_Rte_CONSTR_09038] Rte_Stop shall be called before BSW shutdown d
Rte_Stop shall be called by the EcuStateManager before the basic software modules
required by RTE are shut down. c()

644 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

These modules include:

• OS

• COM

• memory services

Rte_Stop shall be called from trusted context and not by an AUTOSAR software com-
ponent.

[SWS_Rte_02584] d Rte_Stop shall return within finite execution time. c
(SRS_Rte_00116)

Rte_Stop may be implemented as a function or a macro.

5.8.2.4 Return Value

• [SWS_Rte_01259] d RTE_E_OK – No error occurred. c(SRS_Rte_00094)

• [SWS_Rte_01260] d RTE_E_LIMIT – a resource could not be released. c
(SRS_Rte_00094)

5.8.2.5 Notes

Rte_Stop is declared in the lifecycle header file Rte_Main.h.

5.8.3 Rte_PartitionTerminated

The API Rte_PartitionTerminated indicates to the RTE that a partition is going
to be terminated, and the communication with the Partition shall be ignored.

Service name: Rte_PartitionTerminated_<PID>
Syntax: void Rte_PartitionTerminated_<PID>(

void
)

Service ID[hex]: 0x72
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_PartitionTerminated is intended to notify the RTE that a given parti-

tion is terminated or is being restarted.
Available via: Rte.h

Table 5.8: Rte_PartitionTerminated

645 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.3.1 Signature

[SWS_Rte_07330] d
void Rte_PartitionTerminated_<PID>(void)

c(SRS_Rte_00223)

Where <PID> is the name of the EcucPartition according to the ECU Configuration
Description [5].

5.8.3.2 Existence

[SWS_Rte_07331] d An Rte_PartitionTerminated API shall be created for every
Partition. c(SRS_Rte_00223)

5.8.3.3 Description

[SWS_Rte_CONSTR_09039] Rte_PartitionTerminated shall be called only
once d Rte_PartitionTerminated shall be called only once by the Protection-
Hook. c()

Rte_PartitionTerminated may be implemented as a function or a macro.

[SWS_Rte_07334] d The treatments in Rte_PartitionTerminated shall be re-
stricted to the ones allowed in the context of a ProtectionHook. c(SRS_Rte_00223)

Since Rte_PartitionTerminated is called from the ProtectionHook context, it
should be as fast as possible. Moreover, it cannot be assumed any more that par-
tition local data including RTE data is consistent. Therefore, actions should be limited
to setting a flag. Actual cleanup needs to be deferred to another task.

The notification provided by Rte_PartitionTerminated can be used later by the
RTE to immediately return an error status when SW-Cs of other partitions tries to com-
municate with the stopped partition. See [SWS_Rte_02710] and [SWS_Rte_02709].

[SWS_Rte_07335] d Terminating an already terminated Partition shall be ignored. c
(SRS_Rte_00223)

5.8.3.4 Return Value

None.

5.8.3.5 Notes

Rte_PartitionTerminated is declared in the lifecycle header file Rte_Main.h.

646 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.4 Rte_PartitionRestarting

The API Rte_PartitionRestarting indicates to the RTE that a Partition is
going to be restarted and that the communication with the Partition shall be ignored.

Service name: Rte_PartitionRestarting_<PID>
Syntax: void Rte_PartitionRestarting_<PID>(

void
)

Service ID[hex]: 0x73
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_PartitionRestarting is intended to notify the RTE that a given parti-

tion is being restarted.
As Rte_PartitionTerminated, Rte_PartitionRestarting indicates that the
communication with the partition shall be ignored, but in case of
Rte_PartitionRestarting, the partition may be restarted later in the ECU
lifecycle.

Available via: Rte.h

Table 5.9: Rte_PartitionRestarting

5.8.4.1 Signature

[SWS_Rte_07620] d
void Rte_PartitionRestarting_<PID>(void)

Where <PID> is the name of the EcucPartition according to the ECU Configuration
Description [5]. c(SRS_Rte_00223)

5.8.4.2 Existence

[SWS_Rte_07619] d An Rte_PartitionRestarting API shall be created for any
Partition which can be restarted (i.e. a Partition whose PartitionCanBeR-
estarted parameter is enabled). c(SRS_Rte_00223)

5.8.4.3 Description

[SWS_Rte_CONSTR_09040] Rte_PartitionRestarting shall be called only
onc d Rte_PartitionRestarting shall be called only once by the ProtectionHook.
c()

Rte_PartitionRestarting may be implemented as a function or a macro.

647 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07617] d The treatments in Rte_PartitionRestarting shall be re-
stricted to the ones allowed in the context of a ProtectionHook. c(SRS_Rte_00223)

Since Rte_PartitionRestarting is called from the ProtectionHook context, it
should be as fast as possible. It should be limited to setting a flag. Actual cleanup
should be deferred to another task.

[SWS_Rte_07622] d Restarting an already terminated Partition or restarting a
Partition during an ongoing restart shall be ignored. c(SRS_Rte_00223)

5.8.4.4 Return Value

None.

5.8.4.5 Notes

Rte_PartitionRestarting is declared in the lifecycle header file Rte_Main.h.

5.8.5 Rte_RestartPartition

The API Rte_RestartPartition initializes the RTE resources allocated for a parti-
tion.

Service name: Rte_RestartPartition_<PID>
Syntax: Std_ReturnType Rte_RestartPartition_<PID>(

void
)

Service ID[hex]: 0x74
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType RTE_E_OK: No error occurred.

RTE_E_LIMIT: An internal limit has been exceeded.
The allocation of a required resource has failed.

Description: Rte_RestartPartition is intended to notify the RTE that a given partition
will be restarted.

Available via: Rte.h

Table 5.10: Rte_RestartPartition

5.8.5.1 Signature

[SWS_Rte_07188] d

648 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Std_ReturnType Rte_RestartPartition_<PID>(void)

Where <PID> is the name of the EcucPartition according to the ECU Configuration
Description [5]. c(SRS_Rte_00224)

5.8.5.2 Existence

[SWS_Rte_07336] d An Rte_RestartPartition API shall be created for any Par-
tition which can be restarted (i.e. a Partition whose PartitionCanBeR-
estarted parameter is enabled). c(SRS_Rte_00224)

5.8.5.3 Description

[SWS_Rte_CONSTR_09041] Rte_RestartPartition shall be called from
RestartTask d Rte_RestartPartition shall be called only in the context of the
RestartTask of the given partition. c()

[SWS_Rte_07338] d Rte_RestartPartition shall return within finite execution
time – it must not enter an infinite loop. c(SRS_Rte_00224)

Rte_RestartPartition may be implemented as a function or a macro.

[SWS_Rte_07339] d The Rte_RestartPartition shall restore an initial RTE en-
vironment for the partition and re-activate communication with this partition. c
(SRS_Rte_00224)

This includes:

• signal initial values,

• modes,

• queued events,

• sequence counters.

[SWS_Rte_07340] d Rte_RestartPartition shall be ignored if the given
partition was not stopped before (with Rte_PartitionTerminated or
Rte_PartitionRestarting). c(SRS_Rte_00224)

5.8.5.4 Return Value

If the allocation of a resource fails, Rte_RestartPartition shall return with an
error.

• [SWS_Rte_07341] d RTE_E_OK – No error occurred. c(SRS_Rte_00224)

649 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_07342] d RTE_E_LIMIT – An internal limit has been exceeded. The
allocation of a required resource has failed. c(SRS_Rte_00224)

5.8.5.5 Notes

Rte_RestartPartition is declared in the lifecycle header file Rte_Main.h.

5.8.6 Rte_Init

The API Rte_Init schedules RunnableEntitys for initialization purpose.

Service name: Rte_Init_<InitContainer>
Syntax: void Rte_Init_<InitContainer>(

void
)

Service ID[hex]: 0x75
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Init is intended schedule RunnableEntitys for initialization purpose

which are mapped to the related RteInitializationRunnableBatch con-
tainer.

Available via: Rte.h

Table 5.11: Rte_Init

5.8.6.1 Signature

[SWS_Rte_06749] d
void Rte_Init_<InitContainer>(void)

Where <InitContainer> is the short name of the RteInitialization-
RunnableBatch container. c(SRS_Rte_00240)

5.8.6.2 Existence

[SWS_Rte_06750] d An Rte_Init API shall be created for each RteInitializa-
tionRunnableBatch container. c(SRS_Rte_00240)

650 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.6.3 Description

[SWS_Rte_06751] d An Rte_Init API shall invoke the RunnableEntitys which
are associated with an RTEEvent mapped to the related RteInitialization-
RunnableBatch container in the order defined by the RtePositionInTask param-
eters. c(SRS_Rte_00240)

[SWS_Rte_06752] d Rte_Init shall return within finite execution time – it must not
enter an infinite loop. c(SRS_Rte_00240)

[SWS_Rte_06753] d Rte_Init shall be implemented as a function. c
(SRS_Rte_00240)

[SWS_Rte_CONSTR_09060] Rte_Init API may only be used after call of
Rte_Start d The Rte_Init API may only be used after the RTE is initialized (af-
ter termination of the Rte_Start). c()

5.8.6.4 Return Value

none

5.8.6.5 Notes

Rte_Init is declared in the lifecycle header file Rte_Main.h.

5.8.7 Rte_StartTiming

The API Rte_StartTiming starts the triggering of recurrent events.

Service name: Rte_StartTiming
Syntax: void Rte_StartTiming(

void
)

Service ID[hex]: 0x76
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_StartTiming API is intended to release the activation of RunnableEn-

titys triggered by TimingEvents and BackgroundEvents after the last call
of a Rte_Init function.

Available via: Rte.h

Table 5.12: Rte_StartTiming

651 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.8.7.1 Signature

[SWS_Rte_06754] d
void Rte_StartTiming(void)

c(SRS_Rte_00240)

5.8.7.2 Existence

[SWS_Rte_06755] d An Rte_StartTiming API shall be created if any Rte_Init
API is created. c(SRS_Rte_00240)

5.8.7.3 Description

[SWS_Rte_06756] d Rte_StartTiming API shall release the activation of
RunnableEntitys triggered by TimingEvents and BackgroundEvents. c
(SRS_Rte_00240)

See as well [SWS_Rte_06759] and [SWS_Rte_06760].

[SWS_Rte_06757] d Rte_StartTiming shall return within finite execution time – it
must not enter an infinite loop. c(SRS_Rte_00240)

[SWS_Rte_06758] d Rte_StartTiming shall be implemented as a function. c
(SRS_Rte_00240)

[SWS_Rte_CONSTR_09061] Rte_StartTiming API may only be used after call
of Rte_Start d The Rte_StartTiming API may only be used after the RTE is
initialized (after termination of the Rte_Start). c()

5.8.7.4 Return Value

none

5.8.7.5 Notes

Rte_StartTiming is declared in the lifecycle header file Rte_Main.h.

652 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9 RTE Call-backs Reference

This section documents the call-backs that are generated by the RTE that must be
invoked by other components, such as the communication service, and therefore must
have a well-defined name and semantics.

[SWS_Rte_01165] d A call-back implementation created by the RTE generator is not
permitted to block. c(SRS_Rte_00022)

Requirement [SWS_Rte_01165] serves to constrain RTE implementations so that all
implementations can work with all basic software.

5.9.1 RTE-COM Message Naming Conventions

The COM signals used for communication are defined in the input information provided
by Com.

[SWS_Rte_03007] d The RTE shall initiate an inter-ECU transmission using the COM
API with the handle id of the corresponding COM signal for primitive data element
SenderReceiverToSignalMapping. c(SRS_Rte_00019)

[SWS_Rte_03008] d The RTE shall initiate an inter-ECU transmission using the COM
API with the handle id of the corresponding COM signal group for composite data
elements or operation arguments SenderReceiverToSignalGroupMapping. c
(SRS_Rte_00019)

5.9.2 Communication Service Call-backs

Purpose: Implement the call-back functions that AUTOSAR COM / LdCom in-
vokes as a result of inter-ECU communication, where:

• A data item/event is ready for reception by a receiver.

• A transmission acknowledgment shall be routed to a sender.

• An operation shall be invoked by a server.

• The result of an operation is ready for reading by a client.

Signature: [SWS_Rte_03000] d

void <CallbackRoutineName> (void);

c(SRS_Rte_00019)

Where <CallbackRoutineName> is the name of the call-back func-
tion.

Description: Prototypes for the call-back <CallbackRoutineName> provided by
AUTOSAR COM / LdCom.

653 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Return Value: No return value : void

In the following sections, the naming convention of <CallBackRoutineName> are
defined:

5.9.2.1 Call-backs for communication over AUTOSAR COM

5.9.2.1.1 Rte_COMCbk_<sn>

Service name: Rte_COMCbk_<sn>
Syntax: void Rte_COMCbk_<sn>(

void
)

Service ID[hex]: 0x9f
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the signal of the primitive data item/

event is ready for reception.
Available via: Rte_Com.h

Table 5.13: Rte_COMCbk_sn

[SWS_Rte_03001] d

void Rte_COMCbk_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019)

This callback function indicates that the signal of the primitive data item/event is ready
for reception by a receiver.

Configured in Com: ComNotification [ECUC_Com_00498] as part of ComSignal

5.9.2.1.2 Rte_COMCbkTAck_<sn>

Service name: Rte_COMCbkTAck_<sn>
Syntax: void Rte_COMCbkTAck_<sn>(

void
)

Service ID[hex]: 0x90
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None

654 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: This callback function indicates that the signal of the primitive data item/
event is already handed over by COM to the PDU router.

Available via: Rte_Com.h

Table 5.14: Rte_COMCbkTAck_sn

[SWS_Rte_03002] d

void Rte_COMCbkTAck_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019, SRS_Rte_00122)

“TAck” is literal text indicating transmission acknowledgment. This callback function is
used to route a transmission acknowledgment of a primitve data item/event to a sender.

Configured in Com: ComNotification [ECUC_Com_00498] as part of ComSignal

5.9.2.1.3 Rte_COMCbkTErr_<sn>

Service name: Rte_COMCbkTErr_<sn>
Syntax: void Rte_COMCbkTErr_<sn>(

void
)

Service ID[hex]: 0x91
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that an error occurred when the signal

of the primitive data item/event was handed over by COM to the PDU
router.

Available via: Rte_Com.h

Table 5.15: Rte_COMCbkTErr_sn

[SWS_Rte_03775] d

void Rte_COMCbkTErr_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019, SRS_Rte_00122)

“TErr” is literal text indicating transmission error. This callback function is used to route
a transmission error notification of a primitve data item/event to a sender.

Configured in Com: ComErrorNotification [ECUC_Com_00499] as part of Com-
Signal

655 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9.2.1.4 Rte_COMCbkInv_<sn>

Service name: Rte_COMCbkInv_<sn>
Syntax: void Rte_COMCbkInv_<sn>(

void
)

Service ID[hex]: 0x92
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that COM has received a signal and

parsed it as "invalid".
Available via: Rte_Com.h

Table 5.16: Rte_COMCbkInv_sn

[SWS_Rte_02612] d

void Rte_COMCbkInv_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019, SRS_Rte_00122)

“Inv” is literal text indicating signal invalidation. This callback function is used to route
a signal invalidation of a primitive data item to a receiver.

Configured in Com: ComInvalidNotification [ECUC_COM_00315] as part of
ComSignal

5.9.2.1.5 Rte_COMCbkRxTOut_<sn>

Service name: Rte_COMCbkRxTOut_<sn>
Syntax: void Rte_COMCbkRxTOut_<sn>(

void
)

Service ID[hex]: 0x93
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the aliveTimeout after the last suc-

cessful reception of the signal of the primitive data item/event has expired
(data element outdated).

Available via: Rte_Com.h

Table 5.17: Rte_COMCbkRxTOut_sn

656 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02610] d

void Rte_COMCbkRxTOut_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019, SRS_Rte_00147)

“RxTOut” is literal text indicating reception signal time out. This callback function is
used to indicate that a signal of a primitve data item is outdated and no new data is
available.

Configured in Com: ComTimeoutNotification [ECUC_Com_00552] as part of
ComSignal

5.9.2.1.6 Rte_COMCbkTxTOut_<sn>

Service name: Rte_COMCbkTxTOut_<sn>
Syntax: void Rte_COMCbkTxTOut_<sn>(

void
)

Service ID[hex]: 0x94
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the timeout of TransmissionAcknowl-

edgementRequest for sending the signal of the primitive data item/event
has expired.

Available via: Rte_Com.h

Table 5.18: Rte_COMCbkTxTOut_sn

[SWS_Rte_05084] d

void Rte_COMCbkTxTOut_<sn>(void)

where <sn> is the name of the COM signal. c(SRS_Rte_00019, SRS_Rte_00122)

“TxTOut” is literal text indicating transmission failure and time out. This callback func-
tion is used to indicate that transmission has failed and timed out for a primitve data
item.

Configured in Com: ComTimeoutNotification [ECUC_Com_00552] as part of
ComSignal

5.9.2.1.7 Rte_COMCbk_<sg>

Service name: Rte_COMCbk_<sg>

657 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Syntax: void Rte_COMCbk_<sg>(
void
)

Service ID[hex]: 0x95
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the signals of the composite data

item/event or the arguments of an operation are ready for reception.
Available via: Rte_Com.h

Table 5.19: Rte_COMCbk_sg

[SWS_Rte_03004] d

void Rte_COMCbk_<sg>(void)

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019)

This callback function indicates that the signals of the composite data item/event or the
arguments of an operation are ready for reception.

Configured in Com: ComNotification [ECUC_Com_00498] as part of ComSig-
nalGroup

5.9.2.1.8 Rte_COMCbkTAck_<sg>

Service name: Rte_COMCbkTAck_<sg>
Syntax: void Rte_COMCbkTAck_<sg>(

void
)

Service ID[hex]: 0x96
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the signals of the composite data

item/event is already handed over by COM to the PDU router.
Available via: Rte_Com.h

Table 5.20: Rte_COMCbkTAck_sg

[SWS_Rte_03005] d

void Rte_COMCbkTAck_<sg>(void)

658 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019, SRS_Rte_00122)

“TAck” is literal text indicating transmission acknowledgment. This callback function
indicates that the signals of the composite data item/event is already handed over by
COM to the PDU router.

Configured in Com: ComNotification [ECUC_Com_00498] as part of ComSig-
nalGroup

5.9.2.1.9 Rte_COMCbkTErr_<sg>

Service name: Rte_COMCbkTErr_<sg>
Syntax: void Rte_COMCbkTErr_<sg>(

void
)

Service ID[hex]: 0x97
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that an error occurred when the signal

of the composite data item/event was handed over by COM to the PDU
router.

Available via: Rte_Com.h

Table 5.21: Rte_COMCbkTErr_sg

[SWS_Rte_03776] d

void Rte_COMCbkTErr_<sg>(void)

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019, SRS_Rte_00122)

“TErr” is literal text indicating transmission error. This callback function indicates that
an error occurred when the signal of the composite data item/event was handed over
by COM to the PDU router.

Configured in Com: ComErrorNotification [ECUC_Com_00499] as part of
ComSignalGroup

5.9.2.1.10 Rte_COMCbkInv_<sg>

Service name: Rte_COMCbkInv_<sg>

659 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Syntax: void Rte_COMCbkInv_<sg>(
void
)

Service ID[hex]: 0x98
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that COM has received a signal group

and parsed it as "invalid".
Available via: Rte_Com.h

Table 5.22: Rte_COMCbkInv_sg

[SWS_Rte_05065] d

void Rte_COMCbkInv_<sg>(void)

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019, SRS_Rte_00122)

“Inv” is literal text indicating signal group invalidation. This callback function indicates
that COM has received a signal group and parsed it as “invalid”.

Configured in Com: ComInvalidNotification [ECUC_Com_00315] as part of
ComSignalGroup

5.9.2.1.11 Rte_COMCbkRxTOut_<sg>

Service name: Rte_COMCbkRxTOut_<sg>
Syntax: void Rte_COMCbkRxTOut_<sg>(

void
)

Service ID[hex]: 0x99
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the aliveTimeout after the last suc-

cessful reception of the signal group carrying the composite data item
has expired (data element outdated).

Available via: Rte_Com.h

Table 5.23: Rte_COMCbkRxTOut_sg

[SWS_Rte_02611] d

660 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

void Rte_COMCbkRxTOut_<sg>(void)

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019, SRS_Rte_00147)

“RxTOut” is literal text indicating reception signal time out. This callback function indi-
cates that the aliveTimeout after the last successful reception of the signal group
carrying the composite data item has expired (data element outdated).

Configured in Com: ComTimeoutNotification [ECUC_Com_00552] as part of
ComSignalGroup

5.9.2.1.12 Rte_COMCbkTxTOut_<sg>

Service name: Rte_COMCbkTxTOut_<sg>
Syntax: void Rte_COMCbkTxTOut_<sg>(

void
)

Service ID[hex]: 0x9a
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This callback function indicates that the timeout of TransmissionAcknowl-

edgementRequest for sending the signal group of the composite data
item/event has expired.

Available via: Rte_Com.h

Table 5.24: Rte_COMCbkTxTOut_sg

[SWS_Rte_05085] d

void Rte_COMCbkTxTOut_<sg>(void)

where <sg> is the name of the COM signal group, which contains all the signals of the
composite data item/event or an operation. c(SRS_Rte_00019, SRS_Rte_00122)

“TxTOut” is literal text indicating transmission failure and time out. This callback func-
tion indicates that the timeout of TransmissionAcknowledgementRequest for
sending the signal group of the composite data item/event has expired.

Configured in Com: ComTimeoutNotification [ECUC_Com_00552] as part of
ComSignalGroup

661 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9.2.2 Call-backs for communication over AUTOSAR LdCom

[SWS_Rte_01412] d The RTE shall import the following type from Com-
Stack_Types.h:

• BufReq_ReturnType

• PduIdType

• PduInfoType

• PduLengthType

• RetryInfoType

c(SRS_BSW_00384)

5.9.2.2.1 Rte_LdComCbkRxIndication_<sn>

Service name: Rte_LdComCbkRxIndication_<sn>
Syntax: void Rte_LdComCbkRxIndication_<sn>(

const PduInfoType* PduInfoPtr
)

Service ID[hex]: 0xA0
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): PduInfoPtr Contains the length (SduLength) of the received

PDU, a pointer to a buffer (SduDataPtr) containing
the PDU, and the MetaData related to this PDU.

Parameters (inout): None
Parameters (out): None
Return value: None
Description: Indication of a received PDU from a lower layer communication interface

module.
Available via: Rte_LdCom.h

Table 5.25: Rte_LdComCbkRxIndication_sn

[SWS_Rte_01395] d

void Rte_LdComCbkRxIndication_<sn> (
IN const PduInfoType* info

);

Where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

It is configured in LdCom:
LdComRxIndication [ECUC_LdCom_00014] as part of LdComIPdu

5.9.2.2.2 Rte_LdComCbkStartOfReception_<sn>

662 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Service name: Rte_LdComCbkStartOfReception_<sn>
Syntax: BufReq_ReturnType Rte_LdComCbkStartOfReception_<sn>(

const PduInfoType* info,
PduLengthType TpSduLength,
PduLengthType* bufferSizePtr
)

Service ID[hex]: 0xA1
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): info Pointer to a PduInfoType structure containing the

payload data (without protocol information) and pay-
load length of the first frame or single frame of a
transport protocol I-PDU reception, and the Meta-
Data related to this PDU. If neither first/single frame
data nor MetaData are available, this parameter is
set to NULL_PTR.

TpSduLength Total length of the N-SDU to be received.
Parameters (inout): None
Parameters (out): bufferSizePtr Available receive buffer in the receiving module.

This parameter will be used to compute the Block
Size (BS) in the transport protocol module.

Return value: BufReq_ReturnType BUFREQ_OK: Connection has been accepted.
bufferSizePtr indicates the available receive buffer;
reception is continued. If no buffer of the requested
size is available, a receive buffer size of 0 shall be
indicated by bufferSizePtr.
BUFREQ_E_NOT_OK: Connection has been re-
jected; reception is aborted. bufferSizePtr remains
unchanged.
BUFREQ_E_OVFL: No buffer of the required length
can be provided; reception is aborted. bufferSizePtr
remains unchanged.

Description: This function is called at the start of receiving an N-SDU. The N-SDU
might be fragmented into multiple N-PDUs (FF with one or more following
CFs) or might consist of a single N-PDU (SF). The service shall provide
the currently available maximum buffer size when invoked with TpSdu-
Length equal to 0.

Available via: Rte_LdCom.h

Table 5.26: Rte_LdComCbkStartOfReception_sn

[SWS_Rte_01396] d

BufReq_ReturnType Rte_LdComCbkStartOfReception_<sn> (
IN const PduInfoType* SduInfoPtr,
IN PduLengthType SduLength,
OUT PduLengthType* RxBufferSizePtr
)

Where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

It is configured in LdCom:
LdComRxStartOfReception [ECUC_LdCom_00015] as part of LdComIPdu

663 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01397] d The Rte_LdComCbkStartOfReception_<sn> Call back shall
return BUFREQ_OK when connection has been accepted. RxBufferSizePtr indi-
cates the available receive buffer. c(SRS_Rte_00246)

[SWS_Rte_01398] d The Rte_LdComCbkStartOfReception_<sn> Call back shall
return BUFREQ_E_NOT_OK when connection has been rejected. RxBufferSizePtr
remains unchanged. c(SRS_Rte_00246)

[SWS_Rte_01399] d The Rte_LdComCbkStartOfReception_<sn> Call back
shall return BUFREQ_E_OVFL when configured buffer size as specified via ComP-
duIdRef.PduLength is smaller than TpSduLength. c(SRS_Rte_00246)

5.9.2.2.3 Rte_LdComCbkCopyRxData_<sn>

Service name: Rte_LdComCbkCopyRxData_<sn>
Syntax: BufReq_ReturnType Rte_LdComCbkCopyRxData_<sn>(

const PduInfoType* info,
PduLengthType* bufferSizePtr
)

Service ID[hex]: 0xA2
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): info Provides the source buffer (SduDataPtr) and the

number of bytes to be copied (SduLength).
An SduLength of 0 can be used to query the current
amount of available buffer in the upper layer mod-
ule. In this case, the SduDataPtr may be a NULL_
PTR.

Parameters (inout): None
Parameters (out): bufferSizePtr Available receive buffer after data has been copied.
Return value: BufReq_ReturnType BUFREQ_OK: Data copied successfully

BUFREQ_E_NOT_OK: Data was not copied be-
cause an error occurred.

Description: This function is called to provide the received data of an I-PDU segment
(N-PDU) to the upper layer.
Each call to this function provides the next part of the I-PDU data.
The size of the remaining data is written to the position indicated by
bufferSizePtr.

Available via: Rte_LdCom.h

Table 5.27: Rte_LdComCbkCopyRxData_sn

[SWS_Rte_01400] d

BufReq_ReturnType Rte_LdComCbkCopyRxData_<sn> (
IN const PduInfoType* SduInfoPtr,
OUT PduLengthType* RxBufferSizePtr
)

Where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

664 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

It is configured in LdCom:
LdComRxCopyRxData [ECUC_LdCom_00013] as part of LdComIPdu

[SWS_Rte_01401] d The Rte_LdComCbkCopyRxData_<sn> Call back shall return
BUFREQ_OK when data has been copied to the receive buffer completely as requested.
c(SRS_Rte_00246)

[SWS_Rte_01402] d The Rte_LdComCbkCopyRxData_<sn> Call back shall re-
turn BUFREQ_E_NOT_OK when data has not been copied. Request failed. c
(SRS_Rte_00246)

5.9.2.2.4 Rte_LdComCbkTpRxIndication_<sn>

Service name: Rte_LdComCbkTpRxIndication_<sn>
Syntax: void Rte_LdComCbkTpRxIndication_<sn>(

Std_ReturnType result
)

Service ID[hex]: 0xA3
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): result Result of the reception.
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Called after an I-PDU has been received via the TP API, the result indi-

cates whether the transmission was successful or not.
Available via: Rte_LdCom.h

Table 5.28: Rte_LdComCbkTpRxIndication_sn

[SWS_Rte_01403] d

void Rte_LdComCbkTpRxIndication_<sn> (
IN Std_ReturnType Result
)

where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

It is configured in LdCom:
LdComTpRxIndication [ECUC_LdCom_00016] as part of LdComIPdu

5.9.2.2.5 Rte_LdComCbkCopyTxData_<sn>

Service name: Rte_LdComCbkCopyTxData_<sn>
Syntax: BufReq_ReturnType Rte_LdComCbkCopyTxData_<sn>(

const PduInfoType* info,
const RetryInfoType* retry,
PduLengthType* availableDataPtr
)

665 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Service ID[hex]: 0xA4
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): info Provides the destination buffer (SduDataPtr) and

the number of bytes to be copied (SduLength).
If not enough transmit data is available, no data is
copied by the upper layer module and BUFREQ_E_
BUSY is returned. The lower layer module may retry
the call.
An SduLength of 0 can be used to indicate state
changes in the retry parameter or to query the cur-
rent amount of available data in the upper layer mod-
ule. In this case, the SduDataPtr may be a NULL_
PTR.

retry Will not be handled by LdCom and its upper layer.
Parameters (inout): None
Parameters (out): availableDataPtr Indicates the remaining number of bytes that are

available in the upper layer module’s Tx buffer. avail-
ableDataPtr can be used by TP modules that sup-
port dynamic payload lengths (e.g. FrIsoTp) to de-
termine the size of the following CFs.

Return value: BufReq_ReturnType BUFREQ_OK: Data has been copied to the transmit
buffer completely as requested.
BUFREQ_E_BUSY: Request could not be fulfilled,
because the required amount of Tx data is not avail-
able. The lower layer module may retry this call later
on. No data has been copied.
BUFREQ_E_NOT_OK: Data has not been copied.
Request failed.

Description: This function is called to acquire the transmit data of an I-PDU segment
(N-PDU).
Each call to this function provides the next part of the I-PDU data unless
retry->TpDataState is TP_DATARETRY. In this case the function restarts
to copy the data beginning at the offset from the current position indicated
by retry->TxTpDataCnt. The size of the remaining data is written to the
position indicated by availableDataPtr

Available via: Rte_LdCom.h

Table 5.29: Rte_LdComCbkCopyTxData_sn

[SWS_Rte_01404] d

BufReq_ReturnType Rte_LdComCbkCopyTxData_<sn> (
IN const PduInfoType* SduInfoPtr,
IN RetryInfoType* RetryInfoPtr,
OUT PduLengthType* TxDataCntPtr
)

Where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

It is configured in LdCom:
LdComTxCopyTxData [ECUC_LdCom_00018] as part of LdComIPdu

666 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01405] d The Rte_LdComCbkCopyTxData_<sn> Call back shall return
BUFREQ_OK when data has been copied to the receive buffer completely as requested.
c(SRS_Rte_00246)

[SWS_Rte_01406] d The Rte_LdComCbkCopyTxData_<sn> Call back shall return
BUFREQ_E_NOT_OK when data has not been copied to the receive buffer completely
as requested. c(SRS_Rte_00246)

Possible Request failure are:

• in case the provided I-PDU ID is wrong

• in case the corresponding I-PDU is stopped

• in case the RetryInfoPtr->TpDataState is TP_DATARETRY and the offset
RetryInfoPtr->TxTpDataCnt exceeds the current position

5.9.2.2.6 Rte_LdComCbkTpTxConfirmation_<sn>

Service name: Rte_LdComCbkTpTxConfirmation_<sn>
Syntax: void Rte_LdComCbkTpTxConfirmation_<sn>(

Std_ReturnType result
)

Service ID[hex]: 0xA5
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): result E_OK - transmission successful

E_NOT_OK - transmission not successful
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This function is called after a Signal has been transmitted via the TP-API

on its network.
Available via: Rte_LdCom.h

Table 5.30: Rte_LdComCbkTpTxConfirmation_sn

[SWS_Rte_01407] d

void Rte_LdComCbkTpTxConfirmation_<sn> (
IN Std_ReturnType Result
)

where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246, SRS_Com_02044)

It is configured in LdCom:
LdComTpTxConfirmation [ECUC_LdCom_00017] as part of LdComIPdu

5.9.2.2.7 Rte_LdComCbkTriggerTransmit_<sn>

667 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Service name: Rte_LdComCbkTriggerTransmit_<sn>
Syntax: Std_ReturnType Rte_LdComCbkTriggerTransmit_<sn>(

PduInfoType* PduInfoPtr
)

Service ID[hex]: 0xA6
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): None
Parameters (inout): PduInfoPtr Contains a pointer to a buffer (SduDataPtr) to where

the SDU data shall be copied, and the available
buffer size in SduLengh.
On return, the service will indicate the length of the
copied SDU data in SduLength.

Parameters (out): None
Return value: Std_ReturnType E_OK: SDU has been copied and SduLength indi-

cates the number of copied bytes.
E_NOT_OK: No SDU data has been copied. PduIn-
foPtr must not be used since it may contain a NULL
pointer or point to invalid data.

Description: Within this API, the upper layer module (called module) shall check
whether the available data fits into the buffer size reported by PduInfoPtr-
>SduLength.
If it fits, it shall copy its data into the buffer provided by PduInfoPtr-
>SduDataPtr and update the length of the actual copied data in
PduInfoPtr->SduLength.
If not, it returns E_NOT_OK without changing PduInfoPtr.

Available via: Rte_LdCom.h

Table 5.31: Rte_LdComCbkTriggerTransmit_sn

[SWS_Rte_01408] d

Std_ReturnType Rte_LdComCbkTriggerTransmit_<sn> (
PduInfoType* PduInfoPtr
)

where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246)

It is configured in LdCom:
LdComTxCopyTxData [ECUC_LdCom_00018] as part of LdComIPdu

[SWS_Rte_01409] d The Rte_LdComCbkTriggerTransmit_<sn> Call back shall
return E_OK when SDU has been copied. In this case PduInfoPtr->SduLength
shall indicate the number of copied bytes. c(SRS_Rte_00246)

[SWS_Rte_01410] d The Rte_LdComCbkTriggerTransmit_<sn> Call back shall
return E_NOT_OK when No SDU data has been copied. c(SRS_Rte_00246)

In case of failure, PduInfoPtr must not be used since it may contain a NULL pointer
or point to invalid data.

668 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9.2.2.8 Rte_LdComCbkTxConfirmation_<sn>

Service name: Rte_LdComCbkTxConfirmation_<sn>
Syntax: void Rte_LdComCbkTxConfirmation_<sn>(

Std_ReturnType result
)

Service ID[hex]: 0xA7
Sync/Async: Synchronous
Reentrancy: Non Reentrant for same sn, otherwise Reentrant
Parameters (in): result E_OK: The PDU was transmitted.

E_NOT_OK: Transmission of the PDU failed.
Parameters (inout): None
Parameters (out): None
Return value: None
Description: The lower layer communication interface module confirms the transmis-

sion of a PDU, or the failure to transmit a PDU.
Available via: Rte_LdCom.h

Table 5.32: Rte_LdComCbkTxConfirmation_sn

[SWS_Rte_01411] d

void Rte_LdComCbkTxConfirmation_<sn> (
Std_ReturnType result
)

where <sn> is a LdCom signal/I-PDU name. c(SRS_Rte_00246, SRS_Com_02044)

It is configured in LdCom:
LdComTxConfirmation [ECUC_LdCom_00021] as part of LdComIPdu

5.9.3 NVM Service Call-backs

5.9.3.1 Rte_SetMirror

Service name: Rte_SetMirror__<d>
Syntax: Std_ReturnType Rte_SetMirror__<d>(

const void* NVMBuffer
)

Service ID[hex]: 0x9b
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): NVMBuffer source buffer pointer
Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType E_OK: the copy is successful.

E_NOT_OK: the copy could not be performed.
Description: The Rte_SetMirror API copies the values of the VariableDataPrototypes

contained in a NvBlockDescriptor from a NVM internal buffer to their lo-
cations in the RTE.

Available via: <application.h> or Rte_<Mip>.h

669 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Table 5.33: Rte_SetMirror

Rte_SetMirror warranties the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when the associated NVM block is read and
copied to the VariableDataPrototypes storage locations.

[SWS_Rte_07310] d
Std_ReturnType
Rte_SetMirror__<d> (const void *NVMBuffer)

where is the SwComponentPrototype’s name of the NvBlockSwComponent-
Type and <d> is the NvBlockDescriptor name. c(SRS_Rte_00178)

[SWS_Rte_07311] d An Rte_SetMirror API shall be created for each instance of a
NvBlockDescriptor. c(SRS_Rte_00178)

[SWS_Rte_07312] d The Rte_SetMirror API shall copy the specified buffer to
the NvBlockDescriptor’s ramBlock, according to the NvBlockDescriptor’s
NvBlockDataMapping. c(SRS_Rte_00177)

The RTE is responsible for ensuring the data consistency, see section 4.2.5 In partic-
ular for the NvBlockDescriptor, the Sender-Receiver ports, the Rte_SetMirror,
and Rte_GetMirror may access concurrently the same VariableDataProto-
types.

[SWS_Rte_07319] d The Rte_SetMirror API shall be callable before the Rte is
started (with Rte_Start), and can rely on a running OS. c(SRS_Rte_00178)

The NVM module uses the return value of the Rte_SetMirror API to check if the
copy was successful. In case of failure, the NVM may retry later.

[SWS_Rte_07602] d The Rte_SetMirror API shall return E_OK if the copy is suc-
cessful. c(SRS_Rte_00178)

[SWS_Rte_07613] d The Rte_SetMirror API shall return E_NOT_OK if the copy
could not be performed. c(SRS_Rte_00178)

The NVM shall be configured to use this function when ReadBlock requests are pro-
cessed (see NvmWriteRamBlockFromNvm in [21]).

5.9.3.2 Rte_GetMirror

Service name: Rte_GetMirror__<d>
Syntax: Std_ReturnType Rte_GetMirror__<d>(

void* NVMBuffer
)

Service ID[hex]: 0x9c
Sync/Async: Synchronous
Reentrancy: Non Reentrant

670 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Parameters (in): None
Parameters (inout): None
Parameters (out): NVMBuffer destination buffer pointer
Return value: Std_ReturnType E_OK: the copy is successful.

E_NOT_OK: the copy could not be performed.
Description: The Rte_GetMirror API copies the values of the VariableDataPrototypes

contained in a NvBlockDescriptor to a specified NVM internal buffer.
Available via: <application.h> or Rte_<Mip>.h

Table 5.34: Rte_GetMirror

Rte_GetMirror warranties the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when their values are written to the NVRAM
device by the NVM.

[SWS_Rte_07315] d
Std_ReturnType
Rte_GetMirror__<d> (void *NVMBuffer)

where is the SwComponentPrototype’s name of the NvBlockSwComponent-
Type and <d> is the NvBlockDescriptor name. c(SRS_Rte_00178)

[SWS_Rte_07316] d An Rte_GetMirror API shall be created for each instance of a
NvBlockDescriptor. c(SRS_Rte_00178)

The Rte_GetMirror API copies the values of the VariableDataPrototypes con-
tained in a NvBlockDescriptor to a specified NVM internal buffer.

[SWS_Rte_07317] d The Rte_GetMirror API shall copy the NvBlockDescrip-
tor’s ramBlock to the specified buffer, according to the NvBlockDescriptor’s
NvBlockDataMapping. c(SRS_Rte_00177)

The RTE is responsible for ensuring the data consistency, see section 4.2.5 In partic-
ular for the NvBlockDescriptor, the Sender-Receiver ports, the Rte_SetMirror,
and Rte_GetMirror may access concurrently the same VariableDataProto-
types.

[SWS_Rte_07350] d The Rte_GetMirror API shall be callable after the Rte is
stopped (with Rte_Stop), and can rely on a running OS. c(SRS_Rte_00178)

The NVM module uses the return value of the Rte_GetMirror API to check if the
copy was successful. In case of failure, the NVM may retry later.

[SWS_Rte_07601] d The Rte_GetMirror API shall return E_OK if the copy is suc-
cessful. c(SRS_Rte_00178)

[SWS_Rte_07614] d The Rte_GetMirror API shall return E_NOT_OK if the copy
could not be performed. c(SRS_Rte_00178)

The NVM shall be configured to use this function when WriteBlock requests are pro-
cessed (see NvmWriteRamBlockToNvm in [21]).

671 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9.3.3 Rte_NvMNotifyJobFinished

Service name: Rte_NvMNotifyJobFinished__<d>
Syntax: Std_ReturnType Rte_NvMNotifyJobFinished__<d>(

NvM_BlockRequestType BlockRequest,
NvM_RequestResultType JobResult
)

Service ID[hex]: 0x9d
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): BlockRequest The request type (read, write, ... etc.) of the previ-

ous processed block job
JobResult Covers the job result of the processed NvM job.

Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType The Rte_NvMNotifyJobFinished API shall return E_

OK.
Description: The Rte_NvMNotifyJobFinished receives the notification from the NvM

when a job is finished and forward it to the SW-C.
Available via: Rte_NvM.h

Table 5.35: Rte_NvMNotifyJobFinished

Rte_NvMNotifyJobFinished forwards notifications back to the SW-Cs.

[SWS_Rte_07623] d
Std_ReturnType
Rte_NvMNotifyJobFinished__<d> (

NvM_BlockRequestType BlockRequest,
NvM_RequestResultType JobResult)

where is the SwComponentPrototype’s name of the NvBlockSwComponent-
Type and <d> is the NvBlockDescriptor name. c(SRS_Rte_00228)

[SWS_Rte_07624] d An Rte_NvMNotifyJobFinished API shall be created for each
instance of a NvBlockDescriptor. c(SRS_Rte_00228)

[SWS_Rte_07625] d The Rte_NvMNotifyJobFinished API shall call the servers
referenced by RoleBasedPortAssignment with a NvMNotifyJobFinished role
which are aggregated to the NvBlockDescriptor. c(SRS_Rte_00228)

[SWS_Rte_07671] d The Rte_NvMNotifyJobFinished API shall return without
any action when the RTE is not started, when the RTE is stopped, or when the
partition containing the NvBlockSwComponentType is terminated or restarting. c
(SRS_Rte_00228)

[SWS_Rte_07626] d The Rte_NvMNotifyJobFinished API shall return E_OK. c
(SRS_Rte_00228)

The NVM shall be configured to use this function (see NvmSingleBlockCallback
in [21]).

672 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.9.3.4 Rte_NvMNotifyInitBlock

Service name: Rte_NvMNotifyInitBlock__<d>
Syntax: Std_ReturnType Rte_NvMNotifyInitBlock__<d>(

NvM_InitBlockRequestType InitBlockRequest
)

Service ID[hex]: 0x9e
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): InitBlockRequest The request type (read, restore, ... etc.) of the cur-

rently processed block
Parameters (inout): None
Parameters (out): None
Return value: Std_ReturnType The Rte_NvMNotifyInitBlock API shall return E_OK.
Description: The Rte_NvMNotifyInitBlock API receives the notification from the NvM

when initialization of the mirror is requested.
Available via: Rte_NvM.h

Table 5.36: Rte_NvMNotifyInitBlock

Rte_NvMNotifyInitBlock indicates to the SW-Cs that initialization of the Mirror is
requested by the NvM.

[SWS_Rte_07627] d
Std_ReturnType
Rte_NvMNotifyInitBlock__<d> (NvM_InitBlockRequestType InitBlockRequest)

where is the SwComponentPrototype’s name of the NvBlockSwComponent-
Type and <d> is the NvBlockDescriptor name. c(SRS_Rte_00228)

[SWS_Rte_07628] d An Rte_NvMNotifyInitBlock API shall be created for each
instance of a NvBlockDescriptor. c(SRS_Rte_00228)

[SWS_Rte_07629] d If the NvBlockDescriptor is configured with a romBlock
initValue, this initValue shall be copied into the NvBlockDescriptor’s mir-
ror before calling any SW-C server. c(SRS_Rte_00228)

[SWS_Rte_07630] d The Rte_NvMNotifyInitBlock API shall call the servers ref-
erenced by RoleBasedPortAssignment with a NvMNotifyInitBlock role which
are aggregated to the NvBlockDescriptor. c(SRS_Rte_00228)

[SWS_Rte_07672] d The Rte_NvMNotifyInitBlock API shall return without any
action when the RTE is not started, when the RTE is stopped, or when the par-
tition containing the NvBlockSwComponentType is terminated or restarting. c
(SRS_Rte_00228)

Due to [SWS_Rte_07672], a block selected in the NVRAM Manager [21] as read during
NvM_ReadAll should not be configured with its NvmInitBlockCallback set to a
Rte_NvMNotifyInitBlock API.

[SWS_Rte_07631] d The Rte_NvMNotifyInitBlock API shall return E_OK. c
(SRS_Rte_00228)

673 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The NVM shall be configured to use this function (see InitBlockCallbackFunc-
tion in [21]).

5.10 Expected interfaces

5.10.1 Expected Interfaces from Com

The specification of the RTE requires the usage of the following COM API functions.

Com API function Context
Com_SendSignal to transmit a data element of primitive type using COM.
Com_SendDynSignal to transmit a data element of primitive dynamic type

uint8[n] using COM.
Com_ReceiveSignal to retrieve the new value of a data element of primitive

type from COM.
Com_ReceiveDynSignal to retrieve the new value of a data element of primitive

dynamic type uint[8] from COM.
Com_SendSignalGroup to initiate sending of a data element of composite type

using COM.
Com_ReceiveSignalGroup to retrieve the new value of a data element of composite

type from COM.
Com_InvalidateSignal to invalidate a data element of primitive type using COM.
Com_InvalidateSignalGroup to invalidate a whole signal group using COM.
Com_SendSignalGroupArray to initiate sending of a data element of composite type

using COM array based signal group API.
Com_ReceiveSignalGroup
Array

to retrieve the new data element of composite type using
COM array based signal group API.

Table 5.37: COM API functions used by the RTE

Please note that [SWS_Rte_02761] may require to access COM through the use of
call trusted function in a partitioned system.

5.10.2 Expected Interfaces from LdCom

The specification of the RTE requires the usage of the following LdCom API functions.

LdCom API function Context
LdCom_Transmit to transmit a data element of primitive type or uint8[n]

using LdCom API.

Table 5.38: LdCom API functions used by the RTE

Please note that [SWS_Rte_02761] may require to access LdCom through the use of
call trusted function in a partitioned system.

674 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.10.3 Expected Interfaces from Os

The usage of APIs provided by the Os module [4] is up to the implementation of a spe-
cific RTE Generator, System description and Ecu configuration. In general a RTE may
utilize any standardized API. Therefore no dedicated list of expected APIs is specified
here.

In case of multi-core the RTE may utilize the IOC-Module [4] to implement the inter-
core communication. The IOC-Module is specified to be part of the Os. Therefore no
specific APIs are listed here.

5.10.4 Expected Interfaces for Data Transformation

The specification of the RTE requires the usage of the following Transformer API func-
tions.

Transformer API function Context
<Mip>_<transformerId> API of a transformer on the sending/calling side

of the communcation. The name pattern follows
[SWS_Xfrm_00062].

<Mip>_Inv_<transformerId> API of a transformer on the receiving/called side
of the communcation. The name pattern follows
[SWS_Xfrm_00062].

Table 5.39: Transformer API functions used by the RTE

Please note that the exact names of the API depend on the EcuC of the respective
transformer module.

The EcuC of a transformer module contains a mapping from the transformer and
ISignal or ISignalGroup with the to the BswModuleEntry which implements this
specific transformer. (See [ECUC_Xfrm_00001].

This mapping can be used by the RTE to determine which BswModuleEntry shall be
executed by the RTE for a specific transformer.

5.10.5 Expected Interfaces from NvM

The specification of the RTE requires the usage of the following NvM API functions.

NvM API function Context
NvM_SetBlockProtection to set/reset the write protection for a NV block
NvM_EraseBlock to erase a NV block.
NvM_GetDataIndex to get the currently set DataIndex of a dataset NVRAM

block.
NvM_GetErrorStatus to read the block dependent error/status information.
NvM_InvalidateNvBlock to invalidate a NV block.

675 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

NvM API function Context
NvM_ReadBlock to copy the data of the NV block to its corresponding RAM

block.
NvM_ReadPRAMBlock to copy the data of the NV block to its corresponding per-

manent RAM block.
NvM_RestoreBlockDefaults to restore the default data to its corresponding RAM

block.
NvM_RestorePRAMBlock
Defaults

to restore the default data to its corresponding permanent
RAM block.

NvM_SetDataIndex to set the DataIndex of a dataset NVRAM block.
NvM_SetRamBlockStatus to set the RAM block status of an NVRAM block.
NvM_WriteBlock to copy the data of the RAM block to its corresponding

NV block.
NvM_WritePRAMBlock to copy the data of the RAM block to its corresponding

permanent RAM block.

Table 5.40: NvM API functions used by the RTE

5.11 VFB Tracing Reference

The RTE’s “VFB Tracing” functionality permits the monitoring of AUTOSAR signals as
they are sent and received across the VFB.

The RTE operates in at least two builds (some implementations may provide more than
two builds). The first, production, does not enable VFB tracing whereas the second,
debug, can be configured to trace some or all “interesting events”.

[SWS_Rte_01327] d The RTE generator shall support a build where no VFB events
are traced. c(SRS_Rte_00005)

[SWS_Rte_01328] d The RTE generator shall support a build that traces (configured)
VFB events. c(SRS_Rte_00005)

The RTE generator’s ‘trace’ build is enabled or disabled through definitions in the RTE
Configuration Header File [SWS_Rte_01322] and [SWS_Rte_01323]. Note that this
‘trace’ build is intended to enable debugging of software components and not the RTE
itself.

5.11.1 Principle of Operation

The “VFB Tracing” mechanism is designed to offer a lightweight means to monitor the
interactions of AUTOSAR software-components with the VFB.

The VFB tracing in ‘debug’ build is implemented by a series of “hook” functions that
are invoked automatically by the generated RTE when “interesting events” occur. Each
hook function corresponds to a single event.

The supported trace events are defined in Section 5.11.5. A mechanism is described in
Section 5.11.6 for configuring which of the many potential trace events are of interest.

676 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.11.2 Support for multiple clients

The “VFB Tracing” mechanism is designed to support multiple clients for each trace
event.

[SWS_Rte_05093] d For each RteVfbTraceClientPrefix configured in the RTE
Configuration input each Trace Event shall be generated using that client prefix
in the optional <client> position of the API function name. c(SRS_Rte_00005,
SRS_Rte_00008, SRS_Rte_00192)

[SWS_Rte_05091] d The RTE Generator shall provide each Trace Event without a
client prefix. c(SRS_Rte_00005, SRS_Rte_00008, SRS_Rte_00192)

The generation of Trace Events without a client prefix ensures compatibility of the trace
events with previous RTE releases.

[SWS_Rte_05092] d In case of multiple clients for one Trace Event the individual trace
functions shall be called in the following order:

1. The trace function without client prefix.

2. The trace functions with client prefix in alphabetically ascending order of the
RteVfbTraceClientPrefix (ASCII / ISO 8859-1).

c(SRS_Rte_00005, SRS_Rte_00008, SRS_Rte_00192)

The calling order specification ensures a deterministic execution of the multiple clients.

5.11.3 Support for Multiple Instantiation

[SWS_Rte_06031] d The Component Data Structure type for a multiply instantiatable
SWC type shall be introduced as a forward reference when used within the VFB Tracing
Header File. c(SRS_Rte_00005, SRS_Rte_00011)

The use of a forward reference enables a pointer to the object to be taken (since the
size of the data structure does not need to be known).

5.11.4 Contribution to the Basic Software Module Description

The RTE Generator in Generation Phase shall also update its Basic Software Module
Description ([SWS_Rte_05086]) in order to document the possibly traceable functions
and their signatures.

[SWS_Rte_05106] d For each generated hook function - including multiple trace clients
([SWS_Rte_05093]) - an entry in the Basic Software Module Description shall be
entered describing the hook function and its signature. The outgoingCallback
element of BswModuleDescription shall be used to capture the information. c
(SRS_Rte_00005, SRS_Rte_00192)

677 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.11.5 Trace Events

5.11.5.1 RTE API Trace Events

RTE API trace events occur when an AUTOSAR software-component interacts with the
generated RTE API. For implicit S/R communication, however, tracing is not supported.

5.11.5.1.1 RTE API Start

Description: RTE API Start is invoked by the RTE when an API call is made by a
component.

Signature: [SWS_Rte_01238] d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Start

([const Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API shall be the same as the corresponding
RTE API. As with the API itself, the instance handle is included if
and only if the software component’s supportsMultipleInstan-
tiation attribute is set to true and the RTE API function is per-
instance. Thus the instance handle is always omitted for SWCs
supporting single instantiation and also for per-SWC functions, such
as Rte_CData for shared ParameterDataPrototypes, for SWCs
supporting multiple instantiation. Note that Rte_Instance can-
not be used directly, as there will be pointers to multiple compo-
nents’ structure types within the single VFB Tracing header file, and
Rte_Instance would therefore be ambiguous. c(SRS_Rte_00045,
SRS_Rte_00003, SRS_Rte_00004)

5.11.5.1.2 RTE API Return

Description: RTE API Return is a trace event that is invoked by the RTE just before
an API call returns control to a component.

Signature: [SWS_Rte_01239] d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Return

([const Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

678 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API are the same as the corresponding RTE
API and contain the values of OUT and INOUT parameters on exit
from the function.

As with the API itself, the instance handle is included if and only if
the software component’s supportsMultipleInstantiation at-
tribute is set to true and the RTE API function is per-instance. Thus
the instance handle is always omitted for SWCs supporting single in-
stantiation and also for per-SWC functions, such as Rte_CData for
shared ParameterDataPrototypes, for SWCs supporting multi-
ple instantiation. Note that Rte_Instance cannot be used directly,
as there will be pointers to multiple components’ structure types
within the single VFB Tracing header file, and Rte_Instance would
therefore be ambiguous. c(SRS_Rte_00045)

5.11.5.2 BSW Scheduler API Trace Events

BSW Scheduler API trace events occur when an AUTOSAR Basic Software Module
interacts with the generated BSW Scheduler API.

5.11.5.2.1 BSW Scheduler API Start

Description: BSW Scheduler API Start is invoked by the BSW Scheduler when an
API call is made by a Basic Software Module.

Signature: [SWS_Rte_04531] d
void SchM_[<client>_]<api>Hook_<bnsp>_[<vi>_<ai>]_

<name>_Start(<param>)

Where <api> is the BSW Scheduler API Name (Send, Call, etc.),

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module and

<name> is the name provided by the API (e.g. shortName of the
VariableDataPrototype of a sender-receiver connection).

679 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The parameters of the API shall be the same as the corresponding
BSW Scheduler API.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
([SWS_Rte_07528]).

c(SRS_Rte_00003, SRS_Rte_00004, SRS_Rte_00045)

5.11.5.2.2 BSW Scheduler API Return

Description: BSW Scheduler API Return is invoked by the BSW Scheduler just
before an API call returns control to a Basic Software Module.

Signature: [SWS_Rte_04532] d
void SchM_[<client>_]<api>Hook_<bnsp>_[<vi>_<ai>]_

<name>_Return(<param>)

Where <api> is the BSW Scheduler API Name (Send, Call, etc.),

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module and

<name> is the name provided by the API (e.g. shortName of the
VariableDataPrototype of a sender-receiver connection).

The parameters of the API shall be the same as the corresponding
BSW Scheduler API.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
([SWS_Rte_07528]).

c(SRS_Rte_00003, SRS_Rte_00004, SRS_Rte_00045)

5.11.5.3 COM Trace Events

COM trace events occur when the generated RTE interacts with the AUTOSAR com-
munication service.

5.11.5.3.1 Signal Transmission

Description: A trace event indicating a transmission request of an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by

680 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the RTE just before Com_SendSignal, Com_SendDynSignal, or
Com_SendSignalGroupArray is invoked.

Signature: [SWS_Rte_01240] d
void Rte_[<client>_]ComHook_<signalName>_SigTx

(<data>)

Where <signalName> is the COM signal name and <data> is
a pointer to the signal data to be transmitted. c(SRS_Rte_00045,
SRS_Rte_00003, SRS_Rte_00004)

5.11.5.3.2 Signal Reception

Description: A trace event indicating a successful attempt to read an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by the RTE af-
ter return from Com_ReceiveSignal, Com_ReceiveDynSignal,
or Com_ReceiveSignalGroupArray.

Signature: [SWS_Rte_01241] d
void Rte_[<client>_]ComHook_<signalName>_SigRx

(<data>)

Where <signalName> is the COM signal name and <data>
is a pointer to the signal data received. c(SRS_Rte_00045,
SRS_Rte_00003, SRS_Rte_00004)

5.11.5.3.3 Signal Invalidation

Description: A trace event indicating a signal invalidation request of an Inter-ECU
signal (or of a signal in a signal group) by the RTE. Invoked by the
RTE just before Com_InvalidateSignal is invoked.

Signature: [SWS_Rte_03814] d
void Rte_[<client>_]ComHook_<signalName>_SigIv

(void)

Where <signalName> is the COM signal or a signal group name. c
(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.3.4 Signal Group Invalidation

Description: A trace event indicating a signal group invalidation request of an
Inter-ECU signal group by the RTE. Invoked by the RTE just before
Com_InvalidateSignalGroup is invoked.

Signature: [SWS_Rte_07639] d

681 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

void Rte_[<client>_]ComHook_<signalGroupName>_SigGroupIv
(void)

Where <signalGroupName> is the name of the signal group. c
(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.3.5 COM Callback

Description: A trace event indicating the start of a COM call-back. Invoked by
generated RTE code on entry to the COM call-back.

Signature: [SWS_Rte_01242] d
void Rte_[<client>_]ComHook<Event>_<signalName>

(void)

Where <signalName> is the name of the COM signal or signal
group and <Event> indicates the callback type and can take the val-
ues

• “Rx” for a reception indication callback

• “Inv” for an invalidation callback

• “RxTOut” for a reception timeout callback

• “TxTOut” for a transmission timeout callback

• “TAck” for a transmission acknowledgement callback

• “TErr” for a transmission error callback

c(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.4 OS Trace Events

OS trace events occur when the generated RTE interacts with the AUTOSAR operating
system.

5.11.5.4.1 Task Activate

Description: A trace event that is invoked by the RTE immediately prior to the
activation of a task containing runnable entities.

Signature: [SWS_Rte_01243] d
void Rte_[<client>_]Task_Activate(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

682 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.11.5.4.2 Task Dispatch

Description: A trace event that is invoked immediately an RTE generated task
(containing runnable entities) has commenced execution.

Signature: [SWS_Rte_01244] d
void Rte_[<client>_]Task_Dispatch(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

5.11.5.4.3 Task Termination

Description: A trace event invoked immediately prior to an RTE generated task
(containing runnable entities) terminating execution. The same task
termination VFB event is used whether the RTE generated task ter-
minates by either a TerminateTask or a ChainTask OS Service
call.

Signature: [SWS_Rte_06032] d
void Rte_[<client>_]Task_Terminate(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

5.11.5.4.4 Set OS Event

Description: A trace event invoked immediately before generated RTE code at-
tempts to set an OS Event.

Signature: [SWS_Rte_01245] d
void Rte_[<client>_]Task_SetEvent(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task for which the event is
being set and ev the OS event mask. c(SRS_Rte_00045)

5.11.5.4.5 Wait OS Event

Description: Invoked immediately before generated RTE code attempts to wait on
an OS Event. This trace event does not indicate that the caller has
suspended execution since the OS call may immediately return if the
event was already set.

Signature: [SWS_Rte_01246] d
void Rte_[<client>_]Task_WaitEvent(TaskType task,

EventMaskType ev)

683 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Where task is the OS’s handle for the task (that is waiting for the
event) and ev the OS event mask. c(SRS_Rte_00045)

5.11.5.4.6 Received OS Event

Description: Invoked immediately after generated RTE code returns from waiting
on an event.

Signature: [SWS_Rte_01247] d
void Rte_[<client>_]Task_WaitEventRet(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that was waiting for
an event) and ev the event mask indicating the received event. c
(SRS_Rte_00045)

Note that not all of the trace events listed above may be available for a given input
configuration. For example if a task is activated by a schedule table, it is activated by
the OS rather than by the RTE, hence no trace hook function for task activation can be
invoked by the RTE.

5.11.5.5 Runnable Entity Trace Events

Runnable entity trace events occur when a runnable entity is started.

5.11.5.5.1 Runnable Entity Invocation

Description: Event invoked by the RTE just before execution of runnable entry
starts via its entry point. This trace event occurs after any copies of
data elements are made to support the Rte_IRead API Call.

Signature: [SWS_Rte_01248] d
void Rte_[<client>_]Runnable_<cts>_<reName>_Start

([const Rte_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045)

684 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5.11.5.5.2 Runnable Entity Termination

purpose: Event invoked by the RTE immediately execution returns to RTE code
from a runnable entity. This trace event occurs before any write-back
of data elements are made to support the Rte_IWrite API Call.

Signature: [SWS_Rte_01249] d
void Rte_[<client>_]Runnable_<cts>_<reName>_Return

([const Rte_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045)

5.11.5.6 BSW Schedulable Entities Trace Events

BSW Schedulable entity trace events occur when a BSW Schedulable entity is started.

5.11.5.6.1 BSW Schedulable Entity Invocation

Description: Event invoked by the BSW Scheduler just before execution of BSW
Schedulable entry starts via its entry point.

Signature: [SWS_Rte_04533] d
void SchM_[<client>_]Schedulable_<bnsp>[_<vi>_<ai>]

_<entityName>_Start
(void)

Where

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module and

<entityName> is the name of the BSW Schedulable Entity or BSW
Callable Entity.

685 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
([SWS_Rte_07528]).

c(SRS_Rte_00045)

5.11.5.6.2 BSW Schedulable Entity Termination

Description: Event invoked by the BSW Scheduler immediately after execution re-
turns to BSW Scheduler code from a BSW Schedulable Entity.

Signature: [SWS_Rte_04534] d
void SchM_[<client>_]Schedulable_<bnsp>[_<vi>_<ai>]

_<entityName>_Return(void)

Where

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module and

<entityName> is the name of the BSW Schedulable Entity or BSW
Callable Entity.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
([SWS_Rte_07528]).

c(SRS_Rte_00045)

5.11.5.7 RPT Trace Events

RPT trace events occur when a RP global buffer is sent or received.

5.11.5.7.1 Transmission

Description: Event invoked by the RTE immediately before transmission of an RP
global buffer.

The event takes as parameter a reference to the RP global
buffer allowing the VFB trace hook to both monitor and influence
the value.

Signature: [SWS_Rte_06113] d

686 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

void Rte_[<client>_]RptHook_<cts>_<var>_Transmit
([const Rte_CDS_<cts>*], <type>* <buffer>)

Where <cts> is the component type symbol of the Atomic-
SwComponentType, <var> the identifying name of the RP global
buffer, e.g. port and data element names. <buffer> is a refer-
ence to the RP global buffer.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045, SRS_Rte_00244)

5.11.5.7.2 Reception

Description: Event invoked by the RTE immediately before the received value is
copied from the RP global buffer to the RTE API’s OUT param-
eter or return value. Placing the VFB trace hook at this position en-
sures that any conditional writes to the RP global buffer gov-
erned by RP enabler flag will have taken effect.

The event takes as parameter a reference to the RP global
buffer allowing the VFB trace hook to both monitor and influence
the value.

Signature: [SWS_Rte_06114] d
void Rte_[<client>_]RptHook_<cts>_<var>_Reception

([const Rte_CDS_<cts>*], <type>* <buffer>)

Where <cts> is the component type symbol of the Atomic-
SwComponentType, <var> the identifying name of the RP global
buffer, e.g. port and data element names. <buffer> is a refer-
ence to the RP global buffer.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045, SRS_Rte_00244)

5.11.6 Configuration

The VFB tracing mechanism works by the RTE invoking the tracepoint hook function
whenever the tracing event occurs.

687 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The support trace events and their hook function name and signature are defined in
Section 5.11.5. There are many potential trace events and it is likely that only a few will
be of interest at any one time. Therefore The RTE generator supports a mechanism to
configure which trace events are of interest.

In order to minimize RTE Overheads, trace events that are not enabled should have
no run-time effect on the generated system. This is achieved through generated code
within the VFB Tracing Header File (see Section 5.3.7) and the user supplied definitions
from the RTE Configuration Header file (see Section 5.3.8).

The definition of trace event hook functions is contained within user code. If a defini-
tion is encapsulated within a #if block, as follows, the definition will automatically be
omitted when the trace event is disabled.

1 #if !defined(<trace event>)
2 void <trace event>(<params>)
3 {
4 /* Function definition */
5 }
6 #endif

The configuration of which individual trace events are enabled is entirely under the
control of the user via the definitions included in the RTE Configuration header file.

[SWS_Rte_08000] d When RteVfbTrace is set to "true", a user shall be able to enable
any hook function in the RTE Configuration header file, regardless of whether it was
not enabled in the RTE configuration with a RteVfbTraceFunction parameter. c
(SRS_Rte_00005, SRS_Rte_00008)

5.11.7 Interaction with Object-code Software-Components

VFB tracing is only available during the “RTE Generation” or “Basic Software Scheduler
Generation” phase [SWS_Rte_01319] and therefore hook functions never appear in an
application header or in a Module Interlink Header file created during “RTE Contract”
resp. “Basic Software Scheduler Contract” phase. However, object-code software-
components and / or Basic Software Modules are compiled against the “RTE Contract”
resp. “Basic Software Scheduler Contract” phase headers and can therefore only trace
events that are inserted into the generated RTE. In particular they cannot trace events
that require invocation of hook functions to be inserted into the API mapping such as
the Rte_Pim API. However, many trace events are applicable to object-code software-
components including trace events related to the explicit communication API, to task
activity and for runnable entity start and stop.

This approach means that the external interactions of the object-code software-
component can be monitored without requiring modification of the delivered object-
code and without revealing the internal activity of the software-component. The ap-
proach is therefore considered to be consistent with the desire for IP protection that
prompts delivery of a software-component as object-code. Finally, tracing can easily

688 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

be disabled for a production build without invalidating tests of the object-code software-
component.

689 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6 Basic Software Scheduler Reference

6.1 Scope

This chapter presents the Basic Software Scheduler API from the perspective of AU-
TOSAR Basic Software Module – these API is not applicable for AUTOSAR software-
components.

Section 6.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 6.3 describes the header files used by
the Basic Software Scheduler and the files created by an RTE generator. The data
types used by the API are described in Section 6.4 and Sections 6.5 and 6.6 provide
a reference to the Basic Software Scheduler API itself including the definition of Basic
Software Module Entities.

6.2 API Principles

6.2.1 Basic Software Scheduler Namespace

The Basic Software Scheduler is interleaved with the scheduling part of the RTE. Fur-
ther on it is generated by the RTE Generator together with the RTE so Basic Software
Scheduler and RTE can not be separated if both are generated. Therefore the Basic
Software Scheduler uses the namespace of the RTE for internal symbols, variables
and functions, see [SWS_Rte_01171].

The only exceptions are defines, data types and functions belonging to the interface of
the Basic Software Scheduler. These are explicitly mentioned in the specification.

[SWS_Rte_07284] d All Basic Software Scheduler symbols (e.g. function names, data
types, etc.) belonging to the Basic Software Schedulers interfaces are required to use
the SchM_ prefix. c(SRS_BSW_00307, SRS_BSW_00300, SRS_Rte_00055)

In case of Basic Software Modules supporting multiple instances of the same Ba-
sic Software Module the name space of the BswSchedulableEntitys and the
Basic Software Scheduler API related to one instance of a Basic Software Mod-
ule is extended by the vendorId and the vendorApiInfix. See document [12]
[SRS_BSW_00347]. In the following chapters this optional part is denoted by usage of
squared brackets [_<vi>_<ai>].

[SWS_Rte_07528] d If the attribute vendorApiInfix exists for a Basic Software
Module, the RTE generator shall insert the vendorId (<vi>) and the vendorApi-
Infix (<ai>) with leading underscores where it is denoted by [_<vi>_<ai>]. c
(SRS_BSW_00347)

690 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.2.2 BSW Scheduler Name Prefix and Section Name Prefix

Since the Basic Software Module Description supports the description of BSW Module
Clusters one Basic Software Module Description can contain the content of several
BSW Modules. In order to fulfill the Standardized Interfaces with the cluster interface
different ICC3 Module abbreviations [9] inside one cluster can occur. For the Basic
Software Scheduler the Module abbreviation is used as BSW Scheduler Name Prefix
in the SchM API. Nevertheless the shortName of the BswModuleDescription can
as well describe the BSW Scheduler Name Prefix and Section Name Prefix
in order to provide one common prefix in case of ICC3 modules.

In the Meta Model Module abbreviations relevant for the Schedule Manager API are
explicitly expressed with the meta class BswSchedulerNamePrefix. Further infor-
mation can be found in document [9].

691 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Referrable

ImplementationProps

+ symbol: CIdentifier

BswSchedulerNamePrefix

SectionNamePrefix

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]
+ memClassSymbol: CIdentifier [0..1]
+ option: Identifier [0..*]
+ size: PositiveInteger [0..1]
+ symbol: Identifier [0..1]

Identifiable

ResourceConsumption

BswInternalBehavior BswModuleEntity
ARElement

AtpBlueprint
AtpBlueprintable

BswModuleEntry

Identifiable

ExclusiveArea

AtpPrototype

ModeDeclarationGroupPrototype

AtpStructureElement
Identifiable

Trigger

AtpStructureElement

InternalBehavior

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

ARElement

Implementation

BswImplementation

+ arReleaseVersion: RevisionLabelString
+ vendorApiInfix: Identifier [0..1]

«atpVariation»

+sectionNamePrefix

0..*

«atpVariation,atpSplitable»

+exclusiveArea

0..*

+resourceConsumption 1
«atpSplitable»

«atpVariation,atpSplitable»

+entity

0..*

+runsInsideExclusiveArea0..*

+executableEntity

0..*

+prefix 0..1

«atpVariation»

+managedModeGroup 0..*

«atpVariation,atpSplitable»

+schedulerNamePrefix

0..*

+schedulerNamePrefix 0..1

«atpVariation,atpSplitable»

+memorySection

0..*

+canEnterExclusiveArea 0..*

«atpVariation»

+accessedModeGroup 0..*

+behavior 1

«atpVariation»

+issuedTrigger

0..*

«atpVariation»

+calledEntry

0..*

+implementedEntry

1

Figure 6.1: BswSchedulerNamePrefix and SectionNamePrefix

In several requirements of this specification the Module Prefix is required and deter-
mined as follows:

[SWS_Rte_07593] d The BSW Scheduler Name Prefix <bsnp> of the calling
BSW module shall be derived from the BswModuleDescription shortName if no
BswSchedulerNamePrefix is defined for the BswModuleEntity using the related
Basic Software Scheduler API. c(SRS_Rte_00148, SRS_Rte_00149)

692 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07594] d The BSW Scheduler Name Prefix <bsnp> shall be the value
of the symbol attribute of the BswSchedulerNamePrefix of the BswModuleEn-
tity if a BswSchedulerNamePrefix is defined for the BswModuleEntity using
the related Basic Software Scheduler API. c(SRS_Rte_00148, SRS_Rte_00149)

Further on the Memory Mapping inside one cluster can either keep or abolish the ICC3
borders. For some cases (e.g. Entry Point Prototype) the RTE has to know the used
prefixes for the Memory Allocation Keywords as well.

In the Meta Model these prefixes are expressed with the meta class Section-
NamePrefix. Further information can be found in document [9].

[SWS_Rte_07595] d The Section Name Prefix <snp> shall be the module ab-
breviation (in uppercase letters) of the BSW module derived from the BswMod-
uleDescription’s shortName if no SectionNamePrefix is defined for the
BswModuleEntity implementing the related BswModuleEntry. c(SRS_Rte_00148,
SRS_Rte_00149)

[SWS_Rte_07596] d The Section Name Prefix <snp> shall be the symbol of the
SectionNamePrefix of the MemorySection associated to the BswModuleEn-
tity implementing the related BswModuleEntry if a SectionNamePrefix is de-
fined for the BswModuleEntity implementing the related BswModuleEntry. c
(SRS_Rte_00148, SRS_Rte_00149)

For instance the following input configuration

693 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

MEM: BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction:
BswSchedulableEntity

MemIf_SetMode:
BswCalledEntity

MEM:
BswInternalBehavior

MemIf:
BswSchedulerNamePrefix

symbol = MemIf

NvM:
BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock:
BswCalledEntity

NvM_MainFunction:
BswModuleEntry

NvM_WriteBlock:
BswModuleEntry

MemIf_SetMode:
BswModuleEntry

CODE: SwAddrMethod

sectionType = code

MEM:
BswImplementation

MEM:
ResourceConsumption

CODE_MEMIF:
MemorySection

symbol = CODE

CODE_NVM:
MemorySection

symbol = CODE

MEMIF_PART:
SectionNamePrefix

symbol = MEMIF

NVM_PART:
SectionNamePrefix

symbol = NVM

�����������	
�
��	

���������	
�
��	

�	�����������	
�
��	

�	���������	
�
��	

+executableEntity

+memorySection

+prefix

+swAddrMethod

+schedulerNamePrefix

+entity

+schedulerNamePrefix

+implementedEntry

+swAddrmethod

+schedulerNamePrefix

+swAddrMethod

+providedEntry

+executableEntity

+prefix

+resourceConsumption

+sectionNamePrefix

+behavior

+memorySection

+swAddrmethod

+entity

+implementedEntry

+swAddrMethod

+entity

+implementedEntry

+internalBehavior

+executableEntity

+providedEntry

+schedulerNamePrefix

+providedEntry

+sectionNamePrefix

+schedulerNamePrefix

Figure 6.2: Example of ICC2 cluster

would result in the generation of the Entry Point Prototype according
[SWS_Rte_07195] as:

1 #define NVM_START_SEC_CODE
2 #include "MEM_MemMap.h"
3

694 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4 FUNC(void, NVM_CODE) NvM_MainFunction (void);
5

6 #define NVM_STOP_SEC_CODE
7 #include "MEM_MemMap.h"

6.2.3 BSW Scheduler API options

[SWS_Rte_06811] d If the attribute enableTakeAddress is set to TRUE for
a providedData, requiredData, perInstanceParameter, providedMode-
Group, requiredModeGroup, releasedTrigger, requiredClientServerEn-
try, BswInternalTriggeringPoint or arTypedPerInstanceMemory the RTE
generator shall provide an API implementation of the related SchM APIs for which it is
valid to take the address of an API function at compile time. c()

In C it is valid to take the address of a function but not of a function-like macro. If the
enableTakeAddress attribute is not set or set to FALSE for a particular SchM API,
the RTE generator may provide ’C’ functions or function like macro depending from the
implementation.

6.3 Basic Software Scheduler modules

[SWS_Rte_07288] d Every file of the Basic Software Scheduler shall be named with
the prefix SchM_. c(SRS_BSW_00300)

6.3.1 Module Interlink Types Header

The Module Interlink Types Header defines specific types related to this basic software
module derived either from the input configuration or from the RTE / Basic Software
Scheduler implementation.

[SWS_Rte_07503] d The RTE generator shall create a Module Interlink Types Header
File for each BswSchedulerNamePrefix in the BswInternalBehavior of each
BswImplementation referencing such BswInternalBehavior defined in the in-
put. c(SRS_BSW_00415)

For instance an input configuration with two BswImplementations (typical with dif-
ferent API infix) referencing a BswInternalBehavior with three BswScheduler-
NamePrefixes would result in the generation of six Module Interlink Types Header
Files.

695 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.3.1.1 File Name

[SWS_Rte_07295] d The name of the Module Interlink Types Header File shall be
formed in the following way:

SchM_<bsnp>_[<vi>_<ai>]Type.h

Where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

The sub part in squared brackets [<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_BSW_00415,
SRS_BSW_00300, SRS_BSW_00347)

Example 6.1

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/

YesWeCan</BEHAVIOR-REF>
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>
</ELEMENTS>

</AR-PACKAGE>

should result in the Module Interlink Types Header SchM_Can_25_Dev0815Type.h
being generated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendor API infix is
required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same

696 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.1.2 Scope

[SWS_Rte_07297] d The Module Interlink Types Header shall be valid for both C and
C++ source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07297] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07298] d All definitions within in the Module Interlink Types Header File
shall be preceded by the following fragment:

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07299] d All definitions within the Module Interlink Types Header shall be
suffixed by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

6.3.1.3 File Contents

[SWS_Rte_07500] d The Module Interlink Types Header shall include the RTE Types
Header File. c(SRS_BSW_00415)

The name of the RTE Types Header File is defined in Section 5.3.4.

6.3.1.4 Basic Software Scheduler Modes

The Module Interlink Types Header File shall contain identifiers for the ModeDeclara-
tions and type definitions for ModeDeclarationGroups as defined in Chapter 6.4.2

6.3.2 Module Interlink Header

The Module Interlink Header defines the Basic Software Scheduler API and any asso-
ciated data structures that are required by the Basic Software Scheduler implementa-
tion. But the Module Interlink Header file is not allowed to create objects in memory.

697 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07501] d The RTE generator shall create a Module Interlink Header File for
each BswSchedulerNamePrefix in the BswInternalBehavior of each BswIm-
plementation referencing such BswInternalBehavior defined in the input.c
(SRS_BSW_00415)

[SWS_Rte_CONSTR_09059] Usage of Basic Software Scheduler API prerequi-
sites the include of the Module Interlink Header File d Each BSW module imple-
mentation shall include its Module Interlink Header File if it uses Basic Software Sched-
uler API or if it implements BswSchedulableEntitys. c()

[SWS_Rte_07502] d The Module Interlink Header File shall not contain code that cre-
ates objects in memory. c(SRS_BSW_00308)

6.3.2.1 File Name

[SWS_Rte_07504] d

The name of the Module Interlink Header File shall be formed in the following way:
1 SchM_<bsnp>[_<vi>_<ai>].h

Where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. c(SRS_BSW_00415, SRS_BSW_00300,
SRS_BSW_00347)

Example 6.2

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>

698 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/
YesWeCan</BEHAVIOR-REF>

<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>
</BSW-IMPLEMENTATION>

</ELEMENTS>
</AR-PACKAGE>

should result in the Module Interlink Header SchM_Can_25_Dev0815.h being gener-
ated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendorApiInfix
is required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same
component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.2.2 Scope

[SWS_Rte_07505] d The Module Interlink Header for a component shall contain dec-
larations relevant for that instance of a basic software module. c(SRS_BSW_00415)

Requirement [SWS_Rte_07505] means that compile time checks ensure that a Module
Interlink Header File that uses the Module Interlink Header File only accesses the
generated data types to which it has been configured. The use of data types which are
not used by the basic software module, will fail with a compiler error [SRS_Rte_00017].

6.3.2.3 File Contents

[SWS_Rte_07506] d The Module Interlink Header File shall include the Module Inter-
link Types Header File. c(SRS_BSW_00415)

The name of the Module Interlink Types Header File is defined in Section 6.3.1.

[SWS_Rte_07507] d The Module Interlink Header shall be valid for both C and C++

source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07507] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07508] d All definitions within in the Module Interlink Header File shall be
preceded by the following fragment:

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

699 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07509] d All definitions within the Module Interlink Header File shall be
suffixed by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

6.3.2.3.1 Entry Point Prototype

The Module Interlink Header File also includes a prototype for each BswSchedula-
bleEntitys entry point ([SWS_Rte_04542]).

6.3.2.3.2 Basic Software Scheduler - Basic Software Module Interface

The Module Interlink Header File defines the “interface” between a Basic Soft-
ware Module and the Basic Software Scheduler. The interface consists of the Ba-
sic Software Scheduler API for the Basic Software Module and the prototypes for
BswSchedulableEntitys entry point. The definition of the Basic Software Sched-
uler API requires in case of macro implementation that both relevant data structures
and API calls are defined. In case of interfaces implemented as functions, the proto-
types for the Basic Software Scheduler API of the particular Basic Software Module
instance is sufficient. The data structures are dependent from the implementation and
configuration of the Basic Software Scheduler and are not standardized. If data struc-
tures are required these shall be accessible via the Module Interlink Header File as
well.

The RTE generator is required [SWS_Rte_07505] to limit the contents of the Module
Interlink Header file to only that information that is relevant to that instance of a basic
software module. This requirement includes the definition of the API.

[SWS_Rte_07510] d Only Basic Software Scheduler API calls that are valid for the
particular instance of a basic software module shall be defined within the modules
Module Interlink Header File. c(SRS_BSW_00415, SRS_Rte_00017)

Requirement [SWS_Rte_07510] ensures that attempts to invoke invalid API calls will
be rejected as a compile-time error [SRS_Rte_00017].

[SWS_Rte_06534] d The RTE Generator shall wrap each Basic Software Scheduler
API definition of a variant existent API according table 4.28 if the variability shall be
implemented.

1 #if (<condition> [||<condition>])
2

3 <Basic Software Scheduler API Definition>
4

5 #endif

700 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

where condition are the condition value macro(s) of the VariationPoints
relevant for the conditional existence of the RTE API (see table 4.28), Basic Soft-
ware Scheduler API Definition is the code according an invariant Basic
Software Scheduler API definition (see also [SWS_Rte_07510], [SWS_Rte_07250],
[SWS_Rte_07253], [SWS_Rte_07255], [SWS_Rte_07260], [SWS_Rte_07556],
[SWS_Rte_07263], [SWS_Rte_07266]) c(SRS_Rte_00229)

The Basic Software Scheduler API for basic software modules is defined in 6.5

[SWS_Rte_07511] d The Basic Software Scheduler API of the particular Basic Soft-
ware Module instance shall be implemented as functions if the basic software module
is delivered as object code. c(SRS_BSW_00342)

In case of basic software modules delivered as source code the definitions of the Basic
Software Scheduler API contained in the Module Interlink Header File can be optimized
during the “RTE Generation” phase when the mapping of the BswSchedulableEn-
titys to OS Tasks is known.

6.3.2.3.3 Provide activating Bsw event

The provide activating event feature is enabled if the executable entity has at least one
activationReason defined.

[SWS_Rte_08056] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the executable entity signature according to
[SWS_Rte_07282] and [SWS_Rte_08071]. c(SRS_Rte_00238)

[SWS_Rte_08057] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the type SchM_ActivatingEvent_<name>
(activation vector), where <name> is the symbol describing the executable
entity’s entry point, to store the activation bits. Based on the highest value of Ex-
ecutableEntityActivationReason.bitPosition for this executable entity the
type shall be either uint8, uint16, or uint32 so that the highest value of bitPo-
sition fits into the data type. c(SRS_Rte_00238)

Note that it is considered an invalid configuration if ExecutableEntityActiva-
tionReason.bitPosition has a value higher than 31 (see [constr_1226] in soft-
ware component template [2]).

[SWS_Rte_08058] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate for each ExecutableEntityActivation-
Reason of one executable entity a definition to provide the specific bit position in the
Rte_ActivatingEvent_<name> data type:

#define SchM_ActivatingEvent_<name>_<activation> xxU

The value of xx is defined by the bitPosition xx = 2∧bitPosition. c(SRS_Rte_00238)

For further details see section 4.2.3.3 Provide activating RTE event.

701 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.3.2.3.4 RunnableEntity mapped to BswModuleEntity

In the case that a RunnableEntity is mapped to a BswSchedulableEntity the
RTE Generator only emits the Entry Point Prototype (6.3.2.3.1) for the BswSchedula-
bleEntity (see [SWS_Rte_01132]). Since RunnableEntity and BswModuleEn-
try define a overlapping set of attributes its technically possible to have redundancy in
the AUTOSAR models between the BSW Module Description and the Software Com-
ponent Description. In order to support a non redundant M1 model the RTE Generator
has to determined common attributes from the BswModuleEntity and apply them to
the mapped RunnableEntity.

[SWS_Rte_06731] d The RTE Generator shall determine the attribute values of

• RunnableEntity.symbol

• RunnableEntity.minimumStartInterval

• RunnableEntity.canBeInvokedConcurrently

• RunnableEntity.swAddrMethod

from the mapped BswModuleEntity and its referred BswModuleEntry if an appli-
cable SwcBswRunnableMapping exists for the RunnableEntity. c()

Nevertheless if the attribute values are defined at both places for RunnableEntity
and the mapped BswModuleEntity the values have to be consistent.

[SWS_Rte_06732] d The RTE generator shall reject configurations violating the [con-
str_4071]. c(SRS_Rte_00018)

Within the scope of a SwcBswRunnableMapping both RTEEvents and BswEvents
are applicable. Therefore the ExecutableEntityActivationReasons of the
RunnableEntity and the mapped BswModuleEntity have to be overlayed.

[SWS_Rte_08071] d The signature of a RunnableEntity and a BswModuleEn-
tity with a SwcBswRunnableMapping shall contain all ExecutableEntityActi-
vationReasons that are defined for each entity. c(SRS_Rte_00238)

Note: Multiple definition of identical activationReasons with respect to shortName
and bitPosition yields to a valid configuration since both RunnableEntitys and
BswModuleEntitys may provide separate activationReasons.

6.3.2.3.5 Condition Value Macros

[SWS_Rte_08790] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the Module Interlink Header File shall contain a definition

#define SchM_SysCon_<name>
SchM_SysCon_<bsnp>[_<vi>_<ai>]_<ki>_<name>

Where

702 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.28,

<name> is the short name of the element which is subject to variability in table 4.28
defining the Basic Software Scheduler API name infix.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

6.4 API Data Types

Besides the API functions for accessing Basic Software Scheduler services, the API
also contains Basic Software Scheduler specific data types.

6.4.1 Predefined Error Codes for Std_ReturnType

The specification in [31] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

Symbolic name Value Comments
SCHM_E_OK 0 [SWS_Rte_07289]
SCHM_E_LIMIT 130 [SWS_Rte_07290]
SCHM_E_NO_DATA 131 [SWS_Rte_07562]
SCHM_E_TRANSMIT_ACK 132 [SWS_Rte_07563]
SCHM_E_IN_EXCLUSIVE_AREA 135 [SWS_Rte_02747]
SCHM_E_TIMEOUT 129 [SWS_Rte_07054]
SCHM_E_LOST_DATA 64 [SWS_Rte_02312]

Table 6.1: Basic Software Scheduler Error and Status values

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType; /* defined in Std_Types.h */
2

3 #define SCHM_E_OK 0U

[SWS_Rte_07291] d The errors as defined in table 6.1 shall be defined in the RTE
Header File. c(SRS_Rte_00051)

703 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

6.4.1.1 SCHM_E_OK

[SWS_Rte_07289] d
Symbolic name: SCHM_E_OK
Value: 0
Comments: No error occurred. c(SRS_BSW_00327)

6.4.1.2 SCHM_E_LIMIT

[SWS_Rte_07290] d
Symbolic name: SCHM_E_LIMIT
Value: 130
Comments: An internal Basic Software Scheduler limit has been exceeded. Request
could not be handled. OUT buffers are not modified.

Note: The value has to be identical with [SWS_Rte_01317] c(SRS_BSW_00327)

6.4.1.3 SCHM_E_NO_DATA

[SWS_Rte_07562] d
Symbolic name: SCHM_E_NO_DATA
Value: 131
Comments: An explicit read API call returned no data. (This is no error.)

Note: The value has to be identical with [SWS_Rte_01061] c(SRS_BSW_00327)

6.4.1.4 SCHM_E_TRANSMIT_ACK

[SWS_Rte_07563] d
Symbolic name: SCHM_E_TRANSMIT_ACK
Value: 132
Comments: Transmission acknowledgement received.

Note: The value has to be identically with [SWS_Rte_01065] c(SRS_BSW_00327)

6.4.1.5 SCHM_E_IN_EXCLUSIVE_AREA

[SWS_Rte_02747] d
Symbolic name: SCHM_E_IN_EXCLUSIVE_AREA

704 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value: 135
Comments: The error is returned by a blocking API and indicates that the schedulable
entity could not enter a wait state, because one ExecutableEntity of the current
task’s call stack has entered an ExclusiveArea.

Note: There are no blocking SchM APIs and therefore this value cannot be returned.
It is defined here for future use and for consistency with [SWS_Rte_02739]. Both error
values have to be identical. c(SRS_BSW_00327)

6.4.1.6 SCHM_E_TIMEOUT

[SWS_Rte_07054] d
Symbolic name: SCHM_E_TIMEOUT
Value: 129
Comments: The configured timeout exceeds before the intended result was ready.

Note: The value has to be identical with [SWS_Rte_01064] c(SRS_BSW_00327)

6.4.1.7 SCHM_E_LOST_DATA

[SWS_Rte_02312] d
Symbolic name: SCHM_E_LOST_DATA
Value: 64
Comments: An API call for reading received data with event semantics indicates that
some incoming data has been lost due to an overflow of the receive queue or due to
an error of the underlying communication stack.

Note: The value has to be identical with [SWS_Rte_02571] c(SRS_BSW_00327,
SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

6.4.2 Basic Software Modes

[SWS_Rte_07293] d For each ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Module Interlink Types Header File shall contain a
definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <n>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group1,

1No additional capitalization is applied to the names.

705 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<n> is the number of modes declared within the group. c(SRS_Rte_00213)

[SWS_Rte_08600] d For each ModeDeclarationGroup of category
"EXPLICIT_ORDER", the Module Interlink Types Header File shall contain a def-
inition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <onTransitionValue>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group2,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<onTransitionValue> is the onTransitionValue of the ModeDeclarationGroup.
c(SRS_Rte_00213)

[SWS_Rte_07294] d For each mode of a ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Module Interlink Types Header File shall contain a defi-
nition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the short name of a ModeDeclaration3,

and <index> is the index of the ModeDeclarations in alphabetic ordering (ASCII
/ ISO 8859-1 code in ascending order) of the short names within the Mode-
DeclarationGroup.

The lowest index shall be ‘0’ and therefore the range of assigned values is 0..<n>
where <n> is the number of modes declared within the group c(SRS_Rte_00213)

[SWS_Rte_08601] d For each mode of a ModeDeclarationGroup of category
"EXPLICIT_ORDER", the Module Interlink Types Header File shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \

2No additional capitalization is applied to the names.
3No additional capitalization is applied to the names.

706 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3 <value>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the short name of a ModeDeclaration4,

and <value> is the value specified at the ModeDeclaration. c(SRS_Rte_00213)

6.4.3 Enumeration Data Types

Enumeration is not a plain primitive ImplementationDataType. Rather a range of
integers can be used as a structural description. The mapping of integers on "labels"
in the enumeration is actually modeled in the SwC-T with the semantics class Com-
puMethod of a SwDataDefProps [2]. Enumeration data types are modeled as Im-
plementationDataTypes having a SwDataDefProps referencing a CompuMethod
that contains only CompuScales with point ranges (i. e. lower and upper limit of a Com-
puScale are identical).

[SWS_Rte_03983] d The The Module Interlink Types Header File shall include the
definitions of all constants of ImplementationDataTypes and Application-
DataTypes for each ImplementationDataType/ApplicationDataTypes used
(See [SWS_Rte_08803] for the meaning of the term "used") by this Basic Software
module.

This includes constants for CompuMethods referenced by Implementation-
DataTypeElements of ImplementationDataTypes directly referenced by
the Basic Software module and constants for CompuMethods of Imple-
mentationDataTypes which are referenced indirectly via Implementation-
DataTypes / ImplementationDataTypeElements of category TYPE_REFERENCE.
c(SRS_Rte_00252)

[SWS_Rte_03983] is applicable regardless if the AutosarDataType is referenced
in DataPrototypes defined in the InternalBehavior of the Basic Software
module or AutosarDataTypes which are only referenced by the Included-
DataTypeSet.

This requirement ensures the availability of AutosarDataType constants for the in-
ternal use in Basic Software modules, for example enumeration constants.

The name of those constants bases on the CompuScale symbolic name as defined
in [TPS_SWCT_01569].

4No additional capitalization is applied to the names.

707 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03984] d For each CompuScale which has a point range and is
located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType according
[SWS_Rte_03983] with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE, the Module Inter-
link Types Header File shall contain a definition

1 #ifndef <prefix><EnumLiteral>
2 #define <prefix><EnumLiteral> <value><suffix>
3 #endif /* <prefix><EnumLiteral> */

where the name of the enumeration literal <EnumLiteral> is derived according to the
following rule:

if (attribute symbol of CompuScale is available and not empty) {
<EnumLiteral> := C identifier specified in symbol attribute of CompuScale

} else {
if (string specified in the VT element of the CompuConst of the CompuScale

is a valid C identifier) {
<EnumLiteral> :=

string specified in the VT element of the CompuConst of the CompuScale
} else {

if (attribute shortLabel of CompuScale is available and not empty) {
<EnumLiteral> :=

string specified in shortLabel attribute of CompuScale
}

}
}

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<value> is the value representing the CompuScale’s point range.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00252)

Please note that the prefix can either be defined that the IncludedDataType-
Set with a literalPrefix attribute references the ApplicationDataType or it
references the ImplementationDataType.

[SWS_Rte_03984] implies that the RTE does add prefix to the names of the enumer-
ation constants on explicit demand only. This is necessary in order to handle enu-
meration constants supplied by Basic Software modules which all use their own prefix
convention. Such Enumeration constant names have to be unique in the whole AU-
TOSAR system.

[SWS_Rte_03985] d In the case that the same ImplementationDataType
or ApplicationPrimitiveDataType is referenced via different Included-
DataTypeSets with different literalPrefix attributes, the definition according to
[SWS_Rte_03984] has to be provided once for each different literalPrefix. c
(SRS_Rte_00252)

708 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03986] d If the input of the RTE generator contains a Com-
puMethod with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE that contains a
CompuScale with a point range, and

• neither the attribute symbol of the CompuScale is available and not empty,

• nor the string specified in the VT element of the CompuConst of the CompuScale
is a valid C identifier,

• nor the attribute shortLabel of CompuScale is available and not empty,

the RTE generator shall reject this input as an invalid configuration. c(SRS_Rte_00018)

[SWS_Rte_03987] d The RTE shall reject configurations where the same Basic Soft-
ware module uses ImplementationDataTypes and ApplicationPrimitive-
DataTypes referencing two or more CompuMethods with category "TEXTTABLE",
"SCALE_LINEAR_AND_TEXTTABLE", "SCALE_RATIONAL_AND_TEXTTABLE", or
BITFIELD_TEXTTABLE that both contain a CompuScale with a different point range
and an identical CompuScale symbolic names as an invalid configuration. The
only exception is that the usage of the ImplementationDataTypes and Applica-
tionPrimitiveDataTypes are defined with non identical <literalPrefix>es. c
(SRS_Rte_00018)

[SWS_Rte_03988] d The RTE generator shall reject configurations violating the [con-
str_1133]. c(SRS_Rte_00018)

This rejects configurations where an ImplementationDataType or
an ApplicationPrimitiveDataType references a CompuMethod
which is of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE and has Com-
puScales with identical CompuScale symbolic names but different CompuS-
cale.lowerLimit or CompuScale.upperLimit.

Note that there might exist additional CompuScales with non-point ranges inside
a CompuMethod of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE , but for those no
enumeration literals are generated by the RTE generator.

The RTE generator does not support the use of C enums for DataPrototypes used
in Basic Software.

[SWS_Rte_03989] d The RTE generator shall reject configurations violating the [con-
str_1244], so where a DataPrototype that is used in an Basic Software module
has set the swDataDefProps.additionalNativeTypeQualifier attribute set to
enum. c(SRS_Rte_00018)

[SWS_Rte_08803] The meaning of the term "used" with respect to Autosar-
DataTypes d An AutosarDataType is used if it meets any one of the following con-
ditions:

• it is referenced by a DataPrototype in the BswInternalBehavior, or

709 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• it is referenced by a VariationPointProxy in the BswInternalBehavior,
or

• it is referenced by a DataPrototype referenced by a providedData or re-
quiredData, or

• it is referenced by an IncludedDataTypeSet in the BswInternalBehavior,
or

• it is the ImplementationDataType mapped to an ApplicationDataType
(i.e. via the DataTypeMappingSet) that is used in one of the above ways, or

• it is an ImplementationDataTypeElement of a complex Implementation-
DataType that is used in one of the above ways, or

• it is referenced as the target type of an ImplementationDataType or Imple-
mentationDataTypeElement of category TYPE_REFERENCE that is used in
one of the above ways, or

• it is an ApplicationDataType referenced as the type of a sub-element of a
complex ApplicationDataType that is used in one of the above ways.

c()

Please note that in contrast to the TYPE_REFERENCE case, when an Implementa-
tionDataType of category DATA_REFERENCE is "used" the target Implementa-
tionDataType it references is not considered used, unless it is independently used
in its own right.

6.4.4 Range Data Types

For the ApplicationPrimitiveDataType a Range might be specified by referenc-
ing a data constraint (dataConstr) giving the lowerLimit and the upperLimit. To
allow a Basic Software Module the access to these values two definitions for these val-
ues shall be generated.

[SWS_Rte_03990] d The The Module Interlink Types Header File shall include the
definitions of all lowerLimit and upperLimit constants of each Application-
PrimitiveDataType used by this Basic Software Module once per Application-
PrimitiveDataType if the ApplicationPrimitiveDataType is not referenced
via different IncludedDataTypeSets. c(SRS_Rte_00252)

[SWS_Rte_03991] d The Module Interlink Types Header File shall include the defini-
tions of all lowerLimit and upperLimit constants of each ApplicationPrimi-
tiveDataType used by this Basic Software Module for each combination of different
literalPrefix and ApplicationPrimitiveDataType when the same Imple-
mentationDataType or ApplicationPrimitiveDataType is referenced via dif-
ferent IncludedDataTypeSets. c(SRS_Rte_00252)

710 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_03992] d The lowerLimit and upperLimit constants for Application-
PrimitiveDataType referencing a DataConstr shall be generated by RTE generator in
the Module Interlink Types Header File as:

1 #define <prefix><DataType>_LowerLimit <lowerValue><suffix>
2 #define <prefix><DataType>_UpperLimit <upperValue><suffix>

where <DataType> is the name of the ApplicationPrimitiveDataType used by
the Basic Software Module.

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs.

<lowerValue> and <upperValue> are the values lowerLimit and upperLimit
of the dataConstr referenced by the ApplicationPrimitiveDataType onto which the
corresponding CompuMethod has been applied (see [SWS_Rte_07038]). The values
in the macro definitions shall always reflect the closed interval, regardless of the interval
type specified by the dataConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00252)

Please note that [SWS_Rte_07196] is not applicable for [SWS_Rte_03992]. Further
on it’s possible that a DataPrototype using an ApplicationPrimitiveDataType might
reference additional dataConstr (see [SWS_Rte_07196]). In this case the upper-
Limit and lowerLimit definitions according [SWS_Rte_03992] do not reflect the
real applicable range of the DataPrototype. No macros are generated for Dat-
aPrototype specific data constraints.

Please note that the prefix can either be defined that the IncludedDataType-
Set with a literalPrefix attribute references the ApplicationDataType or it
references the ImplementationDataType.

Rationale: ApplicationPrimitiveDataType is taken as the basis for the gener-
ation of limits (as opposed to take the corresponding ImplementationDataType)
because the limits defined on the ImplementationDataType) may be wider than
the limits of the ApplicationPrimitiveDataType ((see subsection "Data Types
for Single Values" in the AUTOSAR SW-C Template [2]).

[SWS_Rte_03993] d For AUTOSAR data types which have an invalidValue speci-
fied, the Module Interlink Types Header File shall contain the definition

1 #define InvalidValue_<prefix><DataType> <invalidValue><suffix>

where

<prefix> is the optional literalPrefix attribute defined by the Included-DataTypeSet
referring the AutosarDataType

<DataType> is the short name of the data type.

<invalidValue> is the value defined as invalidValue for the data type.

711 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<suffix> shall be "U" for unsigned data types and empty for signed data types. c()

[SWS_Rte_03994] d The Module Interlink Types Header File shall include the
definitions of all invalidValue constants used by this Basic Software Mod-
ule for each combination of different literalPrefix and ApplicationPrimi-
tiveDataType when the same ImplementationDataType or Application-
PrimitiveDataType is referenced via different IncludedDataTypeSets. c
(SRS_Rte_00252)

6.4.5 Data Types with bitfield conversions

AutosarDataTypes associated with a CompuMethod of category BIT-
FIELD_TEXTTABLE support the concatenation of a value set inside a single
scalar variable. Thereby single bits may get an individual (boolean) meaning or a set
of bits is used to carry an enumeration. Please note that those data types are not
mapped to C bit fields rather than to scalars (e.g. uint8). Thereby the RTE Generator
provides a set of definitions for the "Bit Mask", "Bit Start Position" and the "Number
of Bits" in order to support the usage of the AUTOSAR Bit Handling Routines [32] for
those kind of data types. For some operations on a set of bits (the set may contain only
1 bit) the AUTOSAR bitfield library requires a single contiguous bit field which means
that all bits set to 1 in the in the CompuScale.mask attribute value are adjoining, e.g.
0b00010000 or 0b00111100.

[SWS_Rte_03995] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale which is located in the compuInternal-
ToPhys container of a CompuMethod referenced by an ImplementationDataType
or ApplicationPrimitiveDataType according [SWS_Rte_03984] with category
BITFIELD_TEXTTABLE the Module Interlink Types Header File shall contain a defini-
tion for the bit field mask

1 #ifndef <prefix><BflMaskLabel>_BflMask
2 #define <prefix><BflMaskLabel>_BflMask <mask><suffix>
3 #endif /* <prefix><BflMaskLabel>_BflMask */

where
<BflMaskLabel> is the value of the attribute CompuScale.shortLabel
<mask> is the value of the attribute mask
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00252)

[SWS_Rte_03996] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which is
located in the compuInternalToPhys container of a CompuMethod referenced by
an ImplementationDataType or ApplicationPrimitiveDataType according
[SWS_Rte_03984] with category BITFIELD_TEXTTABLE the Module Interlink Types
Header File shall contain a definition for the bit start position

712 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 #ifndef <prefix><BflStartPnLabel>_BflPn
2 #define <prefix><BflStartPnLabel>_BfltPn <BflStartPnNumber><suffix>
3 #endif /* <prefix><BflStartPnLabel>_BfltPn */

where
<BitStartPnLabel> is the value of the attribute CompuScale.shortLabel
<BflStartPnNumber> is the number of the first bit in the attribute value CompuS-
cale.mask which is set to 1. Thereby the bit counting starts from 0 (LSB) to n (MSB).
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00252)

[SWS_Rte_03997] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which is
located in the compuInternalToPhys container of a CompuMethod referenced by
an ImplementationDataType or ApplicationPrimitiveDataType according
[SWS_Rte_03984] with category BITFIELD_TEXTTABLE the Module Interlink Types
Header File shall contain a definition for the bit field length

1 #ifndef <prefix><BflLengthLabel>_BflLn
2 #define <prefix><BflLengthLabel>_BflLn <BflLength><suffix>
3 #endif /* <prefix><BflLengthLabel>_BflLn */

where
<BflLengthLabel> is the value of the attribute shortLabel.
<BflLength> is the number of contiguous bits set to 1 in the attribute value CompuS-
cale.mask.
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types. c
(SRS_Rte_00252)

Please note the example in section F.3.

[SWS_Rte_07415] d The requirements [SWS_Rte_03995], [SWS_Rte_03996], and
[SWS_Rte_03997] are only applied to CompuScales where the attribute shortLabel
is defined. c(SRS_Rte_00252)

6.5 API Reference

This chapter defines the “interface” between a particular instance of a Basic Software
Module and the Basic Software Scheduler. The wild-card <bsnp> is the BSW Sched-
uler Name Prefix according [SWS_Rte_07593] and [SWS_Rte_07594].

713 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.5.1 SchM_Enter

Purpose: SchM_Enter function enters an exclusive area of an Basic Software
Module.

Signature: [SWS_Rte_07250] d
void SchM_Enter_<bsnp>[_<vi>_<ai>]_[<me>_]<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module,

<me> is the shortName of the BswModuleEntity and

<name> is the exclusive area name. The sub part in squared brack-
ets [<me>_] is emitted if the attribute BswExclusiveAreaPol-
icy.apiPrinciple is set to "perExecutable". The sub part in
squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c
(SRS_Rte_00222, SRS_BSW_00347, SRS_Rte_00046)

Existence: [SWS_Rte_07251] d A SchM_Enter API shall be created for each
ExclusiveArea that is declared in the BswInternalBehav-
ior and which has an canEnterExclusiveArea association. c
(SRS_Rte_00222, SRS_Rte_00046)

Description: The SchM_Enter API call is invoked by an AUTOSAR BSW module
to define the start of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Enter for the same exclusive area.

[SWS_Rte_07252] d The Basic Software Scheduler shall permit calls
to SchM_Enter and SchM_Exit to be nested as long as different
exclusive areas are exited in the reverse order they were entered. c
(SRS_Rte_00222, SRS_Rte_00046)

[SWS_Rte_CONSTR_09046] SchM_Enter and SchM_Exit API
may only be used by BswModuleEntitys describing its usage
d The SchM_Enter and SchM_Exit API may only be used by
BswModuleEntitys that contain a corresponding canEnterEx-
clusiveArea association c()

[SWS_Rte_CONSTR_09047] Nested call of SchM_Enter and
SchM_Exit API is restricted d The SchM_Enter and SchM_Exit

714 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

API may only be called nested if different exclusive areas are invoked;
in this case exclusive areas shall exited in the reverse order they were
entered. c()

[SWS_Rte_07578] d The Basic Software Scheduler shall sup-
port calls of SchM_Enter and SchM_Exit after initialization of
the OS but before the Basic Software Scheduler is initialized. c
(SRS_Rte_00222, SRS_Rte_00046)

[SWS_Rte_07579] d The Basic Software Scheduler shall sup-
port calls of SchM_Enter and SchM_Exit in the context of os
tasks, category 1 and category 2 interrupts. c(SRS_Rte_00222,
SRS_Rte_00046)

Note: the possible implementation mechanism for such an exclusive
area is limited in this case to mechanism available for the related
kind of context. For instance SuspendAllInterrupts and Re-
sumeAllInterrupts service of the OS are available for all kind of
context but GetResource and ReleaseResource is only available
for tasks and category 2 interrupts.

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

Mutual exclusion of tasks requesting the same exclusive area shall
be ensured across partition and core boundaries.

6.5.2 SchM_Exit

Purpose: SchM_Exit function leaves an exclusive area of an Basic Software
Module.

Signature: [SWS_Rte_07253] d
void
SchM_Exit_<bsnp>[_<vi>_<ai>]_[<me>_]<name>()

Where

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module,

<me> is the shortName of the BswModuleEntity and

715 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<name> is the exclusive area name. The sub part in squared brack-
ets [<me>_] is emitted if the attribute BswExclusiveAreaPol-
icy.apiPrinciple is set to "perExecutable". The sub part in
squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c
(SRS_Rte_00222, SRS_BSW_00347, SRS_Rte_00046)

Existence: [SWS_Rte_07254] d A SchM_Exit API shall be created for each
ExclusiveArea that is declared in the BswInternalBehav-
ior and which has an canEnterExclusiveArea association.. c
(SRS_Rte_00222, SRS_Rte_00046)

Description: The SchM_Exit API call is invoked by an AUTOSAR BSW module
to define the end of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Exit for the same exclusive area.

Requirement [SWS_Rte_07252] permits calls to SchM_Exit and
SchM_Exit to be nested as long as different exclusive areas are
exited in the reverse order they were entered.

[SWS_Rte_CONSTR_09048] SchM_Exit API may only be used
by BswModuleEntitys that describe its usage d The SchM_Exit
API may only be used by BswModuleEntitys that contain a corre-
sponding canEnterExclusiveArea association c()

6.5.3 SchM_Call

Purpose: Invokes a Client-Server operation between BSW modules, possibly
crossing partition boundaries.

Signature: [SWS_Rte_08733] d
Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(

[OUT <typeOfReturnValue> returnValue]
[IN|IN/OUT|OUT]<data_1>...
[IN|IN/OUT|OUT] <data_n>)

where there is a BSW module providing an entry which
is the base for a generated function <typeOfReturnValue>
<bsnp>[_<vi>_<ai>]_<name>(<data_1>...<data_n>)

with <typeOfReturnValue> is the returnType of the referenced
BswModuleEntry. If the returnType of the referenced BswMod-
uleEntry is of type void or execution is asynchronous, this part
should be omitted.

716 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<bsnp> is the BSW Scheduler Name Prefix of the BSW mod-
ule providing the entry according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> is the vendorApiInfix of the calling BSW module,

<name> is the shortName of the BswModuleClientServerEntry de-
fined with the role of requiredClientServerEntry.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08734] d A synchronous SchM_Call API shall be gen-
erated if a callPoint association to a BswSynchronousServer-
CallPoint exists and the BswSynchronousServerCallPoint
references a BswModuleClientServerEntry as calledEntry
and this BswModuleClientServerEntry is referenced by the
BswModuleDescription as a requiredClientServerEntry.
c(SRS_Rte_00243)

[SWS_Rte_08735] d An asynchronous SchM_Call API shall
be generated if a callPoint association to a BswAsyn-
chronousServerCallPoint exists and the BswAsyn-
chronousServerCallPoint references a BswModule-
ClientServerEntry as calledEntry and this BswModule-
ClientServerEntry is referenced by the BswModuleDescrip-
tion as a requiredClientServerEntry. c(SRS_Rte_00243)

A configuration that includes both synchronous and asynchronous
Call Points is invalid.

[SWS_Rte_CONSTR_09079] SchM_Call API may only be used by
the BswModuleEntity that describe its usage d The SchM_Call
API may only be used within the BswModuleEntity that refer-
ences the corresponding BswSynchronousServerCallPoint re-
spectively BswAsynchronousServerCallPoint using a call-
Point association. c()

Description: Function to initiate Client-Server communication between BSW mod-
ules. The SchM_Call API is used for both synchronous and asyn-
chronous calls.

When the BswModuleClientServerEntry is called
the SchM shall invoke the referenced BswMod-
uleEntry providing the C-function with the signature
<bpns>[_<vi>_<ai>]_name(<data_1>...(<data_n>) on

717 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the partition of the task assigned to the respective BswOpera-
tionInvokedEvent, or on the local partition if the BswOpera-
tionInvokedEvent is not mapped to a task.

[SWS_Rte_08736] d The OUT parameter returnValue shall only
exist if the returnType of BswModuleEntry is not void and the
SchM_Call is synchronous. c(SRS_Rte_00243)

[SWS_Rte_08737] d The datatype of the OUT parameter return-
Value shall be equal to returnType of the called BswModuleEn-
try. c(SRS_Rte_00243)

[SWS_Rte_08738] d The return value of the called BswModuleEn-
try shall be returned inside the OUT parameter returnValue. c
(SRS_Rte_00243)

[SWS_Rte_08739] d The SchM shall ensure that the BswMod-
uleEntity implementing a server operation has completed the pro-
cessing of a request before it begins processing the next request, if
call serialization is required by the server operation, i.e the isReen-
trant attribute of the corresponding BswModuleClientServer-
Entry which is referenced as providedClientServerEntry is
set to false and more than one BswModuleClientServerEntry
in the role requiredClientServerEntry references this server.
If the SchM_Call crosses partition borders, the call is mapped to
IOCSend_<id>(). c(SRS_Rte_00243)

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: [SWS_Rte_08740] d The return value shall be used to indicate
infrastructure errors detected by the RTE during execution of the
SchM_Call call. c()

• [SWS_Rte_08741] d SCHM_E_OK - The API call completed suc-
cessfully. c()

• [SWS_Rte_08742] d SCHM_E_LIMIT - There are multiple out-
standing asynchronous calls of the same BswModuleEntry.
The invocation shall be discarded, the buffers of the return pa-
rameters shall not be modified. c()

• [SWS_Rte_04555] d SCHM_E_TIMEOUT – if the call is ignored
according to [SWS_Rte_04552] c()

6.5.4 SchM_Result

Purpose: Get the result of an asynchronous call of a BswModuleEntry.

718 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Signature: [SWS_Rte_08743] d
Std_ReturnType
SchM_Result_<bsnp>[_<vi>_<ai>]_<name>(

[OUT <typeOfReturnValue> returnValue]
[IN/OUT|OUT]<data_1> ...
[IN/OUT|OUT] <data_n>)

where there is a BSW module providing an en-
try which is the base for a generated function
<bsnp>[_<vi>_<ai>]_name(<data_1>...<data_n>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module sending the callback according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> is the vendorApiInfix of the calling BSW module,

<name> is the shortName of the BswModuleClientServerEntry de-
fined with the role of requiredClientServerEntry.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

[SWS_Rte_08420] d The OUT parameter returnValue shall exist
if the returnType of BswModuleEntry is different fromvoid. c
(SRS_Rte_00243)

[SWS_Rte_08421] d The datatype of the OUT parameter return-
Value shall be equal to returnType of the called BswModuleEn-
try. c(SRS_Rte_00243)

[SWS_Rte_08422] d The return value of the called BswModuleEn-
try shall be returned inside the OUT parameter returnValue. c
(SRS_Rte_00243)

Existence: [SWS_Rte_08744] d A non-blocking SchM_Result API shall
be generated if a callPoint association to a BswAsyn-
chronousServerCallResultPoint exists. c(SRS_Rte_00243)

[SWS_Rte_CONSTR_09076] SchM_Result API may only be
used by the BswModuleEntity that describe its usage d The
SchM_Result API may only be used within the BswModuleEntity
that references the corresponding BswAsynchronousServer-
CallResultPoint using a callPoint association. c()

Description: The SchM_Result is used to collect the result of
an asynchronous call of a BswModuleEntry in-
voked by SchM_Call_<bsnp>[_<vi>_<ai>]_name(
<data_1>...<data_n>).

719 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Using SchM_Result it is possible get back the result of call.

The SchM_Result API includes zero or more IN/OUT and OUT pa-
rameters to pass back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

If the SchM_Result crosses partition borders, the callback is
mapped to IOCSend_<id>().

Return Value: The return value is used to indicate errors from either the
SchM_Result call itself or communication errors detected before the
API call was made.

• [SWS_Rte_08745] d SCHM_E_OK - The API call completed suc-
cessfully. c()

• [SWS_Rte_08746] d SCHM_E_NO_DATA - The BswModuleEn-
try’s result is not available but no other error occurred within
the API call or the BswModuleEntry was not called using
SchM_Call. The buffers for the IN/OUT and OUT parameters
shall not be modified. c()

• [SWS_Rte_04556] d SCHM_E_TIMEOUT – if the call is ignored
according to [SWS_Rte_04552] c()

The SCHM_E_NO_DATA return value is not considered to be an er-
ror but rather indicate correct operation of the API call. When
SCHM_E_NO_DATA occurs, a BSW module is free to invoke
SchM_Result again and thus repeat the attempt to read the result.

6.5.5 SchM_Send

Purpose: Initiate an "explicit" sender-receiver transmission of data elements
with "event" semantic (queued) between BSW modules.

Signature: [SWS_Rte_08747] d
Std_ReturnType
SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(IN <data>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module providing the data according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module providing the data,

<ai> is the vendorApiInfix of the BSW module providing the
data,

720 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<name> is the shortName of the VariableDataPrototype of this
sender-receiver connection.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08748] d The existence of a dataSendPoint associa-
tion to a providedData VariableDataPrototype shall result in
the generation of a SchM_Send API for the provided VariableDat-
aPrototype. c(SRS_Rte_00243)

[SWS_Rte_CONSTR_09077] SchM_Send API may only be used
by the BswModuleEntity that describes its usage d The
SchM_Send API may only be used within the BswModuleEntity
that references the VariableDataPrototype using a dataSend-
Point. c()

Description: When a BSW module writes data to a sender-receiver connection on
a system with the BSW running on multiple partitions, it shall invoke
SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(<data>). The
SchM_Send API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission). The SchM_Send API call includes the IN pa-
rameter <data> to pass the data element to write. The IN parameter
<data> is passed by value or reference according to the Imple-
mentationDataType as described in the section 5.2.6.5. If the IN
parameter <data> is passed by reference, the pointer must remain
valid until the API call returns.

Return Value: The return value is used to indicate errors detected by the SchM dur-
ing execution of the SchM_Send.

• [SWS_Rte_08749] d SCHM_E_OK - data passed to communica-
tion service successfully. c()

• [SWS_Rte_08750] d SCHM_E_LIMIT - an ’event’ has been dis-
carded due to a full queue by one of the partition local receivers.
c()

Notes: The SchM_Send API is used to transmit data with "events" semantics
which means that they are getting queued.

[SWS_Rte_08751] d In case of inter partition communication, the
SchM_Send API call shall cause an immediate transmission request.
c(SRS_Rte_00243)

For inter-partition communication the IOC can be used for transmit-
ting the data to the other partition.

721 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08752] d If the VariableDataPrototype in the pro-
videdData role is connected to multiple VariableDataProto-
types in the role requiredData, then the SchM shall ensure that
writes to all receivers are independent. c(SRS_Rte_00243)

This ensures that an error detected by the SchM when writing to one
receiver does not prevent the transmission of this message to other
BSW modules.

[SWS_Rte_08753] d In case of intra partition communication, the
SchM_Send API call shall return after copying the data to RTE lo-
cal memory or using IOC buffers. c(SRS_Rte_00243)

6.5.6 SchM_Receive

Purpose: Perfoms an "explicit" sender-receiver reception of data elements with
"event" semantic (queued) between BSW modules.

Signature: [SWS_Rte_08754] d
Std_ReturnType
SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(OUT <data>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module reading the data according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module reading the data,

<ai> is the vendorApiInfix of the BSW module reading the data,

<name> is the shortName of the VariableDataPrototype of this
sender-receiver connection.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08755] d The existence of a dataReceivePoint asso-
ciation to a requiredData VariableDataPrototype shall result
in the generation of a SchM_Receive API for the required Vari-
ableDataPrototype. c(SRS_Rte_00243)

[SWS_Rte_CONSTR_09078] SchM_Receive API may only be
used by the BswModuleEntity that describes its usage d
The SchM_Receive API may only be used within the BswMod-
uleEntity that references the VariableDataPrototype using
a dataReceivePoint. c()

722 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: When a BSW module handles a BswDataReceivedEvent on a
system with the BSW running on multiple partitions, it shall in-
voke SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(<data>).
For a sender-receiver connection crossing partition boundaries, the
SchM shall then read the data from a shared buffer, where it has been
put by SchM_Send.

The SchM_Receive API call includes the OUT parameter <data>
to pass back the received data element.

The pointers to the OUT parameters must remain valid until the API
call returns.

Return Value: The return value is used to indicate errors detected by the SchM dur-
ing execution of the SchM_Receive or errors detected by the com-
munication system.

• [SWS_Rte_08757] d SCHM_E_OK - data read successfully. c()

• [SWS_Rte_08758] d SCHM_E_NO_DATA - no "events" (means
queued data) were received and no other error occurred when
the read was attempted. c()

[SWS_Rte_02313] d SCHM_E_LOST_DATA - Indicates that
some incoming data has been lost due to an overflow of the re-
ceive queue or due to an error of the underlying communication
layers. This is not an error of the data returned in the parame-
ters. This Overlayed Error can be combined with any other error.
c(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

[SWS_Rte_08756] d In case return value is SCHM_E_NO_DATA the
OUT parameters shall remain unchanged. c(SRS_Rte_00243)

The SCHM_E_NO_DATA return value is not considered to be an error
but rather indicates correct operation of the API call.

6.5.7 SchM_Switch

Purpose: Initiate a mode switch. The SchM_Switch API call is used for send-
ing of a mode switch notification by a Basic Software Mod-
ule.

Signature: [SWS_Rte_07255] d
Std_ReturnType
SchM_Switch_<bsnp>[_<vi>_<ai>]_<name>(

IN <mode>)

Where here

723 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the provided (providedModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00215, SRS_BSW_00347)

Existence: [SWS_Rte_07256] d The existence of a managedModeGroup asso-
ciation to a providedModeGroup ModeDeclarationGroupPro-
totype shall result in the generation of a SchM_Switch API. c
(SRS_Rte_00215)

[SWS_Rte_CONSTR_09049] SchM_Switch API may only be
used by BswModuleEntitys that describe its usage d The
SchM_Switch API may only be used by BswModuleEntitys that
contain a corresponding managedModeGroup association c()

Description: The SchM_Switch triggers a mode switch for all connected required
(requiredModeGroup) ModeDeclarationGroupPrototypes.

The SchM_Switch API call includes exactly one IN parameter for
the next mode <mode>. The IN parameter <mode> is passed by
value according to the ImplementationDataType on which the
ModeDeclarationGroup is mapped. The type name shall be equal
to the ImplementationDataType symbol.

Return Value: The return value is used to indicate errors detected by the Basic Soft-
ware Scheduler during execution of the SchM_Switch call.

• [SWS_Rte_07258] d SCHM_E_OK – data passed to ser-
vice successfully. c(SRS_Rte_00213, SRS_Rte_00214,
SRS_Rte_00094)

• [SWS_Rte_07259] d SCHM_E_LIMIT – a mode switch has
been discarded due to a full queue. c(SRS_Rte_00213,
SRS_Rte_00214, SRS_Rte_00143)

Notes: SchM_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then the
SchM_Switch API will attempt to queue the request and return
[SWS_Rte_02667]. However if no transition is in progress for the
mode instance, the mode disablings and the activations of on-entry,
on-transition, and on-exit runnables for this mode instance are exe-
cuted before the SchM_Switch API returns [SWS_Rte_02665].

724 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see [SWS_Rte_02675].

[SWS_Rte_07286] d If the mode switched acknowledgment is
enabled, the RTE shall notify the mode manager when the
mode switch is completed. c(SRS_Rte_00213, SRS_Rte_00214,
SRS_Rte_00122)

6.5.8 SchM_Mode

There exist two versions of the SchM_Mode APIs. Depending on the attribute en-
hancedModeApi in the basic software module description there shall be provided dif-
ferent versions of this API (see also 6.5.9).

Purpose: Provides the currently active mode of a (requiredModeGroup or
providedModeGroup) ModeDeclarationGroupPrototype.

Signature: [SWS_Rte_07260] d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the (requiredModeGroup or providedModeGroup)
ModeDeclarationGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00213, SRS_BSW_00347)

Existence: [SWS_Rte_07261] d If a accessedModeGroup association to
a providedModeGroup or requiredModeGroup ModeDecla-
rationGroupPrototype exists and if the attribute enhanced-
ModeApi of the BswModeSenderPolicy resp. BswModeRe-
ceiverPolicy is set to false a SchM_Mode API according to
[SWS_Rte_07260] shall be generated. c(SRS_Rte_00215)

Note: This ensures the availability of the SchM_Mode API for the
mode manager and mode user

[SWS_Rte_CONSTR_09050] SchM_Mode API may only be used
by BswModuleEntitys that describe its usage d The SchM_Mode

725 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

API may only be used by BswModuleEntitys that contain a cor-
responding managedModeGroup association or accessedMode-
Group association c()

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the SchM_Mode API will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The SchM_Mode will return the same mode for all required or pro-
vided ModeDeclarationGroupPrototypes that are connected.
(see [SWS_Rte_02630]).

Return Value: The return type of SchM_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name
shall be equal to the ImplementationDataType symbol.

[SWS_Rte_07262] d The SchM_Mode API shall return the following
values:

• during mode transitions:
RTE_TRANSITION_<ModeDeclarationGroup>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup.

• else:
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup and <ModeDeclaration> is the
short name of the currently active ModeDeclaration

c(SRS_Rte_00144)

Notes: None.

6.5.9 Enhanced SchM_Mode

Purpose: Provides the currently active mode of a (requiredModeGroup or
providedModeGroup) ModeDeclarationGroupPrototype. If

726 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the corresponding mode machine instance is in transition addi-
tionally the values of the previous and the next mode are provided.

Signature: [SWS_Rte_07694] d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>(

OUT <previousmode>,
OUT <nextmode>)

)

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the (requiredModeGroup or providedModeGroup)
ModeDeclarationGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00213, SRS_BSW_00347)

Existence: [SWS_Rte_08507] d The existence of a accessedModeGroup
association to a providedModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype given that the attribute en-
hancedModeApi of the BswModeSenderPolicy resp. BswMod-
eReceiverPolicy is set to true a SchM_Mode API according to
[SWS_Rte_07694] shall be generated. c(SRS_Rte_00215)

Note: This ensures the availability of the SchM_Mode API for the
mode manager and mode user

[SWS_Rte_CONSTR_09051] SchM_Mode API may only be used
by BswModuleEntitys that describe its usage d The SchM_Mode
API may only be used by BswModuleEntitys that contain a cor-
responding managedModeGroup association or accessedMode-
Group association c()

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings

727 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

of two modes are active. In this case, the SchM_Mode API will re-
turn RTE_TRANSITION_<ModeDeclarationGroup>. The param-
eter <previousmode> then contains the mode currently being left.
The parameter <nextmode> contains the mode being entered.

The SchM_Mode will return the same mode for all required or pro-
vided ModeDeclarationGroupPrototypes that are connected.
(see [SWS_Rte_02630]).

Return Value: The return type of SchM_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name
shall be equal to the ImplementationDataType symbol.

[SWS_Rte_08509] d During transitions SchM_Mode API shall return
the following values:

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>

• <previousmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup.

c(SRS_Rte_00144)

[SWS_Rte_08510] d If the mode machine instance is in a de-
fined mode SchM_Mode shall return the follwing values:

• the return value shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <nextmode> shall contain the the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration.

c(SRS_Rte_00144)

Notes: None.

728 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.5.10 SchM_SwitchAck

Purpose: Provide access to acknowledgment notifications for mode communi-
cation.

Signature: [SWS_Rte_07556] d
Std_ReturnType
SchM_SwitchAck_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the provided (provideModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_BSW_00310, SRS_Rte_00213)

Existence: [SWS_Rte_07557] d Acknowledgement is enabled for a provided
(providedModeGroup) ModeDeclarationGroupPrototype by
the presence of an ackRequest attribute of the BswModeSender-
Policy. c(SRS_Rte_00213, SRS_Rte_00122)

[SWS_Rte_07558] d A non-blocking SchM_SwitchAck API shall
be generated for a provided (providedModeGroup) ModeDecla-
rationGroupPrototype if acknowledgement is enabled and a
managedModeGroup association references the providedMode-
Group ModeDeclarationGroupPrototype. c(SRS_Rte_00213,
SRS_Rte_00122)

[SWS_Rte_CONSTR_09052] SchM_SwitchAck API may only be
used by BswModuleEntitys that describe its usage d The
SchM_SwitchAck API may only be used by BswModuleEntitys
that contain a corresponding managedModeGroup association c()

Description: The SchM_SwitchAck API takes no parameters – the return value
is used to indicate the acknowledgement status to the caller.

Return Value: The return value is used to indicate the “status” status and errors
detected by the Basic Software Scheduler during execution of the
Rte_SwitchAck call.

• [SWS_Rte_07560] d SCHM_E_NO_DATA – (non-blocking read)
no error is occurred when the SchM_SwitchAck read was at-
tempted. c(SRS_Rte_00213, SRS_Rte_00122)

729 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_07561] d SCHM_E_TRANSMIT_ACK – For communi-
cation of mode switches, this indicates, that the BswSchedu-
lableEntitys on the transition have been executed and the
mode disablings have been switched to the new mode (see
[SWS_Rte_02587]). c(SRS_Rte_00213, SRS_Rte_00122)

• [SWS_Rte_07055] d SCHM_E_TIMEOUT The configured timeout
exceeds before the mode transition was completed.
OR:
Any mode users partition is stopped or restarting or has
been restarted while the mode switch was requested. c
(SRS_Rte_00213, SRS_Rte_00122)

The SCHM_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When SCHM_E_NO_DATA occurs, a Basic Software Module is free to
reinvoke SchM_SwitchAck and thus repeat the attempt to read the
mode switch acknowledgment status.

The SCHM_E_TIMEOUT return value can denote a stopped or restart-
ing partition even for the SchM_SwitchAck API in case of a common
mode machine instance.

Notes: If multiple transmissions on the same provided (providedMode-
Group) ModeDeclarationGroupPrototype are outstanding it is
not possible to determine which is acknowledged first. If this is im-
portant, transmissions should be serialized with the next occurring
only when the previous transmission has been acknowledged or has
timed out.

6.5.11 SchM_Trigger

Purpose: Triggers the activation of connected BswSchedulableEntitys of
the same or other Basic Software Modules.

Signature: [SWS_Rte_07263] d
signature without queuing support:

void
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

signature with queuing support:

Std_ReturnType
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

Where here

730 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the released (releasedTrigger) Trigger name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528].

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the Trigger is set to queued. c
(SRS_Rte_00218, SRS_BSW_00347)

Existence: [SWS_Rte_07264] d The existence of a issuedTrigger associa-
tion to the released (releasedTrigger) Trigger shall result in the
generation of a SchM_Trigger API. c(SRS_Rte_00218)

[SWS_Rte_CONSTR_09053] SchM_Trigger API may only be
used by the BswModuleEntitys that describe its usage d The
SchM_Trigger API may only be used by the BswModuleEntity
that contains the corresponding issuedTrigger association. c()

Description: The SchM_Trigger triggers an execution for all BswSchedu-
lableEntitys whose BswExternalTriggerOccurredEvent is
associated to connected required Trigger.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06722] d The SchM_Trigger API shall return the follow-
ing values:

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: SchM_Trigger is restricted to ECU local communication.

6.5.12 SchM_ActMainFunction

Purpose: Triggers the activation of the BswSchedulableEntity which is as-
sociated with an activationPoint of the same or Basic Software
Module.

Signature: [SWS_Rte_07266] d

731 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

signature without queuing support:

void
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

signature with queuing support:

Std_ReturnType
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the associated BswInternalTriggeringPoint short
name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528].

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the BswInternalTriggering-
Point is set to queued. c(SRS_Rte_00218, SRS_BSW_00347)

Existence: [SWS_Rte_07267] d The existence of an activationPoint shall
result in the generation of a SchM_ActMainFunction API. c
(SRS_Rte_00218)

[SWS_Rte_CONSTR_09054] SchM_ActMainFunction API may
only be used by the BswModuleEntitys that describe its us-
age d The SchM_ActMainFunction API may only be used by the
BswModuleEntity that contains the corresponding activation-
Point association. c()

Description: The SchM_ActMainFunction triggers an execution for all
BswSchedulableEntitys whose BswInternalTriggerOc-
curredEvent is associated by activationPoint.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06723] d The SchM_ActMainFunction API shall return
the following values:

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

732 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: SchM_ActMainFunction is restricted to ECU local communication.

6.5.13 SchM_CData

Purpose: Provide access to the calibration parameter of a Basic Software Mod-
ule defined internally. The ParameterDataPrototype in the role
perInstanceParameter is used to define Basic Software Module
internal calibration parameters. Internal because the Parameter-
DataPrototype cannot be reused outside the Basic Software Mod-
ule. Access is read-only. Each instance has an own data value asso-
ciated with it.

Signature: [SWS_Rte_07093] d
<return> SchM_CData_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the shortName of the ParameterDataPrototype.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_BSW_00347, SRS_Rte_00155)

Existence: [SWS_Rte_07094] d An SchM_CData API shall be created for each
defined ParameterDataPrototype in the role perInstancePa-
rameter c(SRS_Rte_00155)

Description: The SchM_CData API provides access to the defined calibration pa-
rameter within a Basic Software Module. The actual data values for
a Basic Software Module instance may be set after component com-
pilation.

Return Value: The SchM_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter.

The return type of SchM_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

733 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07095] d The return value of the corresponding
SchM_CData API shall provide access to the calibration parame-
ter value specific to the instance of the Basic Software Module. c
(SRS_Rte_00155)

Notes: None.

6.5.14 SchM_Pim

Purpose: Provide access to the defined per-instance memory (section) of a
Basic Software Module.

Signature: [SWS_Rte_06203] d
<return> SchM_Pim_<bsnp>[_<vi>_<ai>]_<name>()

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module reading the data according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module reading the data,

<ai> is the vendorApiInfix of the BSW module reading the data,

<name> is the shortName of the VariableDataPrototype de-
fined in the role arTypedPerInstanceMemory.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_BSW_00347, SRS_Rte_00075)

Existence: [SWS_Rte_06204] d A SchM_Pim API shall be created for each
defined VariableDataPrototype in the role arTypedPerIn-
stanceMemory within the Basic Software Module description. c
(SRS_Rte_00075)

Description: The SchM_Pim API provides access to the arTypedPerInstance-
Memory defined in the context of a BswInternalBehavior of a
Basic Software Module description.

Return Value: [SWS_Rte_06205] d The API returns a typed reference (in C a typed
pointer) to the arTypedPerInstanceMemory. c(SRS_Rte_00051,
SRS_Rte_00075)

Notes: For an arTypedPerInstanceMemory the <return ref-
erence> is defined by the associated AutosarDataType (see
[SWS_Rte_07161]). For details of the <return reference> defi-
nition see section 5.2.6.7.

734 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.6 Bsw Module Entity Reference

An AUTOSAR Basic Software Module defines one or more “BSW module entities”.
A BSW Module Entity is a piece of code with a single entry point and an associate
set of attributes. In contrast to runnable entities which are exclusively scheduled by
the RTE only a subset of the BSW module entities, the BswSchedulableEntitys
and BswCalledEntitys are called by the Basic Software Scheduler. Others might
implement ’C’ function interfaces which are directly called by other BSW modules or
interrupts which are called by OS / interrupt controller.

A Basic Software Module Description provides definitions for each BswModuleEn-
tity within the BSW Module. The Basic Software Scheduler triggers the execution of
BswSchedulableEntitys and BswCalledEntitys in response to different Bsw-
Events.

The BswCalledEntitys are triggered by BswOperationInvokedEvents, the
BswSchedulableEntitys by BswScheduleEvents.

For BSW modules implemented using C or C++ the entry point of a BswSchedu-
lableEntity is implemented by a function with global scope defined within a BSW
Modules source code. The following sections consider the function signature and pro-
totype.

6.6.1 Signature

The definition of all BswSchedulableEntitys, whatever the BswScheduleEvent
that triggers their execution, follows the same basic form.

Purpose: Trigger a BswSchedulableEntity if the related BswSched-
uleEvent defined within the BswModuleDescription is raised.

Signature: [SWS_Rte_07282] d
FUNC(void, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
[IN SchM_ActivatingEvent_<name> <activation>])

c(SRS_BSW_00347, SRS_Rte_00211, SRS_Rte_00213,
SRS_Rte_00216, SRS_Rte_00238)

The usage of SchM_ActivatingEvent is optional and defined in
[SWS_Rte_08056].

For BswCalledEntitys the signature contains the parameters and return type. It can
be seen in [SWS_Rte_08765].

Purpose: Trigger a BswCalledEntity if the related BswOperationIn-
vokedEvent defined within the BswModuleDescription is raised.

Signature: [SWS_Rte_08765] d

735 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

FUNC(<returnType>, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
[IN|IN/OUT|OUT] <parameter_1>...
[IN|IN/OUT|OUT] <parameter_n>)

c(SRS_BSW_00347, SRS_Rte_00241, SRS_Rte_00243)

There is currently no possibility to obtain the activating BswOpera-
tionInvokedEvent of a BswCalledEntity.

Where here for both of them

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module

<name> is the substring after "<bsnp>_" of the BswModuleEntry shortName re-
ferred as implementedEntry. However if "<bsnp>_" is not the prefix of the related
BswModuleEntry shortName then <name> shall be the BswModuleEntry short-
Name.

<memclass> is the Compiler Abstraction Memory Class according
[SWS_Rte_06739] and [SWS_Rte_06740].

<returnType> is the return type defined in the SwServiceArg in the role re-
turnType of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. If no type is defined, the
<returnType> is of type void.

<parameter_x> are the arguments defined in the SwServiceArgs in the role
argument of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. For each argument the type
has to be give according to [SWS_Rte_08766].

The sub part in square brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528].

[SWS_Rte_08766] d The datatype of the argument is depending on SwServiceArgs.

For category of SwServiceArg of type TYPE_REFERENCE:
If the ImplementationDataType in the role implementationDataType of the
SwDataDefProps of the SwServiceArg resolves to a primitive and the direc-
tion of the SwServiceArg is IN, the datatype of the argument is defined by
the ImplementationDataType (possibly referred over a chain of Implementa-
tionDataTypes of category TYPE_REFERENCE) in the role implementation-
DataType of the SwDataDefProps of the SwServiceArg which represents the ar-
gument.

If the ImplementationDataType in the role implementationDataType of the
SwDataDefProps of the SwServiceArg resolves to a pointer type where the final
pointer target is a primitive or composite and the direction of the SwServiceArg

736 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

is IN, INOUT or OUT, the datatype of the argument is defined by the SwPointer-
TargetProps element referred by the ImplementationDataType of category
DATA_REFERENCE (possibly referred over a chain of ImplementationDataTypes
of category TYPE_REFERENCE).

For category of SwServiceArg of type DATA_REFERENCE:
If the SwPointerTargetProps in the role swPointerTargetProps of the Sw-
DataDefProps of the SwServiceArg resolves to a primitive or composite and the
direction of the SwServiceArg is IN, INOUT or OUT, the datatype of the argument
is defined by the SwPointerTargetProps in the SwDataDefProps of the SwSer-
viceArg which represents the argument (which may include resolving a chain of Im-
plementationDataTypes if the target category of the SwPointerTargetProps
is TYPE_REFERENCE).

For category of SwServiceArg of type FUNCTION_REFERENCE:
This case is not supported.

c(SRS_Rte_00243)

[SWS_Rte_CONSTR_09058] BswSchedulableEntity is not allowed to have ser-
vice arguments or return value d The Basic Software Scheduler requires that the
BswModuleEntry has no service arguments (unless SchM_ActivatingEvent is
enabled) and no return value. c()

[SWS_Rte_06739] d <memclass> shall be defined as
<snp>[_<vi>_<ai>]_<memClassSymbol> if a MemorySection.memClassSym-
bol and an associated MemorySection is defined and where

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module, and

<memClassSymbol> is the value of the attribute memClassSymbol the of the Mem-
orySection associated via executableEntity reference to the BswModuleEn-
tity implementing the related BswModuleEntry. c()

[SWS_Rte_06740] d <memclass> shall be defined as
<snp>[_<vi>_<ai>]_<sadm> if no MemorySection.memclassSymbol is
applicable (see [SWS_Rte_06739]) and where

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module, and

<sadm> is the shortName of the referred swAddrMethod. c()

737 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6.6.2 Entry Point Prototype

The entry point defined in the Basic Software Modules source must be compatible
with the called function when the BswSchedulableEntity or BswCalledEntity is
triggered by the Basic Software Scheduler and therefore the RTE generator is required
to emit a prototype for the function.

[SWS_Rte_04542] d The RTE generator shall emit an Entry Point Prototype
for each BswSchedulableEntitys implementedEntry in the Module Interlink
Header file. See chapter 6.3.2 according [SWS_Rte_07282]. c(SRS_Rte_00211,
SRS_Rte_00213, SRS_Rte_00216)

[SWS_Rte_04543] d The RTE generator shall emit an Entry Point Prototype for
each BswCalledEntitys implementedEntry in the Module Interlink Header file,
if the value of the attribute functionPrototypeEmitter is set to "RTE" . See
chapter 6.3.2 according [SWS_Rte_08765]. c(SRS_Rte_00211, SRS_Rte_00213,
SRS_Rte_00216)

[SWS_Rte_07195] d The RTE Generator shall wrap each BswSchedulableEntity’s
Entry Point Prototype in the Module Interlink Header with the Memory Mapping and
Compiler Abstraction macros.

1 #define <snp>[_<vi>_<ai>]_START_SEC_<sadm>
2 #include "<MemMap_filename.h>"
3

4 FUNC(void, <memclass>) <bsnp>[_<vi>_<ai>]_<name>
5 ([IN SchM_ActivatingEvent_<name> <activation>]);
6

7 #define <snp>[_<vi>_<ai>]_STOP_SEC_<sadm>
8 #include "<MemMap_filename.h>"

The RTE Generator shall wrap each BswCalledEntity’s Entry Point Prototype in the
Module Interlink Header with the Memory Mapping and Compiler Abstraction macros.

1 #define <snp>[_<vi>_<ai>]_START_SEC_<sadm>
2 #include "<MemMap_filename.h>"
3

4 FUNC(<returnType>, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
5 [IN|IN/OUT|OUT] <parameter_1> ... [IN|IN/OUT|OUT] <parameter_n>);
6

7 #define <snp>[_<vi>_<ai>]_STOP_SEC_<sadm>
8 #include "<MemMap_filename.h>"

Where here for both of them

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

738 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<name> is the substring after "<bsnp>_" of the BswModuleEntry shortName re-
ferred as implementedEntry. However if "<bsnp>_" is not the prefix of the related
BswModuleEntry shortName then <name> shall be the BswModuleEntry short-
Name, and

<returnType> is the return type defined in the SwServiceArg in the role re-
turnType of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. If no type is defined, the
<returnType> is of type void.

<parameter_x> are the arguments defined in the SwServiceArgs in the role
argument of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. For each argument the type
has to be give according to [SWS_Rte_08766].

<sadm> is the shortName of the referred swAddrMethod.

<memclass> is the Compiler Abstraction Memory Class according
[SWS_Rte_06739] and [SWS_Rte_06740]

<MemMap_filename.h> is the Applicable Memory Mapping Header File Name ac-
cording [SWS_Rte_07830], [SWS_Rte_07831] and [SWS_Rte_07832].

The sub part in square brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528].

The usage of SchM_ActivatingEvent is optional for BswSchedulableEntity
and defined in [SWS_Rte_08056]. It does currently not exist for BswCalledEntitys.

The Memory Mapping macros could wrap several Entry Point Prototype if these
referring the same swAddrMethod. If the BswSchedulableEntity or the
BswCalledEntity does not refer a swAddrMethod the <sadm> is set to CODE. c
(SRS_Rte_00148, SRS_Rte_00149, SRS_Rte_00238)

[SWS_Rte_07830] d The RTE Generator shall emit the Applicable Memory Mapping
Header File Name <MemMap_filename.h> as <Msn>[_<vi>_<ai>]_MemMap.h
if the BswImplementation does not contain a DependencyOnArtifact in the
role requiredArtifact where the DependencyOnArtifact.category is set to
MEMMAP. <Msn> is the shortName (case sensitive) of the BswModuleDescription.
c(SRS_Rte_00148)

[SWS_Rte_07831] d The RTE generator shall emit the Applicable Memory Map-
ping Header File Name <MemMap_filename.h> identical to the attribute value
requiredArtifact.artifactDescriptor.shortLabel if the BswImplementa-
tion does contain exactly one DependencyOnArtifact in the role requiredAr-
tifact where the DependencyOnArtifact.category is set to MEMMAP. c
(SRS_Rte_00148)

739 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07832] d The RTE Generator shall emit the Applicable Memory Map-
ping Header File Name <MemMap_filename.h> identical to the attribute value re-
quiredArtifact.artifactDescriptor.shortLabel of the DependencyOnAr-
tifact in the role requiredArtifact where the DependencyOnArtifact.cat-
egory is set to MEMMAP and which is associated with the SectionNamePrefix
implementedIn of the MemorySection associated to the BswModuleEntity. c
(SRS_Rte_00148)

Please note the example 6.2 of Entry Point Prototype.

[SWS_Rte_06533] d The RTE Generator shall wrap each Entry Point Prototype in
the Module Interlink Header file of a variant existent BswSchedulableEntity or
BswCalledEntity if the variability shall be implemented.

1 #if (<condition>)
2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint relevant for
the variant existence of the BswSchedulableEntity or BswCalledEntity (see
table 4.30), Entry Point Prototype is the code according an invariant Entry Point
Prototype (see also [SWS_Rte_07282], [SWS_Rte_04542]). c(SRS_Rte_00229)

6.6.3 Reentrancy

The BswSchedulableEntitys and BswCalledEntitys are declared within a BSW
Module. The Basic Software Module Scheduler ensures that concurrent activation of
the same BswSchedulableEntity or BswCalledEntity is only allowed if the im-
plemented entry points attribute "isReentrant" is set to "true" (see Section 4.2.6).

Consistency rule:

[SWS_Rte_07588] d The RTE Generator shall reject configurations where a
BswSchedulableEntity whose referenced BswModuleEntry in the role imple-
mentedEntry has its isReentrant attribute set to false, and this BswSchedu-
lableEntity is mapped to different tasks which can pre-empt each other. c
(SRS_Rte_00018)

6.6.4 Provide activating Bsw event

[SWS_Rte_08059] d If the provide activating Bsw event feature is enabled, the RTE
shall collect the activating Bsw events, which have the activationReasonRepre-
sentation reference defined, in the context of the OS task the executable entity
is mapped to in an activation vector at the corresponding bit position as defined in
[SWS_Rte_08058]. c(SRS_Rte_00238)

740 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08060] d If the provide activating Bsw event feature is enabled, the RTE
shall provide the collected activating Bsw events (activation vector) to the executable
entity API when the executable entity is "started". The activation vector shall be reset
immediately after it has been provided. c(SRS_Rte_00238)

Provision of the activating Bsw event is curerntly not availbale for BswCalledEntitys.

Since it is possible that there is a time gap between the activation and the execution
(start) of an executable entity the subsequent activations are summed up and provided
with the start of the executable entity.

Activations during the execution of an executable entity are collected for the next start
of that runnable entity.

6.7 Basic Software Scheduler Lifecycle API Reference

6.7.1 SchM_Init

Service name: SchM_Init
Syntax: void SchM_Init(

const SchM_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to configuration set in Variant Post-Build.
Parameters (inout): None
Parameters (out): None
Return value: None
Description: SchM_Init is intended to allocate and initialize system resources used by

the Basic Software Scheduler part of the RTE for the core on which it is
called.

Available via: SchM.h

Table 6.2: SchM_Init

SchM_Init is intended to allocate and initialize system resources used by the Basic
Software Scheduler part of the RTE for the core on which it is called.

[SWS_Rte_07270] d
void SchM_Init(const SchM_ConfigType * ConfigPtr)

c(SRS_BSW_00101, SRS_Rte_00116)

[SWS_Rte_07271] d The SchM_Init API is always created. c(SRS_BSW_00101)

[SWS_Rte_07273] d SchM_Init shall return within finite execution time – it must not
enter an infinite loop. c(SRS_BSW_00101)

SchM_Init may be implemented as a function or a macro.

741 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SchM_Init is declared in the lifecycle header file Rte_Main.h.

6.7.2 SchM_Start

Service name: SchM_Start
Syntax: void SchM_Start(

void
)

Service ID[hex]: 0x70
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Basic Software Scheduler initialized. Shall be called before BswM_Init().
Available via: SchM.h

Table 6.3: SchM_Start

SchM_Start is intended to initialize the Basic Software Scheduler. It shall be called
before BswM_Init().

[SWS_Rte_04546] d
void SchM_Start(void)

c(SRS_BSW_00101)

[SWS_Rte_04547] d The SchM_Start API is always created. c(SRS_BSW_00101)

[SWS_Rte_04548] d SchM_Start shall return within finite execution time – it must not
enter an infinite loop. c(SRS_BSW_00101)

SchM_Start may be implemented as a function or a macro.

SchM_Start is declared in the lifecycle header file Rte_Main.h.

6.7.3 SchM_StartTiming

Service name: SchM_StartTiming
Syntax: void SchM_StartTiming(

void
)

Service ID[hex]: 0x76
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None

742 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: Start periodical events for BSW/SWCs. SchM_Init() has to be called be-
fore.

Available via: SchM.h

Table 6.4: SchM_StartTiming

SchM_StartTiming starts the Basic Software Scheduler part of the RTE.

SchM_Start starts periodical events for BSW/SWCs. SchM_Init() has to be called
before.

[SWS_Rte_04549] d
void SchM_StartTiming(void)

c(SRS_BSW_00101)

[SWS_Rte_04550] d The SchM_StartTiming API is always created. c
(SRS_BSW_00101)

[SWS_Rte_04551] d SchM_StartTiming shall return within finite execution time – it
must not enter an infinite loop. c(SRS_BSW_00101)

SchM_StartTiming may be implemented as a function or a macro.

SchM_StartTiming is declared in the lifecycle header file Rte_Main.h.

[SWS_Rte_CONSTR_09055] SchM_Init, SchM_Start, SchM_StartTiming shall
be called only once d SchM_Init, SchM_Start, SchM_StartTiming shall be
called only once by the EcuStateManager on each core after the basic software mod-
ules required by the Basic Software Scheduler part of the RTE are initialized. c()

These modules include:

• OS

6.7.4 SchM_Deinit

Service name: SchM_Deinit
Syntax: void SchM_Deinit(

void
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: SchM_Deinit is used to finalize Basic Software Scheduler part of the RTE

of the core on which it is called.
This service releases all system resources allocated by the Basic Soft-
ware Scheduler part on that core.

743 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Available via: SchM.h

Table 6.5: SchM_Deinit

SchM_Deinit finalizes the Basic Software Scheduler part of the RTE on the core it is
called.

[SWS_Rte_07274] d
void SchM_Deinit(void)

c(SRS_BSW_00336)

[SWS_Rte_07275] d The SchM_Deinit API is always created. c(SRS_BSW_00336)

[SWS_Rte_CONSTR_09057] SchM_Deinit shall be called before shut down of
BSW d SchM_Deinit shall be called by the EcuStateManager before the basic soft-
ware modules required by Basic Software Scheduler part are shut down. c()

These modules include:

• OS

[SWS_Rte_CONSTR_09056] SchM_Deinit API may only be used after the was
RTE finalized d The SchM_Deinit API may only be used after the RTE finalized
(after termination of the Rte_Stop) c()

[SWS_Rte_07277] d SchM_Deinit shall return within finite execution time. c
(SRS_BSW_00336)

SchM_Deinit may be implemented as a function or a macro.

SchM_Deinit is declared in the lifecycle header file Rte_Main.h.

6.7.5 SchM_GetVersionInfo

Service name: SchM_GetVersionInfo
Syntax: void SchM_GetVersionInfo(

Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): versioninfo Pointer to the memory location holding the version

information of the module
Return value: None
Description: Returns the version information of the Basic Software Scheduler.
Available via: SchM.h

Table 6.6: SchM_GetVersionInfo

744 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07278] d
void SchM_GetVersionInfo(Std_VersionInfoType * versioninfo)

c(SRS_BSW_00407)

[SWS_Rte_07279] d The SchM_GetVersionInfo API is only created if
RteSchMVersionInfoApi is set to true. c(SRS_BSW_00407)

[SWS_Rte_07280] d SchM_GetVersionInfo shall return the version information of
the RTE module which includes the Basic Software Scheduler. The version information
includes:

• Module Id

• Vendor Id

• Vendor specific version numbers

c(SRS_BSW_00407)

[SWS_Rte_07281] d The parameter versioninfo of the SchM_GetVersionInfo
shall point to the memory location holding the version information of the Basic Software
Scheduler. c(SRS_BSW_00407)

SchM_GetVersionInfo may be implemented as a function or a macro.

SchM_GetVersionInfo is declared in the lifecycle header file Rte_Main.h.

The existence of the API SchM_GetVersionInfo depends on the parameter
RteSchMVersionInfoApi.

Vendor specific version numbers shall represent build version which depends from
the RTE generator version and the input configuration. It is not in the scope if this
specification to standardize the way how the version numbers are created in detail
because these are the vendor specific version numbers.

745 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7 RTE Implementation Plug-Ins Reference

Please note, that the requirements concerning RTE Implementation Plug-Ins in
this chapter are set to draft to support a simple revise of requirements in case of de-
fects. Nevertheless, all addressed concept elements were fully elaborated and incor-
porated in the AUTOSAR specifications.

It’s expected, that all draft requirements in this section will be set to valid in the next
minor release.

7.1 Introduction

For a standard RTE Generator, the possibilities to determine the system dynamics are
very limited (task priorities, internal OsResources ...). A real ECU SW will have more
constraints, e.g. tasks that only run in different system states, tasks that follow the
execution of other tasks (i.e. chains of tasks). Without this knowledge an RTE will on
one side use more protection of internal variables and on the other side perform more
data buffering than necessary. This will lead to higher CPU resource consumption than
necessary. AUTOSAR provides some ideas and requirements regarding buffering of
implicitly accessed data, but mostly leaves the optimization up to the RTE vendor. For
the RTE vendor, the buffer optimization is one of the most challenging jobs when im-
plementing an RTE Generator. And it does again not have all the knowledge about the
system dynamics nor about the optimization goals (AUTOSAR only provides optimiza-
tion switches MEMORY and RUNTIME). The idea of RTE Implementation Plug-
In is to move the jobs of protection and buffering optimizations from the RTE vendor
to some domain specific tool which has a more detailed knowledge about optimization
goals and system dynamics. The interface between the RTE and the domain specific
tooling will mostly be a C code interface. Further on in this document this domain
specific tooling with the RTE extending C-code will be called RTE Implementation
Plug-In.

7.1.1 RTE Implementation Plug-Ins in the AUTOSAR Architecture

From the AUTOSAR software layered architecture point of view the RTE Implemen-
tation Plug-Ins are a part of the RTE. This means the "Core" RTE provided by
the RTE Generator plus the RTE Implementation Plug-Ins implement the over-
all RTE. Nevertheless the interface between the "Core" RTE and the RTE Implemen-
tation Plug-Ins is standardized in order to support, that the RTE Generator and
the RTE Implementation Plug-Ins can be provided by different vendors.

746 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 7.1: Example of implicit communication via RTE Implementation Plug-In

The Figure 7.1 shows the principle of implicit communication implementation via
an RTE Implementation Plug-In. Based on the Software Component De-
scription the RTE provides the Rte_IRead API. This Rte_IRead API uses the
Rte_Rips_IWBufferRef API from the RTE Implementation Plug-In to get the
address of the implicit communication buffer Buf_Task1_dat1. The RTE
Implementation Plug-In provides the fill- and flush routines and the implicit
communication buffer instance. Via interface conventions it knows as well the
global copy Rte_dataInstance1 which is related to the Data Communication
Graph. This supports the creation of the according copy code for the fill- and flush
routines.

747 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2 Interface between RTE Implementation Plug-Ins and RTE

7.2.1 File Structure

The following subsection describes the content of the RTE Implementation Plug-
In specific files and the additional requirements on the standardized Header Files of
the RTE.

The shown file structure is the one relevant for Generation Phase. RTE Implemen-
tation Plug-Ins do not have any influence on the RTE Contract Phase or Basic
Software Scheduler Contract Phase.

The general coding rules mandate to have exactly one declaration for each C symbol
definition and that this declaration is visible to the definition as well as the users of the
C symbol. Furthermore the file structure represents only the idea and some kind of
best practice. The RTE as well as the RTE Implementation Plug-Ins are free to
adapt this structure to their needs. However, the essence of the interface between the
two has to be maintained. That is,

• which file of one domain (RTE or RTE Implementation Plug-In) exports
which declaration or definition into the other domain and

• which files (or better their contents) have to be expected to be visible in other files
at the same time (risk of double declarations, double inclusion protection taking
effect etc.).

The term ’export’ in that sense means that the exported definition or declaration shall
be visible in the file including the exporting header. It does not matter if that header
performs the declarations or definitions itself or if they are performed by another header
included into this one.

748 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 7.2: Include Structure of RTE Implementation Plug-Ins for RTE

749 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.1.1 RTE Global Buffer Declaration File

The RTE Global Buffer Declaration File makes all global copies of data in-
stantiated by the RTE visible to the RTE Implementation Plug-In Services
and the RTE Implementation Plug-In C-code. As the RTE Implementation
Plug-In only knows their name by the related RIPS FlatInstanceDescriptor,
it might be necessary to have an according mapping in case the resulting global
copy name differs from this one. The RTE therefore has to map the name derived
from the RIPS FlatInstanceDescriptor domain to the real C name implemented
by the RTE. An example of a RTE Global Buffer Declaration File containing
a plain declaration and a declaration with mapping can be seen below in Example 7.1.

Example 7.1

1 #ifndef RTE_BUFFERS_H
2 #define RTE_BUFFERS_H
3

4 #include "Rte_DataHandleType.h"
5 #include "Rte_Rips_myPlugin1_Buffers.h"
6 #include "Rte_Rips_myPlugin2_Buffers.h"
7

8 extern uint32 Rte_someInternalNameForData;
9

10 #define Rte_Rips_GlobalCopy_myMappedData Rte_someInternalNameForData
11

12 #endif /* RTE_BUFFERS_H */

[SWS_Rte_80000] DRAFT d The RTE Global Buffer Declaration File shall
have the name Rte_Buffers.h. c(SRS_Rte_00306)

[SWS_Rte_80001] DRAFT d The RTE Generator shall create the RTE Global
Buffer Declaration File when the RTE Implementation Plug-In mode is
enabled. c(SRS_Rte_00306)

[SWS_Rte_80002] DRAFT d The RTE Global Buffer Declaration File shall
include the RTE Data Handle Types Header File. c(SRS_Rte_00306)

[SWS_Rte_80003] DRAFT d The RTE Global Buffer Declaration File shall
include all RIPS Buffer Declaration Files of all participating RTE Implemen-
tation Plug-Ins. c(SRS_Rte_00306)

[SWS_Rte_80005] DRAFT d The RTE Global Buffer Declaration File shall
export the declarations of all global copies for implicit communication instantiated by
the RTE, where the Data Communication Graph is associated with a RTE Im-
plementation Plug-In. c(SRS_Rte_00306)

Please note: The data structures for queues inside an RTE are considered as specific
for each RTE implementation. Since there is never the use case to buffer queued com-
munication there is no need to make them accessible for the RTE Implementation
Plug-In code.

750 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80006] DRAFT d For each global copy of a Data Communica-
tion Graph associated to an RTE Implementation Plug-In and implemented
by the RTE where the C symbol is different to the shortName of the respective
RIPS FlatInstanceDescriptor prefixed by Rte_Rips_GlobalCopy_, the RTE
Global Buffer Declaration File shall export a mapping from the shortName
of the RIPS FlatInstanceDescriptor prefixed by Rte_Rips_GlobalCopy_ to
the according C symbol of the global copy. c(SRS_Rte_00306)

Example 7.2

1 #ifndef RTE_BUFFERS_H
2 #define RTE_BUFFERS_H
3

4 extern uint32 Rte_someInternalNameForData;
5

6 #define Rte_Rips_GlobalCopy_myMappedData Rte_someInternalNameForData
7

8 #endif /* RTE_BUFFERS_H */

[SWS_Rte_80007] DRAFT d The RTE shall be implemented in a way that the map-
pings resulting from [SWS_Rte_80006] shall not have any effect on the AUTOSAR
RTE code, specifically Rte.c, as they might cause unintended replacements there. In
particular this means that they shall not change the C symbol of the global copies. c
(SRS_Rte_00306)

Note: [SWS_Rte_80007] can be simply implemented by the fact that the RTE code
does not use any symbols starting with Rte_Rips_GlobalCopy_.

7.2.1.2 RIPS Buffer Declaration Files

The RIPS Buffer Declaration File makes all global copies of data instantiated
by the RTE Implementation Plug-In visible to the RTE.

[SWS_Rte_70000] DRAFT d The RIPS Buffer Declaration File shall have the
name Rte_Rips_<PlugIn>_Buffers.h, where <PlugIn> is the name of the re-
lated RTE Implementation Plug-In defined by the container RteRipsPlugin-
Props. c(SRS_Rte_00306)

[SWS_Rte_70001] DRAFT d The RTE Implementation Plug-In shall create the
RIPS Buffer Declaration File. c(SRS_Rte_00306)

Note: Each participating RTE Implementation Plug-In creates a separate RIPS
Buffer Declaration File.

[SWS_Rte_70002] DRAFT d The RIPS Buffer Declaration File shall in-
clude the RTE Data Handle Types Header File (Rte_DataHandleType.h). c
(SRS_Rte_00306)

751 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70003] DRAFT d The RIPS Buffer Declaration File shall export
the declarations of the implicit communication buffers for the RIPS rele-
vant data handled by this RTE Implementation Plug-In. c(SRS_Rte_00306,
SRS_Rte_00301)

[SWS_Rte_70004] DRAFT d The RIPS Buffer Declaration File shall export
the type definitions of the implicit communication buffers for RIPS rele-
vant data handled by this RTE Implementation Plug-In. c(SRS_Rte_00306,
SRS_Rte_00301)

7.2.1.3 RTE Implementation Plug-In Header File

[SWS_Rte_70005] DRAFT d The RTE Implementation Plug-In Header File
shall have the name Rte_Rips_<PlugIn>.h, where <PlugIn> is the name of the
related RTE Implementation Plug-In defined by the container RteRipsPlug-
inProps. c(SRS_Rte_00306)

[SWS_Rte_70006] DRAFT d The RTE Implementation Plug-In shall create the
RTE Implementation Plug-In Header File. c(SRS_Rte_00306)

Note: Each participating RTE Implementation Plug-In creates a separate RTE
Implementation Plug-In Header File.

[SWS_Rte_70007] DRAFT d The RTE Implementation Plug-In Header File
shall export the Rte_Rips_Enter and Rte_Rips_Exit Services related to
ExclusiveAreas used as runsInsideExclusiveArea. c(SRS_Rte_00306,
SRS_Rte_00302)

[SWS_Rte_70098] DRAFT d The RTE Implementation Plug-In Header File
shall export the Rte_Rips_EnterModeQueue and Rte_Rips_ExitModeQueue
Services related to mode machine instances and distributed shared mode
queues. c(SRS_Rte_00306, SRS_Rte_00310, SRS_Rte_00315)

[SWS_Rte_70029] DRAFT d The RTE Implementation Plug-In Header File
shall export the declarations of the lifecycle APIs of the RTE Implementation
Plug-In. c(SRS_Rte_00306)

Please note: The lifecycle APIs of RTE Implementation Plug-Ins are defined in
section 7.2.4.11.

[SWS_Rte_70046] DRAFT d The RTE Implementation Plug-In Header File
shall export the declarations of the Rte_Rips_FillFlushRoutines of the RTE Im-
plementation Plug-In. c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80026] DRAFT d The RTE shall include the RTE Implementation
Plug-In Header File where it needs the contained definitions and declarations.
c(SRS_Rte_00306)

752 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Note: Due to the relationship to the lifecycle API a reasonable include might be the
Rte.h file as shown in 7.2.

7.2.1.4 RIPS SWC-BSW-Instance Header File

[SWS_Rte_70031] DRAFT d The RIPS SWC-BSW-Instance Header File shall
be named Rte_Rips_<PlugIn>_<SwcBswI>.h, where <PlugIn> is the name of
the related RTE Implementation Plug-In defined by the container RteRip-
sPluginProps and <SwcBswI> is the SWC-BSW-Instance name according to
[SWS_Rte_70035] c(SRS_Rte_00306)

[SWS_Rte_70032] DRAFT d The RIPS SWC-BSW-Instance Header File shall
be generated by the RTE Implementation Plug-In for each Software Component
or BSW Module which either has

• an ExclusiveArea with enabled RTE Implementation Plug-In support
mapped to this RTE Implementation Plug-In (see [SWS_Rte_80024]) OR

• an access to a Communication Graph with enabled RTE Implementation
Plug-In support mapped to this RTE Implementation Plug-In OR

• an access to a mode machine instance with enabled RTE Implementa-
tion Plug-In support mapped to this RTE Implementation Plug-In OR

• an access to a mode machine instance belonging to a distributed
shared mode queue with enabled RTE Implementation Plug-In support
mapped to this RTE Implementation Plug-In.

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00301, SRS_Rte_00302,
SRS_Rte_00310, SRS_Rte_00312, SRS_Rte_00315)

[SWS_Rte_70033] DRAFT d The RIPS SWC-BSW-Instance Header File shall
include the RTE Global Buffer Declaration File. c(SRS_Rte_00306)

[SWS_Rte_70039] DRAFT d The RIPS SWC-BSW-Instance Header File shall
export the definitions of the

• Rte_Rips_Enter/Rte_Rips_Exit Services for ExclusiveAreas with a ca-
nEnterExclusiveArea association

• Rte_Rips_StartRead, Rte_Rips_StopRead, Rte_Rips_StartWrite,
and Rte_Rips_StopWrite Services for explicit access protection

• Rte_Rips_Read and Rte_Rips_Write Services for explicit data accesses

• Rte_Rips_IRead, Rte_Rips_IWrite, Rte_Rips_IRBufferRef, and
Rte_Rips_IWBufferRef Services for implicit accesses

• Rte_Rips_Invoke and Rte_Rips_ReturnResult for clients and trigger
sources

753 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

handled by this RTE Implementation Plug-In for this component instance / Basic
Software Module instance. c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00301,
SRS_Rte_00302, SRS_Rte_00310, SRS_Rte_00312, SRS_Rte_00315)

7.2.1.5 RTE Implementation Plug-In Implementation File

[SWS_Rte_70008] DRAFT d The RTE Implementation Plug-In shall name the
RTE Implementation Plug-In Implementation Files in a way that name
collisions with file names of AUTOSAR Basic Software Modules and Software Com-
ponents are avoided. c(SRS_Rte_00306)

Please note that the file structure of the RTE Implementation Plug-In is not
strictly standardized. Nevertheless [SWS_Rte_70009] defines a recommendation for
the case the RTE Implementation Plug-In needs only one source file. For sure
the given name pattern can also be extended to support more than one file, e.g. one
source file per ASIL level.

[SWS_Rte_70009] DRAFT d If the RTE Implementation Plug-In uses a single
source file, the RTE Implementation Plug-In Implementation File should
have the name Rte_Rips_<PlugIn>.c, where <PlugIn> is the name of the related
RTE Implementation Plug-In defined by the container RteRipsPluginProps.
c(SRS_Rte_00306)

[SWS_Rte_70010] DRAFT d The RTE Implementation Plug-In shall create the
RTE Implementation Plug-In Implementation Files. c(SRS_Rte_00306)

Note: Each participating RTE Implementation Plug-In creates a separate set of
RTE Implementation Plug-In Implementation Files.

[SWS_Rte_70011] DRAFT d The RTE Implementation Plug-In Implemen-
tation Files shall include the RTE Global Buffer Declaration File. c
(SRS_Rte_00306)

[SWS_Rte_70012] DRAFT d The RTE Implementation Plug-In Implementa-
tion Files shall include the RTE Implementation Plug-In Header File. c
(SRS_Rte_00306)

[SWS_Rte_70013] DRAFT d The RTE Implementation Plug-In Implemen-
tation Files shall contain the definition of the implicit communication
buffers for RIPS relevant data handled by this RIPS plug-in. c(SRS_Rte_00306,
SRS_Rte_00301)

The RIPS Implementation File shall contain the definition of the implicit commu-
nication buffers for RIPS relevant data handled by this RIPS plug-in, the imple-
mentation of the fill- and flush-Runnables and all further memory consuming C objects
that might be necessary by the RIPS implementation of this plug-in.

754 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.1.6 RTE Header File

This subsection describes the additional requirements on the RTE Header File of
the RTE when the RTE Implementation Plug-In mode is enabled.

[SWS_Rte_80008] DRAFT d The RTE Header File (Rte.h) shall include the RTE
Implementation Plug-In Header Files of all participating RTE Implemen-
tation Plug-Ins. c(SRS_Rte_00306)

7.2.1.7 Application Header File

This subsection describes the additional requirements on the Application Header
File of the RTE when the RTE Implementation Plug-In mode is enabled.

[SWS_Rte_80027] DRAFT d The Application Header File of a Software Com-
ponent shall include the RIPS SWC-BSW-Instance Header File of all RTE Im-
plementation Plug-Ins applicable for this component instance, if they exist (refer
to [SWS_Rte_70032]). c(SRS_Rte_00306)

7.2.1.8 Module Interlink Header

This subsection describes the additional requirements on the Module Interlink
Header of the Basic Software Scheduler when the RTE Implementation Plug-
In mode is enabled.

[SWS_Rte_80028] DRAFT d The Module Interlink Header of a BSW Module
shall include the RIPS SWC-BSW-Instance Header File of all RTE Implemen-
tation Plug-Ins applicable for this Basic Software Module instance, if they exist
(refer to [SWS_Rte_70032]). c(SRS_Rte_00306)

7.2.1.9 RTE Data Handle Types Header File

This subsection describes the additional requirements on the RTE Data Handle
Types Header File of the RTE when the RTE Implementation Plug-In mode
is enabled.

[SWS_Rte_80079] DRAFT d In case the RTE implements a global copy of some
RIPS relevant Data Communication Graphs data the RTE Data Handle Types
Header File shall contain a wrapper type definition for each global copy

typedef <type of global copy> Rte_Rips_GlobalCopy_<CGI>_Type;

where <CGI> is the name of the Communication Graph Instance defined by the
shortName of the RIPS FlatInstanceDescriptor referencing the Communica-
tion Graph. c(SRS_Rte_00306, SRS_Rte_00301, SRS_Rte_00302)

755 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

This wrapper type is intended for RTE Implementation Plug-Ins with type inde-
pendent buffering strategy. In this case the buffering decisions are driven by the timing
behavior and interference of readers and writers. For instance LET based buffering. In
this case the RTE Implementation Plug-Ins can omit the gathering of types from
the AUTOSAR model.

[SWS_Rte_80009] DRAFT d The RTE Data Handle Types Header File
(Rte_DataHandleType.h) shall include the RTE Types Header File indepen-
dent whether this is directly needed or not. c(SRS_Rte_00306)

7.2.2 API principles

7.2.2.1 API name pattern

The RTE Implementation Plug-In Services are defined according to the fol-
lowing principles.

The RTE APIs towards the Software Components or Basic Software Modules are de-
fined amongst the AUTOSAR Meta Model (e.g. providing an explicit write access to
a specific data element in a specific port of a SwComponentType). In contrast the
interface towards the RTE Implementation Plug-Ins is on one hand strictly use
case oriented resp. instance based. Use case oriented means that for the same use
case (e.g. starting the protection of an ExclusiveArea) which may exist in Software
Components or Basic Software Modules the same kind of RTE Implementation
Plug-In Service is defined and provided for use by the RTE code.

Instance based means that the name of a RTE Implementation Plug-In Ser-
vice reflects the specific activity on a specific entity in the ECU SW implemented by
a specific RTE Implementation Plug-In, e.g. determining the location in mem-
ory where data values from a communication graph can be read from for a specific
RunnableEntity of a specific Software Component Instance.

Except for the lifecycle APIs any RTE Implementation Plug-In Service is de-
fined according the following name scheme:

Rte_Rips_<PlugIn>_<useCase>_<SwcBswI>[_<ExE>]_<elementInstance>

[SWS_Rte_70034] DRAFT d <PlugIn> is the name of the related RTE Im-
plementation Plug-In defined by the container RteRipsPluginProps. c
(SRS_Rte_00306)

[SWS_Rte_70099] DRAFT d <useCase> is the name part which denotes the purpose
of the RTE Implementation Plug-In Service and is one of the following:

• IRead

• IWrite

• IRBufferRef

756 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• IWBufferRef

• StartRead

• StopRead

• StartWrite

• StopWrite

• Read

• Write

• Enter

• Exit

• EnterModeQueue

• ExitModeQueue

• Invoke

• ReturnResult

c(SRS_Rte_00306)

Further details are described in section 7.2.4.

[SWS_Rte_70035] DRAFT d <SwcBswI> SWC-BSW-Instance name is either the
shortName of the SwComponentPrototype (in the RootSwComposition of the
ECU Extract) or the BSW Module Instance Name according to [SWS_Rte_70036]. c
(SRS_Rte_00306)

[SWS_Rte_70036] DRAFT d The BSW Module Instance Name
<bsnp>[_<vi>_<ai>] is composed out of <bsnp> is the BSW Scheduler Name
Prefix according [SWS_Rte_07593] and [SWS_Rte_07594], <vi> is the vendorId of
the accessing BSW module, <ai> is the vendorApiInfix of the accessing BSW module.
c(SRS_Rte_00306)

[SWS_Rte_70037] DRAFT d <ExE> is the shortName of the ExecutableEntity
accessing an element instance. The name part <ExE> only exists in case the RTE
offers the ability to distinguish the accesses of different ExecutableEntitys. c
(SRS_Rte_00306)

[SWS_Rte_70038] DRAFT d <elementInstance> identifies the element to which
the access is provided. Since a specific use case is typically linked to a specific ele-
ment, following specific element instance name parts will be used:

• <CGI> is the name of the Communication Graph Instance defined by the
shortName of the RIPS FlatInstanceDescriptor referencing the Commu-
nication Graph.

• <ExclusiveArea> is the shortName of the ExclusiveArea.

757 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• <MMI> is the shortName of the RteModeMachineInstanceConfig or RteB-
swModeMachineInstanceConfig container.

• <DSMQ> is the shortName of the RteDistributedSharedModeQueue or
RteBswModeMachineInstanceConfig container.

c(SRS_Rte_00306)

7.2.2.2 Basic requirements on RTE Implementation Plug-In Service

The RTE Implementation Plug-In Services are intended to be used in the
RTE’s C-implementation. Hereby an important aspect is the fact that RTE APIs can
be implemented as C-functions and function like macros, see section 5.2.6.3. In case
of function like macros the RTE implementation uses very likely comma expressions to
return either the error code or a read return value. This requires that an RTE Imple-
mentation Plug-In Service can be used in such a comma expression.

[SWS_Rte_70030] DRAFT d The RTE Implementation Plug-In shall implement
every RTE Implementation Plug-In Service that it can be used in a comma
expression. c(SRS_Rte_00306)

7.2.2.3 Basic requirements on RTE Implementation

7.2.2.3.1 Macro API implementations

API implementations as function like macros can have strange side effects. A special
case is the nested call of APIs, e.g. an Rte_DRead as a parameter of an Rte_Write.
The user would naturally expect that the code of Rte_DRead is executed before en-
tering into the Rte_Write API. But since macros are just text replacements, this is
technically not the case. Instead, the Rte_DRead will be executed where the parame-
ter is used inside the Rte_Write. This can lead to various effects, such as undesired
nesting of (RTE or RTE Implementation Plug-Ins) protection code or multiple
executions of Rte_DRead with differing results. This has to be avoided.

[SWS_Rte_80025] DRAFT d The RTE shall implement its code in a way to be ro-
bust against the undesired nesting of passed as macro parameter into the criti-
cal sections protected by the call of RTE Implementation Plug-In Services,
e.g. Rte_Rips_StartRead, Rte_Rips_StopRead, Rte_Rips_StartWrite, and
Rte_Rips_StopWrite. c(SRS_Rte_00306, SRS_Rte_00314)

Note: This can be achieved by either using real functions, inline functions, or by as-
signing the macro argument to an temporary variable outside the critical section.

758 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.3 API Data Types

[SWS_Rte_70087] DRAFT d The RTE Implementation Plug-In shall determine
the <return> type according to the ImplementationDataType applicable for the
global copy. c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00301)

Please note, that <return> is only applicable for primitive types, e.g. uint8, float.

[SWS_Rte_70088] DRAFT d The RTE Implementation Plug-In shall deter-
mine the <rips_return_ref> type according to [SWS_Rte_80041]. Thereby
the <rips_return_ref> type is a pointer to the type of the global copy. c
(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00301)

In addition RTE Implementation Plug-In Services may use standard types or
RTE specific types, e.g. Rte_TransformerError. Those are not impacted by the
usage of an RTE Implementation Plug-In.

7.2.4 API Reference

7.2.4.1 Implicit buffer value access

7.2.4.1.1 Rte_Rips_IRead

Service name: Rte_Rips_<PlugIn>_IRead_<SwcBswI>_<ExE>_<CGI>
Syntax: <return> Rte_Rips_<PlugIn>_IRead_<SwcBswI>_<ExE>_<CG

I>(
void
)

Service ID[hex]: 0xE0
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: <return> returns the value of the implicitly read primitive data.
Description: Rte_Rips_IRead returns the value of the implicitly read primitive data.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.1: Rte_Rips_IRead

[SWS_Rte_70015] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_IRead Service for each VariableAccess of a
RunnableEntity in the role dataReadAccess and each VariableAccess in role
readLocalVariable to an implicitInterRunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

759 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• where the data instance is typed by a primitive data type

AND

• the data instance is a data element without status according to
[SWS_Rte_80041]

AND

• for the associated RTE Implementation Plug-In the RtePluginSup-
portsIReadIWrite is true.

c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80010] DRAFT d The RTE shall call Rte_Rips_IRead Service to implic-
itly read data if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• where the data instance is typed by a primitive data type

AND

• the data instance is a data element without status according to
[SWS_Rte_80041]

AND

• for the associated RTE Implementation Plug-In the RtePluginSup-
portsIReadIWrite is true.

c(SRS_Rte_00306, SRS_Rte_00301)

7.2.4.1.2 Rte_Rips_IWrite

Service name: Rte_Rips_<PlugIn>_IWrite_<SwcBswI>_<ExE>_<CGI>
Syntax: void Rte_Rips_<PlugIn>_IWrite_<SwcBswI>_<ExE>_<CGI>(

IN data
)

Service ID[hex]: 0xE1
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): data primitive data to write
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_IWrite writes the value of the implicitly written primitive data.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.2: Rte_Rips_IWrite

760 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70016] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_IWrite Service for each VariableAccess of a
RunnableEntity in the role dataWriteAccess and each VariableAccess in role
writtenLocalVariable to an implicitInterRunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• where the data instance is typed by a primitive data type

AND

• the data instance is a data element without status according to
[SWS_Rte_80041]

AND

• for the associated RTE Implementation Plug-In the RtePluginSup-
portsIReadIWrite is true.

c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80011] DRAFT d The RTE shall call Rte_Rips_IWrite Service to im-
plicitly write data if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• where the data instance is typed by a primitive data type

AND

• the data instance is a data element without status according to
[SWS_Rte_80041]

AND

• for the associated RTE Implementation Plug-In the RtePluginSup-
portsIReadIWrite is true.

c(SRS_Rte_00306, SRS_Rte_00301)

7.2.4.2 Implicit buffer address access

7.2.4.2.1 Rte_Rips_IRBufferRef

Service name: Rte_Rips_<PlugIn>_IRBufferRef_<SwcBswI>_<ExE>_<CGI>

761 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Syntax: <rips_return_ref> Rte_Rips_<PlugIn>_IRBufferRef_<Swc
BswI>_<ExE>_<CGI>(
void
)

Service ID[hex]: 0xE2
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: <rips_return_ref> Reference to the location in memory where the data

values and optionally status can be read.
Description: Rte_Rips_IRBufferRef returns a pointer to the location in memory where

the data value and status can be read. In case the SWC is provided as
source code and not multiple instantiable, this macro is not guaranteed
to resolve to a reference at compile time. It might also be resolved to a
function or expression.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.3: Rte_Rips_IRBufferRef

[SWS_Rte_70017] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_IRBufferRef Service for each VariableAccess of
a RunnableEntity in the role dataReadAccess and each VariableAccess in
role readLocalVariable to an implicitInterRunnableVariable if for the re-
lated Data Communication Graph the RTE Implementation Plug-In support
is enabled. c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80012] DRAFT d The RTE shall call Rte_Rips_IRBufferRef Service
to get the address of the memory from which the value and status of an implicitly
read data instance can be read. Thereby Rte_Rips_IRBufferRef shall only be
applied if the usage of Rte_Rips_IRead is not applicable. (See [SWS_Rte_80010]).
c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80013] DRAFT d The RTE shall initialize the related data handle for im-
plicit read only access in the CDS with the Rte_Rips_IRBufferRef if the implicit
data access needs to be implemented via a data handle in a data handles sec-
tion or an inter runnable variable handles section. c(SRS_Rte_00306,
SRS_Rte_00301)

See also [SWS_Rte_70108].

Please note: A read only implicit access is required in case the RunnableEntity
accesses an data element in an RPortPrototype or PRPortPrototype or the
RunnableEntity has exclusive read access to an implicitInterRunnable-
Variable.

7.2.4.2.2 Rte_Rips_IWBufferRef

762 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Service name: Rte_Rips_<PlugIn>_IWBufferRef_<SwcBswI>_<ExE>_<CGI>
Syntax: <rips_return_ref> Rte_Rips_<PlugIn>_IWBufferRef_<Swc

BswI>_<ExE>_<CGI>(
void
)

Service ID[hex]: 0xE3
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: <rips_return_ref> Reference to the location in memory where the data

values and optionally status can be written.
Description: Rte_Rips_IWBufferRef returns a pointer to the implicitly written data el-

ement. In case the SWC is provided as source code and not multiple
instantiable, this macro is not guaranteed to resolve to a reference at
compile time. It might also be resolved to a function or expression.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.4: Rte_Rips_IWBufferRef

[SWS_Rte_70018] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_IWBufferRef Service for each VariableAccess of a
RunnableEntity in the role dataWriteAccess and each VariableAccess in role
writtenLocalVariable to an implicitInterRunnableVariable if for the re-
lated Data Communication Graph the RTE Implementation Plug-In support
is enabled. c(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80014] DRAFT d The RTE shall call Rte_Rips_IWBufferRef Service
to get the address of the memory to which the value and status of an implicitly written
data instance can be written. Thereby Rte_Rips_IWBufferRef shall only be applied
if the usage of Rte_Rips_IWrite is not applicable. (See [SWS_Rte_80011]). c
(SRS_Rte_00306, SRS_Rte_00301)

[SWS_Rte_80015] DRAFT d The RTE shall initialize the related data handle for im-
plicit write or implicit read-write access in the CDS with the Rte_Rips_IWBufferRef
if the implicit data access needs to be implemented via a data handle in a data
handles section or an inter runnable variable handles section. c
(SRS_Rte_00306, SRS_Rte_00301)

See also [SWS_Rte_70108].

Please note: A read-write implicit access is required in case the RunnableEntity
accesses a data element in an PRPortPrototype or the RunnableEntity has read
and write access to an implicitInterRunnableVariable. For read-write implicit
access Rte_Rips_IWBufferRef Service applies as well.

763 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.4.3 Implict communication buffer Fill Flush Routines

7.2.4.3.1 Rte_Rips_FillFlushRoutine

Service name: <name of the Fill-Flush-Routine>
Syntax: void <name of the Fill-Flush-Routine>(

void
)

Service ID[hex]: 0xEF
Sync/Async: Synchronous
Reentrancy: Conditional Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Performs buffer fill and flush operations for implicit communication
Available via: Rte_Rips_<PlugIn>.h

Table 7.5: Rte_Rips_FillFlushRoutine

[SWS_Rte_70078] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_FillFlushRoutine Service for each configured
RteRipsPluginFillFlushRoutineFnc. c(SRS_Rte_00306, SRS_Rte_00301)

Further details about the RTE usage of Rte_Rips_FillFlushRoutine are de-
scribed in 7.3.4.7.1.

7.2.4.4 Explicit access protection

7.2.4.4.1 Rte_Rips_StartRead

Service name: Rte_Rips_<PlugIn>_StartRead_<SwcBswI>[_<ExE>]_<CGI>
Syntax: void Rte_Rips_<PlugIn>_StartRead_<SwcBswI>[_<ExE>]_<C

GI>(
void
)

Service ID[hex]: 0xE4
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_StartRead starts the protection for explicit read access.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.6: Rte_Rips_StartRead

764 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70019] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StartRead Service for each VariableDataProto-
type instance in an AbstractRequiredPortPrototype for which an Vari-
ableAccess of a RunnableEntity in the role dataReceivePointByArgument
or dataReceivePointByValue exists and

for each VariableAccess in role readLocalVariable to an explicitInter-
RunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70020] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StartRead Service for each BswVariableAccess of
a BswModuleEntity in the role dataReceivePoint if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

[SWS_Rte_80016] DRAFT d The RTE shall call Rte_Rips_StartRead at the po-
sition and instead of the RTE’s regular AUTOSAR get access protection action,
e.g. SuspendOsInterrupts() or GetResource(), if for the related Data Com-
munication Graph the RTE Implementation Plug-In support is enabled. c
(SRS_Rte_00306, SRS_Rte_00300)

7.2.4.4.2 Rte_Rips_StopRead

Service name: Rte_Rips_<PlugIn>_StopRead_<SwcBswI>[_<ExE>]_<CGI>
Syntax: void Rte_Rips_<PlugIn>_StopRead_<SwcBswI>[_<ExE>]_<CG

I>(
void
)

Service ID[hex]: 0xE5
Sync/Async: Synchronous

765 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_StopRead stops the protection for explicit read access
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.7: Rte_Rips_StopRead

[SWS_Rte_70021] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StopRead Service for each VariableDataPrototype
instance in an AbstractRequiredPortPrototype for which an VariableAccess
of a RunnableEntity in the role dataReceivePointByArgument or dataRe-
ceivePointByValue exists and

for each VariableAccess in role readLocalVariable to an explicitInter-
RunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70022] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StopRead Service for each BswVariableAccess of a
BswModuleEntity in the role dataSendPoint if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

[SWS_Rte_80017] DRAFT d The RTE shall call Rte_Rips_StopRead at the posi-
tion and instead of the RTE’s regular AUTOSAR release access protection action, e.g.
ResumeOsInterrupts() or ReleaseResource(), if for the related Data Com-
munication Graph the RTE Implementation Plug-In support is enabled. c
(SRS_Rte_00306, SRS_Rte_00300)

766 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.4.4.3 Rte_Rips_StartWrite

Service name: Rte_Rips_<PlugIn>_StartWrite_<SwcBswI>[_<ExE>]_<CGI>
Syntax: void Rte_Rips_<PlugIn>_StartWrite_<SwcBswI>[_<ExE>]_<

CGI>(
void
)

Service ID[hex]: 0xE6
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_StartWrite starts the protection for explicit write access.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.8: Rte_Rips_StartWrite

[SWS_Rte_70023] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StartWrite Service for each VariableDataPro-
totype instance in an AbstractProvidedPortPrototype for which an Vari-
ableAccess of a RunnableEntity in the role dataSendPoint exists

and for each VariableAccess in role writtenLocalVariable to an explicit-
InterRunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70024] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StartWrite Service for each BswVariableAccess of
a BswModuleEntity in the role dataSendPoint if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

767 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80018] DRAFT d The RTE shall call Rte_Rips_StartWrite at the
position and instead of the RTE’s regular AUTOSAR get access protection action,
e.g. SuspendOsInterrupts() or GetResource(), if for the related Data Com-
munication Graph the RTE Implementation Plug-In support is enabled. c
(SRS_Rte_00306, SRS_Rte_00300)

7.2.4.4.4 Rte_Rips_StopWrite

Service name: Rte_Rips_<PlugIn>_StopWrite_<SwcBswI>[_<ExE>]_<CGI>
Syntax: void Rte_Rips_<PlugIn>_StopWrite_<SwcBswI>[_<ExE>]_<C

GI>(
void
)

Service ID[hex]: 0xE7
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_StopWrite stops the protection for explicit write access.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.9: Rte_Rips_StopWrite

[SWS_Rte_70025] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StopWrite Service for each VariableDataProto-
type instance in an AbstractProvidedPortPrototype for which an Vari-
ableAccess of a RunnableEntity in the role dataSendPoint exists

and for each VariableAccess in role writtenLocalVariable to an explicit-
InterRunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70026] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_StopWrite Service for each BswVariableAccess of
a BswModuleEntity in the role dataSendPoint if

768 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

c(SRS_Rte_00306, SRS_Rte_00300)

[SWS_Rte_80019] DRAFT d The RTE shall call Rte_Rips_StopWrite at the posi-
tion and instead of the RTE’s regular AUTOSAR release access protection action, e.g.
ResumeOsInterrupts() or ReleaseResource(), if for the related Data Com-
munication Graph the RTE Implementation Plug-In support is enabled. c
(SRS_Rte_00306, SRS_Rte_00300)

7.2.4.5 Explicit data access services

7.2.4.5.1 Rte_Rips_Read

Service name: Rte_Rips_<PlugIn>_Read_<SwcBswI>[_<ExE>]_<CGI>
Syntax: Std_ReturnType Rte_Rips_<PlugIn>_Read_<SwcBswI>[_<Ex

E>]_<CGI>(
OUT <data>,
[Rte_TransformerError transformerError]
)

Service ID[hex]: 0xEA
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): <data> The OUT parameter <data> pass back the received

data.
transformerError The OUT parameter transformerError contains the

transformer error which occurred during execution
of the transformer chain.

Return value: Std_ReturnType The return value is used to indicate communication
errors.

Description: Rte_Rips_Read Performs an "explicit" read on a sender-receiver com-
munication data element.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.10: Rte_Rips_Read

[SWS_Rte_70050] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Read Service for each VariableDataPrototype in-
stance in an AbstractRequiredPortPrototype for which an VariableAccess
of a RunnableEntity in the role dataReceivePointByArgument or dataRe-
ceivePointByValue exists and

769 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

for each VariableAccess in role readLocalVariable to an explicitInter-
RunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

– for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN

OR

– a data transformation is configured according [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70051] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Read Service for each BswVariableAccess of a
BswModuleEntity in the role dataReceivePoint if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

[SWS_Rte_70052] DRAFT d The optional OUT parameter transformerError of
the Rte_Rips_Read service shall be generated according [SWS_Rte_08563]. c
(SRS_Rte_00306, SRS_Rte_00300)

The return value is used to indicate errors detected by the RTE Implementation
Plug-In during execution of the Rte_Rips_Read service call or errors detected by
the communication system.

• [SWS_Rte_70053] DRAFT d RTE_E_OK – data read successfully. c
(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00094)

• [SWS_Rte_70054] DRAFT d RTE_E_HARD_TRANSFORMER_ERROR – The return
value of one transformer in the transformer chain represented a hard transformer
error. c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00094, SRS_Rte_00091)

770 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_70055] DRAFT d RTE_E_SOFT_TRANSFORMER_ERROR – The re-
turn value of at least one transformer in the transformer chain was a soft er-
ror and no hard error occurred in the transformer chain. c(SRS_Rte_00306,
SRS_Rte_00300, SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70100] DRAFT d RTE_E_NO_DATA – (explicit non-blocking read) no
events were received and no other error occurred when the read was attempted.
c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00094)

• [SWS_Rte_70101] DRAFT d RTE_E_LOST_DATA – Indicates that some incom-
ing data has been lost due to an overflow of the receive queue or due to an error
of the underlying communication layers. This is not an error of the data returned
in the parameters. This Overlayed Error can be combined with any other
error. c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00107, SRS_Rte_00110,
SRS_Rte_00094)

[SWS_Rte_80065] DRAFT d The RTE shall call Rte_Rips_Read at the position and
instead of the RTE’s regular read access to the data, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

[SWS_Rte_80100] DRAFT d The RTE shall call Rte_Rips_Read at the position and
instead of the RTE’s regular access to the transformed data, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• a data transformation is configured according [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00300)

7.2.4.5.2 Rte_Rips_Write

Service name: Rte_Rips_<PlugIn>_Write_<SwcBswI>[_<ExE>]_<CGI>
Syntax: Std_ReturnType Rte_Rips_<PlugIn>_Write_<SwcBswI>[_<Ex

E>]_<CGI>(
IN <data>,
[Rte_TransformerError transformerError]
)

771 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Service ID[hex]: 0xEB
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): <data> The IN parameter <data> pass the received data.
Parameters (inout): None
Parameters (out): transformerError The OUT parameter transformerError contains the

transformer error which occurred during execution
of the transformer chain.

Return value: Std_ReturnType The return value is used to indicate communication
errors.

Description: Rte_Rips_Write Performs an "explicit" write on a sender-receiver com-
munication data element.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.11: Rte_Rips_Write

[SWS_Rte_70056] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Write Service for each VariableDataPrototype in-
stance in an AbstractProvidedPortPrototype for which an VariableAccess
of a RunnableEntity in the role dataSendPoint exists

and for each VariableAccess in role writtenLocalVariable to an explicit-
InterRunnableVariable if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

– for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

OR

– a data transformation is configured according [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

Please note: In case of protection of explicitInterRunnableVariables the
name part [_<ExE>] exists.

[SWS_Rte_70057] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Write Service for each BswVariableAccess of a
BswModuleEntity in the role dataSendPoint if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

772 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

[SWS_Rte_70058] DRAFT d The optional OUT parameter transformerError of
the Rte_Rips_Write service shall be generated according to [SWS_Rte_08574]. c
(SRS_Rte_00306, SRS_Rte_00300)

The return value is used to indicate errors detected by the RTE Implementation
Plug-In during execution of the Rte_Rips_Write service call or errors detected by
the communication system.

• [SWS_Rte_70059] DRAFT d RTE_E_OK – data written successfully. c
(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00094)

• [SWS_Rte_70060] DRAFT d RTE_E_HARD_TRANSFORMER_ERROR – The return
value of one transformer in the transformer chain represented a hard transformer
error. c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70061] DRAFT d RTE_E_SOFT_TRANSFORMER_ERROR – The re-
turn value of at least one transformer in the transformer chain was a soft er-
ror and no hard error occurred in the transformer chain. c(SRS_Rte_00306,
SRS_Rte_00300, SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70102] DRAFT d RTE_E_LIMIT – an ‘event’ has been discarded due
to a full queue by one of the ECU local receivers (intra ECU communication only).
c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00143)

[SWS_Rte_80066] DRAFT d The RTE shall call Rte_Rips_Write at the position and
instead of the RTE’s regular write access to the data, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

c(SRS_Rte_00306, SRS_Rte_00300, SRS_Rte_00303)

[SWS_Rte_80101] DRAFT d The RTE shall call Rte_Rips_Write at the position and
instead of the RTE’s regular access to the data transformer, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

773 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• a data transformation is configured according to [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00300)

7.2.4.6 ExclusiveArea protection

7.2.4.6.1 Rte_Rips_Enter

Service name: Rte_Rips_<PlugIn>_Enter_<SwcBswI>[_<Event>/_<ExE>]_<Exclusive
Area>

Syntax: void Rte_Rips_<PlugIn>_Enter_<SwcBswI>[_<Event>/_<Ex
E>]_<ExclusiveArea>(
void
)

Service ID[hex]: 0xE8
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_Enter starts the protection of an ExclusiveArea.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h or Rte_Rips_<PlugIn>.h

Table 7.12: Rte_Rips_Enter

[SWS_Rte_70027] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Enter Service for all following cases:

• for each RTEEvent with a startOnEvent to RunnableEntity with a
runsInsideExclusiveArea association with the name parts <SwcBswI>,
<Event>, and <ExclusiveArea>

• for each BswEvent with a startsOnEvent to BswModuleEntity with a
runsInsideExclusiveArea association with the name parts <SwcBswI>,
<Event>, and <ExclusiveArea>

• for each ExecutableEntity with a canEnterExclusiveArea asso-
ciation if the ExclusiveArea’s SwcExclusiveAreaPolicy/BswExclu-
siveAreaPolicy.apiPrinciple is set to perExecutable with the name
parts <SwcBswI>, <ExE>, and <ExclusiveArea>

• for each ExclusiveArea referenced by a canEnterExclusiveArea as-
sociation if the ExclusiveArea’s SwcExclusiveAreaPolicy/BswExclu-
siveAreaPolicy.apiPrinciple is set to common with the name parts
<SwcBswI> and <ExclusiveArea>

if the RTE Implementation Plug-In support is enabled for the related Exclu-
siveArea. c(SRS_Rte_00302, SRS_Rte_00306, SRS_Rte_00304)

774 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80020] DRAFT d The RTE shall call Rte_Rips_Enter at the position
and instead of the RTE’s regular ExclusiveArea implementation mechanism, if the
associated RTE Implementation Plug-In support is enabled for the related
ExclusiveArea. c(SRS_Rte_00302, SRS_Rte_00306, SRS_Rte_00304)

For more details see section 7.3.5.

7.2.4.6.2 Rte_Rips_Exit

Service name: Rte_Rips_<PlugIn>_Exit_<SwcBswI>[_<Event>/_<ExE>]_<Exclusive
Area>

Syntax: void Rte_Rips_<PlugIn>_Exit_<SwcBswI>[_<Event>/_<Ex
E>]_<ExclusiveArea>(
void
)

Service ID[hex]: 0xE9
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_Exit stops the protection of an ExclusiveArea.
Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h or Rte_Rips_<PlugIn>.h

Table 7.13: Rte_Rips_Exit

[SWS_Rte_70028] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Exit Service for all following cases:

• for each RTEEvent with a startOnEvent to RunnableEntity with a
runsInsideExclusiveArea association with the name parts <SwcBswI>,
<Event>, and <ExclusiveArea>

• for each BswEvent with a startsOnEvent to BswModuleEntity with a
runsInsideExclusiveArea association with the name parts <SwcBswI>,
<Event>, and <ExclusiveArea>

• for each ExecutableEntity with a canEnterExclusiveArea asso-
ciation if the ExclusiveArea’s SwcExclusiveAreaPolicy/BswExclu-
siveAreaPolicy.apiPrinciple is set to perExecutable with the name
parts <SwcBswI>, <ExE>, and <ExclusiveArea>

• for each ExclusiveArea referenced by a canEnterExclusiveArea as-
sociation if the ExclusiveArea’s SwcExclusiveAreaPolicy/BswExclu-
siveAreaPolicy.apiPrinciple is set to common with the name parts
<SwcBswI> and <ExclusiveArea>

c(SRS_Rte_00302, SRS_Rte_00306, SRS_Rte_00304)

775 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80021] DRAFT d The RTE shall call Rte_Rips_Exit at the position and
instead of the RTE’s regular ExclusiveArea implementation mechanism, if the as-
sociated RTE Implementation Plug-In support is enabled for the related Ex-
clusiveArea. c(SRS_Rte_00302, SRS_Rte_00306, SRS_Rte_00304)

For more details see section 7.3.5.

7.2.4.7 Mode queue protection functions

7.2.4.7.1 Rte_Rips_EnterModeQueue

Service name: Rte_Rips_<PlugIn>_EnterModeQueue_<MMI/DSMQ>
Syntax: void Rte_Rips_<PlugIn>_EnterModeQueue_<MMI/DSMQ>(

void
)

Service ID[hex]: 0xF4
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_EnterModeQueue starts the protection for enqueue, dequeue,

and read operations in a mode machine instance or distributed shared
mode queue.

Available via: Rte_Rips_<PlugIn>.h

Table 7.14: Rte_Rips_EnterModeQueue

[SWS_Rte_70096] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_EnterModeQueue Service if the RTE Implementa-
tion Plug-In support is enabled for the related mode machine instance or
distributed shared mode queue . c(SRS_Rte_00315)

[SWS_Rte_80080] DRAFT d The RTE shall call Rte_Rips_EnterModeQueue at the
position and instead of the RTE’s regular AUTOSAR get access protection action for
the mode queue, e.g. SuspendOsInterrupts() or GetResource(), if for the re-
lated mode machine instance or distributed shared mode queue the RTE
Implementation Plug-In support is enabled. c(SRS_Rte_00315)

7.2.4.7.2 Rte_Rips_ExitModeQueue

Service name: Rte_Rips_<PlugIn>_ExitModeQueue_<MMI/DSMQ>
Syntax: void Rte_Rips_<PlugIn>_ExitModeQueue_<MMI/DSMQ>(

void
)

Service ID[hex]: 0xF5
Sync/Async: Synchronous

776 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_ExitModeQueue stops the protection for enqueue, dequeue,

and read operations in a mode machine instance or distributed shared
mode queue.

Available via: Rte_Rips_<PlugIn>.h

Table 7.15: Rte_Rips_ExitModeQueue

[SWS_Rte_70097] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_ExitModeQueue Service if the RTE Implementation
Plug-In support is enabled for the related mode machine instance or dis-
tributed shared mode queue . c(SRS_Rte_00315)

[SWS_Rte_80081] DRAFT d The RTE shall call Rte_Rips_ExitModeQueue at the
position and instead of the RTE’s regular AUTOSAR release access protection ac-
tion, e.g. ResumeOsInterrupts() or ReleaseResource(), if for the related mode
machine instance or distributed shared mode queue the RTE Implemen-
tation Plug-In support is enabled. c(SRS_Rte_00315)

7.2.4.8 Distributed Shared Mode Queue schedule synchronization functions

[SWS_Rte_91102] d

Name: Rte_DsmqStatusType
Type: uint8
Range: RTE_DSMQ_ENQUEUED_FIRS

T
0x01 mode switch notification is en-

queued into an empty distributed
shared mode queue

RTE_DSMQ_ENQUEUED_NOT_
FIRST

0x02 mode switch notification is en-
queued into a non empty dis-
tributed shared mode queue

RTE_DSMQ_ENQUEUE_FAILE
D

0x03 enqueue operation into a non
empty distributed shared mode
queue failed

RTE_DSMQ_DEQUEUED_LAST 0x04 last mode switch notification
was enqueued from distributed
shared mode queue

RTE_DSMQ_DEQUEUED_NOT_
LAST

0x05 mode switch notification was en-
queued from distributed shared
mode queue, further mode
switch notifications are in the
queue

Description: Status of the enqueue operation on a distributed shared mode queue
Available
via:

Rte_Type.h

Table 7.16: Rte_DsmqStatusType

777 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

c()

[SWS_Rte_80085] DRAFT d The RTE shall define the Rte_DsmqStatusType and
the belonging literals in the Rte_Type.h file. c(SRS_Rte_00315)

7.2.4.8.1 Rte_Rips_DsmqSwitch

Service name: Rte_Rips_<PlugIn>_DsmqSwitch_<BswSwcI>_<MMI>
Syntax: void Rte_Rips_<PlugIn>_DsmqSwitch_<BswSwcI>_<MMI>(

Rte_DsmqStatusType dsmqstatus,
uint32 previousmode,
uint32 nextmode
)

Service ID[hex]: 0xF6
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): dsmqstatus Status of the enqueue operation

previousmode The value of the ModeDeclaration of the mode being
left

nextmode The value of the ModeDeclaration of the mode being
entered

Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_DsmqSwitch notifies the RTE Implementation Plug-In about

an enqueue operation in a distributed shared mode queue.
Available via: Rte_Rips_<PlugIn>.h

Table 7.17: Rte_Rips_DsmqSwitch

[SWS_Rte_70103] DRAFT d The RTE Implementation Plug-In assigned to the
distributed shared mode queue shall provide the Rte_Rips_DsmqSwitch
Service for each mode machine instance belonging to this distributed
shared mode queue. c(SRS_Rte_00315)

7.2.4.8.2 Rte_Rips_DsmqTransitionStart

Service name: Rte_Rips_<PlugIn>_DsmqTransitionStart_<BswSwcI>_<MMI>
Syntax: void Rte_Rips_<PlugIn>_DsmqTransitionStart_<BswSwcI>

_<MMI>(
uint32 previousmode,
uint32 nextmode
)

Service ID[hex]: 0xF7
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): previousmode The value of the ModeDeclaration of the mode being

left

778 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

nextmode The value of the ModeDeclaration of the mode being
entered

Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_DsmqTransitionStart notifies the RTE Implementation Plug-In

about the start of a specific mode transition in a DSMQ transition OsTask
Available via: Rte_Rips_<PlugIn>.h

Table 7.18: Rte_Rips_DsmqTransitionStart

[SWS_Rte_70104] DRAFT d The RTE Implementation Plug-In as-
signed to the distributed shared mode queue shall provide the
Rte_Rips_DsmqTransitionStart Service for each mode machine instance
belonging to this distributed shared mode queue. c(SRS_Rte_00315)

7.2.4.8.3 Rte_Rips_DsmqTransitionSync

Service name: Rte_Rips_<PlugIn>_DsmqTransitionSync_<DsmqOsTask>
Syntax: boolean Rte_Rips_<PlugIn>_DsmqTransitionSync_<DsmqOs

Task>(
void
)

Service ID[hex]: 0xF8
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: boolean The return value is used to release the dequeue op-

eration on the distributed shared mode queue
Description: DsmqTransitionSync synchronizes (when necessary) the end of mode

transition in the DSMQ transition OsTask and releases the dequeue oper-
ation on the distributed shared mode queue for the last DSMQ transition
OsTask which quits this synchronization point.

Available via: Rte_Rips_<PlugIn>.h

Table 7.19: Rte_Rips_DsmqTransitionSync

[SWS_Rte_70105] DRAFT d The RTE Implementation Plug-In as-
signed to the distributed shared mode queue shall provide the
Rte_Rips_DsmqTransitionSync Service for each DSMQ transition OsTask
belonging to this distributed shared mode queue. c(SRS_Rte_00315)

7.2.4.8.4 Rte_Rips_DsmqTransitionEnd

Service name: Rte_Rips_<PlugIn>_DsmqTransitionEnd_<BswSwcI>_<MMI>

779 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Syntax: void Rte_Rips_<PlugIn>_DsmqTransitionEnd_<BswSwcI>_<M
MI>(
Rte_DsmqStatusType dsmqstatus,
uint32 previousmode,
uint32 nextmode
)

Service ID[hex]: 0xF9
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): dsmqstatus Status of the enqueue operation

previousmode The value of the ModeDeclaration of the mode being
left

nextmode The value of the ModeDeclaration of the mode being
entered

Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_DsmqTransitionEnd notifies the RTE Implementation Plug-In

about the end of a specific mode transition in a DSMQ transition OsTask
Available via: Rte_Rips_<PlugIn>.h

Table 7.20: Rte_Rips_DsmqTransitionEnd

[SWS_Rte_70106] DRAFT d The RTE Implementation Plug-In as-
signed to the distributed shared mode queue shall provide the
Rte_Rips_DsmqTransitionEnd Service for each mode machine instance
belonging to this distributed shared mode queue. c(SRS_Rte_00315)

7.2.4.9 Invocation functions for Transformers

7.2.4.9.1 Rte_Rips_Invoke

Service name: Rte_Rips_<PlugIn>_Invoke_<SwcBswI>_<CGI>
Syntax: Std_ReturnType Rte_Rips_<PlugIn>_Invoke_<SwcBswI>_<CG

I>(
[IN|IN/OUT|OUT] <data_1>,
[IN|IN/OUT|OUT] ...,
[IN|IN/OUT|OUT] <data_n>,
[Rte_TransformerError transformerError]
)

Service ID[hex]: 0xEC
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): <data_1> The Rte_Rips_Invoke API includes zero or more IN,

IN/OUT and OUT parameters according SWS_Rte_
01102 and none in case of triggers

Parameters (inout): ... The Rte_Rips_Invoke API includes zero or more IN,
IN/OUT and OUT parameters according SWS_Rte_
01102 and none in case of triggers

780 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Parameters (out): <data_n> The Rte_Rips_Invoke API includes zero or more IN,
IN/OUT and OUT parameters according SWS_Rte_
01102 and none in case of triggers

transformerError The OUT parameter transformerError contains the
transformer error which occurred during execution
of the transformer chain.

Return value: Std_ReturnType The return value is used to indicate communication
errors.

Description: Rte_Rips_Invoke Performs a transformer invocation for clients or trigger
sources.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

Table 7.21: Rte_Rips_Invoke

[SWS_Rte_70062] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Invoke Service for each operation instance in an Ab-
stractRequiredPortPrototype of a Atomic Software Component if

• for the related Client Server Communication Graph the RTE Imple-
mentation Plug-In support is enabled

AND

• a transformation is configured according [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00304, SRS_Rte_00312)

[SWS_Rte_70063] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Invoke Service for each trigger instance in an Ab-
stractProvidedPortPrototype of a Atomic Software Component if

• for the related Trigger Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00304, SRS_Rte_00312)

[SWS_Rte_70064] DRAFT d The optional OUT parameter transformerError of
the Rte_Rips_Invoke service shall be generated according to [SWS_Rte_08566]. c
(SRS_Rte_00306, SRS_Rte_00312)

The return value is used to indicate errors detected by the RTE Implementation
Plug-In during execution of the Rte_Rips_Invoke service call or errors detected
by the communication system.

• [SWS_Rte_70065] DRAFT d RTE_E_OK – The API call completed successfully
and the invoked server did not return an error. c(SRS_Rte_00094)

781 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• [SWS_Rte_70066] DRAFT d RTE_E_TRANSFORMER_LIMIT – The RTE Im-
plementation Plug-In is not able to allocate the buffer needed to transform
the data. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70067] DRAFT d RTE_E_HARD_TRANSFORMER_ERROR – The return
value of one transformer in the transformer chain represented a hard transformer
error. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70068] DRAFT d RTE_E_SOFT_TRANSFORMER_ERROR – The re-
turn value of at least one transformer in the transformer chain was a soft er-
ror and no hard error occurred in the transformer chain. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_70069] DRAFT d RTE_E_COM_STOPPED – the RTE Implementa-
tion Plug-In could not perform the operation because the communication
service is currently not available. c(SRS_Rte_00094, SRS_Rte_00091)

[SWS_Rte_80071] DRAFT d The RTE shall call Rte_Rips_Invoke at the po-
sition and instead of the RTE’s regular transformer invocation, if for the related
Client Server Communication Graph or Trigger Communication Graph
the RTE Implementation Plug-In support is enabled. c(SRS_Rte_00306,
SRS_Rte_00304, SRS_Rte_00312)

7.2.4.9.2 Rte_Rips_ReturnResult

Service name: Rte_Rips_<PlugIn>_ReturnResult_<SwcBswI>_<CGI>
Syntax: Std_ReturnType Rte_Rips_<PlugIn>_ReturnResult_<SwcBsw

I>_<CGI>(
[IN/OUT|OUT] <param_1>,
[IN/OUT|OUT] <param_n>,
[Rte_TransformerError transformerError]
)

Service ID[hex]: 0xED
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): <param_1> The Rte_Rips_ReturnResult API includes zero or

more IN/OUT and OUT parameters according
SWS_Rte_01111.

Parameters (out): <param_n> The Rte_Rips_ReturnResult API includes zero or
more IN/OUT and OUT parameters according
SWS_Rte_01111.

transformerError The OUT parameter transformerError contains the
transformer error which occurred during execution
of the transformer chain.

Return value: Std_ReturnType The return value is used to indicate communication
errors

Description: Rte_Rips_ReturnResult Performs a transformer invocation for clients to
get the server results.

Available via: Rte_Rips_<PlugIn>_<SwcBswI>.h

782 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Table 7.22: Rte_Rips_ReturnResult

[SWS_Rte_70070] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_ReturnResult Service for each operation instance
in an AbstractRequiredPortPrototype of a Atomic Software Component if

• for the related Client Server Communication Graph the RTE Imple-
mentation Plug-In support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794] or
[SWS_Rte_08105].

c(SRS_Rte_00306, SRS_Rte_00304, SRS_Rte_00312)

[SWS_Rte_70071] DRAFT d The optional OUT parameter transformerError
of the Rte_Rips_ReturnResult service shall be generated according to
[SWS_Rte_08567]. c(SRS_Rte_00306, SRS_Rte_00304, SRS_Rte_00312)

The return value is used to indicate errors detected by the RTE Implementation
Plug-In during execution of the Rte_Rips_ReturnResult service call or errors
detected by the communication system:

• [SWS_Rte_70072] DRAFT d RTE_E_OK – The API call completed successfully
and the invoked server did not return an error. c(SRS_Rte_00094)

• [SWS_Rte_70073] DRAFT d RTE_E_TRANSFORMER_LIMIT – The RTE Im-
plementation Plug-In is not able to allocate the buffer needed to transform
the data. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70074] DRAFT d RTE_E_HARD_TRANSFORMER_ERROR – The return
value of one transformer in the transformer chain represented a hard transformer
error. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_70075] DRAFT d RTE_E_SOFT_TRANSFORMER_ERROR – The re-
turn value of at least one transformer in the transformer chain was a soft er-
ror and no hard error occurred in the transformer chain. c(SRS_Rte_00094,
SRS_Rte_00091)

• [SWS_Rte_70076] DRAFT d RTE_E_COM_STOPPED – the RTE Implementa-
tion Plug-In could not perform the operation because the communication
service is currently not available. c(SRS_Rte_00094, SRS_Rte_00091)

[SWS_Rte_80072] DRAFT d The RTE shall call Rte_Rips_ReturnResult at
the position and instead of the RTE’s regular transformer invocation for transfor-
mation of the server results, if for the related Client Server Communication
Graph the RTE Implementation Plug-In support is enabled. c(SRS_Rte_00306,
SRS_Rte_00304, SRS_Rte_00312)

783 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.2.4.9.3 Rte_Rips_InvocationHandler

Service name: <name of the Invocation Handler>
Syntax: void <name of the Invocation Handler>(

void
)

Service ID[hex]: 0xEE
Sync/Async: Synchronous
Reentrancy: Conditional Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Performs invocation of server runnables and triggered runnables via a

transformer.
Available via: Rte_Rips_<PlugIn>.h

Table 7.23: Rte_Rips_InvocationHandler

[SWS_Rte_70077] DRAFT d The associated RTE Implementation Plug-
In shall provide the Rte_Rips_InvocationHandler Service for each config-
ured RteRipsInvocationHandlerFnc. c(SRS_Rte_00306, SRS_Rte_00304,
SRS_Rte_00312)

Further details about the RTE usage of Rte_Rips_InvocationHandler are de-
scribed in 7.3.8.4.

7.2.4.10 Signal notifications for transformer

7.2.4.10.1 Rte_Rips_NotifyRxAck

Service name: Rte_Rips_<PlugIn>_NotifyRxAck_<CGI>
Syntax: void Rte_Rips_<PlugIn>_NotifyRxAck_<CGI>(

void
)

Service ID[hex]: 0xFA
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_NotifyRxAck notifies the RTE Implementation Plug-In that the

signal used for the Data Communication Graph requiring transformation
is ready for reception

Available via: Rte_Rips_<PlugIn>.h

Table 7.24: Rte_Rips_NotifyRxAck

784 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70110] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_NotifyRxAck Service for each

• dataElement instance in an AbstractRequiredPortPrototype of a
Atomic Software Component

• operation instance in an PortPrototype of a Atomic Software Compo-
nent

• trigger instance in an AbstractRequiredPortPrototype of a Atomic
Software Component

if

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according [SWS_Rte_08794].

c(SRS_Rte_00300, SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80106] DRAFT d The RTE Generator shall call all
Rte_Rips_NotifyRxAck Services from the Rte_COMCbk_<sn> or
Rte_COMCbk_<sg> callback respectively for Communication Graphs where

• Rx signals are configured

AND

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00312)

7.2.4.10.2 Rte_Rips_NotifyRxTOut

Service name: Rte_Rips_<PlugIn>_NotifyRxTOut_<CGI>
Syntax: void Rte_Rips_<PlugIn>_NotifyRxTOut_<CGI>(

void
)

Service ID[hex]: 0xFB
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None

785 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description: Rte_Rips_NotifyRxTOut notifies the RTE Implementation Plug-In that for
the signal used for the Data Communication Graph requiring transforma-
tion the aliveTimeout has expired.

Available via: Rte_Rips_<PlugIn>.h

Table 7.25: Rte_Rips_NotifyRxTOut

[SWS_Rte_70111] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_NotifyRxTOut Service for each

• dataElement instance in an AbstractRequiredPortPrototype of a
Atomic Software Component

• operation instance in an PortPrototype of a Atomic Software Compo-
nent

• trigger instance in an AbstractRequiredPortPrototype of a Atomic
Software Component

if

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00300, SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80107] DRAFT d The RTE Generator shall call all
Rte_Rips_NotifyRxTOut Services from the Rte_COMCbkRxTOut_<sn> or
Rte_COMCbkRxTOut_<sg> callback respectively for Communication Graphs
where

• Rx signals are configured

AND

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00312)

7.2.4.10.3 Rte_Rips_NotifyTxAck

Service name: Rte_Rips_<PlugIn>_NotifyTxAck_<CGI>

786 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Syntax: void Rte_Rips_<PlugIn>_NotifyTxAck_<CGI>(
void
)

Service ID[hex]: 0xFC
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_NotifyTxAck notifies the Rte Implementation Plug-In that the

signal used for the Data Communication Graph requiring transformation
is already handed to the PDU router.

Available via: Rte_Rips_<PlugIn>.h

Table 7.26: Rte_Rips_NotifyTxAck

[SWS_Rte_70112] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_NotifyTxAck Service for each

• dataElement instance in an AbstractProvidedPortPrototype of a
Atomic Software Component

• operation instance in an PortPrototype of a Atomic Software Compo-
nent

• trigger instance in an AbstractProvidedPortPrototype of a Atomic
Software Component

if

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00300, SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80108] DRAFT d The RTE Generator shall call all
Rte_Rips_NotifyTxAck Services from the Rte_COMCbkTAck_<sn> or
Rte_COMCbkTAck_<sg> callback respectively for Communication Graphs
where

• Tx signals are configured

AND

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

787 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00312)

7.2.4.10.4 Rte_Rips_NotifyTxErr

Service name: Rte_Rips_<PlugIn>_NotifyTxErr_<CGI>
Syntax: void Rte_Rips_<PlugIn>_NotifyTxErr_<CGI>(

void
)

Service ID[hex]: 0xFD
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_NotifyTxErr notifies the RTE Implementation Plug-In that for

the signal used for the Data Communication Graph requiring transfor-
mation an error occurred when the signal was handed over to the PDU
router.

Available via: Rte_Rips_<PlugIn>.h

Table 7.27: Rte_Rips_NotifyTxErr

[SWS_Rte_70113] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_NotifyTxErr Service for each

• dataElement instance in an AbstractProvidedPortPrototype of a
Atomic Software Component

• operation instance in an PortPrototype of a Atomic Software Compo-
nent

• trigger instance in an AbstractProvidedPortPrototype of a Atomic
Software Component

if

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00300, SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80109] DRAFT d The RTE Generator shall call all
Rte_Rips_NotifyTxErr Services from the Rte_COMCbkTErr_<sn> or
Rte_COMCbkTErr_<sg> callback respectively for Communication Graphs
where

788 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• Tx signals are configured

AND

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00312)

7.2.4.10.5 Rte_Rips_NotifyTxTOut

Service name: Rte_Rips_<PlugIn>_NotifyTxTOut_<CGI>
Syntax: void Rte_Rips_<PlugIn>_NotifyTxTOut_<CGI>(

void
)

Service ID[hex]: 0xFE
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_NotifyTxTOut notifies the RTE Implementation Plug-In that for

signal used for the Data Communication Graph requiring transformation
the timeout of TransmissionAcknowledgementRequest for sending the
signal has expired.

Available via: Rte_Rips_<PlugIn>.h

Table 7.28: Rte_Rips_NotifyTxTOut

[SWS_Rte_70114] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_NotifyTxTOut Service for each

• dataElement instance in an AbstractProvidedPortPrototype of a
Atomic Software Component

• operation instance in an PortPrototype of a Atomic Software Compo-
nent

• trigger instance in an AbstractProvidedPortPrototype of a Atomic
Software Component

if

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

789 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00300, SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80110] DRAFT d The RTE Generator shall call all
Rte_Rips_NotifyTxTOut Services from the Rte_COMCbkTOut_<sn> or
Rte_COMCbkTOut_<sg> callback respectively for Communication Graphs
where

• Tx signals are configured

AND

• for the related Communication Graph the RTE Implementation Plug-In
support is enabled

AND

• a transformation is configured according to [SWS_Rte_08794].

c(SRS_Rte_00312)

7.2.4.11 RTE Implementation Plug-In Lifecycle API

RTE Implementation Plug-Ins might need initialization in the same way the RTE
might need it. Consequently, there will be init/deinit and start/stop APIs, which the RTE
has to call. As the RTE’s lifecycle APIs will be called on every core, also the RTE
Implementation Plug-In’s lifecycle APIs will do so.

[SWS_Rte_70047] DRAFT d The RTE Implementation Plug-In shall al-
ways provide the Lifecycle APIs Rte_Rips_SchM_Init, Rte_Rips_Rte_Start,
Rte_Rips_Rte_Stop, and Rte_Rips_SchM_Deinit. c(SRS_BSW_00101,
SRS_BSW_00336, SRS_Rte_00306, SRS_Rte_00304)

[SWS_Rte_80055] DRAFT d The RTE shall call the Lifecycle APIs of all participating
RTE Implementation Plug-Ins in the order given by index of the RteRipsPlug-
inConfigurationRefs. c(SRS_BSW_00101, SRS_BSW_00336, SRS_Rte_00306,
SRS_Rte_00304)

7.2.4.11.1 Rte_Rips_SchM_Init

Service name: Rte_Rips_<PlugIn>_SchM_Init
Syntax: void Rte_Rips_<PlugIn>_SchM_Init(

void
)

Service ID[hex]: 0xF0
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None

790 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_SchM_Init initializes those RTE Implementation Plug-In parts

which are relevant for the SchM related operations.
Available via: Rte_Rips_<PlugIn>.h

Table 7.29: Rte_Rips_SchM_Init

[SWS_Rte_80051] DRAFT d The RTE shall call the init functions
Rte_Rips_SchM_Init of all participating RTE Implementation Plug-Ins
in SchM_Init. c(SRS_BSW_00101, SRS_Rte_00306, SRS_Rte_00304)

7.2.4.11.2 Rte_Rips_Rte_Start

Service name: Rte_Rips_<PlugIn>_Rte_Start
Syntax: void Rte_Rips_<PlugIn>_Rte_Start(

void
)

Service ID[hex]: 0xF1
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_Rte_Start initializes those RTE Implementation Plug-In parts

which are relevant for the RTE related operation.
Available via: Rte_Rips_<PlugIn>.h

Table 7.30: Rte_Rips_Rte_Start

[SWS_Rte_80052] DRAFT d The RTE shall call the init functions
Rte_Rips_Rte_Start of all participating RTE Implementation Plug-Ins
in Rte_Start, after the variable initializations have been performed, but before the
execution of any RunnableEntity (e.g. on-entry ExecutableEntitys). c
(SRS_BSW_00101, SRS_Rte_00306, SRS_Rte_00304)

7.2.4.11.3 Rte_Rips_Rte_Stop

Service name: Rte_Rips_<PlugIn>_Rte_Stop
Syntax: void Rte_Rips_<PlugIn>_Rte_Stop(

void
)

Service ID[hex]: 0xF2
Sync/Async: Synchronous
Reentrancy: Non Reentrant

791 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_Rte_Stop deinitializes those RTE Implementation Plug-In

parts which are relevant for the RTE related operation.
Available via: Rte_Rips_<PlugIn>.h

Table 7.31: Rte_Rips_Rte_Stop

[SWS_Rte_80053] DRAFT d The RTE shall call the stop functions
Rte_Rips_Rte_Stop of all participating RTE Implementation Plug-Ins in
Rte_Stop. c(SRS_BSW_00336, SRS_Rte_00306, SRS_Rte_00304)

7.2.4.11.4 Rte_Rips_SchM_Deinit

Service name: Rte_Rips_SchM_Deinit
Syntax: void Rte_Rips_SchM_Deinit(

void
)

Service ID[hex]: 0xF3
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: Rte_Rips_SchM_Deinit deinitializes those RTE Implementation Plug-In

parts which are relevant for the SchM related operations.
Available via: Rte_Rips_<PlugIn>.h

Table 7.32: Rte_Rips_SchM_Deinit

[SWS_Rte_80054] DRAFT d The RTE shall call the deinit functions
Rte_Rips_SchM_Deinit of all participating RTE Implementation Plug-Ins in
SchM_Deinit. c(SRS_BSW_00336, SRS_Rte_00306, SRS_Rte_00304)

7.3 RTE Implementation Plug-Ins Functional Specification

7.3.1 Specializations of AtomicSwComponentTypes

The AUTOSAR Metamodel defines several specializations of AtomicSwComponent-
Types in order to indicate the architectural meaning of such an software component in
the AUTOSAR Layered Software Architecture, e.g. an ApplicationSwComponent-
Type or an EcuAbstractionSwComponentType. In the context of RTE Imple-
mentation Plug-Ins all specializations of AtomicSwComponentTypes except for

792 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the NvBlockSwComponentType require identical support with respect to protection of
port based communication and are just called in the following chapter Atomic Soft-
ware Component.

7.3.2 Interaction with VFB Tracing

RTE Implementation Plug-In Service opening and closing some protection
mechanisms is required to always be called as close as possible to the protected code
in order to keep the lock-times low. This especially means that VFB Tracing hooks shall
enclose the related RIPS hooks and not vice versa.

[SWS_Rte_80078] DRAFT d The RTE shall call RTE Implementation Plug-In
protection macros closer to the "to be protected" code than the related VFB Tracing
hooks. c(SRS_Rte_00306)

Please note that [SWS_Rte_80078] applies in particular for Rte_Rips_StartRead,
Rte_Rips_StopRead, Rte_Rips_StartWrite, and Rte_Rips_StopWrite ser-
vices.

Example 7.3

1 uint64 Rte_DRead_myComponent_myRPort1_myExplicitLargePrimitveData(void)
2 {
3 uint64 rtn;
4 Rte_DReadHook_myComponent_myRPort1_myExplicitLargePrimitveData_Start

();
5 Rte_Rips_myPlugin_StartRead_myComponent_myLargePrimitveData1();
6 rtn = Rte_Rips_GlobalCopy_myLargePrimitveData1.value;
7 Rte_Rips_myPlugin_StopRead_myComponent_myLargePrimitveData1();
8 Rte_DReadHook_myComponent_myRPort1_myExplicitLargePrimitveData_Return

();
9 return rtn;

10 }

7.3.3 Validation Strategy for RTE Implementation Plug-Ins

7.3.3.1 Graduated Validation Strategy

7.3.3.2 Validation Implication w.r.t. Exclusive Areas

Implementing ExclusiveAreas with the means of RTE Implementation Plug-
Ins can optimize the ECU software when very selective measures are taken to protect
a particular ExclusiveArea. In addition it is easier to ensure the consistency of the
ExclusiveArea implementations with the protections applied in RTE APIs using RTE
Implementation Plug-Ins.

793 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Nevertheless this kind of optimization cannot overcome the general limitations stated
in A.14. Especially since the current capability of RTE Implementation Plug-
Ins does not include blocking APIs. Further on the consistent handling of Exclu-
siveAreas APIs by the software component or Basic Software Module’s implementa-
tion is still required. The following requirements and constraints are still applicable:

• [SWS_Rte_07524]

• [SWS_Rte_07005]

• [SWS_Rte_02741]

• [SWS_Rte_02740]

• [SWS_Rte_02744]

• [SWS_Rte_CONSTR_09028]

• [SWS_Rte_CONSTR_09029]

• [SWS_Rte_CONSTR_09046]

• [SWS_Rte_CONSTR_09047]

7.3.3.3 Validation Implication w.r.t. Event To Task Mapping

In general, which kind of direct function calls an RTE Generator supports is a property
of the RTE Generator. But an important use case of the utilization of RTE Implemen-
tation Plug-Ins is the resource optimized scheduling and implementation of data
consistency mechanisms in complex scenarios. Therefore it is beneficial if an RTE
Generator supports additionally the ExecutableEntity activation via direct function
calls in additional scenarios as the already standardized ones, see [SWS_Rte_06798],
[SWS_Rte_07409], [SWS_Rte_07173], [SWS_Rte_07214], [SWS_Rte_07224], and
[SWS_Rte_07554].

[SWS_Rte_80029] DRAFT d The RTE and Basic Software Scheduler should support
the activation of ExecutableEntity via direct function call for

• DataReceivedEvents

• DataReceiveErrorEvents,

• DataWriteCompletedEvents,

• DataSendCompletedEvents

• OperationInvokedEvents where the client uses SynchronousServer-
CallPoints as well as AsynchronousServerCallPoints

• AsynchronousServerCallReturnsEvents where the server’s Opera-
tionInvokedEvent is not mapped to a OsTask.

794 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

when the support for RTE Implementation Plug-Ins is globally enabled
(RteRipsSupport = true) c(SRS_Rte_00305)

[SWS_Rte_CONSTR_80013] DRAFT dRestrictions on direct function call configu-
rations in the scope of RTE Implementation Plug-Ins If an RTE Generator
supports an activation of ExecutableEntitys via direct function call listed in
[SWS_Rte_80029] only when the support for RTE Implementation Plug-Ins is
enabled the input configuration needs to fulfill following condition:

• all Communication Graphs, ExclusiveAreas and mode machine in-
stances accessed by the to-be-activated ExecutableEntity are assigned
to RTE Implementation Plug-Inss

AND

• the to-be-activated ExecutableEntity do not in turn activate RTEEvents or
BswEvents which are mapped to OsTasks.

c(SRS_Rte_00305)

Please note: The activation of OsTasks is still a duty of the RTE.
[SWS_Rte_CONSTR_80011] shall ensure, that the RTE Generator is not forced to
implement OS interacting code in a context which can only occur in an RTE Imple-
mentation Plug-Ins specific configuration.

When utilizing RTE Implementation Plug-Ins the RTE Generator is not longer
able to validate the overall scenario. This means the RTE Generator can only validate,
if the activation of an ExecutableEntity at the configured position in the OsTask
or via direct function call can be supported by the RTE Generator. But it can not
finally judge whether the utilized RTE Implementation Plug-Ins can support the
requested functionality (e.g an implicit communication) in the resulting call context(s).

But the specific validation whether the implementation of the data consistency mecha-
nism or ExclusiveAreas implementations is possible is the task of the utilized RTE
Implementation Plug-Ins.

[SWS_Rte_70040] DRAFT d The RTE Implementation Plug-Ins tool shall vali-
date whether the requested functionality can be implemented with the given Event To
Task Mapping. c(SRS_Rte_00305)

[SWS_Rte_80030] DRAFT d The RTE Generator shall restrict its applied validation
on the input configuration w.r.t Event To Task Mapping and the resulting call tree to
the aspects concerning the RTE code generation, when the support for RTE Im-
plementation Plug-Ins is globally enabled (RteRipsSupport and all Commu-
nication Graphs, ExclusiveAreas, and mode machine instances accessed
by the to-be-activated ExecutableEntity are assigned to RTE Implementation
Plug-Ins. c(SRS_Rte_00305)

For instance:

According [SWS_Rte_07007] the RTE generator would reject configurations where a
RunnableEntity with implicit access gets potentially concurrently invoked. When

795 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

configuring such a component the RTE Generator would be required to create an im-
plicit buffering which depends on the current invocation context of the RunnableEn-
tity and this is not foreseen in chapter 4.3.1.5.1.

Now when applying RTE Implementation Plug-Ins according
[SWS_Rte_80030] the validation scope of the RTE Generator is reduced to the
scope of the RTE, which just ensures, that the triggering of the RunnableEntity
can be implemented by the RTE Generator. If the implicit buffering strategy can
deal with the dynamic side conditions - like a potential concurrent invocation - shall
be checked by the RTE Implementation Plug-Ins handling a specific Data
Communication Graph accessed by this RunnableEntity with implicit access.

7.3.4 Data Communication

7.3.4.1 Enable RTE Implementation Plug-In support for communication graphs

According Document [8] a Data Communication Graph gets assigned to an RTE
Implementation Plug-In with a FlatInstanceDescriptor that points on one
hand to the instance of a VariableDataPrototype and on the other hand points
via FlatInstanceDescriptor.rtePluginProps.associatedRtePlugin to the
container RteRipsPluginProps.

[SWS_Rte_80031] DRAFT d The RTE Generator shall enable the RTE Imple-
mentation Plug-In support for a Data Communication Graph, if a FlatIn-
stanceDescriptor with rtePluginProps references the Data Communication
Graph . c(SRS_Rte_00300, SRS_Rte_00301)

In the later document this specific FlatInstanceDescriptor is called RIPS
FlatInstanceDescriptor.

[SWS_Rte_70042] DRAFT d The associated RTE Implementation Plug-In
shall implement the required implicit communication buffering and data protection for
the related Data Communication Graphs. c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_80032] DRAFT d The RTE Generator shall treat RIPS FlatIn-
stanceDescriptors as regular AUTOSAR FlatInstanceDescriptors, inde-
pendent of their special meaning for RTE Implementation Plug-In support. c
(SRS_Rte_00300, SRS_Rte_00301)

Besides the RTE Implementation Plug-In related special meaning, the RIPS
FlatInstanceDescriptors keep their AUTOSAR meaning. This especially means
that also RIPS FlatInstanceDescriptors can lead to entries in the McSupport-
Data as described in section 4.2.8.4. This has the intended side effect that the globally
unique names used for RTE Implementation Plug-In can be kept identical to the
names visible in a MCD tool.

Examples of Data Communication Graphs are given in figures 7.3 and 7.4.

796 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.4.2 Details on RIPS FlatInstanceDescriptors for Data Communica-
tion Graphs

Since a Data Communication Graph - in case of port based communication
- is typically composed out of various PortPrototypes, DataPrototypes in
PortInterfaces, and AssemblySwConnectors in theory such a RIPS FlatIn-
stanceDescriptor could point to different locations in the Data Communication
Graph . To harmonize the interface between the RTE Generator and the RTE Im-
plementation Plug-In tools [SWS_Rte_CONSTR_80002] regulates the creation
of RIPS FlatInstanceDescriptors for Rte Implementation Plug-Ins.

[SWS_Rte_CONSTR_80002] DRAFT dValid instance reference targets of Rte Im-
plementation Plug-Ins The RIPS FlatInstanceDescriptors for a Data
Communication Graph shall reference the data instances according table 7.33 c
(SRS_Rte_00300, SRS_Rte_00301)

Data Com-
munication
Graph involves
NvBlock-
SwComponent

Conversion Communication
multiplicity

RIPS FlatInstanceDescriptors

No No 1:n
VariableDataPrototype instance in
the AbstractProvidedPortPrototype

No No n:1
VariableDataPrototype instance in
the RPortPrototype

No No n:m where n > 1
and m > 1

VariableDataPrototype instance in
any of the PRPortPrototypes

Yes No n:m where n >=
1 and m >= 1

VariableDataPrototype instance in
the AbstractProvidedPortPrototype
at the NvBlockSwComponent

No Yes 1:n

VariableDataPrototype instance in
the AbstractProvidedPortPrototype

AND one per different representation of
VariableDataPrototype instance in
the RPortPrototype

No Yes n:1

VariableDataPrototype instance in
the AbstractRequiredPortPrototype

AND one per different representation of
VariableDataPrototype instance in
the PPortPrototype

5

797 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4

Yes Yes where n >= 1
and m >= 1

VariableDataPrototype instance in
the AbstractProvidedPortPrototype
at the NvBlockSwComponent

AND one per different representation of
VariableDataPrototype instance in
the PortPrototype

Table 7.33: Reference targets of RIPS FlatInstanceDescriptors

In case of conversion several RIPS FlatInstanceDescriptors are required to
define the interface name spaces for the individual different representations of data
and/or data status. Nevertheless it is not possible that the different representations get
handled by different RTE Implementation Plug-Ins.

[SWS_Rte_CONSTR_80003] DRAFT dA Data Communication Graph is han-
dled by at most one RTE Implementation Plug-In In the case that a Data
Communication Graph is referenced by several RIPS FlatInstanceDescrip-
tors all those RIPS FlatInstanceDescriptors shall reference via FlatIn-
stanceDescriptor.rtePluginProps.associatedRtePlugin the identical
RteRipsPluginProps container. c(SRS_Rte_00300, SRS_Rte_00301)

798 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 7.3: Data Communication Graph with conversion

The figure 7.3 illustrates an example for a Data Communication Graph with data
conversion. Thereby it shall be assumed, that the dataElements data given in two
different SenderReceiverInterfaces are typed by ApplicationDataTypes de-
scribing a different resolution (not shown in the figure).

The RIPS FlatInstanceDescriptor dataVers1 assigns the blue part of the
Data Communication Graph for the ports of the Atomic Software Compo-
nents SWCA, SWCB, and SWCC to the RTE Implementation Plug-In. The RIPS

799 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

FlatInstanceDescriptor dataVers2 assigns the green part of the Data Com-
munication Graph - with the converted representation of data - for the Atomic
Software Components SWCD and SWCE to the RTE Implementation Plug-In.

As demanded by [SWS_Rte_CONSTR_80003] both parts of the Data Commu-
nication Graph are assigned to the same RTE Implementation Plug-In
myPlugIn.

The RIPS FlatInstanceDescriptor is referencing the targets as demanded by
[SWS_Rte_CONSTR_80002].

Please note that the RIPS FlatInstanceDescriptor dataVers2 is applicable for
all ports of the Atomic Software Components accessing the Data Communica-
tion Graph on the basis of the dataElement data in SenderReceiverInter-
face DataVers2.

Further details about conversion are described in section 7.3.4.4

7.3.4.3 Data Communication Graphs involving NvBlockSwComponents

In the special case of non volatile data the RIPS FlatInstanceDescriptor will ref-
erence the AbstractProvidedPortPrototype of the NvBlockSwComponent. As
the protection and buffering always has to consider the complete Data Communica-
tion Graph and this Data Communication Graph in this case not only includes
the direction from the data element of the ramBlock to the consuming software com-
ponent, but also from the producing software component to the data element in the
ramBlock, this single RIPS FlatInstanceDescriptor also affects the latter con-
nection.

[SWS_Rte_80033] DRAFT d The RTE Generator and the RTE Implementation
Plug-In shall consider all VariableDataPrototype instances in PortProto-
types of Atomic Software Components which are connected to VariableDat-
aPrototype instances in PortPrototypes of the NvBlockSwComponent which in
turn are mapped together with the same NvBlockDataMapping to an element of the
ramBlock as belonging to the same Data Communication Graph. Additionally the
mapped element of the ramBlock belongs to this Data Communication Graph. c
(SRS_Rte_00300, SRS_Rte_00301)

800 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 7.4: Data Communication Graph involving a NvBlockSwComponent

The figure 7.4 illustrates an example for a Data Communication Graph involv-
ing a NvBlockSwComponent. Thereby the RIPS FlatInstanceDescriptor
MyNvData1 is referencing the p-port ppNvDat1 of the NvBlockSwComponent
myNvBlockSwc. This enables the RTE Implementation Plug-In also for the
partial Data Communication Graph from the p-port ppNvDat1 of the Atomic
Software Component myComponent to the r-port rpNvDat1 of the NvBlock-
SwComponent. The shortName of this FlatInstanceDescriptor defines the
name of the RTE Implementation Plug-In Services for this, not explicitly
marked Data Communication Graph.

Due to the structure nature of the ramBlock it is possible, that different Data Commu-
nication Graphs overlay within the same ramBlock. There exist valid use cases
for such configurations, since it can be required to write (and optionally also read) the
whole ramBlock or a larger sub-structure of it via one port whereas the single data
elements are provided in distinct p-ports.

[SWS_Rte_80103] DRAFT d The RTE Generator shall support the overlay of Data
Communication Graphs in ramBlocks. c(SRS_Rte_00300, SRS_Rte_00301)

801 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Figure 7.5: Overlay of Data Communication Graphs in a ramBlock

The figure 7.5 illustrates an example for the overlay of Data Communication
Graphs in a ramBlock. In this example the Data Communication Graph
AllNvData gets written by the Atomic Software Component myComponent via
the p-port ppNvAllData. Further on Data Communication Graph AllNvData
overlays the Data Communication Graphs MyNvData1 and MyNvData2 which
are sub-elements of the ramBlock.

802 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.4.4 Handling of Communication Status and Conversion with RTE Implemen-
tation Plug-Ins

In general compatibility of PortInterfaces and PortInterface mapping rules are not
affected by the usage of RTE Implementation Plug-In. But as a consequence,
besides the buffering or access protection there are some operations the RTE has to
perform on the data. These are the online conversion of data, range checks, and status
calculations and updates.

Although these are basically RTE internal operations not having any relation to RTE
Implementation Plug-Ins, the RTE still needs to know when and where (in terms
of memory address) it can perform these operations. Remember that the RTE will not
know the buffering decision for the individual data and therefore e.g. also does not
know whether to operate on the global or local copy of this data. So there is a need for
an agreement between RTE and RTE Implementation Plug-In on this. The first
important point to note is that in this sense status calculations of data are treated just
as online conversions, although they do not affect the value of the data itself.

For instance such a status conversion occurs when in a Data Communication
Graph software components request different settings in ReceiverComSpec at-
tributes, which would lead to a different status value for the individual software compo-
nents.

[SWS_Rte_80034] DRAFT d The RTE Generator shall handle a conversion between
different VariableDataPrototype instances in PortPrototypes inside a Data
Communication Graph if either the data values can differ for the individual Atomic
Software Components or if the status belonging to the data can differ for the indi-
vidual Atomic Software Components as defined in table 7.34. c(SRS_Rte_00300,
SRS_Rte_00301)

PRPortPrototype (1) PPortPrototype (2) RPortPrototype (3) Status Conversion

None None None no
None None Receiver Status no
None Sender Status None no

None Sender Status Receiver Status Yes (1,2 -> 3)

Sender Status None None no

Sender Status None Receiver Status Yes (1,2 -> 3)

Sender Status Sender Status None no

Sender Status Sender Status Receiver Status Yes (1,2 -> 3)

Receiver Status None None no
Receiver Status None Receiver Status No
Receiver Status Sender Status None Yes (2 -> 1,3)

Receiver Status Sender Status Receiver Status Yes (2 -> 1,3)

Sender Status

Receiver Status
None None no

5

803 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Sender Status

Receiver Status
None Receiver Status No

Sender Status

Receiver Status
Sender Status None Yes (2 -> 1,3)

Sender Status

Receiver Status
Sender Status Receiver Status Yes (2 -> 1,3)

Table 7.34: Status Conversion between the provide and the require ports

The existence of the Sender Status and Receiver Status depends on the configuration
of the communication features in a Data Communication Graph . The enabling of
communication features is controlled by the SenderComSpec, ReceiverComSpec,
and the InvalidationPolicy.

[SWS_Rte_80035] DRAFT d The RTE Generator and the RTE Implementation
Plug-In consider the Sender Status as required, if

• InvalidationPolicy.handleInvalid is not set to dontInvalidate

AND/OR

• SenderComSpec.handleOutOfRange is not set to none

AND/OR

• SenderComSpec.transmissionAcknowledge is defined

c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_80036] DRAFT d The RTE Generator and the RTE Implementation
Plug-In consider the Receiver Status as required, if

• InvalidationPolicy.handleInvalid is not set to dontInvalidate

AND/OR

• ReceiverComSpec.handleOutOfRange is not set to none

AND/OR

• NonqueuedReceiverComSpec.aliveTimeout is set to a value greater than
zero

AND/OR

• NonqueuedReceiverComSpec.handleNeverReceived is set to TRUE

AND/OR

• NonqueuedReceiverComSpec.enableUpdate is set to TRUE

AND/OR

804 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• NonqueuedReceiverComSpec.handleDataStatus is set to TRUE.

c(SRS_Rte_00300, SRS_Rte_00301)

Additionally the enabling of communication features can impact the data value which
is accessible by the reading software component. Since this value can differ from the
written value the setup of following communication attributes requires a conversion
between the sender and the receiver in any case.

[SWS_Rte_80037] DRAFT d The RTE Generator and the RTE Implementation
Plug-In consider a conversion between Sender and Receiver, if

• NonqueuedReceiverComSpec.handleTimeoutType is not set to none

AND/OR

• InvalidationPolicy.handleInvalid is not set to dontInvalidate nor
keep.

c(SRS_Rte_00300, SRS_Rte_00301)

When several AbstractProvidedPortPrototypes are connected in one Data
Communication Graph it is possible that the Sender Statuses differ due to differ-
ent communication attributes.

[SWS_Rte_80038] DRAFT d The RTE Generator and the RTE Implementa-
tion Plug-In consider different Senders Statuses, if the values of Sender-
ComSpec.transmissionAcknowledge.timeout are not set identically. c
(SRS_Rte_00300, SRS_Rte_00301)

Last but not least when several AbstractRequiredPortPrototypes are con-
nected in one Data Communication Graph it is possible that the Receiver Statuses
or the received values differ due to different communication attributes.

[SWS_Rte_80039] DRAFT d The RTE Generator and the RTE Implementation
Plug-In shall consider different Receiver Statuses or received data values, if

• NonqueuedReceiverComSpec.handleTimeoutType is not equal for all Ab-
stractRequiredPortPrototypes

AND/OR

• NonqueuedReceiverComSpec.handleTimeoutType is set to replaceBy-
TimeoutSubstitutionValue AND timeoutSubstitutionValue is not
equal for all AbstractRequiredPortPrototypes

AND/OR

• InvalidationPolicy.handleInvalid is not equal for all AbstractRe-
quiredPortPrototypes

AND/OR

805 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• InvalidationPolicy.handleInvalid is set to replace AND initValue
is not equal for all AbstractRequiredPortPrototypes

AND/OR

• InvalidationPolicy.handleInvalid is set to externalReplacement
AND replaceWith results in a different data instance providing the replace-
ment value

AND/OR

• ReceiverComSpec.handleOutOfRange is not equal for all AbstractRe-
quiredPortPrototypes

AND/OR

• ReceiverComSpec.handleOutOfRange is set to default AND initValue
is not equal for all AbstractRequiredPortPrototypes

AND/OR

• ReceiverComSpec.handleOutOfRange is set to invalid AND invalid-
Value is not equal for all AbstractRequiredPortPrototypes

AND/OR

• ReceiverComSpec.handleOutOfRange is set to externalReplacement
AND replaceWith results in a different data instance providing the replace-
ment value.

c(SRS_Rte_00300, SRS_Rte_00301)

If a Data Communication Graph is handled by an RTE Implementation Plug-
In, the online data conversion will always be done during the production of the data
rather than the consumption. This implies that there will be a separate local or global
copy of the data for each of its representations (see also [SWS_Rte_80034]). This
might take some optimization potential, but as usually each of the representations will
be measurable anyway, the risk is very limited.

Typical examples of different representations are different resolutions or different sets
of status bits. On the other hand a pure name mapping of TEXTTABLEs does not rep-
resent a different representation. Please note however that this does not mean that
the only reason for a RIPS FlatInstanceDescriptors on an RPortPrototype
is having a different representation. It could as well happen that the "conversion" be-
tween producer and consumer of data in an Data Communication Graph is just a
copy.

This means, either the RTE provides an individual data instance per representation
(see [SWS_Rte_80040]), or, in case RteRipsGlobalCopyInstantiationPolicy
is set to RTE_RIPS_INSTANTIATION_BY_PLUGIN, it is a duty of the RTE Imple-
mentation Plug-Ins to do so.

806 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80057] DRAFT d The RTE shall reject configurations where not
for each required representation according [SWS_Rte_80040] a RIPS FlatIn-
stanceDescriptor is provided. c(SRS_Rte_00300, SRS_Rte_00301)

Please note: On the opposite side a configuration may contain RIPS FlatIn-
stanceDescriptors which are not needed by the RTE but have to be accepted
by the RTE.

As the online conversion shall be done on producer side, it is obvious that for explicit
producers this means inside the explicit write API. For implicit producers this is not
so obvious. Such a conversion could be done during the whole life cycle of the local
copy, including the flush operation. However, as the RTE does not know the buffering
decision, it is not clear, whether for certain data there will even be a dedicated flush
operation. So the conversion has to be done directly after termination of the producer
RunnableEntity.

For explicit communication this means:

[SWS_Rte_80058] DRAFT d For explicit producers, the RTE generator shall place
the conversion or status update code necessary for a Data Communication Graph
handled by RTE Implementation Plug-Ins into the explicit write API. The conver-
sion code shall manipulate the global copies of all representations of the written data.
c(SRS_Rte_00300, SRS_Rte_00301)

Manipulating the other global copies as well will also mean to either protect their write
accesses via the Rte_Rips_StartWrite / Rte_Rips_StopWrite or to use the
write API Rte_Rips_Write of the RTE Implementation Plug-Ins for all repre-
sentations of the data.

[SWS_Rte_80059] DRAFT d In case of explicit write access to a Data
Communication Graph handled by RTE Implementation Plug-Ins with
RTE_RIPS_INSTANTIATION_BY_RTE where the Data Communication Graph
requires status or data conversion , the RTE shall use the explicit access protection
macros of all representations to protect the write action of their calculated values or
status, just as if the producer ExecutableEntity would have explicit write accesses
to all representations. c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_80060] DRAFT d In case of explicit write access to a Data Com-
munication Graph handled by RTE Implementation Plug-Ins with
RTE_RIPS_INSTANTIATION_BY_PLUGIN where the Data Communication
Graph requires status or data conversion , the RTE shall use the explicit write service
of all representations to implement the write action of their calculated values or status,
just as if the producer ExecutableEntity would have explicit write accesses to all
representations. c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_70048] DRAFT d The RTE Implementation Plug-Ins shall provide
the set of explicit access protection services or explicit write services for each repre-
sentation in a Data Communication Graph, even though the producing Runnable
only models a single access point. c(SRS_Rte_00300, SRS_Rte_00301)

807 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

For implicit communication this means:

[SWS_Rte_80061] DRAFT d For implicit producers, the RTE generator shall place
the conversion or status update code necessary for a certain Data Communication
Graph handled by RTE Implementation Plug-Ins directly after the call of the
implicit producer RunnableEntity. Thereby executing the VFB tracing hook for this
RunnableEntity still before the conversion or the status update code is acceptable.
c(SRS_Rte_00300, SRS_Rte_00301)

As in the implicit case, the RTE Generator still does not know whether the other
representations are buffered or not. It needs a clear interface to get access to the
locations where the original producer has written the data to and where the con-
sumers will read the converted data from. Note that the unconverted data will be
written by the Rte_Rips_IWrite / Rte_Rips_IWBufferRef API or the Flush-
Routine, depending on the buffering strategy. A separate name space will be used
for the Rte_Rips_IWBufferRef and Rte_Rips_IRBufferRef services used by
the RTE conversion and status calculation code. This avoids name clashes as well
as it supports source code implementations of the Rte_Rips_IWBufferRef and
Rte_Rips_IRBufferRef services used by the RTE, even if the software component
is delivered as object code.

[SWS_Rte_80063] DRAFT d The name space of Rte_Rips_IWBufferRef and
Rte_Rips_IRBufferRef services used by the RTE conversion and status calcu-
lation code is created by prefixing the <SwcBswI> and <ExE> name part with RteCnv.
c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_80064] DRAFT d In case of implicit write access to a Data Commu-
nication Graph handled by RTE Implementation Plug-Ins with data or sta-
tus conversion, the RTE shall use Rte_Rips_IWrite without RteCnv prefix and
Rte_Rips_IWBufferRef without RteCnv prefix to implement the dataWriteAc-
cess of the RunnableEntity, and the implicit Rte_Rips_IWBufferRef service
with RteCnv prefix of all representations different to the producer’s one to write their
calculated values or status. If needed, the unconverted value written by the pro-
ducer shall be retrieved via the Rte_Rips_IRBufferRef with RteCnv prefix only.
c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_70049] DRAFT d The RTE Implementation Plug-Ins shall pro-
vide for the RunnableEntity with the dataWriteAccess for each represen-
tation in a Data Communication Graph the set of implicit access services
Rte_Rips_IWrite / Rte_Rips_IWBufferRef, Rte_Rips_IRBufferRef, even
though the producing Runnable only models a single access point. Thereby follow-
ing set of RTE Implementation Plug-In Services shall be provided:

• For the data representation in the accessed PPortPrototype:

– Rte_Rips_IWrite without RteCnv prefix, if applicable due to data type

– Rte_Rips_IWBufferRef without RteCnv prefix

– Rte_Rips_IRBufferRef with RteCnv prefix.

808 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• For each to be converted data representation connected to the accessed PPort-
Prototype: One Rte_Rips_IWBufferRef with RteCnv prefix.

c(SRS_Rte_00300, SRS_Rte_00301)

For illustration please note example 7.11.

7.3.4.5 Instantiation of global copy

The RTE Implementation Plug-In interface assumes that the RTE implements a
variable that holds the actual value of communication data and where readers and writ-
ers can set or get the data value. This variable is called global copy in the RTE Im-
plementation Plug-In relevant sections. In addition the concept of implicit com-
munication requires further buffers to ensure the stability of data for specific accessing
RunnableEntitys. Those are called implicit communication buffers.

As described in section 7.3.4.2 one or multiple RIPS FlatInstanceDescriptors
can point to a Data Communication Graph to enable the RTE Implementation
Plug-In support. Thereby the number of RIPS FlatInstanceDescriptors de-
termines the number of possible different representations of the data. Furthermore
the shortName of the RIPS FlatInstanceDescriptor defines the name space
of such a global copy and the belonging RTE Implementation Plug-In Ser-
vices.

[SWS_Rte_80040] DRAFT d The RTE shall provide an individual global
copy for each RIPS FlatInstanceDescriptor referencing the Data
Communication Graph, if the associated RTE Implementation
Plug-In has set the RteRipsGlobalCopyInstantiationPolicy to
RTE_RIPS_INSTANTIATION_BY_RTE. c(SRS_Rte_00300, SRS_Rte_00301)

Please note that the RTE Generator still has the freedom to decide about the naming of
the global copy as well as to group several global copies in RTE specific structures.
In this case the requirement [SWS_Rte_80006] ensures the accessibility by a defined
name.

The typing of the global copies reuses the already existing concept of data handles
(see data handles section). This eases encapsulation of the implicit buffering
into a RTE Implementation Plug-In, since the types of the handles already fit to
the global copy. This supports an easy fill and flash of the data with the belong-
ing status values. Further on it avoids additional RTE Implementation Plug-In
Services to access the status of data.

[SWS_Rte_80041] DRAFT d When the RTE provides an individual global copy for
a Data Communication Graph with any implicit access, it shall use the data type
according table 7.35. c(SRS_Rte_00300, SRS_Rte_00301)

809 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Sender Status Receiver Status Type of global copy

No No data element without status

Yes No data element with status

No Yes data element with status

Yes Yes
data element with extended sta-
tus

Table 7.35: Data type of global copy

Please note: [SWS_Rte_80041] ensures a well defined data type for Data Commu-
nication Graphs with implicit accesses, but it leaves the data type open for Data
Communication Graphs with solely explicit accesses.

To support the coexistence of multiple optimization domains in a single ECU, certain
Data Communication Graphs can be assigned to distinct, specialized RTE Im-
plementation Plug-Ins. Those RTE Implementation Plug-Ins could then
even take over the responsibility to instantiate the global copies of the related Data
Communication Graph.

[SWS_Rte_70043] DRAFT d The associated RTE Implementation Plug-In
shall instantiate the required global copies for a Data Communication Graphs,
if the associated RTE Implementation Plug-In has set the RteRipsGlob-
alCopyInstantiationPolicy to RTE_RIPS_INSTANTIATION_BY_PLUGIN. c
(SRS_Rte_00300, SRS_Rte_00301, SRS_Rte_00303)

Please note, that in case of [SWS_Rte_70043] the associated RTE Implementa-
tion Plug-In has now freedom to name and group the global copy. It could even
implement strategies working with multiple global copies for the same Data Commu-
nication Graph .

7.3.4.6 Explicit Communication and RTE Implementation Plug-Ins

The support for handling explicit communication via RTE Implementation Plug-
In basically differs whether the RTE Implementation Plug-In provides the global
copy or whether the RTE provides the global copy. In the first case the RTE just
forwards the explicit accesses via the RTE Implementation Plug-In Services
whereas in the second case the RTE has to use the RTE Implementation Plug-
In Services to protect potentially non atomic accesses.

7.3.4.6.1 Global copy provided by RTE

In the case the global copy is provided by the RTE the only point of interest for the RTE
Implementation Plug-In is the kind of protection. For that purpose for read and
write accesses pairs of RTE Implementation Plug-In Services are provided
for opening the protection block and another one for closing it. The rest remains like

810 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

in an RTE code not using an RTE Implementation Plug-In. The RTE Imple-
mentation Plug-In only needs to know whether there is an according interruption
scenario and whether the data type is atomic in the given platform or not. Special care
has to be taken for the data status handling, as this might also lead to a protection
need, even though the pure data would be atomic otherwise. So the RTE Implemen-
tation Plug-In has to check whether a Sender Status or Receiver Status exists.
An RTE in turn has to make sure that the complete buffer manipulation happens under
a single protection block.

[SWS_Rte_80043] DRAFT d The RTE shall use the protecting RTE Imple-
mentation Plug-In Services Rte_Rips_StartRead, Rte_Rips_StopRead,
Rte_Rips_StartWrite, and Rte_Rips_StopWrite for any access to the Data
Communication Graph where the implemented algorithm would suffer from a pre-
emption or concurrent execution. The usage shall be independent of the actual pre-
emption scenario found in the configuration. c(SRS_Rte_00300)

Please note: [SWS_Rte_80043] applies for unqueued and queued communication.

The RTE Implementation Plug-Ins will know the possible pre-emptions and pro-
vides an appropriate protection macro implementation.

[SWS_Rte_70044] DRAFT d The associated RTE Implementation Plug-
In shall provide the protecting RTE Implementation Plug-In Services
Rte_Rips_StartRead, Rte_Rips_StopRead, Rte_Rips_StartWrite, and
Rte_Rips_StopWrite with an appropriate protection functionality for any explicit
access to the Data Communication Graph. Thereby the RTE Implementation
Plug-Ins shall consider whether the access is non-atomic due to the following side
conditions

• the size of the data

• the existence of Sender Status or Receiver Status

• potential pre-emptions caused due to configured scheduling during the accesses
to the Data Communication Graphs

• usage of queued communication.

c(SRS_Rte_00300)

Please note, that the associated RTE Implementation Plug-In has to provide
the protecting RTE Implementation Plug-In Services regardless whether any
protection is needed. In case that no protection is needed the RTE Implementa-
tion Plug-In Services can be empty. See also the according existence condi-
tions [SWS_Rte_70019], [SWS_Rte_70020], [SWS_Rte_70021], [SWS_Rte_70022],
[SWS_Rte_70023], [SWS_Rte_70024], [SWS_Rte_70025], [SWS_Rte_70026].

The protection blocks can be nested, e.g. when a Runnable uses explicit communi-
cation while being executed in an ExclusiveArea. It is therefore recommended to
generally use protection block implementations which support nesting. As a minimum,
such implementations have to be used where nesting can occur, which would have to

811 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

be analyzed beforehand. On one hand those ExclusiveAreas are relevant which
are directly used by the ExecutableEntity (1) accessing the Data Communica-
tion Graphs. Additionally those ExclusiveAreas are relevant which are used by
all ExecutableEntitys invoking the ExecutableEntity (1) by a direct function
call with the Data Communication Graphs access.

[SWS_Rte_70045] DRAFT d RTE Implementation Plug-In shall implement the
protecting RTE Implementation Plug-In Services Rte_Rips_StartRead,
Rte_Rips_StopRead, Rte_Rips_StartWrite, and Rte_Rips_StopWrite in a
way, that those support a potential nesting with ExclusiveAreas when it can occur
in the call graph. c(SRS_Rte_00300)

7.3.4.6.1.1 Simple example about non-queued read and write

The example code below shows the basic implementation in case the data does not
have any assigned status and the software component does not support multiple in-
stantiation and is provided as source code. Additionally, 64bit accesses are not atomic
on the underlying platform to demonstrate a protection scenario. In contrast to the
others, Rte_DRead is not implemented as a macro in order to show a different imple-
mentation flavour.

Example 7.4

Code example for Rte_myComponent.h in case the RTE Generator implements the
explicit APIs:

1 extern uint64 Rte_myExplicitSimpleData;
2

3 #define Rte_Write_myPPort1_myExplicitSimpleData(data) (\
4 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Start(data),

\
5 SuspendOSInterrupts(), \
6 (Rte_myExplicitSimpleData = data), \
7 ResumeOSInterrupts(), \
8 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Return(data),

\
9 RTE_E_OK)

10

11 #define Rte_Read_myRPort1_myExplicitSimpleData(data) (\
12 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Start(data), \
13 SuspendOSInterrupts(), \
14 ((*(data)) = Rte_myExplicitSimpleData), \
15 ResumeOSInterrupts(), \
16 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Return(data), \
17 RTE_E_OK)
18

19 extern uint64 Rte_DRead_myComponent_myRPort1_myExplicitSimpleData(void)
;

20 #define Rte_DRead_myRPort1_myExplicitSimpleData() (
Rte_DRead_myComponent_myRPort1_myExplicitSimpleData())

812 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Code example for Rte.c in case the RTE Generator implements the explicit APIs:
1 #include "Rte_myComponent.h"
2

3 uint64 Rte_myExplicitSimpleData;
4 uint64 Rte_DRead_myComponent_myRPort1_myExplicitSimpleData(void)
5 {
6 uint64 rtn;

Rte_DReadHook_myComponent_myRPort1_myExplicitSimpleData_Start()
;

7 SuspendOSInterrupts();
8 rtn = Rte_myExplicitSimpleData;
9 ResumeOSInterrupts();

10 Rte_DReadHook_myComponent_myRPort1_myExplicitSimpleData_Return();
11 return rtn;
12 }

The following example 7.5 shows an equivalent implementation of the explicit APIs via
an RTE Implementation Plug-In.

Example 7.5

Code example for Rte_DataHandleType.h in case the RTE Generator redirects to-
wards an RTE Implementation Plug-In to implement the scenario:

1 /* Since the Communication Graph has only explicit accesses
SWS_Rte_80041 is not applicable */

Code example for Rte_myComponent.h in case the RTE Generator redirects towards
an RTE Implementation Plug-In to implement the explicit APIs:

1 #include "Rte_Rips_myPlugin_myComponent.h"
2

3 extern uint64 Rte_myExplicitSimpleData;
4

5 #define Rte_Write_myPPort1_myExplicitSimpleData(data) (\
6 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Start(data), \
7 Rte_Rips_myPlugin_StartWrite_myComponent_myGlobalData1(), \
8 (Rte_myExplicitSimpleData = data), \
9 Rte_Rips_myPlugin_StopWrite_myComponent_myGlobalData1(), \

10 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Return(data),
\

11 RTE_E_OK)
12

13 #define Rte_Read_myRPort1_myExplicitSimpleData(data) (\
14 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Start(data), \
15 Rte_Rips_myPlugin_StartRead_myComponent_myGlobalData1(), \
16 ((*(data)) = Rte_myExplicitSimpleData), \
17 Rte_Rips_myPlugin_StopRead_myComponent_myGlobalData1(), \
18 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Return(data), \
19 RTE_E_OK)
20

21 extern uint64 Rte_DRead_myComponent_myRPort1_myExplicitSimpleData(void)
;

22

813 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

23 #define Rte_DRead_myRPort1_myExplicitSimpleData() (
Rte_DRead_myComponent_myRPort1_myExplicitSimpleData())

Code example for Rte.c in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the explicit APIs:

1 #include "Rte_myComponent.h"
2

3 uint64 Rte_myExplicitSimpleData;
4 uint64 Rte_DRead_myComponent_myRPort1_myExplicitSimpleData(void)
5 {
6 uint64 rtn;
7 Rte_DReadHook_myComponent_myRPort1_myExplicitSimpleData_Start();
8 Rte_Rips_myPlugin_StartRead_myComponent_myGlobalData1();
9 rtn = Rte_myExplicitSimpleData;

10 Rte_Rips_myPlugin_StopRead_myComponent_myGlobalData1();
11 Rte_DReadHook_myComponent_myRPort1_myExplicitSimpleData_Return();
12 return rtn;
13 }

Code example for Rte_Buffers.h when an RTE Implementation Plug-In is
associated to the Data Communication Graph:

1 /* Since the Communication Graph has only explicit accesses
SWS_Rte_80041 and SWS_Rte_80005 is not applicable */

Code example for Rte_Rips_myPlugin_myComponent.h when an RTE Imple-
mentation Plug-In is associated to the Data Communication Graph:

1 #include "Rte_Buffers.h"
2

3 #define Rte_Rips_myPlugin_StartWrite_myComponent_myGlobalData1() \
4 SuspendOSInterrupts()
5

6 #define Rte_Rips_myPlugin_StopWrite_myComponent_myGlobalData1() \
7 ResumeOSInterrupts()
8

9 #define Rte_Rips_myPlugin_StartRead_myComponent_myGlobalData1() \
10 SuspendOSInterrupts()
11

12 #define Rte_Rips_myPlugin_StopRead_myComponent_myGlobalData1() \
13 ResumeOSInterrupts()

7.3.4.6.1.2 Simple example about queued read and write

The example 7.6 shows the basic implementation in case the data does not have any
assigned status and the software component does not support multiple instantiation.
The RTE uses own standard queue implementations, but those are not protected.

Example 7.6

814 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Code example for Rte_myComponent.h in case the RTE Generator implements the
explicit APIs:

1 extern Std_ReturnType
Rte_Write_myComponent_myPPort1_myExplicitSimpleData(uint32 data);

2

3 #define Rte_Write_myPPort1_myExplicitSimpleData(data) (
Rte_Write_myComponent_myPPort1_myExplicitSimpleData(data))

4

5 extern Std_ReturnType
Rte_Read_myComponent_myRPort1_myExplicitSimpleData(uint32 * data);

6

7 #define Rte_Read_myRPort1_myExplicitSimpleData(data) (
Rte_Read_myComponent_myRPort1_myExplicitSimpleData(data))

Code example for Rte.c in case the RTE Generator implements the explicit APIs:
1 #include "Rte_myComponent.h"
2

3 Rte_QueueType_uint32 Rte_Queue_myExplicitSimpleData;
4

5 Std_ReturnType Rte_Write_myComponent_myPPort1_myExplicitSimpleData(
uint32 data)

6 {
7 Std_ReturnType rtn;
8 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Start(data)

;
9 SuspendOSInterrupts();

10 rtn = Rte_EnqueueUInt32(&Rte_Queue_myExplicitSimpleData, data);
11 ResumeOSInterrupts();
12 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Return(data

);
13 return rtn;
14 }
15

16 Std_ReturnType Rte_Read_myComponent_myRPort1_myExplicitSimpleData(
uint32 * data)

17 {
18 Std_ReturnType rtn;
19 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Start(data);
20 SuspendOSInterrupts();
21 rtn = Rte_DequeueUInt32(&Rte_Queue_myExplicitSimpleData, data);
22 ResumeOSInterrupts();
23 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Return(data)

;
24 return rtn;
25 }

The following example 7.7 shows an equivalent implementation of the explicit APIs via
an RTE Implementation Plug-In.

Example 7.7

Code example for Rte_myComponent.h in case the RTE Generator redirects towards
an RTE Implementation Plug-In to implement the explicit APIs:

815 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 extern Std_ReturnType
Rte_Write_myComponent_myPPort1_myExplicitSimpleData(uint32 data);

2

3 #define Rte_Write_myPPort1_myExplicitSimpleData(data) (
Rte_Write_myComponent_myPPort1_myExplicitSimpleData(data))

4

5 extern Std_ReturnType
Rte_Read_myComponent_myRPort1_myExplicitSimpleData(uint32 * data);

6

7 #define Rte_Read_myRPort1_myExplicitSimpleData(data) (
Rte_Read_myComponent_myRPort1_myExplicitSimpleData(data))

Code example for Rte.c in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the explicit APIs:

1 #include "Rte_myComponent.h"
2

3 Rte_QueueType_uint32 Rte_Queue_myExplicitSimpleData;
4

5 Std_ReturnType Rte_Write_myComponent_myPPort1_myExplicitSimpleData(
uint32 data)

6 {
7 Std_ReturnType rtn;
8 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Start(data)

;
9 Rte_Rips_myPlugin_StartWrite_myComponent_myGlobalData1();

10 rtn = Rte_EnqueueUInt32(&Rte_Queue_myExplicitSimpleData, data);
11 Rte_Rips_myPlugin_StopWrite_myComponent_myGlobalData1();
12 Rte_WriteHook_myComponent_myPPort1_myExplicitSimpleData_Return(data

);
13 return rtn;
14 }
15

16 Std_ReturnType Rte_Read_myComponent_myRPort1_myExplicitSimpleData(
uint32 * data)

17 {
18 Std_ReturnType rtn;
19 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Start(data);
20 Rte_Rips_myPlugin_StartRead_myComponent_myGlobalData1();
21 rtn = Rte_DequeueUInt32(&Rte_Queue_myExplicitSimpleData, data);
22 Rte_Rips_myPlugin_StopRead_myComponent_myGlobalData1();
23 Rte_ReadHook_myComponent_myRPort1_myExplicitSimpleData_Return(data)

;
24 return rtn;
25 }

Code example for Rte_Buffers.h when an RTE Implementation Plug-In is
associated to the Data Communication Graph:

1 // empty, as the communication is queued

Code example for Rte_Rips_myPlugin_myComponent.h when an RTE Imple-
mentation Plug-In is associated to the Data Communication Graph:

1 #include "Rte_Buffers.h"
2

816 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3 #define Rte_Rips_myPlugin_StartWrite_myComponent_myGlobalData1()
SuspendOSInterrupts()

4

5 #define Rte_Rips_myPlugin_StopWrite_myComponent_myGlobalData1()
ResumeOSInterrupts()

6

7 #define Rte_Rips_myPlugin_StartRead_myComponent_myGlobalData1()
SuspendOSInterrupts()

8

9 #define Rte_Rips_myPlugin_StopRead_myComponent_myGlobalData1()
ResumeOSInterrupts()

7.3.4.6.2 Global copy provided by RTE Implementation Plug-In

In the case the global copy is provided by the RTE Implementation Plug-In the
RTE Implementation Plug-In has to provide the read and write RTE Imple-
mentation Plug-In Services Rte_Rips_Read and Rte_Rips_Write. Those
access services implement the pure data access in a protected manner to the global
copy(s) provided by the RTE Implementation Plug-In. Thereby it is assumed,
that a data access in an intra ECU communication scenario is always successful. In
case the Rte_Rips_Read and Rte_Rips_Write services are used for transformer
access the according error codes can occur. (see section 7.3.8.3).

Further on requirements about existence and usage are already stated in section
7.2.4.5.

The creation of the global copy is described in section 7.3.4.5.

[SWS_Rte_80075] DRAFT d The RTE shall use the data access RTE Implementa-
tion Plug-In Services Rte_Rips_Read and Rte_Rips_Write for any explicit
access to the Data Communication Graph. c(SRS_Rte_00300, SRS_Rte_00306)

The RTE Implementation Plug-Ins will know the possible pre-emptions and pro-
vide an appropriate protection implementation.

[SWS_Rte_70090] DRAFT d The associated Implementation Plug-In
shall provide the data access RTE Implementation Plug-In Services
Rte_Rips_Read and Rte_Rips_Write with an appropriate protection functionality
for any access to the Data Communication Graph. Thereby the RTE Implemen-
tation Plug-In shall consider whether the access is non-atomic due to the size of
the data and due to the existence of Sender Status or Receiver Status and whether
the configured scheduling causes potential pre-emptions during the accesses to the
Data Communication Graph. c(SRS_Rte_00300, SRS_Rte_00306)

In case of queued communication the RTE Implementation Plug-Ins is addition-
ally obliged to implement the queue.

[SWS_Rte_70107] DRAFT d In case the swImplPolicy is set to queued in
the Data Communication Graph the associated Implementation Plug-In

817 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

shall implement the queuing according to section 4.3.1.10.2. c(SRS_Rte_00300,
SRS_Rte_00306)

The protection blocks can be nested, e.g. when a Runnable uses explicit communi-
cation while being executed in an ExclusiveArea. It is therefore recommended, to
generally use protection block implementations which support nesting. As a minimum,
such implementations have to be used where nesting can occur, which would have to
be analysed beforehand. On one hand those ExclusiveAreas are relevant which
are directly used by the ExecutableEntity (1) accessing the Data Communica-
tion Graphs. Additionally those ExclusiveAreas are relevant which are used by
all ExecutableEntitys invoking the ExecutableEntity (1) by direct function call
with the Data Communication Graph access.

[SWS_Rte_70091] DRAFT d RTE Implementation Plug-In shall implement
the protecting RTE Implementation Plug-In Services Rte_Rips_Read and
Rte_Rips_Write in a way, that those support a potential nesting with Exclu-
siveAreas when it can occur in the call graph. c(SRS_Rte_00300, SRS_Rte_00306)

7.3.4.7 Implicit Communication and RTE Implementation Plug-Ins

Generally, implicit access APIs point directly to or work directly on a memory address
(the task buffer or the global copy). The goal is therefore to offer a possibility that the
RTE Implementation Plug-In defines this memory address. This implies that
also the buffer synchronization (i.e. fill and flush) has to be done by the RTE Imple-
mentation Plug-In. To do so, it needs a possibility to insert the respective code
at the desired positions in the runnable call context (which might be a task body but
also a caller’s Rte_Call, Rte_Trigger or Rte_Switch API). The RTE in turn has to
disable its respective model checks (e.g. if implicit communication is allowed in a cer-
tain interruption scenario) and buffer creation for the Data Communication Graphs
handled by an RTE Implementation Plug-In.

In case of source code delivered software components, not for all implicit access
macros it is strictly necessary that the implicit access macros work on a memory ad-
dress, but in case of Rte_IWrite or Rte_IRead there could be some more optimized
implementations. To make such implementations possible, the RTE should not provide
component data structures in case of software components not requiring the compat-
ibility mode due to source code delivery which it should anyway not do in this case to
reduce ROM consumption.

The usage of the according RTE Implementation Plug-In Services is de-
scribed in section 7.2.4.2 and 7.2.4.1.

[SWS_Rte_80044] DRAFT d The RTE shall use the Data Handles Section and In-
ter Runnable Variable Handles Section for implicit communication only if the specific
software component requires compatibility mode due to delivery as object code or if
the specific software component supports multiple instantiations. c(SRS_Rte_00301,
SRS_Rte_00316)

818 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80046] DRAFT d The RTE Generator shall inhibit the creation of implicit
buffers and according fill and flush routines for a Data Communication Graph if it
is assigned to an RTE Implementation Plug-In. c(SRS_Rte_00301)

[SWS_Rte_80056] DRAFT d The RTE shall reject the configuration if any RteIm-
plicitCommunication buffering related needs (RteCoherentAccess or RteIm-
mediateBufferUpdate) affect a Data Communication Graph which is associ-
ated to an RTE Implementation Plug-In. c(SRS_Rte_00301)

This refers to the section 4.3.1.5.

7.3.4.7.1 Fill Flush Routines

Nevertheless the RTE needs to invoke the Buffer Fill Routines and Buffer
Flush Routines at the right place in the call sequence of ExecutableEn-
titys. In general an RTE Implementation Plug-In is free to imple-
ment both functionalities in one common function. Therefore those func-
tions are called Rte_Rips_FillFlushRoutine. The information whether an
Rte_Rips_FillFlushRoutine shall be invoked before or after an ExecutableEn-
tity is given by configuration via RteRipsFillRoutineRef and RteRips-
FlushRoutineRef at the related RteEventToTaskMapping / RteBswEventTo-
TaskMapping.

[SWS_Rte_80047] DRAFT d The RTE shall invoke Rte_Rips_FillFlushRoutines
configured via RteRipsFillRoutineRef with the identical activation conditions
as the RTEEvent / BswEvent mapped by the owing RteEventToTaskMapping
/ RteBswEventToTaskMapping before the to-be-activated ExecutableEntity
gets invoked and after configured RteSyncPoint given via RteEventPredeces-
sorSyncPointRef / RteBswEventPredecessorSyncPointRef is passed. c
(SRS_Rte_00301)

[SWS_Rte_80048] DRAFT d The RTE shall invoke Rte_Rips_FillFlushRoutines
configured via RteRipsFlushRoutineRef with the identical activation conditions
as the RTEEvent / BswEvent mapped by the owing RteEventToTaskMap-
ping / RteBswEventToTaskMapping after the to-be-activated ExecutableEn-
tity gets invoked. Thereby the Rte_Rips_FillFlushRoutine runs after a con-
figured RteOsSchedulePoint, but before a configured RteSyncPoint given via
RteEventSuccessorSyncPointRef / RteBswEventSuccessorSyncPointRef
is entered. c(SRS_Rte_00301)

[SWS_Rte_80049] DRAFT d When the RteRipsModeDisablingHandling is set
to RTE_RIPS_IGNORE_MODE_DISABLINGS, the RTE shall invoke the configured
Rte_Rips_FillFlushRoutines regardless of currently active mode disabling de-
pendencies. c(SRS_Rte_00301)

[SWS_Rte_80050] DRAFT d When the RteRipsModeDisablingHandling is set
to RTE_RIPS_CONSIDER_MODE_DISABLINGS, the RTE shall invoke the configured
Rte_Rips_FillFlushRoutines, only if the RTEEvent / BswEvent mapped by the

819 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

owing RteEventToTaskMapping / RteBswEventToTaskMapping is currently not
disabled by a mode disabling dependencies. c(SRS_Rte_00301)

Please note: The configuration of Rte_Rips_FillFlushRoutines is applicable
for any kind of RTEEvent or BswEvent, regardless whether the activated Exe-
cutableEntity has any access to a Data Communication Graph handled by
any RTE Implementation Plug-In, and regardless whether the RteEventTo-
TaskMapping or RteBswEventToTaskMapping is mapped to an OsTask, to a
RteInitializationRunnableBatch, or no OsTask at all. This enables the RTE
Implementation Plug-In to apply its Rte_Rips_FillFlushRoutines at any
level in the call graph in any circumstance of activation.

[SWS_Rte_80084] DRAFT d The RTE Generator shall create an unconditional call to
the Os API Schedule after the execution of the Rte_Rips_FillFlushRoutine, if
the RteRipsOsSchedulePoint configuration parameter is set to UNCONDITIONAL.
In the generated code the call to the Os API Schedule shall only be performed
when the Rte_Rips_FillFlushRoutine itself has been executed (called). c
(SRS_Rte_00301)

Please note: A schedule point according [SWS_Rte_80084] is useful to trigger the
scheduler of the OS in a pre-emptive task after the implicit communication
buffers are written back to the global copy. Therefore RunnableEntitys ex-
ecuted in tasks which get in running state after such schedule point may already see
the latest written value. But this depends on the placement of their fill routines.

In opposite, a schedule point placed at the RteEventToTaskMapping via RteOsS-
chedulePoint is always executed before the execution of the RteRipsOsSched-
ulePoint and therefore before the implicit communication buffers are writ-
ten back to the global copy!

7.3.4.7.2 Simple example about implicit w/o component data structure

The example 7.8 shows the basic implementation in case the data is primitive, the
Data Communication Graph does not require Sender Status nor Receiver Status,
and the software component does not support multiple instantiation and is provided as
source code.

Example 7.8

Code example for Rte_DataHandleType.h in case the RTE Generator implements
the implicit communication:

1 typedef struct
2 {
3 uint32 value;
4 } Rte_DE_uint32;
5

6 typedef struct
7 {

820 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8 Rte_DE_uint32 myImplicitSimpleData;
9 } Rte_PerTaskBuffers_TASK_COOP_10MS_Type;

10

11 typedef struct
12 {
13 Rte_DE_uint32 myImplicitSimpleData;
14 } Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type;

Code example for Rte_myComponent.h in case the RTE Generator implements the
implicit communication:

1 #include "Rte_DataHandleType.h"
2

3 /* task buffer for TASK_COOP_10MS */
4 extern Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
5

6 /* task buffer for TASK_PREEMPT_1MS */
7 extern Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type

Rte_PerTaskBuffers_TASK_PREEMPT_1MS;
8 #define Rte_IWrite_myProducerRunnable1_myPPort1_myImplicitSimpleData(

data) (\
9 Rte_PerTaskBuffers_TASK_COOP_10MS.myImplicitSimpleData.value = (data)

)
10

11 #define Rte_IWriteRef_myProducerRunnable1_myPPort1_myImplicitSimpleData
() (\

12 &Rte_PerTaskBuffers_TASK_COOP_10MS.myImplicitSimpleData.value)
13 #define Rte_IRead_myConsumerRunnable_myRPort1_myImplicitSimpleData() (

\
14 Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myImplicitSimpleData.value)

Code example for Rte.c in case the RTE Generator implements the implicit commu-
nication:

1 #include "Rte_myComponent.h"
2

3 Rte_DE_uint32 Rte_myImplicitSimpleData;
4

5 /* task buffer for TASK_COOP_10MS */
6 Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
7

8 /* task buffer for TASK_PREEMPT_1MS */
9 Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type

Rte_PerTaskBuffers_TASK_PREEMPT_1MS;
10

11 TASK(TASK_COOP_10MS)
12 {
13 Rte_Runnable_myComponent_myProducerRunnable1_Start();
14 myProducerRunnable1();
15 Rte_Runnable_myComponent_myProducerRunnable1_Return();
16 Rte_myImplicitSimpleData = Rte_PerTaskBuffers_TASK_COOP_10MS.

myImplicitSimpleData;
17 }
18

821 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

19 TASK(TASK_PREEMPT_1MS)
20 {
21 Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myImplicitSimpleData =

Rte_myImplicitSimpleData;
22 Rte_Runnable_myComponent_myConsumerRunnable_Start();
23 myConsumerRunnable();
24 Rte_Runnable_myComponent_myConsumerRunnable_Return();
25 }

In the following example the Data Communication Graph is handled by an
RTE Implementation Plug-In named myPlugin having RtePluginSupport-
sIReadIWrite set to true, a flush-routine with RteRipsPluginFillFlushRou-
tineFncSymbol set to Rips_Flush_Runnable1, and a fill-routine with RteRip-
sPluginFillFlushRoutineFncSymbol set to Rips_Fill_Runnable1.

Example 7.9

Code example for Rte_DataHandleType.h in case the RTE Implementation
Plug-In implements the implicit communication:

1 typedef struct
2 {
3 uint32 value;
4 } Rte_DE_uint32;
5

6 /* wrapper type according SWS_Rte_80079 */
7 typedef Rte_DE_uint32 Rte_Rips_GlobalCopy_myGlobalData2_Type;

Code example for Rte_myComponent.h in case the RTE Implementation Plug-
In implements the implicit communication:

1 #include "Rte_DataHandleType.h"
2 #include "Rte_Rips_myPlugin_myComponent.h"
3

4 #define Rte_IWrite_myProducerRunnable1_
myPPort1_myImplicitSimpleData(data) (\

5 Rte_Rips_myPlugin_IWrite_myComponent_
myProducerRunnable1_myGlobalData2(data))

6

7 #define Rte_IWriteRef_myProducerRunnable1_
myPPort1_myImplicitSimpleData() (\

8 &Rte_Rips_myPlugin_IWBufferRef_myComponent_
myProducerRunnable1_myGlobalData2()->value)

9

10 #define Rte_IRead_myConsumerRunnable_
myRPort1_myImplicitSimpleData() (\

11 Rte_Rips_myPlugin_IRead_myComponent_
myConsumerRunnable_myGlobalData2())

Code example for Rte.c in case the RTE Implementation Plug-In implements
the implicit communication:

1 #include "Rte_myComponent.h"
2 #include "Rte.h" /* which will include Rte_Rips_myPlugin.h */

822 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

3

4 Rte_DE_uint32 Rte_myGlobalData2;
5

6 TASK(TASK_COOP_10MS)
7 {
8 Rte_Runnable_myComponent_myProducerRunnable1_Start();
9 myProducerRunnable1();

10 Rte_Runnable_myComponent_myProducerRunnable1_Return();
11 Rips_Flush_Runnable1();
12 }
13

14 TASK(TASK_PREEMPT_1MS)
15 {
16 Rips_Fill_Runnable1();
17 Rte_Runnable_myComponent_myConsumerRunnable_Start();
18 myConsumerRunnable();
19 Rte_Runnable_myComponent_myConsumerRunnable_Return();
20 }

Code example for Rte_Buffers.h in case the RTE Implementation Plug-In
implements the implicit communication:

1 #include "Rte_DataHandleType.h"
2 #include "Rte_Rips_myPlugin_Buffers.h"
3

4 #extern Rte_DE_uint32 Rte_myGlobalData2;
5

6 /* the mapping according SWS_Rte_80006 below can be omitted, if the RTE
Generator names the variable Rte_Rips_GlobalCopy_myGlobalData2 */

7 #define Rte_Rips_GlobalCopy_myGlobalData2 Rte_myGlobalData2

Code example for Rte_Rips_myPlugin_myComponent.h in case the RTE Imple-
mentation Plug-In implements the implicit communication:

1 #include "Rte_Buffers.h"
2

3 #define Rte_Rips_myPlugin_IWrite_myComponent_
myProducerRunnable1_myGlobalData2(data) \

4 (Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData2.value = data)
5

6 #define Rte_Rips_myPlugin_IWBufferRef_myComponent_
myProducerRunnable1_myGlobalData2() \

7 (&Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData2)
8

9 #define Rte_Rips_myPlugin_IRead_myComponent_
myConsumerRunnable_myGlobalData2() \

10 (Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myGlobalData2.value)

Code example for Rte_Rips_myPlugin_Buffers.h in case the RTE Implemen-
tation Plug-In implements the implicit communication:

1 #include "Rte_DataHandleType.h"
2

3 /* task buffer type for TASK_COOP_10MS */
4 typedef struct
5 {

823 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

6 Rte_DE_uint32 myGlobalData2;
7 } Rte_PerTaskBuffers_TASK_COOP_10MS_Type;
8

9 /* task buffer type for server runnable */
10 typedef struct
11 {
12 Rte_DE_uint32 myGlobalData2;
13 } Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type;
14

15 /* task buffer for TASK_COOP_10MS */
16 extern Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
17

18 /* task buffer for TASK_PREEMPT_1MS */
19 extern Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type

Rte_PerTaskBuffers_TASK_PREEMPT_1MS;

Code example for Rte_Rips_myPlugin.c in case the RTE Implementation
Plug-In implements the implicit communication:

1 #include "Rte_Buffers.h"
2

3 /* task buffer for TASK_COOP_10MS */
4 Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
5

6 /* task buffer for TASK_PREEMPT_1MS */
7

8 Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type
Rte_PerTaskBuffers_TASK_PREEMPT_1MS;

9 void Rips_Flush_Runnable1(void)
10 {
11 Rte_Rips_GlobalCopy_myGlobalData2 =

Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData2;
12 }
13

14 void Rips_Fill_Runnable1(void)
15 {
16 Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myGlobalData2 =

Rte_Rips_GlobalCopy_myGlobalData2;
17 }

7.3.4.7.3 Example of object code software component with conversion

The example 7.10 shows the basic implementation in case the data is primitive, the
Communication Graph does not require Sender Status nor Receiver Status, but has
a different resolution on sender and receiver side, the software component does not
support multiple instantiation, but is provided as object code. Besides being an object

824 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

code delivered software component and showing conversion, the example is identical
to example 7.8.

Example 7.10

Code example for Rte_DataHandleType.h in case the RTE Generator implements
the implicit communication:

1 typedef struct
2 {
3 uint16 value;
4 } Rte_DE_uint16;
5

6 typedef struct
7 {
8 uint32 value;
9 } Rte_DE_uint32;

10

11 typedef struct
12 {
13 Rte_DE_uint32 myImplicitSimpleData;
14 } Rte_PerTaskBuffers_TASK_COOP_10MS_Type;
15

16 typedef struct
17 {
18 Rte_DE_uint16 myImplicitSimpleData2;
19 } Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type;

Code example for Rte_myComponent.h (already compiled into the software compo-
nent) in case the RTE Generator implements the implicit communication:

1 #include "Rte_DataHandleType.h"
2

3 typedef struct
4 {
5 Rte_DE_uint16 * myConsumerRunnable_myRPort1_myImplicitSimpleData2;
6 Rte_DE_uint32 * myProducerRunnable1_myPPort1_myImplicitSimpleData;
7 } Rte_CDS_myComponent;
8

9 extern CONSTP2CONST(Rte_CDS_myComponent, RTE_CONST, RTE_CONST)
Rte_Inst_myComponent;

10

11 #define Rte_IWrite_myProducerRunnable1_myPPort1_myImplicitSimpleData(
data) (\

12 Rte_Inst_myComponent->
myProducerRunnable1_myPPort1_myImplicitSimpleData->value = (data)
)

13

14 #define Rte_IWriteRef_myProducerRunnable1_myPPort1_myImplicitSimpleData
() (\

15 &Rte_Inst_myComponent->
myProducerRunnable1_myPPort1_myImplicitSimpleData->value)

16

17 #define Rte_IRead_myConsumerRunnable_myRPort1_myImplicitSimpleData2() (
\

825 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

18 Rte_Inst_myComponent->
myConsumerRunnable_myRPort1_myImplicitSimpleData2->value)

Code example for Rte.c in case the RTE Generator implements the implicit commu-
nication:

1 #include "Rte_myComponent.h"
2

3 Rte_DE_uint32 Rte_myImplicitSimpleData;
4

5 /* task buffer for TASK_COOP_10MS */
6 Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
7

8 /* task buffer for TASK_PREEMPT_1MS */
9 Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type

Rte_PerTaskBuffers_TASK_PREEMPT_1MS;
10

11 const Rte_CDS_myComponent Rte_Inst_myComponent = {
12 &Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myImplicitSimpleData2,
13 &Rte_PerTaskBuffers_TASK_COOP_10MS.myImplicitSimpleData };
14

15 TASK(TASK_COOP_10MS)
16 {
17 Rte_Runnable_myComponent_myProducerRunnable1_Start();
18 myProducerRunnable1();
19 Rte_Runnable_myComponent_myProducerRunnable1_Return();
20 Rte_myImplicitSimpleData = Rte_PerTaskBuffers_TASK_COOP_10MS.

myImplicitSimpleData;
21 }
22

23 TASK(TASK_PREEMPT_1MS)
24 {
25 Rte_PerTaskBuffers_TASK_PREEMPT_1MS.myImplicitSimpleData2 =

Rte_myImplicitSimpleData/2;
26 Rte_Runnable_myComponent_myConsumerRunnable_Start();
27 myConsumerRunnable();
28 Rte_Runnable_myComponent_myConsumerRunnable_Return();
29 }

In the following example the Data Communication Graph is handled by
an RTE Implementation Plug-In. Due to data conversion two RIPS
FlatInstanceDescriptors need to be configured. The first RIPS FlatIn-
stanceDescriptor named myGlobalData2 points to myImplicitSimpleData
of myPPort1. The second RIPS FlatInstanceDescriptor named
myGlobalData1 points to data element myImplicitSimpleData2 of RPort-
Prototype myRPort1 of the software component myComponent.

There is also an additional flush-routine with RteRipsPluginFillFlushRou-
tineFncSymbol = Rips_Flush_Runnable1 and configured at the RteEventTo-
TaskMapping of the RunnableEntity myProducerRunnable1.

826 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Furthermore there is a fill-routine with RteRipsPluginFillFlushRoutineFnc-
Symbol = Rips_Fill_Runnable1 and configured at the RteEventToTaskMap-
ping of the RunnableEntity myConsumerRunnable.

Example 7.11

Code example for Rte_DataHandleType.h in case the RTE Implementation
Plug-In implements the implicit communication:

1 typedef struct
2 {
3 uint16 value;
4 } Rte_DE_uint16;
5

6 typedef struct
7 {
8 uint32 value;
9 } Rte_DE_uint32;

10

11 /* wrapper type according SWS_Rte_80079 */
12 typedef Rte_DE_uint16 Rte_Rips_GlobalCopy_myGlobalData1_Type;
13 typedef Rte_DE_uint32 Rte_Rips_GlobalCopy_myGlobalData2_Type;
14

15 /* definition of RTE Task buffers are not necessary any longer */

Code example for Rte_myComponent.h from contract phase (already compiled into
the software component) in case the RTE Implementation Plug-In implements
the implicit communication. Please note, that the contract phase is not impacted by the
application of RTE Implementation Plug-Ins.

1 #include "Rte_DataHandleType.h"
2

3 typedef struct
4 {
5 Rte_DE_uint16 * myConsumerRunnable_myRPort1_myImplicitSimpleData2;
6 Rte_DE_uint32 * myProducerRunnable1_myPPort1_myImplicitSimpleData;
7 } Rte_CDS_myComponent;
8

9 extern CONSTP2CONST(Rte_CDS_myComponent, RTE_CONST, RTE_CONST)
Rte_Inst_myComponent;

10

11 #define Rte_IWrite_myProducerRunnable1_myPPort1_myImplicitSimpleData(
data) (\

12 Rte_Inst_myComponent->
myProducerRunnable1_myPPort1_myImplicitSimpleData->value = (data)
)

13

14 #define Rte_IWriteRef_myProducerRunnable1_myPPort1_myImplicitSimpleData
() (\

15 &Rte_Inst_myComponent->
myProducerRunnable1_myPPort1_myImplicitSimpleData->value)

16

17 #define Rte_IRead_myConsumerRunnable_myRPort1_myImplicitSimpleData2() (
\

827 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

18 Rte_Inst_myComponent->
myConsumerRunnable_myRPort1_myImplicitSimpleData2->value)

Code example for Rte.c in case the RTE Implementation Plug-In implements
the implicit communication:

1 #include "Rte_myComponent.h"
2 #include "Rte.h"
3

4 /* SWS_Rte_80006 is implemented by suitable naming of the RTE variables

*/
5 Rte_DE_uint16 Rte_Rips_GlobalCopy_myGlobalData1;
6 Rte_DE_uint32 Rte_Rips_GlobalCopy_myGlobalData2;
7

8 const Rte_CDS_myComponent Rte_Inst_myComponent =
9 {

10 Rte_Rips_myPlugin_IRBufferRef_myComponent_
myConsumerRunnable_myGlobalData1(),

11 Rte_Rips_myPlugin_IWBufferRef_myComponent_
myProducerRunnable1_myGlobalData2()

12 };
13

14 TASK(TASK_COOP_10MS)
15 {
16 Rte_Runnable_myComponent_myProducerRunnable1_Start();
17 myProducerRunnable1();
18 (Rte_Rips_myPlugin_IWBufferRef_RteCnvmyComponent_

RteCnvmyProducerRunnable1_myGlobalData1()->value) =
19 (Rte_Rips_myPlugin_IRBufferRef_RteCnvmyComponent_

RteCnvmyProducerRunnable1_myGlobalData2()->value)/2;
20 Rte_Runnable_myComponent_myProducerRunnable1_Return();
21 Rips_Flush_Runnable1();
22 }
23

24 TASK(TASK_PREEMPT_1MS)
25 {
26 Rips_Fill_Runnable1();
27 Rte_Runnable_myComponent_myConsumerRunnable_Start();
28 myConsumerRunnable();
29 Rte_Runnable_myComponent_myConsumerRunnable_Return();
30 }

7.3.4.8 Inter Runnable Variables and RTE Implementation Plug-Ins

Besides the fact that InterRunnableVariables are used by a SWC internally and use an
own set of APIs (i.e. Rte_IrvIRead, Rte_IrvIWrite and Rte_IrvIWriteRef),
there is no difference in their implementing code or their need for protection or buffering
compared to regular data instances. They shall therefore not be treated differently to
regular inter SWC implicit communication. I.e. the InterRunnableVariable will also
be referenced by a RIPS FlatInstanceDescriptor and their access APIs will as

828 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

well be routed via the same RTE Implementation Plug-In Services as regular
implicit accesses would be.

There are no specific requirements on InterRunnableVariables since those are already
covered in the requirements for Implicit and Explict communication. For instance
[SWS_Rte_70015], [SWS_Rte_70016], [SWS_Rte_70017], [SWS_Rte_70018],
[SWS_Rte_70019], [SWS_Rte_70021], [SWS_Rte_70023], [SWS_Rte_70025],
[SWS_Rte_70050], [SWS_Rte_70056].

7.3.4.9 RTE Implementation Plug-Ins and NvBlockSwComponents

When a Data Communication Graph involves a NvBlockSwComponent (see also
7.3.4.3), the data gets additionally accessed via the callback functions

• Rte_GetMirror (reading)

• Rte_SetMirror (writing)

• Rte_NvMNotifyInitBlock (writing)

provided by the RTE for the NvBlock.

The access to the data shall be considered as an "explicit" like access. Therefore
similar protection services and access services are used. In addition the access
to the NvBlock can be seen as an overlay of Data Communication Graphs,
the first Data Communication Graph described by the VariableDataProto-
type instances in the NvBlockSwComponent’s ports and the Data Communica-
tion Graph of the whole ramBlock.

Please note, that for all of those Data Communication Graphs individual RIPS
FlatInstanceDescriptors need to be provided.

Further on its not required, that all Data Communication Graphs overlaying in a
NvBlock are associated to the same RTE Implementation Plug-In nor are han-
dled by an RTE Implementation Plug-In at all.

[SWS_Rte_70082] DRAFT d The associated RTE Implementation Plug-In
shall provide a set of Rte_Rips_StartRead and Rte_Rips_StopRead Services
for each Data Communication Graph involving a NvBlockSwComponent, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

Thereby

829 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• <SwcBswI> is the SwComponentPrototype’s name of the NvBlockSwCom-
ponent,

• <ExE> is the name of the callback GetMirror,

• <CGI> is the name of the Communication Graph Instance according to
[SWS_Rte_70038].

c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_70083] DRAFT d The associated RTE Implementation Plug-In
shall provide a set of Rte_Rips_StartWrite and Rte_Rips_StopWrite Services
for each Data Communication Graph involving a NvBlockSwComponent, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the RteRipsGlobal-
CopyInstantiationPolicy is set to RTE_RIPS_INSTANTIATION_BY_RTE.

Thereby

• <SwcBswI> is the SwComponentPrototype’s name of the NvBlockSwCom-
ponent,

• <ExE> is the name of the callbacks SetMirror and NvMNotifyInitBlock,

• <CGI> is the name of the Communication Graph Instance according to
[SWS_Rte_70038].

c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_70084] DRAFT d The associated RTE Implementation Plug-In
shall provide the Rte_Rips_Read Service for each Data Communication Graph
involving a NvBlockSwComponent, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

Thereby

• <SwcBswI> is the SwComponentPrototype’s name of the NvBlockSwCom-
ponent,

• <ExE> is the name of the callback GetMirror,

830 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• <CGI> is the name of the Communication Graph Instance according to
[SWS_Rte_70038].

c(SRS_Rte_00300, SRS_Rte_00301)

[SWS_Rte_70085] DRAFT d The associated RTE Implementation Plug-In
shall provide a set of Rte_Rips_Write Services for each Data Communication
Graph involving a NvBlockSwComponents, if

• for the related Data Communication Graph the RTE Implementation
Plug-In support is enabled

AND

• for the associated RTE Implementation Plug-In the
RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

Thereby

• <SwcBswI> is the SwComponentPrototype’s name of the NvBlockSwCom-
ponent,

• <ExE> is the name of the callbacks SetMirror and NvMNotifyInitBlock,

• <CGI> is the name of the Communication Graph Instance according to
[SWS_Rte_70038].

c(SRS_Rte_00300, SRS_Rte_00301, SRS_Rte_00303)

For instance for a single data myNvData mapped into a NvBlock in the
NvBlockSwComponent myNvBlockSwc the associated RTE Implementation
Plug-In - when it has RteRipsGlobalCopyInstantiationPolicy set to
RTE_RIPS_INSTANTIATION_BY_RTE - provides the following set of services:

• Rte_Rips_myPlugin_StartRead_myNvBlockSwc_GetMirror_myNvData

• Rte_Rips_myPlugin_StopRead_myNvBlockSwc_GetMirror_myNvData

• Rte_Rips_myPlugin_StartWrite_myNvBlockSwc_SetMirror_myNvData

• Rte_Rips_myPlugin_StopWrite_myNvBlockSwc_SetMirror_myNvData

• Rte_Rips_myPlugin_StartWrite_myNvBlockSwc_
NvMNotifyInitBlock_myNvData

• Rte_Rips_myPlugin_StopWrite_myNvBlockSwc_
NvMNotifyInitBlock_myNvData

In case the global copy is provided by the RTE and Data Communication
Graphs overlay in the ramBlock of a NvBlockSwComponent the order in which the
Rte_Rips_StartRead and Rte_Rips_StopRead Services for the different Data
Communication Graphs are called needs to be defined.

831 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80104] DRAFT d The RTE Generator shall call the
Rte_Rips_StartRead and Rte_Rips_StopRead Services for overlaid Data
Communication Graphs in the following order:

1. The Rte_Rips_StartRead / Rte_Rips_StartWrite Service of a Data
Communication Graph containing other Data Communication Graphss is
called before the Rte_Rips_StartRead / Rte_Rips_StartWrite Services
of the contained Data Communication Graphs.

2. The Rte_Rips_StopRead / Rte_Rips_StopWrite Service of a Data Com-
munication Graphs containing other Data Communication Graphs is
called after the Rte_Rips_StopRead / Rte_Rips_StopWrite Service of the
contained Data Communication Graphs.

The calls shall be placed in the callback functions

• Rte_GetMirror

• Rte_SetMirror

• Rte_NvMNotifyInitBlock

belonging to the ramBlock of a NvBlockSwComponent. c(SRS_Rte_00300,
SRS_Rte_00301)

In case the global copy is provided by the RTE Implementation Plug-In it is
not useful to call the Rte_Rips_Read and Rte_Rips_Write Services for the Data
Communication Graphs which are already contained in another Data Communi-
cation Graph.

[SWS_Rte_80105] DRAFT d In case of overlaid Data Communication Graphs the
RTE Generator shall only call the Rte_Rips_Read and Rte_Rips_Write Services
for the Data Communication Graphs which are not contained in another Data
Communication Graph in the callback functions

• Rte_GetMirror

• Rte_SetMirror

• Rte_NvMNotifyInitBlock

belonging to the ramBlock of a NvBlockSwComponent. c(SRS_Rte_00300,
SRS_Rte_00301)

7.3.4.9.1 Example about source code software component with complex call
tree and NV data

The example 7.12 shows a more complex constellation of implicit communication. That
is:

• the software component is delivered as source code and

832 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

• the software component does not support multiple instantiation and

• the data writing RunnableEntity is executed conditionally (e.g. due to a Swc-
ModeSwitchEvent) and

• the data reading RunnableEntity is executed as a direct function call server
and

• writer and reader are called in interrupting tasks and

• the data is part of a RamBlock of an NvBlockSwComponent and

• the NonqueuedReceiverComSpec has handleNeverReceived set to TRUE,
the NonqueuedSenderComSpec does not set any option enforcing a data ele-
ment status and

• the data is an array.

Example 7.12

Code example for Rte_Type.h in case the RTE Generator implements the implicit
communication:

1 typedef uint32 myArrayType[4];

Code example for Rte_DataHandleType.h in case the RTE Generator implements
the implicit communication:

1 typedef struct
2 {
3 myArrayType value;
4 Std_ReturnType status;
5 } Rte_DES_myArrayType;
6

7 typedef struct
8 {
9 myArrayType value;

10 } Rte_DE_myArrayType;
11

12 /* NV block type */
13 typedef struct
14 {
15 myArrayType myBlockElement1;
16 } myNvBlockType;
17

18 /* task buffer type for TASK_COOP_10MS */
19

20 typedef struct
21 {
22 Rte_DE_myArrayType myArrayData;
23 } Rte_PerTaskBuffers_TASK_COOP_10MS_Type;
24

25 /* task buffer type for server runnable */
26

27 typedef struct
28 {

833 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

29 Rte_DES_myArrayType myArrayData;
30 } Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation_Type;

Code example for Rte_myComponent.h in case the RTE Generator implements the
implicit communication:

1 #include "Rte_DataHandleType.h"
2

3 /* task buffer for TASK_COOP_10MS */
4 extern Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
5

6 /* task buffer for TASK_PREEMPT_1MS */
7

8 extern Rte_PerTaskBuffers_TASK_PREEMPT_1MS_Type
Rte_PerTaskBuffers_TASK_PREEMPT_1MS;

9

10 #define Rte_IWriteRef_myProducerRunnable2_myPPort2_myArrayData() (\
11 (uint32 *)&Rte_PerTaskBuffers_TASK_COOP_10MS.myArrayData.value)
12

13 #define Rte_IWrite_myProducerRunnable2_myPPort2_myArrayData(data) (\
14 Rte_MemCopy(&Rte_PerTaskBuffers_TASK_COOP_10MS.myArrayData.value, \
15 data, \
16 sizeof data);)
17

18 #define Rte_IRead_myServerRunnable_myRPort2_myArrayData() (\
19 (const uint32 *) &

Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation.
myArrayData.value)

20

21 #define Rte_IStatus_myServerRunnable_myRPort2_myArrayData() (\
22 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation.myArrayData.

status)
23

24 #define Rte_Call_myServerRPort_myOperation() \ (
Rte_Call_myComponent_myServerRPort_myOperation())

Code example for Rte.c in case the RTE Generator implements the implicit commu-
nication:

1 #include "Rte_myComponent.h"
2 #include "Rte.h"
3

4 Rte_DES_myArrayType Rte_myArrayData = {{0,1,255,4294967295},
RTE_E_NEVER_RECEIVED};

5

6 /* RomBlock */
7 const myNvBlockType Rte_RomBlock = {{0,1,255,4294967295}};
8

9 /* task buffer for TASK_COOP_10MS */
10 Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
11

12 /* task buffer for server runnable */
13 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation_Type \
14 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation;

834 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

15

16 Std_ReturnType Rte_Call_myComponent_myServerRPort_myOperation(void)
17 {
18 Std_ReturnType rtn;
19 Rte_CallHook_myComponent_myServerRPort_myOperation_Start();
20 SuspendOsInterrupts();
21 Rte_MemCopy(&

Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation.
myArrayData, \

22 &Rte_myArrayData, \
23 sizeof Rte_myArrayData);
24 ResumeOsInterrupts();
25 Rte_Runnable_myComponent_myServerRunnable_Start()
26 myServerRunnable();
27 Rte_Runnable_myComponent_myServerRunnable_Return()
28 rtn = RTE_E_OK;
29 Rte_CallHook_myComponent_myServerRPort_myOperation_Return();
30 return rtn;
31 }
32

33 Std_ReturnType Rte_GetMirror_myNvBlockSwc_myNvBlockDescriptor(void *
NvmBuffer)

34 {
35 SuspendOSInterrupts();
36 Rte_MemCopy(&((myNvBlockType *)NvmBuffer)->myBlockElement1,
37 &Rte_myArrayData.value,
38 sizeof Rte_myArrayData.value);
39 ResumeOSInterrupts();
40 return RTE_E_OK;
41 }
42

43 Std_ReturnType Rte_NvMNotifyInitBlock_myNvBlockSwc_myNvBlockDescriptor(
void)

44 {
45 SuspendOSInterrupts();
46 Rte_MemCopy(&Rte_myArrayData.value,
47 &Rte_RomBlock->myBlockElement1,
48 sizeof Rte_myArrayData.value);
49 ResumeOSInterrupts();
50 return RTE_E_OK;
51 }
52

53 TASK(TASK_COOP_10MS)
54 {
55 Std_ReturnType ret;
56 if (...myProducerRunnable2 execution condition...)
57 {
58 Rte_Runnable_myComponent_myProducerRunnable2_Start();
59 myProducerRunnable2();
60 Rte_Runnable_myComponent_myProducerRunnable2_Return();
61 }
62 ... some unrelated runnables ...
63 if (...myProducerRunnable2 execution condition...)
64 {
65 SuspendOsInterrupts();
66 Rte_MemCopy(&Rte_myArrayData.value, \

835 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

67 &Rte_PerTaskBuffers_TASK_COOP_10MS.myArrayData.value, \
68 sizeof Rte_myArrayData.value);
69 Rte_myArrayData.status &= (Std_ReturnType)(~RTE_E_NEVER_RECEIVED)

;
70 ResumeOsInterrupts();
71 }
72 }
73

74 TASK(TASK_PREEMPT_1MS)
75 {
76 Rte_Runnable_myComponent_myClientRunnable_Start();
77 myClientRunnable(); // will execute

Rte_Call_myServerRPort_myOperation()
78 Rte_Runnable_myComponent_myClientRunnable_Return();
79 }

The following example 7.13 shows an equivalent implementation of the sce-
nario via an RTE Implementation Plug-In. In this case, there exists ad-
ditionally a Rte_Rips_FillFlushRoutine as RteRipsFlushRoutineRef
at the RteEventToTaskMapping for the RTEEvent activating runnable
myProducerRunnable2. The RteRipsPluginFillFlushRoutineFncSym-
bol of the Rte_Rips_FillFlushRoutine is set to Rips_Flush_Runnable2.

Furthermore there exists additionally a Rte_Rips_FillFlushRoutine as
RteRipsFillRoutineRef at the RteEventToTaskMapping for the RTEEvent ac-
tivating runnable myServerRunnable.

And finally, the RAM block of NvBlockDescriptor myNvBlockDescriptor
of NvBlockSwComponent myNvBlockSwc is referenced by a RIPS FlatIn-
stanceDescriptor named myRamBlock, which references the RTE Implemen-
tation Plug-In myPlugin.

Example 7.13

Code example for Rte_Type.h in case the RTE Generator redirects towards an RTE
Implementation Plug-In to implement the scenario:

1 typedef uint32 myArrayType[4];

Code example for Rte_DataHandleType.h in case the RTE Generator redirects to-
wards an RTE Implementation Plug-In to implement the scenario:

1 typedef struct
2 {
3 myArrayType value;
4 } Rte_DE_myArrayType;
5

6 typedef struct
7 {
8 myArrayType value;
9 Std_ReturnType status;

10 } Rte_DES_myArrayType;
11

836 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

12 /* NV block type */
13

14 typedef struct
15 {
16 myArrayType myBlockElement1;
17 } myNvBlockType;
18

19 /* wrapper type according SWS_Rte_80079 */
20 typedef Rte_DE_myArrayType Rte_Rips_GlobalCopy_myGlobalData3_Type;
21 typedef Rte_DES_myArrayType Rte_Rips_GlobalCopy_myGlobalData4_Type;

Code example for Rte_myComponent.h in case the RTE Generator redirects towards
an RTE Implementation Plug-In to implement the scenario:

1 #include "Rte_DataHandleType.h"
2 #include "Rte_Rips_myPlugin_myComponent.h"
3

4 #define Rte_IWriteRef_myProducerRunnable2_myPPort2_myArrayData() (\
5 Rte_Rips_myPlugin_IWBufferRef_myComponent_myProducerRunnable2_myGlobalData3

())
6

7 #define Rte_IWrite_myProducerRunnable2_myPPort2_myArrayData(data) (\
8 Rte_MemCopy(\
9 Rte_Rips_myPlugin_IWBufferRef_myComponent_myProducerRunnable2_myGlobalData3

(), \
10 data, \
11 sizeof data);)
12

13 #define Rte_IRead_myServerRunnable_myRPort2_myArrayData() (\
14 (const uint32 *) &Rte_Rips_myPlugin_IRBufferRef_myComponent

_myServerRunnable_myGlobalData4()->value)
15

16 #define Rte_IStatus_myServerRunnable_myRPort2_myArrayData() (\
17 Rte_Rips_myPlugin_IRBufferRef_myComponent

_myServerRunnable_myGlobalData4()->status)
18

19 #define Rte_Call_myServerRPort_myOperation() \
20 (Rte_Call_myComponent_myServerRPort_myOperation())

Code example for Rte.h in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the scenario:

1 #include "Rte_Rips_myPlugin.h"

Code example for Rte.c in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the scenario:

1 #include "Rte.h"
2 #include "Rte_Buffers.h"
3 #include "Rte_myComponent.h"
4

5 Rte_DES_myArrayType Rte_myGlobalData4 = {{0,1,255,4294967295},
RTE_E_NEVER_RECEIVED};

6 Rte_DE_myArrayType Rte_myGlobalData3 = {0,1,255,4294967295};
7

8 /* RomBlock */

837 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

9 const myNvBlockType Rte_RomBlock = {{0,1,255,4294967295}};
10

11 Std_ReturnType Rte_Call_myComponent_myServerRPort_myOperation(void)
12 {
13 Std_ReturnType rtn;
14 Rte_CallHook_myComponent_myServerRPort_myOperation_Start();
15 Rips_Fill_Runnable2();
16 Rte_Runnable_myComponent_myServerRunnable_Start();
17 myServerRunnable();
18 Rte_Runnable_myComponent_myServerRunnable_Return();
19 rtn = RTE_E_OK;
20 Rte_CallHook_myComponent_myServerRPort_myOperation_Return();
21 return rtn;
22 }
23

24 Std_ReturnType Rte_GetMirror_myNvBlockSwc_myNvBlockDescriptor(void *
NvmBuffer)

25 {
26 /* start protection whole ramBlock */
27 Rte_Rips_myPlugin_StartRead_myNvBlockSwc_GetMirror_myRamBlock();
28 /* start protection single data element */
29 Rte_Rips_myPlugin_StartRead_myNvBlockSwc_GetMirror_myGlobalData3();
30 Rte_MemCopy(&((myNvBlockType *)NvmBuffer)->myBlockElement1,
31 &Rte_myGlobalData3, sizeof Rte_myGlobalData3);
32 /* stop protection single data element */
33 Rte_Rips_myPlugin_StopRead_myNvBlockSwc_GetMirror_myGlobalData3();
34 /* stop protection whole ramBlock */
35 Rte_Rips_myPlugin_StopRead_myNvBlockSwc_GetMirror_myRamBlock();
36 return RTE_E_OK;
37 }
38

39 Std_ReturnType Rte_NvMNotifyInitBlock_myNvBlockSwc_myNvBlockDescriptor(
void)

40 {
41 /* start protection whole ramBlock */
42 Rte_Rips_myPlugin_StartWrite_myNvBlockSwc_GetMirror_myRamBlock();
43 /* start protection single data element */
44 Rte_Rips_myPlugin_StartWrite_myNvBlockSwc_GetMirror_myGlobalData3();
45

46 Rte_MemCopy(&Rte_myGlobalData3,
47 &Rte_RomBlock->myBlockElement1,
48 sizeof Rte_myGlobalData3);
49

50 /* stop protection single data element */
51 Rte_Rips_myPlugin_StopWrite_myNvBlockSwc_GetMirror_myGlobalData3();
52 /* start protection single data element */
53 Rte_Rips_myPlugin_StartWrite_myNvBlockSwc_GetMirror_myGlobalData4();
54

55 Rte_MemCopy(&Rte_myGlobalData4.value,
56 &Rte_RomBlock->myBlockElement1,
57 sizeof Rte_myGlobalData4.value);
58

59 /* stop protection single data element */
60 Rte_Rips_myPlugin_StopWrite_myNvBlockSwc_GetMirror_myGlobalData4();
61 /* stop protection whole ramBlock */
62 Rte_Rips_myPlugin_StopWrite_myNvBlockSwc_GetMirror_myRamBlock();

838 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

63 return RTE_E_OK;
64 }
65

66 TASK(TASK_COOP_10MS)
67 {
68 Std_ReturnType ret;
69 if (...myProducerRunnable2 execution condition...)
70 {
71 Rte_Runnable_myComponent_myProducerRunnable2_Start();
72 myProducerRunnable2();
73 Rte_MemCopy(
74 Rte_Rips_myPlugin_IWBufferRef_myComponent

_myProducerRunnable2_myGlobalData4(),
75 Rte_Rips_myPlugin_IWBufferRef_myComponent

_myProducerRunnable2_myGlobalData3(),
76 sizeof Rte_myGlobalData4.value);
77 Rte_Rips_myPlugin_IWBufferRef_myComponent

_myProducerRunnable2_myGlobalData4()->status
78 &= (Std_ReturnType)(~RTE_E_NEVER_RECEIVED);
79 Rte_Runnable_myComponent_myProducerRunnable2_Return();
80 Rips_Flush_Runnable2();
81 }
82 ... some unrelated runnables ...
83 /* RTE specifc buffer handling at the end of the task is inhibited

*/
84 }
85

86 TASK(TASK_PREEMPT_1MS)
87 {
88 Rte_Runnable_myComponent_myClientRunnable_Start();
89 myClientRunnable(); // will execute

Rte_Call_myServerRPort_myOperation()
90 Rte_Runnable_myComponent_myClientRunnable_Return();
91 }

Code example for Rte_Buffers.h in case the RTE Generator redirects towards an
RTE Implementation Plug-In to implement the scenario:

1 #include "Rte_DataHandleType.h"
2 #include "Rte_Rips_myPlugin_Buffers.h"
3

4 /* the mapping according SWS_Rte_80006 below can be omitted, if the RTE
Generator names the variable Rte_Rips_GlobalCopy_myGlobalData4 */

5 extern Rte_DES_myArrayType Rte_myGlobalData4;
6

7 #define Rte_Rips_GlobalCopy_myGlobalData4 Rte_myGlobalData4
8

9 /* the mapping according SWS_Rte_80006 below can be omitted, if the RTE
Generator names the variable Rte_Rips_GlobalCopy_myGlobalData3 */

10 extern Rte_DE_myArrayType Rte_myGlobalData3;
11

12 #define Rte_Rips_GlobalCopy_myGlobalData3 Rte_myGlobalData3

Code example for Rte_Rips_myPlugin_myComponent.h in case the RTE Genera-
tor redirects towards an RTE Implementation Plug-In to implement the scenario:

839 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 #include "Rte_Buffers.h"
2

3 #define Rte_Rips_myPlugin_IWBufferRef_myComponent
_myProducerRunnable2_myGlobalData3() \

4 &Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData3
5

6 #define Rte_Rips_myPlugin_IWBufferRef_myComponent
_myProducerRunnable2_myGlobalData4() \

7 &Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData4
8

9 #define
Rte_Rips_myPlugin_IRBufferRef_myComponent_myServerRunnable_myGlobalData4
() \

10 &Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation.
myGlobalData4

Code example for Rte_Rips_myPlugin_Buffers.h in case the RTE Generator
redirects towards an RTE Implementation Plug-In to implement the scenario:

1 #include "Rte_DataHandleType.h"
2

3 /* task buffer type for TASK_COOP_10MS */
4

5 typedef struct
6 {
7 Rte_DE_myArrayType myGlobalData4;
8 Rte_DES_myArrayType myGlobalData3;
9 } Rte_PerTaskBuffers_TASK_COOP_10MS_Type;

10

11 /* task buffer type for server runnable */
12

13 typedef struct
14 {
15 Rte_DES_myArrayType myGlobalData3;
16 } Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation_Type;
17

18 /* task buffer for TASK_COOP_10MS */
19

20 extern Rte_PerTaskBuffers_TASK_COOP_10MS_Type
Rte_PerTaskBuffers_TASK_COOP_10MS;

21 /* task buffer for server runnable */
22

23 extern Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation_Type \
24 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation;

Code example for Rte_Rips_myPlugin.h in case the RTE Generator redirects to-
wards an RTE Implementation Plug-In to implement the scenario:

1 #define Rte_Rips_myPlugin_FillEnter_Rips_Fill_Runnable2() \
2 SuspendOSInterrupts()
3 #define Rte_Rips_myPlugin_FillExit_Rips_Fill_Runnable2() \
4 ResumeOSInterrupts()
5 #define Rte_Rips_myPlugin_FlushEnter_Rips_Flush_Runnable2() \
6 SuspendOSInterrupts()
7 #define Rte_Rips_myPlugin_FlushExit_Rips_Flush_Runnable2() \
8 ResumeOSInterrupts()

840 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

9 #define Rte_Rips_myPlugin_StartReadCallback_NvM_myRamBlock() \
10 SuspendOSInterrupts()
11 #define Rte_Rips_myPlugin_StopReadCallback_NvM_myRamBlock() \
12 ResumeOSInterrupts()
13 #define Rte_Rips_myPlugin_StartWriteCallback_NvM_myRamBlock() \
14 SuspendOSInterrupts()
15 #define Rte_Rips_myPlugin_StopWriteCallback_NvM_myRamBlock() \
16 ResumeOSInterrupts()

Code example for Rte_Rips_myPlugin.c in case the RTE Generator redirects to-
wards an RTE Implementation Plug-In to implement the scenario:

1 #include "Rte_Buffers.h"
2

3 /* task buffer for TASK_COOP_10MS */
4 Rte_PerTaskBuffers_TASK_COOP_10MS_Type

Rte_PerTaskBuffers_TASK_COOP_10MS;
5

6 /* task buffer for server runnable */
7 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation_Type \
8 Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation;
9

10 void Rips_Flush_Runnable2(void)
11 {
12 Rte_MemCopy(&Rte_Rips_GlobalCopy_myGlobalData3, \
13 &Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData3, \
14 sizeof Rte_Rips_GlobalCopy_myGlobalData3);
15 Rte_MemCopy(&Rte_Rips_GlobalCopy_myGlobalData4, \
16 &Rte_PerTaskBuffers_TASK_COOP_10MS.myGlobalData4, \
17 sizeof Rte_Rips_GlobalCopy_myGlobalData4);
18 }
19

20 void Rips_Fill_Runnable2(void)
21 {
22 Rte_MemCopy(&

Rte_PerTaskBuffers_myComponent_myServerRPort_myOperation.
myGlobalData3, \

23 &Rte_Rips_GlobalCopy_myGlobalData3, \
24 sizeof Rte_Rips_GlobalCopy_myGlobalData3);
25 }

7.3.5 Exclusive Areas

7.3.5.1 Exclusive Areas and RTE Implementation Plug-Ins

For ExclusiveAreas RTE already offers a possibility to configure which protection
mechanism shall be used for any given ExclusiveArea. The mechanisms foreseen
are described in section 4.2.5.5.1. Nevertheless the AUTOSAR standardized config-
uration does not foresee a detailed specification of the applied mechanism, e.g. a
specific spin lock, nor it defines guaranteed optimizations, e.g. omitting the blocking
from the highest prior call context or call contexts which are executed exclusively on

841 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

the whole ECU. Additionally in complex dynamic architectures (like for multi / many
core systems) a fine grained selection - usually tool based - of the appropriate block-
ing mechanism is beneficial to avoid unnecessary block and unblock activity as well
as to avoid the unnecessary blocking of cores without interference to the impacted
ExclusiveAreas.

To overcome this limitation the RTE Implementation Plug-In has to choose an
appropriate implementation and the RTE has to suspend its related model acceptance
checks. As not every ExclusiveArea will need a treatment beyond RTE internal
mechanisms, individual ExclusiveAreas can be assigned to a specific RTE Im-
plementation Plug-In.

Regarding ExclusiveAreas there is no difference between source code and object
code integrated software components, except that for source code integrated software
components the RTE is free to implement the Rte_Enter and Rte_Exit API already
in the application header file. Therefore the statements in this chapter are valid for both
source and object code integrated software components.

There are two kinds of ExclusiveAreas, the ones which can explicitly be entered and
left inside an ExecutableEntity (in canEnterExclusiveArea role) and the ones
which protect the complete ExecutableEntity (in runsInsideExclusiveArea
role). Related examples are shown in individual chapters.

When invoking the RTE Implementation Plug-In Service to enter or exit
an ExclusiveArea, the RTE Generator has to respect the granularity of the
Rte_Rips_Enter and Rte_Rips_Exit Services depending on whether the Exclu-
siveArea is handled as

• runsInsideExclusiveArea

• canEnterExclusiveArea

AND in the second case whether the respective apiPrinciple is set to

• perExecutable

OR

• common.

[SWS_Rte_80022] DRAFT d If an ExecutableEntity defines a canEnterEx-
clusiveArea association, the RTE Generator shall call the corresponding
Rte_Rips_Enter and Rte_Rips_Exit Services inside the belonging Rte_Enter
and Rte_Exit APIs. c(SRS_Rte_00302)

[SWS_Rte_80023] DRAFT d If an ExecutableEntity defines a runsInsideEx-
clusiveArea association, the RTE shall call the corresponding Rte_Rips_Enter
and Rte_Rips_Exit Services where the according RunnableEntity or BswMod-
uleEntity is called due to the activation of a specific RTEEvent or BswEvent. c
(SRS_Rte_00302)

842 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Please note: If the related event has been mapped as a direct function call, this can be
inside another RTE API. In case the event is mapped to a task it is inside the according
task body.

7.3.5.2 Enable RTE Implementation Plug-In support for ExclusiveAreas

[SWS_Rte_80024] DRAFT d The RTE Generator shall enable the RTE Implemen-
tation Plug-In support for the related ExclusiveArea, if the related RteExclu-
siveAreaImplMechanism is set to RTE_PLUGIN. c(SRS_Rte_00302)

[SWS_Rte_CONSTR_80000] DRAFT dRTE_PLUGIN in RteExclusiveAreaIm-
plementation requires the configuration of an RTE Implementation Plug-
In The usage of the enumeration literal RTE_PLUGIN for the parameter RteEx-
clusiveAreaImplMechanism requires the configuration of the reference RteEx-
clusiveAreaResponsibleRipsPluginRef in the owning container RteExclu-
siveAreaImplementation. c(SRS_Rte_00302)

[SWS_Rte_CONSTR_80001] DRAFT dRTE_PLUGIN in RteBswExclu-
siveAreaImpl requires the configuration of an RTE Implementation Plug-
In The usage of the enumeration literal RTE_PLUGIN for the parameter Rte-
ExclusiveAreaImplMechanism requires the configuration of the reference
RteBswExclusiveAreaResponsibleRipsPluginRef in the owning container
RteBswExclusiveAreaImpl. c(SRS_Rte_00302)

7.3.5.3 Exclusive Areas in Role canEnterExclusiveArea

The ExclusiveAreas which a software component or Basic Software Module can
explicitly enter and exit are referenced in the ExecutableEntity property canEn-
terExclusiveArea. The according RTE and SchM APIs only differ in their name,
not their content. The examples therefore only show the RTE flavor. The content of the
file Rte_myComponent.h represents the version for source code integrated software
components and Basic Software Modules. The implementation in Rte.c represents
the version for object code integrated software components and Basic Software Mod-
ules. This is only to demonstrate the different implementation flavors.

The following example 7.14 shows an implementation of the ExclusiveArea with the
RTE Generator where the RTE Generator uses OS_INTERRUPT_BLOCKING.

Example 7.14

Code example for Rte_myComponent.h in case the RTE Generator implements the
ExclusiveArea:

1 #define Rte_Enter_myExclusiveArea1() (\
2 (Rte_EnterHook_myComponent_myExclusiveArea1_Start()), \
3 SuspendOSInterrupts(), \
4 (Rte_EnterHook_myComponent_myExclusiveArea1_Return()))

843 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

5

6 #define Rte_Exit_myExclusiveArea1() (\
7 (Rte_ExitHook_myComponent_myExclusiveArea1_Start()), \
8 ResumeOSInterrupts(), \
9 (Rte_ExitHook_myComponent_myExclusiveArea1_Return()))

Code example for Rte.c in case the RTE Generator implements the Exclu-
siveArea:

1 #include "Rte_myComponent.h"
2 void Rte_Enter_myComponent_myExclusiveArea1(void)
3 {
4 Rte_EnterHook_myComponent_myExclusiveArea1_Start();
5 SuspendOSInterrupts();
6 Rte_EnterHook_myComponent_myExclusiveArea1_Return();
7 }
8

9 void Rte_Exit_myComponent_myExclusiveArea1(void)
10 {
11 Rte_ExitHook_myComponent_myExclusiveArea1_Start();
12 ResumeOSInterrupts();
13 Rte_ExitHook_myComponent_myExclusiveArea1_Return();
14 }

The following example 7.15 shows an equivalent implementation of the Exclu-
siveArea via an RTE Implementation Plug-In.

Example 7.15

Code example for Rte_myComponent.h in case the RTE Generator redirects towards
an RTE Implementation Plug-In to implement the ExclusiveArea:

1 #include "Rte_Rips_myPlugin_myComponent.h"
2 #define Rte_Enter_myExclusiveArea1() (\
3 (Rte_EnterHook_myComponent_myExclusiveArea1_Start()), \
4 Rte_Rips_myPlugin_Enter_myComponent_myExclusiveArea1(), \
5 (Rte_EnterHook_myComponent_myExclusiveArea1_Return()))
6

7 #define Rte_Exit_myExclusiveArea1() (\
8 (Rte_ExitHook_myComponent_myExclusiveArea1_Start()), \
9 Rte_Rips_myPlugin_Exit_myComponent_myExclusiveArea1(), \

10 (Rte_ExitHook_myComponent_myExclusiveArea1_Return()))

Code example for Rte.c in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the ExclusiveArea:

1 #include "Rte_myComponent.h"
2 void Rte_Enter_myComponent_myExclusiveArea1(void)
3 {
4 Rte_EnterHook_myComponent_myExclusiveArea1_Start();
5 Rte_Rips_myPlugin_Enter_myComponent_myExclusiveArea1();
6 Rte_EnterHook_myComponent_myExclusiveArea1_Return();
7 }
8

844 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

9 void Rte_Exit_myComponent_myExclusiveArea1(void)
10 {
11 Rte_ExitHook_myComponent_myExclusiveArea1_Start();
12 Rte_Rips_myPlugin_Exit_myComponent_myExclusiveArea1();
13 Rte_ExitHook_myComponent_myExclusiveArea1_Return();
14 }

Code example for Rte_Rips_myPlugin_myComponent.h when the Plug-in
chooses OS Interrupt suspension to implement the ExclusiveArea:

1 #define Rte_Rips_myPlugin_Enter_myComponent_myExclusiveArea1()
SuspendOSInterrupts()

2 #define Rte_Rips_myPlugin_Exit_myComponent_myExclusiveArea1()
ResumeOSInterrupts()

7.3.5.4 Exclusive Areas in Role runsInsideExclusiveArea

The ExclusiveAreas which enclose the complete ExecutableEntity of a soft-
ware component or Basic Software Modules are referenced in the ExecutableEn-
tity property runsInsideExclusiveArea. Such ExclusiveAreas do not result
in the generation of an API, but in protective actions before the ExecutableEntity
starts and after it terminates.

The following example 7.16 shows an implementation of the ExclusiveArea where
the whole RunnableEntity runsInsideExclusiveArea and where the RTE Gen-
erator uses OS_INTERRUPT_BLOCKING.

Example 7.16

Code example for Rte.c in case the RTE Generator implements the Exclu-
siveArea:

1 #include "Rte.h"
2 TASK(TASK_COOP_10MS)
3 {
4 SuspendOSInterrupts();
5 Rte_Runnable_myComponent_EvMyRunnable10ms_Start();
6 myRunnable();
7 Rte_Runnable_myComponent_EvMyRunnable10ms_Return();
8 ResumeOSInterrupts();
9 }

The following example 7.17 shows an equivalent implementation of the Exclu-
siveArea via an RTE Implementation Plug-In.:

Example 7.17

Code example for Rte.c in case the RTE Generator redirects towards an RTE Im-
plementation Plug-In to implement the ExclusiveArea:

845 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

1 #include "Rte.h"
2 #include "Rte_Rips_myPlugin_myComponent.h"
3 TASK(TASK_COOP_10MS)
4 {
5 Rte_Runnable_myComponent_EvMyRunnable10ms_Start();
6 Rte_Rips_myPlugin_Enter_myComponent_EvMyRunnable10ms_myExclusiveArea

();
7 myRunnable();
8 Rte_Rips_myPlugin_Exit_myComponent_EvMyRunnable10ms_myExclusiveArea

();
9 Rte_Runnable_myComponent_EvMyRunnable10ms_Return();

10 }

Code example for Rte_Rips_myPlugin_myComponent.h when the Plug-in
chooses OS Interrupt suspension to implement the Exclusive Area:

1 #define
Rte_Rips_myPlugin_Enter_myComponent_EvMyRunnable10ms_myExclusiveArea
() \

2 SuspendOSInterrupts()
3

4 #define
Rte_Rips_myPlugin_Exit_myComponent_EvMyRunnable10ms_myExclusiveArea
() \

5 ResumeOSInterrupts()

7.3.6 Modes

7.3.6.1 Modes and RTE Implementation Plug-Ins

Without RTE Implementation Plug-Ins the protection of the mode queues is a
duty of the RTE Generator. Due to the requirements on mode machine instances
and distributed shared mode queues for queuing and consistent reading of a
set of mode values (current mode, previous mode, next mode) via Rte_Mode APIs, it
is very likely that the implementation requires a protection mechanism.

But in case RTE Implementation Plug-Ins are applied there is an interest to con-
trol the applied protection mechanisms for basically two reasons:

• The applied protection mechanisms shall fit to the overall strategy of protection
mechanisms applied for Communication Graphs.

• If RTE Implementation Plug-Ins are used to support a scheduling setup
which the RTE Generator cannot handle via its implementation, it is consistently
required to move also the protection of mode queues to the responsibility of the
RTE Implementation Plug-Ins.

Nevertheless the supporting pattern for those protections deviates from the pattern
defined for data communication. There are two rationales for this deviation:

846 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

An ECU usually uses a high number of data communications which in turn results in a
high frequency of calls to communication APIs. In opposite the number of mode ma-
chine instances is significantly lower. Furthermore modes are not switched such
frequently. But on the other hand the implementation of mode machine instances
and distributed shared mode queues is not purely driven by the accessing Ex-
ecutableEntitys. Furthermore the requirements to apply mode disablings and to
dequeue mode switch notification at the end of transitions result in mode queue ac-
cesses in the context of OsTasks.

For this reason the RTE Implementation Plug-In Service
Rte_Rips_EnterModeQueue and Rte_Rips_ExitModeQueue are designed
like exclusive areas without a specific name space for the call context.

7.3.6.2 Enable RTE Implementation Plug-In support for mode machine in-
stances

[SWS_Rte_80082] DRAFT d The RTE Generator shall enable the RTE Implementa-
tion Plug-In support for a mode machine instance, if the related RteModeMa-
chineInstanceConfig or RteBswModeMachineInstanceConfig container con-
tains the reference RteModeMachineInstanceResponsibleRipsPluginRef. c
(SRS_Rte_00315)

7.3.6.3 Enable RTE Implementation Plug-In support for distributed shared
mode queues

[SWS_Rte_80083] DRAFT d The RTE Generator shall enable the RTE Implemen-
tation Plug-In support for a distributed shared mode queue, if the related
RteDistributedSharedModeQueue container contains the reference RteDSMQRe-
sponsibleRipsPluginRef. c(SRS_Rte_00310)

In case the mode machine instance belongs to a distributed shared mode
queue the participating mode machine instances cannot be associated with an
RTE Implementation Plug-In. Since the distributed shared mode queue
requires a common queue handling for all mode machine instances, a consis-
tent protection mechanism for all mode machine instances is required. Therefore
the individual assignment of mode machine instances to RTE Implementation
Plug-Ins is not possible.

[SWS_Rte_CONSTR_80012] DRAFT dmode machine instance belonging to a
distributed shared mode queue is not allowed to be configured for indi-
vidual RTE Implementation Plug-In support In case a mode machine in-
stance belongs to a distributed shared mode queue the reference Rte-
ModeMachineInstanceResponsibleRipsPluginRef shall not be configured. c
(SRS_Rte_00310)

847 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Nevertheless, when a mode machine instance belongs to a distributed
shared mode queue which is assigned to an RTE Implementation Plug-In,
the protection of all accesses to the mode machine instance which require protec-
tion are implemented via the RTE Implementation Plug-In.

7.3.6.4 RTE Implementation Plug-In support for distributed shared mode
queues

The RTE Implementation Plug-In support for a distributed shared mode
queue has the purpose to connect an external task coordinator functionality imple-
mented as part of the RTE Implementation Plug-In. This enables a well defined
ramp-down and ramp-up of the task schedule during a mode switch. Further on such
an RTE Implementation Plug-In can actively manage the gap in the periodic
schedule in which mode switches are processed. For instances this might be imple-
mented with the means of priority ceiling caused by getting an OsResource.

Each mode switch of a mode machine instance belonging to a distributed
shared mode queue causes the following four kind of notifications:

1. Rte_Rips_DsmqSwitch indicates that a mode switch notification was en-
queued or discarded.

2. Rte_Rips_DsmqTransitionStart indicates the start of each (non chained)
DSMQ transition OsTask.

3. Rte_Rips_DsmqTransitionSync indicates that DSMQ transition OsTask
has executed its mapped on-entry ExecutableEntitys, on-transition
ExecutableEntitys, and on-exit ExecutableEntitys for this mode
switch.

4. Rte_Rips_DsmqTransitionEnd indicates the successful completion of the
previous mode switch and (if applicable) the enqueueing of the next mode switch.

7.3.6.4.1 DSMQ transition OsTask activation

In order to ensure a constant number of notification calls to the RTE Implementa-
tion Plug-In for any mode switch following requirement applies:

[SWS_Rte_80125] DRAFT d The RTE shall always activate all non-chained DSMQ
transition OsTasks when a new mode transition starts, regardless whether any on-
entry ExecutableEntitys, on-transition ExecutableEntitys, or on-
exit ExecutableEntitys of the currently switching mode machine instance
is mapped to such an OsTask. c(SRS_Rte_00311)

848 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.6.4.2 Rte_Rips_DsmqSwitch indication

[SWS_Rte_80111] DRAFT d The RTE shall call the Rte_Rips_DsmqSwitch Ser-
vice in the Rte_Switch API of the related mode manager of the mode machine
instance , if the RTE Implementation Plug-In support for a distributed
shared mode queue is enabled. c(SRS_Rte_00311)

Thereby the parameters are set according to the following requirements:

[SWS_Rte_80112] DRAFT d In case the Rte_Switch API enqueued into an empty
distributed shared mode queue, the RTE shall pass the current mode of the
related mode machine instance as parameter previousmode, the requested
mode as parameter nextmode, and RTE_DSMQ_ENQUEUED_FIRST as parameter
dsmqstatus to the Rte_Rips_DsmqSwitch Service. c(SRS_Rte_00311)

[SWS_Rte_80113] DRAFT d In case the Rte_Switch API enqueued into a non
empty distributed shared mode queue, the RTE shall pass the requested
mode as parameter nextmode and RTE_DSMQ_ENQUEUED_NOT_FIRST as param-
eter dsmqstatus to the Rte_Rips_DsmqSwitch Service. c(SRS_Rte_00311)

[SWS_Rte_80114] DRAFT d In case the Rte_Switch API could not enqueue into the
distributed shared mode queue, the RTE shall pass the requested mode as
parameter nextmode and RTE_DSMQ_ENQUEUE_FAILED as parameter dsmqstatus
to the Rte_Rips_DsmqSwitch Service. c(SRS_Rte_00311)

Please note: In case of [SWS_Rte_80113] and [SWS_Rte_80114] it is possible that
a mode transition of this mode machine instance is ongoing. Therefore the pa-
rameter previousmode is not reliable since it may change at any time during the
execution of the Rte_Rips_DsmqSwitch Service. Therefore the value of the param-
eter previousmode is implementation specific and will not be evaluated by the RTE
Implementation Plug-In.

7.3.6.4.3 Rte_Rips_DsmqTransitionStart indication

[SWS_Rte_80115] DRAFT d The RTE shall call the
Rte_Rips_DsmqTransitionStart Service of the mode machine instance
related to the to be performed mode switch in each DSMQ transition OsTask
participating in the distributed shared mode queue

• after the RTE examined the mode transition to be performed in this OsTask exe-
cution and

• before calling any ExecutableEntity in this task and

• before any operation on the implicit buffers of this task.

c(SRS_Rte_00311)

849 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80116] DRAFT d The RTE shall pass the mode from which
the mode switch will be performed as parameter previousmode to the
Rte_Rips_DsmqSwitch Service. c(SRS_Rte_00311)

[SWS_Rte_80117] DRAFT d The RTE shall pass the mode to which the mode switch
will be performed as parameter nextmode to the Rte_Rips_DsmqSwitch Service. c
(SRS_Rte_00311)

Thereby the the RTE can assume that the Rte_Rips_DsmqSwitch Service will not
return before all "non-chained" DSMQ transition OsTasks participating in the dis-
tributed shared mode queue called the Rte_Rips_DsmqSwitch Service.

[SWS_Rte_70109] DRAFT d The RTE Implementation Plug-In shall stay in the
Rte_Rips_DsmqSwitch Service until all Rte_Rips_DsmqSwitch Services of "non-
chained" DSMQ transition OsTasks are entered. c(SRS_Rte_00315)

7.3.6.4.4 Rte_Rips_DsmqTransitionSync indication

[SWS_Rte_80118] DRAFT d The RTE shall call the
Rte_Rips_DsmqTransitionSync Service of the DSMQ transition OsTask

• after termination of any on-exit ExecutableEntitys, on-transition
ExecutableEntitys, and on-entry ExecutableEntitys in this task

• and after any operation on the implicit buffers of this task,

• before any manipulation of the distributed shared mode queue (e.g the
dequeuing the next transition).

c(SRS_Rte_00311)

Thereby the Rte_Rips_DsmqTransitionSync Service combines two functionali-
ties. On one hand it is a synchronization point between concurrently executed DSMQ
transition OsTasks. On the other hand the return value controls when and in which Os-
Task the dequeue operation on the distributed shared mode queue is done.

[SWS_Rte_70115] DRAFT d The RTE Implementation Plug-In shall return for
exactly one Rte_Rips_DsmqTransitionSync Service TRUE, and for all others (if
present) FALSE. c(SRS_Rte_00315)

Please note: The return value of Rte_Rips_DsmqTransitionSync Service is de-
cided at runtime and can change between different mode switches.

[SWS_Rte_80119] DRAFT d The RTE shall only execute the dequeue operation on
the distributed shared mode queue in the DSMQ transition OsTasks in which
the Rte_Rips_DsmqTransitionSync Service returned TRUE. c(SRS_Rte_00311)

850 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.6.4.5 Rte_Rips_DsmqTransitionEnd indication

[SWS_Rte_80120] DRAFT d The RTE shall call the
Rte_Rips_DsmqTransitionEnd Service in the DSMQ transition OsTask in
which the dequeue operation is executed (see [SWS_Rte_80119]) after the dis-
tributed shared mode queue has been manipulated and the new mode has
been made visible to the mode users, but before the execution of ModeSwitchAck
ExecutableEntitys. c(SRS_Rte_00311)

[SWS_Rte_80121] DRAFT d The RTE shall treat the time between the
dequeue operation of the current mode switch and the return of the
Rte_Rips_DsmqTransitionEnd Service of the current mode switch as a criti-
cal section. Enqueue operations into this distributed shared mode queue
occurring during the critical section shall be executed when the critical section is left. c
(SRS_Rte_00311)

Note: Since the distributed shared mode queue is protected by a
pair of Rte_Rips_EnterModeQueue and Rte_Rips_ExitModeQueue Services,
[SWS_Rte_80121] requires the following sequence:

1. call of Rte_Rips_EnterModeQueue

2. manipulation of the distributed shared mode queue (set new current
mode, dequeue next mode transition)

3. call of Rte_Rips_DsmqTransitionEnd

4. call of Rte_Rips_ExitModeQueue.

Thereby the parameters are set according to the following requirements:

[SWS_Rte_80122] DRAFT d In case the distributed shared mode queue was
emptied by the mode switch, the RTE shall pass RTE_DSMQ_DEQUEUED_LAST as
parameter dsmqstatus, the mode from which the mode switch was performed as
parameter previousmode, and the mode to which the mode switch was performed
as parameter nextmode to the Rte_Rips_DsmqTransitionEnd Service to the just
switched mode machine instance. c(SRS_Rte_00311)

[SWS_Rte_80123] DRAFT d In case the distributed shared mode
queue was not emptied by the mode switch, the RTE shall pass
RTE_DSMQ_DEQUEUED_NOT_LAST as parameter dsmqstatus, the mode from
which the next mode switch will be performed as parameter previousmode, and the
mode to which the next mode switch will be performed as parameter nextmode to the
Rte_Rips_DsmqTransitionEnd Service related to the next to be switched mode
machine instance. c(SRS_Rte_00311)

[SWS_Rte_80124] DRAFT d In case the distributed shared mode queue was
not emptied by the mode switch, the RTE shall activate the non chained DSMQ tran-
sition OsTasks participating in the distributed shared mode queue after the
Rte_Rips_DsmqTransitionEnd Service returned. c(SRS_Rte_00311)

851 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.7 Compatibility Mode

7.3.7.1 Detection of source code vs. object code software components

AUTOSAR provides means to describe the delivery content of a software component.
It also describes the different behavior in case of source code and object code deliv-
eries. But what is missing there is a rule how to detect the kind of delivery out of the
component description. Thereby [SWS_Rte_80045] shall ensure a consistent behavior
of RTE Generator and RTE Implementation Plug-Ins.

[SWS_Rte_80045] DRAFT d The Rte Generator and the RTE Implementation
Plug-Ins shall discover a source code delivery of a software component, if the
according SwcImplementation mentions at least one codeDescriptor.arti-
factDescriptor category set to SWSRC and none of category SWOBJ. c
(SRS_Rte_00316)

Note: In all other cases the software component is delivered as object code.

7.3.7.2 Compatibility Mode and RTE Implementation Plug-Ins

The usage of the RTE Implementation Plug-In Services by the RTE is trans-
parent for the software component. When a RTE has to support compatibility mode,
e.g. due to an object code delivered software component, the RTE Implementa-
tion Plug-In Services are used either in the real RTE API C-functions or in the
component data structure only.

As a consequence, applying RTE Implementation Plug-Ins does not impact the
contract phase.

Nevertheless the RTE Implementation Plug-Ins has to consider the usage of
the Rte_Rips_IRBufferRef and Rte_Rips_IWBufferRef Services for the initial-
ization of the handles in the component data structure.

[SWS_Rte_70108] DRAFT d In case an Atomic Software Component re-
quires compatibility mode due to object code integration (see [SWS_Rte_80045])
or the software component supports multiple instantiation, the associated RTE
Implementation Plug-In shall implement all Rte_Rips_IRBufferRef and
Rte_Rips_IWBufferRef Services for every instance of this Atomic Software
Component in a way that those services can be used as static initializer. c
(SRS_Rte_00306, SRS_Rte_00301)

852 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.8 Transformers

7.3.8.1 Enable RTE Implementation Plug-In support for client server transform-
ers

In case a Sender Receiver Communication uses data transformation, enabling of the
RTE Implementation Plug-In support is exactly as described in section 7.3.4.1.

In case a Client Server Communication uses data transformation, enabling of the RTE
Implementation Plug-In support is done as follows:

[SWS_Rte_80067] DRAFT d The RTE Generator shall enable the RTE Imple-
mentation Plug-In support for a Client Server Communication Graph,
if a FlatInstanceDescriptor with rtePluginProps references the Client
Server Communication Graph. c(SRS_Rte_00312)

Please note: Thereby the FlatInstanceDescriptor’s target is the operation.

[SWS_Rte_CONSTR_80004] DRAFT dA Client Server Communication
Graph is handled by at most one RTE Implementation Plug-In In the case
that a Client Server Communication Graph is referenced by several RIPS
FlatInstanceDescriptors, all those RIPS FlatInstanceDescriptors
shall reference via FlatInstanceDescriptor.rtePluginProps.associate-
dRtePlugin the same RteRipsPluginProps container. c(SRS_Rte_00312)

[SWS_Rte_CONSTR_80005] DRAFT dValid operation instance reference for
Rte Implementation Plug-Ins I The RIPS FlatInstanceDescriptor for a
Client Server Communication Graph shall reference the operation instance
in the AbstractProvidedPortPrototype, if the configuration contains only the
Server or the Clients and Server for the Client Server Communication Graph.
c(SRS_Rte_00312)

[SWS_Rte_CONSTR_80006] DRAFT dValid operation instance reference for
Rte Implementation Plug-Ins II The RIPS FlatInstanceDescriptor for a
Client Server Communication Graph shall reference the operation instance
in the RPortPrototype, if the configuration contains only the Clients for the Client
Server Communication Graph. c(SRS_Rte_00312)

[SWS_Rte_CONSTR_80007] DRAFT dValid operation instance reference for
Rte Implementation Plug-Ins III The RIPS FlatInstanceDescriptor for
a Client Server Communication Graph is only applicable, if the client server
communication configures a transformer according [SWS_Rte_08794] (inter ECU) or
via ClientServerOperationMapping (intra ECU). c(SRS_Rte_00312)

7.3.8.2 Enable RTE Implementation Plug-In support for trigger transformers

In case a Trigger Communication uses data transformation, enabling of the RTE Im-
plementation Plug-In support is done as follows:

853 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80102] DRAFT d The RTE Generator shall enable the RTE Implemen-
tation Plug-In support for a Trigger Communication Graph, if a FlatIn-
stanceDescriptor with rtePluginProps references the Trigger Communica-
tion Graph. c(SRS_Rte_00317)

Please note: Thereby the FlatInstanceDescriptor’s target is the trigger.

[SWS_Rte_CONSTR_80014] DRAFT dA Trigger Communication Graph is
handled by at most one RTE Implementation Plug-In In the case that
a Trigger Communication Graph is referenced by several RIPS FlatIn-
stanceDescriptors, all those RIPS FlatInstanceDescriptors shall refer-
ence via FlatInstanceDescriptor.rtePluginProps.associatedRtePlugin
the same RteRipsPluginProps container. c(SRS_Rte_00317)

[SWS_Rte_CONSTR_80015] DRAFT dValid trigger instance reference for Rte
Implementation Plug-Ins I The RIPS FlatInstanceDescriptor for a
Trigger Communication Graph shall reference the trigger instance in the
AbstractProvidedPortPrototype, if the configuration contains only the trigger
source or the trigger sink(s) and trigger source for the Trigger Communication
Graph. c(SRS_Rte_00317)

[SWS_Rte_CONSTR_80016] DRAFT dValid trigger instance reference for Rte
Implementation Plug-Ins II The RIPS FlatInstanceDescriptor for a
Trigger Communication Graph shall reference the trigger instance in the
RPortPrototype, if the configuration contains only the trigger sink for the Trigger
Communication Graph. c(SRS_Rte_00317)

[SWS_Rte_CONSTR_80017] DRAFT dValid trigger instance reference for Rte
Implementation Plug-Ins III The RIPS FlatInstanceDescriptor for a
Trigger Communication Graph is only applicable, if the trigger commu-
nication configures a transformer according [SWS_Rte_08794] (inter ECU). c
(SRS_Rte_00317)

7.3.8.3 Handling of Data Communication Graphs

[SWS_Rte_80074] DRAFT d The RTE Generator shall inhibit the call of the transform-
ers (4.10.1) and the creation of the belonging transformer buffer (4.10.3) for a Data
Communication Graph, if it is assigned to an RTE Implementation Plug-In. c
(SRS_Rte_00312)

Instead of the RTE now the RTE Implementation Plug-In has the duty to call the
belonging transformers in the correct order. Nevertheless carving out this functionality
into an RTE Implementation Plug-In supports sophisticated buffer reuse opti-
mizations relying on the precise scheduling scenario as well as the distinct transfer of
the transformer calls in specific call contexts.

854 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Thereby the RTE Implementation Plug-In Services Rte_Rips_Read and
Rte_Rips_Write are called in the context of the related Rte_Read and Rte_Write
APIs.

[SWS_Rte_70089] DRAFT d The RTE Implementation Plug-In assigned to a
Data Communication Graph shall call transformers behaving functionally correctly
according to section (4.10.1). This includes the handling of the transformerError
and return value described in section 7.2.4.5. c(SRS_Rte_00312)

7.3.8.4 Handling of Client Server Communication Graphs and Trigger
Communication Graphs

[SWS_Rte_80068] DRAFT d The RTE Generator shall inhibit the call of the trans-
formers (4.10.1) and the creation of the belonging transformer buffer (4.10.3)
for a Client Server Communication Graph and Trigger Communication
Graph, if it is assigned to an RTE Implementation Plug-In. c(SRS_Rte_00312,
SRS_Rte_00317)

On the client / trigger source side the RTE calls the according Rte_Rips_Invoke ser-
vice in the context of the belonging ART API (Rte_Call or Rte_Trigger). In case
of AsynchronousServerCallPoints and AsynchronousServerCallResult-
Points the RTE calls the Rte_Rips_ReturnResult service from the Rte_Result
API.

On the server / trigger sink side the RTE Implementation Plug-In calls the
server runnable respectively the triggered runnable instead of the RTE.

In order to support the use case, that these server runnables and triggered
runnables in turn invoke an RTE API which is not handled by this RTE Implemen-
tation Plug-In or which is not handled by any RTE Implementation Plug-In
at all, it is required, that the call of these RunnableEntitys occurs in a defined and
predictable call context.

Therefore the according OperationInvokedEvents are still mapped with
RteEventToTaskMappings either to an OsTask or to a direct function call. But in
addition those RteEventToTaskMappings shall define an RteRipsInvocation-
HandlerRef.

[SWS_Rte_CONSTR_80009] DRAFT dMandatory Rte_Rips_InvocationHandler
in case of transformers In the case a server runnable or triggered runnable
invoked by an RTE Implementation Plug-In handles the transformers the
belonging RteEventToTaskMapping shall define an RteRipsInvocationHan-
dlerRef. c(SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_80069] DRAFT d The RTE Generator shall inhibit the call of the server
runnables and triggered runnables in case the related Client Server Com-
munication Graph or Trigger Communication Graph is assigned to an RTE
Implementation Plug-In. c(SRS_Rte_00312, SRS_Rte_00317)

855 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80070] DRAFT d The RTE Generator shall call the configured
Rte_Rips_InvocationHandler at the configured position in task or via a direct
function call. The call shall be unconditional. c(SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_70079] DRAFT d The RTE Implementation Plug-In assigned to a
Client Server Communication Graph or Trigger Communication Graph
shall call the server runnable respectively the triggered runnable in the con-
text of the Rte_Rips_InvocationHandler configured for the RteRipsInvoca-
tionHandlerRef belonging to the server runnable and triggered runnable
c(SRS_Rte_00312, SRS_Rte_00317)

Instead of the RTE now the RTE Implementation Plug-In has the duty to call the
belonging transformers in the correct order. Nevertheless carving out this functional-
ity into an RTE Implementation Plug-In enables support for sophisticated buffer
reuse optimizations relying on the precise scheduling scenario as well as the distinct
transfer of the transformer calls in specific call contexts.

[SWS_Rte_70080] DRAFT d The RTE Implementation Plug-In assigned to a
Client Server Communication Graph or Trigger Communication Graph
shall call transformers behaving functionally correctly according to section (4.10.1).
c(SRS_Rte_00312, SRS_Rte_00317)

[SWS_Rte_70081] DRAFT d The RTE Implementation Plug-In assigned to a
Client Server Communication Graph or Trigger Communication Graph
shall create the belonging transformer buffers with sufficient size according to section
(4.10.3). c(SRS_Rte_00312, SRS_Rte_00317)

7.3.9 Measurement

In general the usage of RTE Implementation Plug-Ins does not fundamentally
change the general functionality to support Measurement as described in section
4.2.8.2.

The only impact occurs when the RTE Implementation Plug-In instantiates the
global copy as described in section 7.3.4.5. In this case the RTE Generator is not
able to provide the McDataInstance.symbol for the described McDataInstances
in the McSupportData.

[SWS_Rte_80073] DRAFT d The RTE Generator shall inhibit the export of
McDataInstance.symbol attributes for McDataInstances belonging to
Data Communication Graphs associated to an RTE Implementation
Plug-In where the RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN. c(SRS_Rte_00153, SRS_Rte_00303)

In this case it is the responsibility of the associated RTE Implementation
Plug-In to provide the symbol information.

856 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70086] DRAFT d The associated RTE Implementation Plug-In
shall enrich the McSupportData provided by the RTE Generator with the McDataIn-
stance.symbol information in case

• swCalibrationAccess is set to readOnly or readWrite for the Data Com-
munication Graph

AND

• the RteRipsGlobalCopyInstantiationPolicy is set to
RTE_RIPS_INSTANTIATION_BY_PLUGIN.

c(SRS_Rte_00153, SRS_Rte_00303)

Please note: To implement [SWS_Rte_70086] the RTE Implementation Plug-
In tooling can use the McDataInstance.flatMapEntry reference to the according
RIPS FlatInstanceDescriptor to identify the McDataInstances relevant for a
Data Communication Graph.

7.3.10 Inter-Partition communication

In general the RTE Implementation Plug-Ins can be applied to Communication
Graphs crossing partition borders. This would mean, that an RTE Implementation
Plug-In implementation is executed on different cores or capable of supporting dif-
ferent ASIL levels.

Nevertheless currently no support for explicit life-cycle handling of those different par-
titions is standardized. Therefore as a prerequisite all partitions affecting one RTE
Implementation Plug-In need to have the same life-cycle. For instance this ex-
cludes the usage of individual termination and restart of partitions.

[SWS_Rte_CONSTR_80010] DRAFT dPartitions shall have the same life-cycle All par-
titions affecting the same RTE Implementation Plug-In shall have the same life-
cycle. c(SRS_Rte_00307, SRS_Rte_00309)

[SWS_Rte_80077] DRAFT d The Rte shall support the implementation of Communi-
cation Graphs with inter-partition-communication handled by an RTE Implemen-
tation Plug-In. c(SRS_Rte_00307, SRS_Rte_00309)

Please note: [SWS_Rte_80077] includes inter-partition-communication between mul-
tiple cores as well as inter-partition-communication for the separation of different ASIL
levels.

Thereby it is the responsibility of the RTE Implementation Plug-In to check,
whether it can handle the according configuration.

[SWS_Rte_70093] DRAFT d The RTE Implementation Plug-In shall reject con-
figurations which cannot be implemented by the RTE Implementation Plug-In. c
(SRS_Rte_00307, SRS_Rte_00309)

857 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

7.3.11 Bypass Support

When using RTE Implementation Plug-Ins in combination with Bypass Support
(see section 4.9) the following principles and restrictions apply.

7.3.11.1 Component wrapper method

The Component wrapper method is not impacted by the usage of RTE Implementa-
tion Plug-Ins

7.3.11.2 Direct buffer access method

When using the Direct buffer access method the RTE Generator can not describe the
buffers when the RTE Implementation Plug-In implements the implicit commu-
nication in a Data Communication Graph.

[SWS_Rte_70094] DRAFT d The RTE Implementation Plug-In shall generate
the McSupportData for the implicit communication buffers when Direct
buffer access method is selected as defined in section 4.9.3. c(SRS_Rte_00244)

7.3.11.3 Extended buffer access method

In case the Extended buffer access method is selected (see section 4.9.4), the re-
sponsibility is shared between the RTE and the RTE Implementation Plug-In.
For rptPreparationLevels greater than rptLevel1 the RTE implementation and
the implementation of the RTE Implementation Plug-In would suffer from a lot
of cross dependencies due to the required RP enabler flags.

Therefore those configurations are currently not supported in a standardized manner.

[SWS_Rte_CONSTR_80011] DRAFT dLimitation on RTE Implementation Plug-
In support for rptPreparationLevels Data Communication Graphs with
rptPreparationLevels greater than rptLevel1 shall not be assigned to an RTE
Implementation Plug-In. c(SRS_Rte_00244)

Except for implicit communication the bypass support is implemented by the RTE Gen-
erator as it is defined in section 4.9.4:

API Class rptLevel1
Explicit S/R RTE
Implicit S/R RTE Implementation

Plug-In
C/S RTE
Mode RTE
Trigger No
Explicit IRV RTE

858 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Implicit IRV RTE Implementation
Plug-In

Table 7.36: Table of API classes and responsibility of implementation

[SWS_Rte_70095] DRAFT d The RTE Implementation Plug-In shall implement
the bypass support for implicit communication as specified in section 4.9.4.3.3, if the
Extended buffer access method is configured and if rptLevel1 is selected for the
Data Communication Graph c(SRS_Rte_00244)

7.3.12 Activation of RTEEvents and BswEvents

The chapter 4.2.3 still leaves some freedom when an RTE activates a sequence of
ExecutableEntitys exactly in a OsTask. But for the interaction with RTE Imple-
mentation Plug-Ins some additional definitions are required in order to preserve
certain sequences. In the case RTEEvents and BswEvents for ExecutableEn-
titys, which do have the same activation condition, are mapped to an OsTask, an
unintended out of order execution shall be prevented. For instance such identical acti-
vation condition can be

• a set of ExternalTriggerOccurredEvents connected to the same trigger
source or

• a set of SwcModeSwitchEvent with the same activation, modes, and con-
nected to the same mode manager.

For illustration assume the following set-up:

• position 1, Run1, condition A

• position 2, Run2, condition A

• position 3, Run3, condition B

• position 4, Run4, condition B

• position 5, Run5, condition A

In the case the OsTask has also mapped RTEEvents and BswEvents with other
activation conditions, it is possible that the OsTask is already running when the other
activation condition occurs.

Assume now that the OsTask was started due to condition A and now
condition B is fulfilled right after the execution sequence has passed already Run3.
In this case Run4 might be executed before Run3. But for a stable interference calcu-
lation and the deterministic scheduling of Rte_Rips_FillFlushRoutine Services
such a situation needs to be avoided.

859 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80076] DRAFT d The RTE shall preserve the order of execution of Exe-
cutableEntitys mapped to the same OsTask after the common activation condition
occurred for all kinds of RTEEvents and BswEvents.

Thereby the order of execution is given by the RtePositionInTask and RteBswPo-
sitionInTask parameter values. c(SRS_Rte_00301)

860 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8 RTE ECU Configuration

The RTE provides the glue layer between the AUTOSAR software-components and the
Basic Software thus enabling several AUTOSAR software-components to be integrated
on one ECU. The RTE layer is shown in figure 8.1.

Figure 8.1: ECU Architecture RTE

The overall structure of the RTE configuration parameters is shown in figure 8.2. It has
to be distinguished between the configuration parameters for the RTE generator and
the configuration parameters for the generated RTE itself.

Most of the information needed to generate an RTE is already available in the ECU
Extract of the System Description [8]. From this extract also the links to the AUTOSAR
software-component descriptions and ECU Resource description are available. So
only additional information not covered by the three aforementioned formats needs to
be provided by the ECU Configuration description.

To additionally allow the most flexibility and freedom in the implementations of the RTE,
only configuration parameters which are common to all implementations are standard-
ized in the ECU Configuration Parameter definition. Any additional configuration pa-
rameters which might be needed to configure a full functional RTE have to be specified
using the vendor specific parameter definition mechanism described in the ECU Con-
figuration specification document [5].

8.1 RTE Module Configuration

Figure 8.2 shows the module configuration of the Rte and its sub-containers.

861 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Software Component template
Rte: EcucModuleDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteGeneration:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = 1

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

AtpPrototype

SwComponentPrototype

RteExclusiveAreaImplementation:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteNvRamAllocation:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteSoftwareComponentInstanceRef:
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = 1
lowerMultipl icity = 0

RteSwComponentType:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteComponentTypeRef:
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteOsInteraction:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

RtePostBuildVariantConfiguration:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteExternalTriggerConfig:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBypassSupportEnabled:
EcucBooleanParamDef

lowerMultipl icity = 0
upperMultiplicity = 1
defaultValue = false

RteInitial izationRunnableBatch:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteDistributedSharedModeQueue:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

+container

+subContainer

+parameter
«isOfType»

+type 1
{redefines
atpType}

+container

+subContainer

+container

+reference

+container

+container

+subContainer

+reference

+container

+subContainer

+container

Figure 8.2: RTE configuration overview

862 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Module SWS Item ECUC_Rte_09000
Module Name Rte
Module Description Configuration of the Rte (Runtime Environment) module.
Post-Build Variant
Support

true

Supported Config
Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency
RteBswGeneral 1 General configuration parameters of the Bsw

Scheduler section.
RteBswModuleInstance 0..* Represents one instance of a Bsw-Module configured

on one ECU.
RteDistributedSharedMode
Queue

0..* This container holds the configuration of a distributed
shared mode queue.

RteGeneration 1 This container holds the parameters for the
configuration of the RTE Generation.

RteImplicitCommunication 0..* Configuration of the Implicit Communication behavior
to be generated.

RteInitializationBehavior 1..* Specifies the initialization strategy for variables
allocated by RTE with the purpose to implement
VariableDataPrototypes.

The container defines a set of
RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

RteInitializationRunnable
Batch

0..* This container corresponds to an
Rte_Init_<shortName of this container> function
invoking the mapped RunnableEntities.

RteOsInteraction 1..* Interaction of the Rte with the Os.
RtePostBuildVariant
Configuration

0..1 Specifies the PostbuildVariantSets for each of the
PostBuild configurations of the RTE.

RteRips 0..1 This container provides the configuration of the Rte
Implementation Plug-In support by RTE. If the
container is NOT defined, the support for Rte
Implementation Plug-Ins (RIPS) is globally disabled.

Tags:
atp.Status=draft

RteSwComponentInstance 0..* Representation of one SwComponentPrototype
located on the to be configured ECU. All subcontainer
configuration aspects are in relation to this
SwComponentPrototype.

The RteSwComponentInstance can be associated
with either a AtomicSwComponentType or
ParameterSwComponentType.

RteSwComponentType 0..* Representation of one SwComponentType for the
base of all configuration parameter which are affecting
the whole type and not a specific instance.

863 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.1.1 RTE Configuration Version Information

In order to identify the RTE Configuration version a dedicated RTE code has been
generated from the RTE Configuration information may contain one or more DOC-
REVISION elements in the ECUC-MODULE-CONFIGURATION-VALUES element of the
RTE Configuration (see example 8.1).

[SWS_Rte_05184] d The REVISION-LABEL shall be parsed according to the rules
defined in the Generic Structure Template [10] for RevisionLabelString allowing
to parse the three version informations for AUTOSAR:

• major version: first part of the REVISION-LABEL

• minor version: second part of the REVISION-LABEL

• patch version: third part of the REVISION-LABEL

• optional fourth part shall be used for documentation purposes in the Basic Soft-
ware Module Description (see section 3.4.3)

If the parsing fails all three version numbers shall be set to zero. c(SRS_Rte_00233)

[SWS_Rte_05185] d If there are several DOC-REVISION elements in the input ECUC-
MODULE-CONFIGURATION-VALUES the newest according to the DATE shall be taken
into account.

If the search for the newest DOC-REVISION fails three version numbers shall be set to
zero. c(SRS_Rte_00233)

Example 8.1

<AUTOSAR xmlns="http://autosar.org/4.0.0" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org
/4.0.0 AUTOSAR.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Rte_Example</SHORT-NAME>
<ELEMENTS>

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Rte_Configuration</SHORT-NAME>
<ADMIN-DATA>

<DOC-REVISIONS>
<DOC-REVISION>

<REVISION-LABEL>2.1.34</REVISION-LABEL>
<DATE>2009-05-09T00:00:00.0Z</DATE>

</DOC-REVISION>
<DOC-REVISION>

<REVISION-LABEL>2.1.35</REVISION-LABEL>
<DATE>2009-06-21T09:30:00.0Z</DATE>

</DOC-REVISION>
</DOC-REVISIONS>

</ADMIN-DATA>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/Rte</

DEFINITION-REF>
<CONTAINERS>

864 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<!-- ... -->
</CONTAINERS>

</ECUC-MODULE-CONFIGURATION-VALUES>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

8.2 RTE Generation Parameters

The parameters in the container RteGeneration are used to configure the RTE gen-
erator. They all need to be defined during pre-compile time.

865 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteGenerationMode:
EcucEnumerationParamDef

defaultValue = COMPATIBILITY_MODE

COMPATIBILITY_MODE:
EcucEnumerationLiteralDef

VENDOR_MODE: EcucEnumerationLiteralDef

RteGeneration:
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultiplicity = 1

RteVfbTraceEnabled: EcucBooleanParamDef

defaultValue = false

RteVfbTraceFunction: EcucFunctionNameDef

upperMultipl icity = *
lowerMultiplicity = 0

RteMeasurementSupport:
EcucBooleanParamDef

defaultValue = false

RteCalibrationSupport:
EcucEnumerationParamDef

defaultValue = NONE

NONE: EcucEnumerationLiteralDef

SINGLE_POINTERED: EcucEnumerationLiteralDef

DOUBLE_POINTERED: EcucEnumerationLiteralDef

INITIALIZED_RAM: EcucEnumerationLiteralDef

RteOptimizationMode:
EcucEnumerationParamDef

defaultValue = RUNTIME

RUNTIME: EcucEnumerationLiteralDef

MEMORY: EcucEnumerationLiteralDef

RteVfbTraceClientPrefix:
EcucLinkerSymbolDef

upperMultipl icity = *
lowerMultiplicity = 0

RteValueRangeCheckEnabled:
EcucBooleanParamDef

defaultValue = false

RteToolChainSignificantCharacters:
EcucIntegerParamDef

defaultValue = 31
lowerMultiplicity = 0
upperMultipl icity = 1
min = 0
max = 65535

RteDevErrorDetect: EcucBooleanParamDef

defaultValue = false

RteDevErrorDetectUninit:
EcucBooleanParamDef

defaultValue = false
RteCodeVendorId: EcucIntegerParamDef

min = 0
max = 65535

RteBypassSupport:
EcucEnumerationParamDef

defaultValue = NONE
COMPONENT_WRAPPER: EcucEnumerationLiteralDef

NONE: EcucEnumerationLiteralDef

RteInExclusiveAreaCheckEnabled:
EcucBooleanParamDef

defaultValue = true

EXTENDED_BUFFER_ACCESS:
EcucEnumerationLiteralDef

+parameter

+literal

+literal

+literal

+literal

+parameter
+literal

+parameter

+parameter

+parameter

+literal

+literal

+parameter

+literal

+literal

+parameter

+literal

+parameter

+parameter

+parameter

+parameter

+literal

+parameter

+parameter

+parameter

Figure 8.3: RTE generation parameters

SWS Item [ECUC_Rte_09009]
Container Name RteGeneration
Description This container holds the parameters for the configuration of the RTE

Generation.
Configuration Parameters

866 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBypassSupport [ECUC_Rte_09113]
Parent Container RteGeneration
Description General switch to enable and select the bypass support method.
Multiplicity 1
Type EcucEnumerationParamDef
Range COMPONENT_WRAPPE

R
EXTENDED_BUFFER_AC
CESS
NONE

Default Value NONE
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCalibrationSupport [ECUC_Rte_09007]
Parent Container RteGeneration
Description The RTE generator shall have the option to switch off support for

calibration for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucEnumerationParamDef
Range DOUBLE_POINTERED

INITIALIZED_RAM
NONE
SINGLE_POINTERED

Default Value NONE
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCodeVendorId [ECUC_Rte_09086]
Parent Container RteGeneration
Description Holds the vendor ID of the generated Rte code.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Post-Build Variant
Value

false

867 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteDevErrorDetect [ECUC_Rte_09008]
Parent Container RteGeneration
Description Switches the development error detection and notification on or off.

• true: detection and notification is enabled.

• false: detection and notification is disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteDevErrorDetectUninit [ECUC_Rte_09085]
Parent Container RteGeneration
Description The Rte shall detect if it is started when its APIs are called, and the

BSW Scheduler shall check if it is initialized when its APIs are called.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteGenerationMode [ECUC_Rte_09010]
Parent Container RteGeneration
Description Switch between the two available generation modes of the RTE

generator.
Multiplicity 1
Type EcucEnumerationParamDef
Range COMPATIBILITY_MODE

VENDOR_MODE
Default Value COMPATIBILITY_MODE

868 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteInExclusiveAreaCheckEnabled [ECUC_Rte_09126]
Parent Container RteGeneration
Description Enables the check for RTE_E_IN_EXCLUSIVE_AREA (for blocking

APIs).
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteMeasurementSupport [ECUC_Rte_09011]
Parent Container RteGeneration
Description The RTE generator shall have the option to switch off support for

measurement for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOptimizationMode [ECUC_Rte_09012]
Parent Container RteGeneration
Description Switch between the two available optimization modes of the RTE

generator.
Multiplicity 1
Type EcucEnumerationParamDef
Range MEMORY

RUNTIME
Default Value RUNTIME

869 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteToolChainSignificantCharacters [ECUC_Rte_09013]
Parent Container RteGeneration
Description If present, the RTE generator shall provide the list of C RTE identifiers

whose name is not unique when only the first
RteToolChainSignificantCharacters characters are considered.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value 31
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteValueRangeCheckEnabled [ECUC_Rte_09014]
Parent Container RteGeneration
Description If set to true the RTE generator shall enable the value range checking

for the specified VariableDataPrototypes.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

870 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteVfbTraceClientPrefix [ECUC_Rte_09016]
Parent Container RteGeneration
Description Defines an additional prefix for all VFB trace functions to be generated.

With this approach it is possible to have debugging and DLT trace
functions at the same time.

Multiplicity 0..*
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVfbTraceEnabled [ECUC_Rte_09015]
Parent Container RteGeneration
Description The RTE generator shall globally enable VFB tracing when

RteVfbTrace is set to "true".
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVfbTraceFunction [ECUC_Rte_09017]
Parent Container RteGeneration
Description The RTE generator shall enable VFB tracing for a given hook function

when there is a #define in the RTE configuration header file for the
hook function name and tracing is globally enabled. Example: #define
Rte_WriteHook_i1_p1_a_Start

This also applies to VFB trace functions with a
RteVfbTraceClientPrefix, e.g. Rte_Dbg_WriteHook_I1_P1_a_Start.

Multiplicity 0..*
Type EcucFunctionNameDef
Default Value

871 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

[SWS_Rte_CONSTR_03870] d In case that RteDevErrorDetectUninit is config-
ured to true, RteDevErrorDetect shall be configured to true. c()

8.3 RTE PreBuild configuration

In order to support PreBuild configuration variation of the Rte input (see also sec-
tion 4.7) the container EcucVariationResolver is providing a set of references to
PredefinedVariant. These define values for SwSystemconst.

Note that the information for the EcucVariationResolver is provided in the EcuC
part of the ECU Configuration, since it does not only influence the Rte but also many
other BSW Modules.

872 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

GenericStructureTemplate

EcuC: EcucModuleDef

upperMultipl icity = 1
lowerMultiplicity = 0

EcucVariationResolver:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = 1

ARElement

SwSystemconstantValueSet

PredefinedVariantRef: EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultipl icity = 1
upperMultiplicity = *

ARElement

PredefinedVariant

SwSystemconstValue

«atpVariation»
+ value: Numerical

ARElement
AtpDefinition

SwSystemconst

+reference

+container

+swSystemconst 1

+includedVariant 0..*

+swSystemconstantValueSet 0..*

+swSystemconstantValue 0..*

Figure 8.4: RTE PreBuild configuration

SWS Item [ECUC_EcuC_00009]
Container Name EcucVariationResolver
Description Collection of PredefinedVariant elements containing definition of values

for SwSystemconst which shall be applied when resolving the
variability during ECU Configuration.

Configuration Parameters

Name PredefinedVariantRef [ECUC_EcuC_00010]
Parent Container EcucVariationResolver
Description
Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

873 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency

No Included Containers

8.4 RTE PostBuild configuration

In order to support PostBuild configuration variation of the generated Rte (see also
section 4.7) the container RtePostBuildVariantConfiguration is used. Each
instance of RtePostBuildUsedPredefinedVariant inside this container specifies
one PostBuild variant of the generated Rte. The shortName of the RtePostBuil-
dUsedPredefinedVariant specifies the variant name.

The actual values for the PostBuildVariantCriterion are defined in a two step
approach:

1. The reference RtePostBuildUsedPredefinedVariant collects the Prede-
finedVariant elements.

2. Each PredefinedVariant element collects a set of PostBuildVari-
antCriterionValueSet.

3. Each PostBuildVariantCriterionValueSet defines the PostBuild-
VariantCriterionValues for a set of PostBuildVariantCriterion.

The basic idea is that

• the PostBuildVariantCriterionValueSet can be provided by sub-system
engineer,

• the PredefinedVariant can be designed by the Ecu integrator.

874 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

GenericStructureTemplate

ARElement
AtpDefinition

PostBuildVariantCriterion

RtePostBuildVariantConfiguration:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = 1

ARElement

PostBuildVariantCriterionValueSet

PostBuildVariantCriterionValue

«atpVariation»
+ value: Integer

RtePostBuildUsedPredefinedVariant:
EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultiplicity = 1
upperMultipl icity = *

ARElement

PredefinedVariant

+postBuildVariantCriterionValue 0..*

+postBuildVariantCriterionValueSet 0..*

+reference

+variantCriterion 1

+includedVariant
0..*

Figure 8.5: RTE PostBuild configuration

SWS Item [ECUC_Rte_09084]
Container Name RtePostBuildVariantConfiguration
Description Specifies the PostbuildVariantSets for each of the PostBuild

configurations of the RTE.
Configuration Parameters

Name RtePostBuildUsedPredefinedVariant [ECUC_Rte_09083]
Parent Container RtePostBuildVariantConfiguration
Description Reference to the PredefinedVariant element which defines the values

for PostBuildVariationCriterion elements. The shortName of the
referenced PredefinedVariant defines the name of the
RtePostBuildVariant.

Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

875 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

No Included Containers

876 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.5 Handling of Software Component instances

When entities of Software-Components are to be configured there is the need to actu-
ally address the instances of the AtomicSwComponentType. Since the Ecu Extract
of System Description contains a flat view on the Ecu’s Software-Components [8] the
SwComponentPrototypes in the Ecu Extract already represent the instances of the
Software Components.

CompositionSwComponentType

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement
AtpStructureElement

System

+ containerIPduHeaderByteOrder: ByteOrderEnum [0..1]
+ ecuExtractVersion: RevisionLabelString [0..1]
+ pncVectorLength: PositiveInteger [0..1]
+ pncVectorOffset: PositiveInteger [0..1]
+ systemVersion: RevisionLabelString

ServiceSwComponentType

AtomicSwComponentType

AtpPrototype

SwComponentPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement

SwConnector

ARElement

EcucValueCollection

������������	
 ����

�����������	��	���� �

����������	����

������������	
 ����

�����������	��	���� �

���������

������������	
 ����

�����������	��	���� �

��������������

AssemblySwConnector

AbstractProvidedPortPrototype

AbstractRequiredPortPrototype

«isOfType»

+softwareComposition

1
{redefines
atpType}

+port 0..*

«atpVariation,atpSplitable»

+rootSoftwareComposition 0..1

«atpVariation,atpSplitable»

«isOfType»

+type 1
{redefines
atpType}

+component

0..*«atpVariation,atpSplitable»

+ecuExtract 1

+connector *

«atpVariation,atpSplitable»

«instanceRef»

+provider

0..1

«instanceRef»

+requester
0..1

Figure 8.6: Services in the ECU Configuration

877 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09005]
Container Name RteSwComponentInstance
Description Representation of one SwComponentPrototype located on the to be

configured ECU. All subcontainer configuration aspects are in relation
to this SwComponentPrototype.

The RteSwComponentInstance can be associated with either a
AtomicSwComponentType or ParameterSwComponentType.

Configuration Parameters

Name RteSoftwareComponentInstanceRef [ECUC_Rte_09004]
Parent Container RteSwComponentInstance
Description Reference to a SwComponentPrototype.
Multiplicity 0..1
Type Foreign reference to SW-COMPONENT-PROTOTYPE
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
RteEventToTaskMapping 0..* Maps an instance of a RunnableEntity onto one OsTask

based on the activating RTEEvent. In the case of a
RunnableEntity executed via a direct function call this
RteEventToTaskMapping is still specified but no
RteMappedToTask element is included. The
RtePositionInTask parameter is necessary to provide an
ordering of events invoked by the same RTE API.

RteExclusiveArea
Implementation

0..* Specifies the implementation to be used for the data
consistency of this ExclusiveArea.

RteExternalTriggerConfig 0..* Defines the configuration of External Trigger Event
Communication for Software Components

RteInternalTriggerConfig 0..* Defines the configuration of Inter Runnable Triggering
for Software Components

RteModeMachine
InstanceConfig

0..* Defines the configuration of RTE assigned
(SWS_Rte_07533) mode machine instances.

RteNvRamAllocation 0..* Specifies the relationship between the
AtomicSwComponentType’s NVRAMMapping / NVRAM
needs and the NvM module configuration.

878 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The container RteSwComponentInstance collects all the configuration information
related to one specific instance of a AtomicSwComponentType. The individual as-
pects will be described in the next sections.

8.5.1 RTE Event to task mapping

One of the major fragments of the RTE configuration is the mapping of AUTOSAR
Software-Components’ RunnableEntitys to OS Tasks. The parameters defined to
achieve this are shown in figure 8.7.

879 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Software Component template

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteEventRef:
EcucForeignReferenceDef

destinationType = RTE-EVENT
lowerMultipl icity = 1
upperMultipl icity = *

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

RtePositionInTask:
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultipl icity = 0
min = 0
max = 65535

OsTask:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteMappedToTaskRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

AbstractEvent
AtpStructureElement

RTEEvent

Identifiable

WaitPoint

+ timeout: TimeValue

RteUsedOsEventRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

OsEvent:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteActivationOffset:
EcucFloatParamDef

min = 0
max = INF
lowerMultipl icity = 0
upperMultiplicity = 1

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

OsScheduleTableExpiryPoint:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

OsAlarm:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteVirtuallyMappedToTaskRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteUsedOsAlarmRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteUsedOsSchTblExpiryPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteOsSchedulePoint:
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

NONE:
EcucEnumerationLiteralDef

CONDITIONAL:
EcucEnumerationLiteralDef

UNCONDITIONAL:
EcucEnumerationLiteralDef

RteImmediateRestart:
EcucBooleanParamDef

defaultValue = false

RteInitial izationRunnableBatch:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

RteUsedInitFnc: EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

Os

RteSyncPoint:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteEventPredecessorSyncPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteEventSuccessorSyncPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteServerQueueLength:
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultiplicity = 0
min = 0
max = 65535

+reference

+startOnEvent 0..1

+destination

+parameter

+literal

+reference

+destination

+parameter

+literal

+parameter

+reference +destination

+reference

+waitPoint *

+parameter

+reference

+destination

+reference

+destination

+reference

+subContainer

+trigger

1

+parameter

+literal

+destination

+reference

+destination

+reference

+destination

Figure 8.7: RTE Event to task mapping

880 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The mapping is based on the RTEEvent because it is the source of the activation.
For each RunnableEntity which belongs to an AUTOSAR Software-Component in-
stance mapped on the ECU there needs to be a mapping container specifying how this
RunnableEntity activation shall be handled.

[SWS_Rte_07843] d The RTE Generator shall reject configurations where the same
RTEEvent instance which can start a RunnableEntity is referenced by multiple task
mappings. c()

One major constraint is posed by the canBeInvokedConcurrently attribute of each
RunnableEntity because data consistency issues have to be considered.

8.5.1.1 Evaluation and execution order

Another important parameter is the RtePositionInTask which provides an order
of RunnableEntitys within the associated OsTask. When the task is executed pe-
riodically the RtePositionInTask parameter defines the order of execution within
the test. When the task is used to define a context for event activated RunnableEn-
titys the RtePositionInTask parameter defines the order of evaluation which ac-
tual RunnableEntity shall be executed. Thus providing means to define a determin-
istic delay between the beginning of execution of the task and the actual execution of
the RunnableEntity’s code.

In case of triggered runnables, on-entry ExecutableEntitys, on-
transition ExecutableEntitys, on-exit ExecutableEntitys, and Mod-
eSwitchAck ExecutableEntitys the RtePositionInTask parameter defines
the order of evaluation which actual RunnableEntity shall be executed. All other
parameters or references are not required.

8.5.1.2 Direct function call

[SWS_Rte_06798] d If the ExecutableEntity is a server ExecutableEn-
tity, triggered ExecutableEntity, on-entry ExecutableEntity, on-
transition ExecutableEntity, on-exit ExecutableEntity, or a Mod-
eSwitchAck ExecutableEntity and shall be executed in the context of the caller
(i.e. using a direct function call) then the element RteEventToTaskMapping or
RteBswEventToTaskMapping still shall be provided to indicate that this RTEEvent
/ BswEvent has been considered in the mapping. c()

In case of server ExecutableEntitys its not possible that several servers get
invoked by the same API call. Therefore no further parameters in the RteEvent-
ToTaskMapping or RteBswEventToTaskMapping associated to the RTEEvent
/ BswEvent are required to configure the direct function call for server Exe-
cutableEntitys.

881 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06799] d For directly invoked server ExecutableEntitys no further
parameters or references are required, in particular RteMappedToTaskRef and
RtePositionInTask are omitted. c()

In case of ExecutableEntitys which are not server ExecutableEntitys it is
possible that several ExecutableEntitys get invoked by the same API call when
direct function call configuration is used. Thereby the RteMappedToTaskRef / RteB-
swMappedToTaskRef is omitted. However the order of invocation needs to be config-
ured with the RtePositionInTask and RteBswPositionInTask parameters.

[SWS_Rte_06800] d For directly invoked triggered ExecutableEntity, on-
entry ExecutableEntity, on-transition ExecutableEntity, on-exit
ExecutableEntity, or a ModeSwitchAck ExecutableEntity the RtePosi-
tionInTask and RteBswPositionInTask parameter respectively is required to in-
dicate the order of invocation. c()

The invocation context for an ExecutableEntity can be either a task or
a function call. For ExecutableEntitys invoked from an OsTasks then
[SWS_Rte_CONSTR_09082] means that all mapped ExecutableEntities must have
unique values for the task to ensure predictable generation of the task body. In the case
of RTEEvents or BswEvents invoked by direct invocation from an RTE-generated API
function then [SWS_Rte_CONSTR_09082] means that all events invoked by the call-
ing function must have unique values to ensure predictable generation of the calling
API.

[SWS_Rte_CONSTR_09082] RtePositionInTask and RteBswPositionInTask
values shall be unique in a particular context d RtePositionInTask and RteB-
swPositionInTask shall have unique values for any particular task in the case RTE-
Events and BswEvents are mapped to OsTasks and shall have unique values for any
particular scope of direct invocation in the case that the a direct function call is config-
ured. c()

Concerning the mapping of several operations to the same server runnables
see [SWS_Rte_08001].

Example 8.2

BSW module BswA defines BswModuleEntity BswA_ProcessBigBang triggered
by BswExternalTriggerOccurredEvent Ev_BswA_ProcessBigBang

Software component SwcA defines RunnableEntity SwcA_Run_BigBang triggered
by ExternalTriggerOccurredEvent Ev_SwcA_Run_BigBang

Software component SwcB defines RunnableEntity SwcB_Run_BigBang triggered
by ExternalTriggerOccurredEvent Ev_SwcB_Run_BigBang

All required Triggers are connected to one common synchronized Trigger.

Scenario A

A configuration:

882 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Ev_BswA_ProcessBigBang is mapped to OsTask T_BIG_BANG with RtePosi-
tionInTask = 1

Ev_SwcA_Run_BigBang is mapped to OsTask T_BIG_BANG with RtePosition-
InTask = 2

Ev_SwcB_Run_BigBang is mapped to OsTask T_BIG_BANG with RtePosition-
InTask = 3

results in Rte code where the ExecutableEntitys are called in the context of the
OsTask T_BIG_BANG in the order:

1. Ev_BswA_ProcessBigBang

2. Ev_SwcA_Run_BigBang

3. Ev_SwcB_Run_BigBang

In addition [SWS_Rte_CONSTR_09082] is fulfilled even if the RtePositionInTask
values 1, 2, 3 are used for other RteEventToTaskMappings mapping to other Os-
Task or configuring a direct function call.

Scenario B

A configuration:

Ev_BswA_ProcessBigBang is not mapped to any OsTask and RtePositionIn-
Task = 1

Ev_SwcA_Run_BigBang is not mapped to any OsTask and RtePositionInTask =
2

Ev_SwcB_Run_BigBang is not mapped to any OsTask and RtePositionInTask =

results in Rte code where the ExecutableEntitys are called in the context of the
issuing Trigger API, e.g SchM_Trigger which invokes the ExecutableEntitys in
the order:

1. Ev_BswA_ProcessBigBang

2. Ev_SwcA_Run_BigBang

3. Ev_SwcB_Run_BigBang

8.5.1.3 Schedule Points

In order to allow explicit calls to the Os scheduler in an non-preemptive scheduling
setup, the configuration element RteOsSchedulePoint shall be used.

[SWS_Rte_05113] d The RTE Generator shall create an unconditional call to the
Os API Schedule after the execution call of the RunnableEntity if the RteOsS-
chedulePoint configuration parameter is set to UNCONDITIONAL. In the generated

883 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

code the call to the Os API Schedule shall always be performed, even when the
RunnableEntity itself has not been executed (called). c()

Since the execution of a RunnableEntity may be performed (e.g. due to mode de-
pendent scheduling) the call of the Os API Schedule without any RunnableEntity
execution in between might occur. in order to prohibit such a call chain the CONDI-
TIONAL schedule point is available.

[SWS_Rte_05114] d The RTE Generator shall create a conditional call to the Os API
Schedule after the execution call of the RunnableEntity if the RteOsSchedule-
Point configuration parameter is set to CONDITIONAL. In the generated code the call
to the Os API Schedule shall be omitted when there was already a call to the Os API
Schedule before without any RunnableEntity execution in between. c()

[SWS_Rte_07042] d The Os API Schedule according [SWS_Rte_05113] and
[SWS_Rte_05114] shall be called after the data written with implicit write access by
the RunnableEntity are propagated to other RunnableEntitys as specified in
[SWS_Rte_07021], [SWS_Rte_03957], [SWS_Rte_07041] and [SWS_Rte_03584] c()

[SWS_Rte_07043] d The Os API Schedule according [SWS_Rte_05113] and
[SWS_Rte_05114] shall be called before the preemption area specific buffer used
for a implicit read access of the successor RunnableEntity are filled with actual data
by a copy action according [SWS_Rte_07020]. c()

[SWS_Rte_05115] d The RTE Generator shall create no call to the Os API Schedule
after the execution of the RunnableEntity if the RteOsSchedulePoint configura-
tion parameter is not present or is set to NONE. c()

[SWS_Rte_01373] d The RTE Generator shall support the independent setting
of RteOsSchedulePoint for RteEventToTaskMappings that map the same
RunnableEntity. c(SRS_Rte_00018)

8.5.1.4 Timeprotection support

[SWS_Rte_07801] d If RteMappedToTaskRef is configured but RteVirtual-
lyMappedToTaskRef is not configured, the RTE shall implement/evaluate the RTE-
Event that activates the RunnableEntity and execute the RunnableEntity in the
OsTask referenced by RteMappedToTaskRef. c()

[SWS_Rte_07802] d If both RteMappedToTaskRef and RteVirtuallyMappedTo-
TaskRef are configured, the RTE shall implement/evaluate the RTEEvent that acti-
vates the RunnableEntity in the OsTask referenced by RteVirtuallyMapped-
ToTaskRef but execute the RunnableEntity in the OsTask referenced by
RteMappedToTaskRef. The RTE shall implement this by an activation of the OsTask
referenced by RteMappedToTaskRef when the RTEEvent is evaluated as "TRUE" in
the OsTask referenced by RteVirtuallyMappedToTaskRef. c(SRS_Rte_00193)

884 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07803] d The RTE shall reject the configuration if RteMappedTo-
TaskRef is not configured but RteVirtuallyMappedToTaskRef is configured. c
(SRS_Rte_00018)

8.5.1.5 Os Interaction

When an OsEvent is used to activate the OsTask the reference RteUsedOsEven-
tRef specifies which OsEvent is used.

When an OsAlarm is used to implement a TimingEvent or a BackgroundEvent
the reference RteUsedOsAlarmRef specifies which OsAlarm is used.

[SWS_Rte_07806] d If RteUsedOsAlarmRef is configured and RteEventRef refer-
ences a TimingEvent the RTE shall implement the TimingEvent with the OsAlarm
referenced by RteUsedOsAlarmRef. c(SRS_Rte_00232)

[SWS_Rte_07179] d If RteUsedOsAlarmRef is configured and RteEventRef ref-
erences a BackgroundEvent the RTE shall implement the BackgroundEvent with
the OsAlarm referenced by RteUsedOsAlarmRef. c()

When an OsScheduleTableExpiryPoint is used to implement a TimingEvent or
a BackgroundEvent the reference RteUsedOsSchTblExpiryPointRef specifies
which OsScheduleTableExpiryPoint is used.

[SWS_Rte_07807] d If RteUsedOsSchTblExpiryPointRef is configured
and RteEventRef references a TimingEvent the RTE shall implement the
TimingEvent with the OsScheduleTableExpiryPoint referenced by RteUse-
dOsSchTblExpiryPointRef. c(SRS_Rte_00232)

[SWS_Rte_07180] d If RteUsedOsSchTblExpiryPointRef is configured and
RteEventRef references a BackgroundEvent the RTE shall implement the Back-
groundEvent with the OsScheduleTableExpiryPoint referenced by RteUse-
dOsSchTblExpiryPointRef. c()

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef are con-
figured and RteEventRef references a TimingEvent the RTE is free to imple-
ment the TimingEvent with the OsAlarm or OsScheduleTableExpiryPoint of
its choice.

[SWS_Rte_07808] d The RTE shall reject the configuration if both RteUsedOsAlarm-
Ref and RteUsedOsSchTblExpiryPointRef are configured. c(SRS_Rte_00018)

[SWS_Rte_07809] d The RTE shall reject the configuration if RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef is configured and RteEventRef doesn’t ref-
erence a TimingEvent or a BackgroundEvent. c(SRS_Rte_00018)

885 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.5.1.6 Background activation

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef is con-
figured and RteEventRef references a BackgroundEvent the RteMappedTo-
TaskRef has to reference the OsTask used for Background activation of RunnableEn-
tities and Basic Software Schedulable Entities on the related CPU core where the par-
tition of the software component is mapped.

The OsTask used for BackgroundEvent triggering has to have the lowest priority on
the core. There can only be one ’Background’ OsTask per CPU core.

[SWS_Rte_07181] d The RTE shall reject the configuration if

• RteEventRef references a BackgroundEvent and

• neither RteUsedOsAlarmRef nor RteUsedOsSchTblExpiryPointRef are
configured and

• if RteMappedToTaskRef reference an OsTask which has not the lowest priority
of the core.

c(SRS_Rte_00018)

8.5.1.7 Constraints

There are some constraints which do apply when actually mapping the RunnableEn-
tity to an OsTask:

[SWS_Rte_05082] d The following restrictions apply to RTEEvents which are used
to activate RunnableEntity. OsEvents that are used to wakeUpFromWaitPoint
shall not be included in the mapping. c()

When a wakeUpFromWaitPoint is occurring the RunnableEntity resumes its ex-
ecution in the context of the originally activated OsTask.

[SWS_Rte_05083] d The RTE Generator shall reject configurations where a
RunnableEntity has its canBeInvokedConcurrently attribute set to false, and
this RunnableEntity is mapped to different tasks which can preempt each other. c()

[SWS_Rte_07229] d To evaluate [SWS_Rte_05083] in case of triggered
runnables which are activated by a direct function call ([SWS_Rte_07214],
[SWS_Rte_07224] and [SWS_Rte_07554]) the OsTask (context of the caller) is
defined by the RunnableEntity’s containing the activating InternalTrigger-
ingPoint or ExternalTriggeringPoint. c(SRS_Rte_00162, SRS_Rte_00163,
SRS_Rte_00230)

[SWS_Rte_07155] d To evaluate [SWS_Rte_05083] in case of on-entry
ExecutableEntitys, on-transition ExecutableEntitys, on-exit Exe-
cutableEntitys, and ModeSwitchAck ExecutableEntitys which are acti-
vated by a direct function call the OsTask (context of the caller) is defined

886 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

by the RunnableEntity’s containing the activating ModeSwitchPoint. c
(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_CONSTR_03873] d All OperationInvokedEvents/BswOperationIn-
vokedEvents which are activating the same server ExecutableEntity shall be
mapped by at most one RteEventToTaskMapping/RteBswEventToTaskMapping
which references an OsTask. c(SRS_Rte_00019, SRS_Rte_00033)

Note: This shall ensure that direct function calls and server serialization can be mixed
for the same server ExecutableEntity. But the server serialization can only be
configured at exactly one RtePositionInTask/RteBswPositionInTask.

[SWS_Rte_CONSTR_03874] d A RteEventToTaskMapping/RteBswEventTo-
TaskMapping shall only own more than one RteEventRef/RteBswEventRef ref-
erence if all owned RteEventRefs/RteBswEventRefs refer to OperationIn-
vokedEvents/BswOperationInvokedEvents which in turn are triggering the same
server ExecutableEntity. c(SRS_Rte_00019, SRS_Rte_00033)

SWS Item [ECUC_Rte_09020]
Container Name RteEventToTaskMapping
Description Maps an instance of a RunnableEntity onto one OsTask based on the

activating RTEEvent. In the case of a RunnableEntity executed via a
direct function call this RteEventToTaskMapping is still specified but no
RteMappedToTask element is included. The RtePositionInTask
parameter is necessary to provide an ordering of events invoked by the
same RTE API.

Configuration Parameters

Name RteActivationOffset [ECUC_Rte_09018]
Parent Container RteEventToTaskMapping
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

887 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteImmediateRestart [ECUC_Rte_09092]
Parent Container RteEventToTaskMapping
Description When RteImmediateRestart is set to true the RunnableEntitiy shall be

immediately re-started after termination if it was activated by this
RTEEvent while it was already started.

This parameter shall not be set to true when the mapped RTEEvent
refers to a RunnableEntity which minimumStartInterval attribute is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOsSchedulePoint [ECUC_Rte_09022]
Parent Container RteEventToTaskMapping
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

888 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RtePositionInTask [ECUC_Rte_09023]
Parent Container RteEventToTaskMapping
Description Each RunnableEntity mapped to an OsTask has a specific position

within the task execution. For periodic activation this is the order of
execution. For event driver activation this is the order of evaluation
which actual RunnableEntity has to be executed. In case of direct
function calls this parameter is necessary to provide an ordering of
events when several ExecutableEntities are invoked by the same RTE
API.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteServerQueueLength [ECUC_Rte_09133]
Parent Container RteEventToTaskMapping
Description Specifies the length of the queue for the server call serialization. This

value overwrites the queueLength specified at the ServerComSpec.
Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

889 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteEventPredecessorSyncPointRef [ECUC_Rte_09128]
Parent Container RteEventToTaskMapping
Description The RteEventPredecessorSyncPointRef is necessary to provide a

cross core synchronization in case of RteEvents triggered by the same
event source but mapped to tasks belonging to different partitions on
different cores.

The synchronization point must be reached by all referencing
RteEvents before the execution in all related tasks is continued.

In case of RteEventPredecessorSyncPointRef the RunnableEntity
activated by the mapped RteEvent is executed after the
synchronization point is passed.

Multiplicity 0..1
Type Reference to RteSyncPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteEventRef [ECUC_Rte_09019]
Parent Container RteEventToTaskMapping
Description Reference to the description of the RTEEvent which is pointing to the

RunnableEntity being mapped. This allows a fine grained mapping of
RunnableEntites based on the activating RTEEvent.

Multiplicity 1..*
Type Foreign reference to RTE-EVENT

Post-Build Variant
Value

false

890 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteEventSuccessorSyncPointRef [ECUC_Rte_09129]
Parent Container RteEventToTaskMapping
Description The RteEventSuccessorSyncPointRef is necessary to provide a cross

core synchronization in case of RteEvents triggered by the same event
source but mapped to tasks belonging to different partitions on
different cores.

The synchronization point must be reached by all referencing
RteEvents before the execution in all related tasks is continued.

In case of RteEventSuccessorSyncPointRef the RunnableEntity
activated by the mapped RteEvent is executed before the
synchronization point is entered.

Multiplicity 0..1
Type Reference to RteSyncPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

891 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteMappedToTaskRef [ECUC_Rte_09021]
Parent Container RteEventToTaskMapping
Description Reference to the OsTask the RunnableEntity activated by the

RteEventRef is mapped to.

If no reference to the OsTask is specified the RunnableEntity shall be
executed via a direct function call.

The fact that no reference to an OsTask is specified for a
RunnableEntity does not necessarily imply that every RTE generator
has to support the implementation of this RunnableEntity as a direct
function call. The standard set of use cases for direct function calls that
has to be supported by every RTE generator is explicitly stated as
requirements in this document. For further optimization RTE vendors
are free to support additional scenarios of direct function call
implementations that are not explicitly required in this document.

Multiplicity 0..1
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteRipsFillRoutineRef [ECUC_Rte_89005]
Parent Container RteEventToTaskMapping
Description Reference to a Buffer-Fill Routine implemented by an RTE

Implementation Plug-In. This routine gets invoked directly before the
ExecutableEntity is started.

Tags:
atp.Status=draft

Attributes:
requiresIndex=true

Multiplicity 0..*
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPluginFillFlush

Routine]
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

892 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteRipsFlushRoutineRef [ECUC_Rte_89006]
Parent Container RteEventToTaskMapping
Description Reference to a Buffer-Flush Routine implemented by an RTE

Implementation Plug-In. This routine gets invoked directly after the
ExecutableEntity has terminated.

Tags:
atp.Status=draft

Attributes:
requiresIndex=true

Multiplicity 0..*
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPluginFillFlush

Routine]
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

893 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteRipsInvocationHandlerRef [ECUC_Rte_89008]
Parent Container RteEventToTaskMapping
Description Reference to a Buffer-Fill Routine implemented by an RTE

Implementation Plug-In. This routine gets invoked directly before the
ExecutableEntity is started.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsInvocation

Handler]
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedInitFnc [ECUC_Rte_09116]
Parent Container RteEventToTaskMapping
Description The RunnableEntity is executed during initialization in the context of

the Rte_Init_<InitContainer> function.
Multiplicity 0..1
Type Reference to RteInitializationRunnableBatch
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

894 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteUsedOsAlarmRef [ECUC_Rte_09024]
Parent Container RteEventToTaskMapping
Description If an OsAlarm is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedOsEventRef [ECUC_Rte_09025]
Parent Container RteEventToTaskMapping
Description If an OsEvent is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedOsSchTblExpiryPointRef [ECUC_Rte_09026]
Parent Container RteEventToTaskMapping
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

RteEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

895 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVirtuallyMappedToTaskRef [ECUC_Rte_09027]
Parent Container RteEventToTaskMapping
Description Optional reference to an OsTask where the activation of this RteEvent

shall be evaluated. The actual execution of the Runnable Entity shall
happen in the OsTask referenced by RteMappedToTaskRef.

Multiplicity 0..1
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.5.2 Rte Os Interaction

This section contains configuration items which are closely related to the interaction of
the Rte with the Os.

896 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteOsInteraction:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

RteUsedOsActivation:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteModeToScheduleTableMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteSyncPoint:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteOsTaskChain:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

+subContainer

+subContainer

+subContainer

+subContainer

Figure 8.8: Specification of the Rte/Os Interaction

SWS Item [ECUC_Rte_09059]
Container Name RteOsInteraction
Description Interaction of the Rte with the Os.
Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
RteModeToSchedule
TableMapping

0..* Provides configuration input in which Modes of a
ModeDeclarionGroupPrototype of a Mode Manager a
OsScheudleTable shall be active. The Mode Manager is
either specified as a SwComponentPrototype
(RteModeSchtblMapSwc) or as a BSW-Module
(RteModeSchtblMapBsw).

RteOsTaskChain 0..* This container holds the configuration of one task chain
configuration.

RteSyncPoint 0..* The RteSyncPoint is necessary to provide an cross core
synchronization in case of RteEvents triggered by the
same event source but mapped to tasks belonging to
different partitions on different cores.

The synchronization point must be reached by all
referencing RteEvents before the execution in all related
tasks is continued.

In case of Rte(Bsw)EventSuccessorSyncPointRef the
ExecutableEntity activated by the mapped event is
executed before the synchronization point is entered.

In case of Rte(Bsw)EventPredecessorSyncPointRef the
ExecutableEntity activated by the mapped event is
executed after the synchronization point is passed.

RteUsedOsActivation 0..* Attributes used in the activation of OsTasks and
Runnable Entities.

897 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.5.2.1 Activation using Os features

This is a collection of possible ways how the Rte might utilize Os to achieve various ac-
tivation scenarios. The used Os objects are referenced in these configuration entities.

RteOsInteraction:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

RteUsedOsActivation:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteExpectedActivationOffset:
EcucFloatParamDef

min = 0
max = INF
lowerMultipl icity = 1
upperMultiplicity = 1

RteExpectedTickDuration:
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 1
upperMultipl icity = 1

OsScheduleTable:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

OsAlarm:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteActivationOsAlarmRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteActivationOsSchTblRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

OsTask:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteActivationOsTaskRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

+reference +destination

+parameter

+subContainer

+destination

+parameter

+reference

+reference

+destination

Figure 8.9: Configuration how activation is implemented

SWS Item [ECUC_Rte_09060]
Container Name RteUsedOsActivation
Description Attributes used in the activation of OsTasks and Runnable Entities.
Configuration Parameters

Name RteExpectedActivationOffset [ECUC_Rte_09048]
Parent Container RteUsedOsActivation
Description Activation offset in seconds.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this activation offset to be
fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range [0 .. INF]
Default Value

898 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExpectedTickDuration [ECUC_Rte_09049]
Parent Container RteUsedOsActivation
Description The expected tick duration in seconds which shall be configured to

drive the OsScheduleTables or OsAlarm.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this tick duration to be fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range [0 .. INF]
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteActivationOsAlarmRef [ECUC_Rte_09045]
Parent Container RteUsedOsActivation
Description Reference to an OsAlarm.
Multiplicity 0..1
Type Reference to OsAlarm
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

899 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteActivationOsSchTblRef [ECUC_Rte_09046]
Parent Container RteUsedOsActivation
Description Reference to an OsScheduleTable.
Multiplicity 0..1
Type Reference to OsScheduleTable
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteActivationOsTaskRef [ECUC_Rte_09047]
Parent Container RteUsedOsActivation
Description Reference to an OsTask.
Multiplicity 0..1
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.5.2.2 Modes and Schedule Tables

Optional configuration of the Rte to support the mapping of modes and Os’ schedule
tables.

900 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_05146] d The referenced schedule table of RteModeScheduleTableRef
shall be activated if one of the modes referenced in RteModeSchtblMapModeDec-
larationRef is active in the mode machine instances from the references of

• RteModeSchtblMapSwc or

• RteModeSchtblMapBsw.

c()

901 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SW-Component- and BswModule-Template

RteOsInteraction:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

RteModeToScheduleTableMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

OsScheduleTable:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteModeScheduleTableRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 1

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype
ModeSwitchInterface

AbstractProvidedPortPrototype

PPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

RteModeSchtblMapSwc:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteModeSchtblMapSwcPortRef: EcucForeignReferenceDef

destinationType = ABSTRACT-PROVIDED-PORT-PROTOTYPE

RteModeSchtblMapBsw:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteModeSchtblMapModeDeclarationRef:
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = *
destinationType = MODE-DECLARATION

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteModeSchtblMapSwcInstanceRef:
EcucReferenceDef

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteModeSchtblMapBswInstanceRef:
EcucReferenceDef

RteModeSchtblMapBswProvidedModeGroupRef:
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultiplicity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

+destination

+modeDeclaration

1..* «atpVariation»

+subContainer
+reference

+destination

+modeGroup

1

+subContainer

«isOfType»

+providedInterface

1
{redefines atpType}

+reference

+reference

+subContainer

+reference

+reference

«isOfType»

+type

1
{redefines
atpType}

+initialMode

1

+destination

+reference

Figure 8.10: Configuration how modes are interacting with schedule tables

902 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02759] d RTE shall reject a configuration, if the RteModeSchtblMapSwc-
PortRef : EcucForeignReferenceDef does not reference a PPortPrototype or
PRPortPrototype of the type of an ModeSwitchInterface. c()

[SWS_Rte_02760] d RTE shall reject a configuration, if the ModeDeclara-
tionGroupPrototype referenced by a RteModeSchtblMapBswProvidedMode-
GroupRef:EcucForeignReferenceDef is not in the role of a providedMode-
Group. c()

SWS Item [ECUC_Rte_09058]
Container Name RteModeToScheduleTableMapping
Description Provides configuration input in which Modes of a

ModeDeclarionGroupPrototype of a Mode Manager a
OsScheudleTable shall be active. The Mode Manager is either
specified as a SwComponentPrototype (RteModeSchtblMapSwc) or as
a BSW-Module (RteModeSchtblMapBsw).

Configuration Parameters

Name RteModeScheduleTableRef [ECUC_Rte_09050]
Parent Container RteModeToScheduleTableMapping
Description Reference to the OsScheduleTable which shall be active in the

specified RteModeSchblMapModeDeclarationRefs.
Multiplicity 1
Type Reference to OsScheduleTable

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeSchtblMapModeDeclarationRef [ECUC_Rte_09054]
Parent Container RteModeToScheduleTableMapping
Description Reference to the ModeDeclarations.
Multiplicity 1..*
Type Foreign reference to MODE-DECLARATION
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

903 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
RteModeSchtblMapBsw 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a Bsw-Module.
RteModeSchtblMapSwc 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a
SwComponentPrototype.

SWS Item [ECUC_Rte_09055]
Container Name RteModeSchtblMapSwc
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

SwComponentPrototype.
Configuration Parameters

Name RteModeSchtblMapSwcInstanceRef [ECUC_Rte_09056]
Parent Container RteModeSchtblMapSwc
Description Reference to an instance specification of a SwComponentPrototype.
Multiplicity 1
Type Reference to RteSwComponentInstance

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeSchtblMapSwcPortRef [ECUC_Rte_09057]
Parent Container RteModeSchtblMapSwc
Description Reference to the PPortPrototype of a SwComponentPrototype.
Multiplicity 1
Type Foreign reference to ABSTRACT-PROVIDED-PORT-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

SWS Item [ECUC_Rte_09051]

904 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Container Name RteModeSchtblMapBsw
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Configuration Parameters

Name RteModeSchtblMapBswInstanceRef [ECUC_Rte_09052]
Parent Container RteModeSchtblMapBsw
Description Reference to an instance specification of a Bsw-Module.
Multiplicity 1
Type Reference to RteBswModuleInstance

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeSchtblMapBswProvidedModeGroupRef [ECUC_Rte_09053]
Parent Container RteModeSchtblMapBsw
Description Reference to an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.5.3 Exclusive Area implementation

The RTE Generator can be configured to implement a different data consistency mech-
anism for each ExclusiveArea defined for an AUTOSAR software-component.

In figure 8.11 the configuration of the actually selected data consistency mechanism is
shown.

[SWS_Rte_CONSTR_03510] Exclude usage of OS_SPINLOCK in RteExclu-
siveAreaImplementation d The usage of the enumeration literal OS_SPINLOCK

905 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

for the parameter RteExclusiveAreaImplMechanism shall be excluded if the pa-
rameter RteExclusiveAreaImplMechanism is used in the context of the container
RteExclusiveAreaImplementation. c()

Os

Software Component template

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

(from RTE)

AtpPrototype

Composition::
SwComponentPrototype

RteExclusiveAreaImplementation:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

Identifiable

InternalBehavior::
ExclusiveArea

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteExclusiveAreaImplMechanism:
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING:
EcucEnumerationLiteralDef

OS_RESOURCE: EcucEnumerationLiteralDef

RteExclusiveAreaRef:
EcucForeignReferenceDef

destinationType = EXCLUSIVE-AREA

OsResource:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

(from OS)

RteExclusiveAreaOsResourceRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

RteSoftwareComponentInstanceRef:
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = 1
lowerMultipl icity = 0

(from RTE)

OS_INTERRUPT_BLOCKING:
EcucEnumerationLiteralDef

AtpStructureElement

InternalBehavior::
InternalBehavior

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

OS_SPINLOCK: EcucEnumerationLiteralDef

NONE: EcucEnumerationLiteralDef

RteExclusiveAreaResponsibleRipsPluginRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

RTE_PLUGIN: EcucEnumerationLiteralDef

RteRipsPlugin:
EcucDestinationUriDef

(from RteRips)

+destination

«isOfType»

+type

1
{redefines atpType}

+literal

+reference

+reference

+literal

+parameter

+subContainer

+reference

«atpVariation,atpSplitable»

+internalBehavior 0..1

+destinationUri

+reference

+literal

+literal

+literal

«atpVariation,atpSplitable»

+exclusiveArea

0..*

+literal

Figure 8.11: Configuration of the ExclusiveArea implementation

906 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09030]
Container Name RteExclusiveAreaImplementation
Description Specifies the implementation to be used for the data consistency of this

ExclusiveArea.
Configuration Parameters

Name RteExclusiveAreaImplMechanism [ECUC_Rte_09029]
Parent Container RteExclusiveAreaImplementation
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
NONE
OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE
OS_SPINLOCK
RTE_PLUGIN RTE Implementation Plug-in

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExclusiveAreaOsResourceRef [ECUC_Rte_09031]
Parent Container RteExclusiveAreaImplementation
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

907 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteExclusiveAreaRef [ECUC_Rte_09032]
Parent Container RteExclusiveAreaImplementation
Description Reference to the ExclusiveArea.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExclusiveAreaResponsibleRipsPluginRef [ECUC_Rte_89010]
Parent Container RteExclusiveAreaImplementation
Description Optional reference to the configuration container of the RTE

Implementation Plug-in implementing the ExclusiveArea. It’s required
in case RteExclusiveAreaImplMechanism is configured to
RTE_PLUGIN for this ExclusiveArea.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

8.5.4 NVRam Allocation

The configuration of the NVRam access does involve several templates, because it
closes the gap between the AUTOSAR software-components, the NVRAM Manager
Services and the BSW Modules.

In figure 8.12 the related information from the AUTOSAR Software Component Tem-
plate is shown.

908 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Software Component template

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

AutosarDataPrototype

ParameterDataPrototype

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue: String [0..1]
+ type: CIdentifier
+ typeDefinition: String

NvBlockNeeds

Identifiable

ServiceNeeds

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

RoleBasedDataAssignment

+ role: Identifier

AutosarDataPrototype

VariableDataPrototype
AutosarVariableRef

AutosarParameterRef

{XOR
role of owning
RoleBasedDataAssignement shall be
ramBlock}

{role of owning
RoleBasedDataAssignement
shall be defaultValue}

AtpPrototype

DataPrototype

«instanceRef»

+autosarParameter

0..1

+usedDataElement 0..1

+localVariable

0..1

+perInstanceParameter *

«atpVariation,atpSplitab

+perInstanceMemory *

«atpVariation,atpSplitable»

+usedPim

0..1

«atpVariation,atpSplitable»

+serviceDependency

0..*

+arTypedPerInstanceMemory *

«atpVariation,atpSplitable»

«atpVariation»

+assignedData 0..*

+localParameter

0..1

+usedParameterElement 0..1

+serviceNeeds

1

Figure 8.12: software-component information of NVRam Service needs

In figure 8.13 the ECU Configuration part of the NVRam allocation is shown. It re-
lates the software-components’ SwcServiceDependency and NvBlockNeeds infor-
mation with the NVRam Managers NvMBlockDescriptor and the linker symbols of
the RAM and ROM sections to be used.

909 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Software Component template

RteNvRamAllocation:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

NvMBlockDescriptor:
EcucParamConfContainerDef

upperMultipl icity = 65536
lowerMultiplicity = 1

RteNvmBlockRef: EcucReferenceDef

requiresSymbolicNameValue = true

RteSwNvRamMappingRef: EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1
destinationType = SWC-SERVICE-DEPENDENCY

RteNvmRamBlockLocationSymbol:
EcucLinkerSymbolDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteNvmRomBlockLocationSymbol:
EcucLinkerSymbolDef

upperMultipl icity = 1
lowerMultipl icity = 0

NvMRamBlockDataAddress:
EcucStringParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NvMRomBlockDataAddress:
EcucStringParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue: String [0..1]
+ type: CIdentifier
+ typeDefinition: String

RoleBasedDataAssignment

+ role: Identifier

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

NvBlockNeeds

Identifiable

ServiceNeeds

AutosarParameterRef

AutosarVariableRef

{XOR
role of owning
RoleBasedDataAssignement
shall be ramBlock}

{role of owning
RoleBasedDataAssignement shall be
defaultValue}

NvMNvramBlockIdentifier:
EcucIntegerParamDef

symbolicNameValue = true
min = 2
max = 65535

AtpStructureElement
Identifiable

NvBlockDescriptor

+ supportDirtyFlag: Boolean [0..1]

RteSwNvBlockDescriptorRef:
EcucForeignReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1
destinationType = NV-BLOCK-DESCRIPTOR

���

+serviceNeeds

1

+reference

+romBlock 0..1

+usedPim 0..1

+nvBlockNeeds 1

+parameter

+usedDataElement

0..1

+destination

«atpVariation»
+assignedData 0..*

+usedParameterElement

0..1

+parameter 0..1

+parameter

+parameter 0..1

+localVariable

0..1

+ramBlock 1

+reference

+parameter

+reference

Figure 8.13: ECU Configuration of the NVRam Service

[SWS_Rte_CONSTR_09091] RteSwNvRamMappingRef and RteSwNvBlockDe-
scriptorRef are excluding each other d If an RteSwNvBlockDescriptorRef is

910 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

defined there shall be no RteSwNvRamMappingRef, RteNvmRomBlockLocation-
Symboland RteNvmRamBlockLocationSymbol defined. If an RteSwNvRamMap-
pingRef is defined there shall be no RteSwNvBlockDescriptorRef defined. c()

SWS Item [ECUC_Rte_09040]
Container Name RteNvRamAllocation
Description Specifies the relationship between the AtomicSwComponentType’s

NVRAMMapping / NVRAM needs and the NvM module configuration.
Configuration Parameters

Name RteNvmRamBlockLocationSymbol [ECUC_Rte_09042]
Parent Container RteNvRamAllocation
Description This is the name of the linker object name where the NVRam Block will

be mirrored by the Nvm. This symbol will be resolved into the
parameter "NvmRamBlockDataAddress" from the
"NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteNvmRomBlockLocationSymbol [ECUC_Rte_09043]
Parent Container RteNvRamAllocation
Description This is the name of the linker object name where the NVRom Block will

be accessed by the Nvm. This symbol will be resolved into the
parameter "NvmRomBlockDataAddress" from the
"NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

911 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteNvmBlockRef [ECUC_Rte_09041]
Parent Container RteNvRamAllocation
Description Reference to the used NvM block for storage of the NVRAMMapping

information.
Multiplicity 1
Type Symbolic name reference to NvMBlockDescriptor

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSwNvBlockDescriptorRef [ECUC_Rte_09132]
Parent Container RteNvRamAllocation
Description Reference to the NvBlockDescriptor in case the RTE needs to call the

NvM directly (e.g. for the supportDirtyFlag feature, storeCyclic feature,
server invocation for NV data management or mode switch based
invocation NvM services).

Multiplicity 0..1
Type Foreign reference to NV-BLOCK-DESCRIPTOR
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

912 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteSwNvRamMappingRef [ECUC_Rte_09044]
Parent Container RteNvRamAllocation
Description Reference to the SwSeriveDependency which is used to specify the

NvBlockNeeds.

XOR
Multiplicity 0..1
Type Foreign reference to SWC-SERVICE-DEPENDENCY
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.5.5 SWC Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteExternalTriggerConfig container and RteInternalTriggerConfig
container is defined in the context of the RteSwComponentInstance which already
predefines the context of the Trigger / InternalTriggeringPoint.

[SWS_Rte_CONSTR_09005] The references RteSwcTriggerSourceRef has to
be consistent with the RteSoftwareComponentInstanceRef d The references
RteSwcTriggerSourceRef has to be consistent with the RteSoftwareCompo-
nentInstanceRef. This means the referenced Trigger / InternalTrigger-
ingPoint has to belong to the AtomicSwComponentType which is referenced by
the related SwComponentPrototype. c()

913 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

From SWC-T

RteExternalTriggerConfig:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteSwcTriggerSourceRef: EcucInstanceReferenceDef

destinationType = TRIGGER
upperMultiplicity = 1
lowerMultipl icity = 1
destinationContext = ABSTRACT-PROVIDED-PORT-PROTOTYPE

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

PPortPrototype

RteTriggerSourceQueueLength:
EcucIntegerParamDef

defaultValue = 0
lowerMultiplicity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

AbstractAccessPoint
AtpStructureElement

Identifiable

InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

RteInternalTriggerConfig:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteSwcTriggerSourceRef: EcucForeignReferenceDef

destinationType = INTERNAL-TRIGGERING-POINT
upperMultipl icity = 1
lowerMultiplicity = 1

RteTriggerSourceQueueLength:
EcucIntegerParamDef

defaultValue = 0
lowerMultiplicity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractProvidedPortPrototype

+parameter

+subContainer

+runnable 0..*

«atpVariation,atpSplitable»

+internalTriggeringPoint 0..*
«atpVariation,atpSplitable»

+reference

«isOfType»

+providedInterface
1
{redefines atpType}

«atpVariation,atpSplitable»

+internalBehavior 0..1

+trigger 1..*

+port

0..* «atpVariation,atpSplitable»

+reference

+subContainer

+parameter

Figure 8.14: Configuration of SWC Trigger queuing

SWS Item [ECUC_Rte_09105]
Container Name RteExternalTriggerConfig

914 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description Defines the configuration of External Trigger Event Communication for
Software Components

Configuration Parameters

Name RteTriggerSourceQueueLength [ECUC_Rte_09095]
Parent Container RteExternalTriggerConfig
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSwcTriggerSourceRef [ECUC_Rte_09106]
Parent Container RteExternalTriggerConfig
Description Reference to a Trigger instance in the pPortPrototype of the related

component instance.

The referenced Trigger instance has to belong to the same software
component instance as the RteSwComponentInstance owning this
parameter configures.

Multiplicity 1
Type Instance reference to TRIGGER context: ABSTRACT-PROVIDED-PO

RT-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

915 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09096]
Container Name RteInternalTriggerConfig
Description Defines the configuration of Inter Runnable Triggering for Software

Components
Configuration Parameters

Name RteTriggerSourceQueueLength [ECUC_Rte_09098]
Parent Container RteInternalTriggerConfig
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSwcTriggerSourceRef [ECUC_Rte_09097]
Parent Container RteInternalTriggerConfig
Description Reference to an InternalTriggeringPoint of the related component

instance.

The referenced InternalTriggeringPoint has to belong to the same
software component instance as the RteSwComponentInstance
owning this parameter configures.

Multiplicity 1
Type Foreign reference to INTERNAL-TRIGGERING-POINT

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

916 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.5.6 SWC Mode Machine Instance configuration

This configuration provides the settings for the implementation of a RTE assigned
mode machine instance (see [SWS_Rte_07533].

The RteModeMachineInstanceConfig container is defined in the context of the
RteSwComponentInstance which already predefines the context of the ModeDec-
larationGroupPrototype in the RteSwcModeManagerRef .

[SWS_Rte_CONSTR_09100] The reference RteSwcModeManagerRef has to be
consistent with the RteSoftwareComponentInstanceRef d The reference
RteSwcModeManagerRef has to be consistent with the RteSoftwareCompo-
nentInstanceRef. This means the referenced ModeDeclarationGroupProto-
type shall be instantiated in the context of an AbstractProvidedPortPrototype
owned by the AtomicSwComponentType which is referenced by the related SwCom-
ponentPrototype. c()

RteModeMachineInstanceConfig:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteSwcModeManagerRef: EcucInstanceReferenceDef

destinationType = MODE-DECLARATION-GROUP-PROTOTYPE
upperMultipl icity = 1
lowerMultipl icity = 1
destinationContext = ABSTRACT-PROVIDED-PORT-PROTOTYPE

RteModeMachineQueueLength:
EcucIntegerParamDef

defaultValue = 1
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

RteSwComponentInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

(from RTE)

RteModeMachineInstanceResponsibleRipsPluginRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

RteRipsPlugin:
EcucDestinationUriDef

(from RteRips)

+parameter

+subContainer

+reference

+reference

+destinationUri

Figure 8.15: Configuration of a RTE assigned mode machine instance

SWS Item [ECUC_Rte_09142]
Container Name RteModeMachineInstanceConfig
Description Defines the configuration of RTE assigned (SWS_Rte_07533) mode

machine instances.
Configuration Parameters

917 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteModeMachineQueueLength [ECUC_Rte_09144]
Parent Container RteModeMachineInstanceConfig
Description Length of mode machine instance queue on the trigger source side.

If there is no RteModeMachineQueueLength configured for a mode
machine instance the value given in the
ModeSwitchSenderComSpec.queueLength applies.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 1
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeMachineInstanceResponsibleRipsPluginRef
[ECUC_Rte_89013]

Parent Container RteModeMachineInstanceConfig
Description Optional reference to the configuration container of the RTE

Implementation Plug-in implementing the protection of the mode
machine instance.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

918 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteSwcModeManagerRef [ECUC_Rte_09143]
Parent Container RteModeMachineInstanceConfig
Description Reference to a ModeDeclarationGroupPrototype instance in the

provided PortPrototype (AbstractProvidedPortPrototype) of the related
component instance.

The referenced ModeDeclarationGroupPrototype instance has to
belong to the same software component instance as the
RteSwComponentInstance owning this parameter configures.

Multiplicity 1
Type Instance reference to MODE-DECLARATION-GROUP-PROTOTYPE

context: ABSTRACT-PROVIDED-PORT-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

919 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.6 Handling of Software Component types

8.6.1 Selection of Software-Component Implementation

During the system development there is no need to select the actual implementation
which will be later integrated on one ECU. Therefore the ECU Extract of System De-
scription may not specify the SwcImplementation information yet.

For RTE Generation the information about the to be used SwcImplementation
for each SwComponentType needs be provided to the RTE Generator (regardless
whether the information is from the Ecu Extract or the Ecu Configuration.

The mapping of SwcImplementation to SwComponentType is done in the Ecu Con-
figuration of the Rte using the two references RteComponentTypeRef and RteIm-
plementationRef (see figure 8.16). For the mapping in the Ecu Extract please refer
to the Specification of the System Template [8].

SWComponentTemplate

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteImplementationRef:
EcucForeignReferenceDef

destinationType = SWC-IMPLEMENTATION
upperMultiplicity = 1
lowerMultipl icity = 0

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

Implementation

SwcImplementation

+ requiredRTEVendor: String [0..1]

RteSwComponentType:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteComponentTypeRef:
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

+reference

+behavior 1

+reference

«atpVariation,atpSplitable»

+internalBehavior

0..1

Figure 8.16: Selection of the Implementation for an AtomicSwComponentType

SWS Item [ECUC_Rte_09006]
Container Name RteSwComponentType
Description Representation of one SwComponentType for the base of all

configuration parameter which are affecting the whole type and not a
specific instance.

Configuration Parameters

Name RteBypassSupportEnabled [ECUC_Rte_09114]
Parent Container RteSwComponentType
Description Individual switch to enable the bypass support for this software

component type.
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Multiplicity

false

920 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteComponentTypeRef [ECUC_Rte_09003]
Parent Container RteSwComponentType
Description Reference to either AtomicSwComponentType or

ParameterSwComponentType.
Multiplicity 1
Type Foreign reference to SW-COMPONENT-TYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteImplementationRef [ECUC_Rte_09028]
Parent Container RteSwComponentType
Description The Implementation which shall be assigned to the

SwComponentType.
Multiplicity 0..1
Type Foreign reference to SWC-IMPLEMENTATION
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

921 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Included Containers
Container Name Multiplicity Scope / Dependency
RteComponentType
Calibration

0..1 Specifies for each ParameterSwComponentType or
AtomicSwComponentType whether calibration is
enabled. If references to SwAddrMethod are provided in
RteCalibrationSwAddrMethodRef only
ParameterDataPrototypes with the referenced
SwAddrMethod shall have software calibration support
enabled.

8.6.2 Component Type Calibration

In the AUTOSAR Software Component Template two places may provide calibration
data: the ParameterSwComponentType and the AtomicSwComponentType (or
more precisely the subclasses of AtomicSwComponentType). Whether the calibra-
tion is enabled for a specific SwComponentType can be configured as shown in fig-
ure 8.17.

Software Component template

RteCalibrationSupportEnabled:
EcucBooleanParamDef

RteComponentTypeCalibration:
EcucParamConfContainerDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteComponentTypeRef:
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ParameterSwComponentTypeAtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteSwComponentType:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

«atpVariation»
SwDataDefProps

RteCalibrationSwAddrMethodRef:
EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultiplicity = *
destinationType = SW-ADDR-METHOD

+parameter

+swAddrMethod 0..1

+reference

+reference

+subContainer

Figure 8.17: Configuration of the calibration for the ParameterSwComponentType

The foreign reference RteComponentTypeRef identifies the SwComponentType
(which is limited to ParameterSwComponentType and AtomicSwComponentType).

922 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

The boolean parameter RteCalibrationSupportEnabled specifies whether cali-
bration shall be enabled for the specified SwComponentType.

[SWS_Rte_05145] d For a ParameterDataPrototype of the referenced SwCom-
ponentType software calibration support shall be enabled if the parameter RteCal-
ibrationSupportEnabled is set to true and in the corresponding container Rte-
ComponentTypeCalibration

• not a single RteCalibrationSwAddrMethodRef exists or

• a reference RteCalibrationSwAddrMethodRef to the SwAddrMethod of the
ParameterDataPrototype exists.

c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00158)

SWS Item [ECUC_Rte_09039]
Container Name RteComponentTypeCalibration
Description Specifies for each ParameterSwComponentType or

AtomicSwComponentType whether calibration is enabled. If references
to SwAddrMethod are provided in RteCalibrationSwAddrMethodRef
only ParameterDataPrototypes with the referenced SwAddrMethod
shall have software calibration support enabled.

Configuration Parameters

Name RteCalibrationSupportEnabled [ECUC_Rte_09037]
Parent Container RteComponentTypeCalibration
Description Enables calibration support for the specified

ParameterSwComponentType or AtomicSwComponentType.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCalibrationSwAddrMethodRef [ECUC_Rte_09038]
Parent Container RteComponentTypeCalibration
Description Reference to the SwAddrMethod for which software calibration support

shall be enabled.
Multiplicity 0..*
Type Foreign reference to SW-ADDR-METHOD
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

923 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

924 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.7 Implicit communication configuration

Software Component template

AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteImplicitCommunication:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteVariableReadAccessRef:
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultipl icity = 0
upperMultiplicity = *

RteVariableWriteAccessRef:
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultipl icity = 0
upperMultipl icity = *

RteImmediateBufferUpdate:
EcucBooleanParamDef

defaultValue = false

AbstractAccessPoint
AtpStructureElement

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

Rte: EcucModuleDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteCoherentAccess: EcucBooleanParamDef

defaultValue = false

RteSoftwareComponentInstanceRef: EcucInstanceReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultipl icity = *
lowerMultipl icity = 1
destinationContext = ROOT-SW-COMPOSITION-PROTOTYPE

AtpPrototype

SwComponentPrototype

+parameter

+container

+reference

«isOfType»

+type 1
{redefines atpType}

+runnable 0..*

«atpVariation,atpSplitable»

+reference

«atpVariation,atpSplitable»

+internalBehavior 0..1

+reference

«atpVariation,atpSplitable»

+dataReadAccess 0..*

+parameter

«atpVariation,atpSplitable»

+dataWriteAccess 0..*

Figure 8.18: Configuration of the implicit communication

925 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09034]
Container Name RteImplicitCommunication
Description Configuration of the Implicit Communication behavior to be generated.
Configuration Parameters

Name RteCoherentAccess [ECUC_Rte_09091]
Parent Container RteImplicitCommunication
Description If set to true the referenced VariableAccess’es of this

RteImplicitCommunication container are in one CoherencyGroup.

Data values for Coherent Implicit Read Access’es are read before the
first reading RunnbaleEntity starts and are stable during the execution
of all the reading RunnableEntitys; except Coherent Implicit Write
Access’es belongs to the same Coherency Group. Data values written
by Coherent Implicit Write Access’es are available for readers not
belonging to the Coherency Group after the last writing RunnableEntity
has terminated.

Please note that a Coherent Implicit Data Access can be defined for
VariableAccess’es to same and different data element. Nevertheless
all Coherent Implicit Data Access’es of one Coherency Group have to
be executed in the same task.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteImmediateBufferUpdate [ECUC_Rte_09033]
Parent Container RteImplicitCommunication
Description If set to true the RTE will perform preemption area specific buffer

update immediately before (for VariableAccess in the role
dataReadAccess) resp. after (for VariableAccess in the role
dataWriteAccess) Runnable execution.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

926 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteSoftwareComponentInstanceRef [ECUC_Rte_09090]
Parent Container RteImplicitCommunication
Description Reference to a SwComponentPrototype. This denotes the instances of

the VariableAccess belonging to the RteImplicitCommunication.
Multiplicity 1..*
Type Instance reference to SW-COMPONENT-PROTOTYPE context: ROO

T-SW-COMPOSITION-PROTOTYPE
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVariableReadAccessRef [ECUC_Rte_09035]
Parent Container RteImplicitCommunication
Description Reference to the VariableAccess in the dataReadAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVariableWriteAccessRef [ECUC_Rte_09036]
Parent Container RteImplicitCommunication
Description Reference to the VariableAccess in the dataWriteAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

927 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

Please note, that RteImplicitCommunication is defined as a container of Rte
EcucModuleDef to support the creation of the ECU Configuration Parameter Values
related to RteImplicitCommunication independent from the other ECU Config-
uration Parameter Values. Typically the need for coherent implicit data ac-
cesses is known by the vendor of a set of software components. As long as short-
Names of the RootSwCompositionPrototype and the referenced Composition-
SwComponentType - describing the software of a flat ECU Extract - are known the
ECU Configuration Parameter Values related to RteImplicitCommunication can
be prescribed. In this case it is preferable to use relative references to the Vendor
Specific Module Definition (VSMD), to RootSwCompositionPrototype and Com-
positionSwComponentType describing the software of a flat ECU Extract. With
this relative references the ECU Configuration Parameter Values are independent from
ARPackage structure only known by the ECU integrator. Nevertheless the shortName
and location of of the EcucModuleConfigurationValues must be defined upfront.

8.8 Communication infrastructure

The configuration of the communication infrastructure (interaction of the RTE with the
Com-Stack) is entirely predetermined by the ECU Extract provided as an input. The
required input can be found in the AUTOSAR System Template [8] sections "Data Map-
ping" and "Communication".

In case the RTE does utilize the Com module for intra-ECU communication it is up to
the vendor-specific configuration of the RTE to ensure configuration consistency.

8.9 Configuration of the BSW Scheduler

The configuration of the BSW Scheduler part of the RTE is shown in the overview in
figure 8.19.

928 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

ECUCDescriptionTemplate
BswModuleTemplateRte: EcucModuleDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

Implementation

BswImplementation

RteBswImplementationRef: EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = BSW-IMPLEMENTATION

ARElement

EcucModuleConfigurationValues

RteBswModuleConfigurationRef: EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES

RteOsInteraction:
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteBswRequiredTriggerConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswRequiredModeGroupConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswEventToTaskMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswExclusiveAreaImpl:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswGeneral:
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

+reference

+subContainer

+subContainer

+container

+container

+subContainer

+moduleDescription

0..1

+reference

+container

+subContainer

Figure 8.19: Configuration of BSW Scheduler overview

8.9.1 BSW Scheduler General configuration

Rte: EcucModuleDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteBswGeneral:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = 1

RteSchMVersionInfoApi:
EcucBooleanParamDef

lowerMultipl icity = 1
upperMultiplicity = 1
defaultValue = false

+parameter

+container

Figure 8.20: General configuration of BSW Scheduler

SWS Item [ECUC_Rte_09061]

929 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Container Name RteBswGeneral
Description General configuration parameters of the Bsw Scheduler section.
Configuration Parameters

Name RteSchMVersionInfoApi [ECUC_Rte_09062]
Parent Container RteBswGeneral
Description Enables the generation of the SchM_GetVersionInfo() API.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2 BSW Module Instance configuration

SWS Item [ECUC_Rte_09002]
Container Name RteBswModuleInstance
Description Represents one instance of a Bsw-Module configured on one ECU.
Configuration Parameters

Name RteBswImplementationRef [ECUC_Rte_09066]
Parent Container RteBswModuleInstance
Description Reference to the BswImplementation for which the Rte /SchM is

configured.
Multiplicity 1
Type Foreign reference to BSW-IMPLEMENTATION

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

930 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswModuleConfigurationRef [ECUC_Rte_09001]
Parent Container RteBswModuleInstance
Description Reference to the ECU Configuration Values provided for this

BswImplementation.
Multiplicity 0..1
Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
RteBswEventToTask
Mapping

0..* Maps a BswModuleEntity onto an OsTask based on the
activating BswEvent. A BswModuleEntity can be
activated by more than one BswEvent and thus be
mapped to more than one OsTask. In the case of a
BswSchedulableEntity executed via a direct function call
this RteBswEventToTaskMapping is still specified but no
RteBswMappedToTaskRef element is included. The
RteBswPositionInTask parameter is necessary to
provide an ordering of events invoked by the same RTE
API.

RteBswExclusiveArea
Impl

0..* Represents one ExclusiveArea of one
BswImplementation. Used to specify the implementation
means of this ExclusiveArea.

RteBswExternalTrigger
Config

0..* Defines the configuration of Inter Basic Software Module
Entity Triggering

RteBswInternalTrigger
Config

0..* Defines the configuration of internal Basic Software
Module Entity Triggering

RteBswModeMachine
InstanceConfig

0..* Defines the configuration of Basic Software Scheduler
assigned (SWS_Rte_07534) mode machine instances.

RteBswRequiredClient
ServerConnection

0..* Defines the connection between one
requiredClientServerEntry and one
providedClientServerEntry of a BswModuleDescription.
This container shall be provided on the client side of the
connection.

RteBswRequiredMode
GroupConnection

0..* Defines the connection between one
requiredModeGroup of this BSW Module instance and
one providedModeGroup instance.

RteBswRequiredSender
ReceiverConnection

0..* Defines the connection between one requiredData and
one providedData of a BswModuleDescription. This
container shall be provided on the receiver side of the
connection.

931 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteBswRequiredTrigger
Connection

0..* Defines the connection between one requiredTrigger of
this BSW Module instance and one releasedTrigger
instance.

932 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.9.2.1 BSW ExclusiveArea configuration

Os

BswModuleTemplate

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

BswModuleEntity

BswSchedulableEntity

Identifiable

ExclusiveArea

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue
+ reentrancyLevel: ReentrancyLevelEnum [0..1]

RteBswExclusiveAreaRef:
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = EXCLUSIVE-AREA

RteBswExclusiveAreaImpl:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteExclusiveAreaImplMechanism:
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING:
EcucEnumerationLiteralDef

OS_RESOURCE: EcucEnumerationLiteralDef

OsResource:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteBswExclusiveAreaOsResourceRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

OS_INTERRUPT_BLOCKING:
EcucEnumerationLiteralDef

OS_SPINLOCK: EcucEnumerationLiteralDef

OsSpinlock:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswExclusiveAreaOsSpinlockRef:
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

NONE: EcucEnumerationLiteralDef

RteBswExclusiveAreaResponsibleRipsPluginRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

RteRipsPlugin:
EcucDestinationUriDef

RTE_PLUGIN: EcucEnumerationLiteralDef

+literal

+reference

+literal
+parameter

+literal

+reference

+canEnterExclusiveArea 0..* +runsInsideExclusiveArea 0..*

+literal

+destination

+reference

+destination

+literal

+reference

+literal

+destinationUri

+subContainer

Figure 8.21: Configuration of BSW ExclusiveArea

SWS Item [ECUC_Rte_09072]

933 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Container Name RteBswExclusiveAreaImpl
Description Represents one ExclusiveArea of one BswImplementation. Used to

specify the implementation means of this ExclusiveArea.
Configuration Parameters

Name RteExclusiveAreaImplMechanism [ECUC_Rte_09029]
Parent Container RteBswExclusiveAreaImpl
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
NONE
OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE
OS_SPINLOCK
RTE_PLUGIN RTE Implementation Plug-in

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswExclusiveAreaOsResourceRef [ECUC_Rte_09073]
Parent Container RteBswExclusiveAreaImpl
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

934 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswExclusiveAreaOsSpinlockRef [ECUC_Rte_09112]
Parent Container RteBswExclusiveAreaImpl
Description Optional reference to an OsSpinlock in case

RteExclusiveAreaImplMechanism is configured to OS_SPINLOCK for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsSpinlock
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswExclusiveAreaRef [ECUC_Rte_09074]
Parent Container RteBswExclusiveAreaImpl
Description Reference to the ExclusiveArea for which the implementation

mechanism shall be specified.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswExclusiveAreaResponsibleRipsPluginRef [ECUC_Rte_89011]
Parent Container RteBswExclusiveAreaImpl
Description Optional reference to the configuration container of the RTE

Implementation Plug-in implementing the ExclusiveArea. It’s required
in case RteExclusiveAreaImplMechanism is configured to
RTE_PLUGIN for this ExclusiveArea.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]

935 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

936 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.9.2.2 BswEvent to task mapping

Os

BswModuleTemplate

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Implementation

BswImplementation

+ arReleaseVersion: RevisionLabelString
+ vendorApiInfix: Identifier [0..1]

InternalBehavior

BswInternalBehavior

AbstractEvent

BswEvent

RteBswEventToTaskMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswEventRef:
EcucForeignReferenceDef

destinationType = BSW-EVENT
lowerMultiplicity = 1
upperMultipl icity = *

OsTask:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswMappedToTaskRef:
EcucReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteBswPositionInTask:
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultiplicity = 0
min = 0
max = 65535

RteBswActivationOffset:
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 0
upperMultipl icity = 1

RteBswUsedOsEventRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsAlarmRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsSchTblExpiryPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

OsEvent:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

OsScheduleTableExpiryPoint:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

OsAlarm:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswImplementationRef:
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = BSW-IMPLEMENTATION

RteOsSchedulePoint:
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

NONE:
EcucEnumerationLiteralDef

CONDITIONAL:
EcucEnumerationLiteralDef

UNCONDITIONAL:
EcucEnumerationLiteralDef

RteBswImmediateRestart:
EcucBooleanParamDef

defaultValue = false

RteSyncPoint:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswEventPredecessorSyncPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswEventSuccessorSyncPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswServerQueueLength:
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultipl icity = 0
min = 0
max = 65535

+literal

+destination

«atpVariation,atpSplitable»

+event 0..*

+reference

+reference

+parameter

+behavior 1

+reference

+destination

+parameter

+literal

+subContainer

+destination

+reference

+destination

+parameter

+destination

+reference

+reference

+destination

+parameter

+reference

+reference

+literal

+parameter

Figure 8.22: Configuration of BSW Event to Task Mapping

937 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09065]
Container Name RteBswEventToTaskMapping
Description Maps a BswModuleEntity onto an OsTask based on the activating

BswEvent. A BswModuleEntity can be activated by more than one
BswEvent and thus be mapped to more than one OsTask. In the case
of a BswSchedulableEntity executed via a direct function call this
RteBswEventToTaskMapping is still specified but no
RteBswMappedToTaskRef element is included. The
RteBswPositionInTask parameter is necessary to provide an ordering
of events invoked by the same RTE API.

Configuration Parameters

Name RteBswActivationOffset [ECUC_Rte_09063]
Parent Container RteBswEventToTaskMapping
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswImmediateRestart [ECUC_Rte_09093]
Parent Container RteBswEventToTaskMapping
Description When RteBswImmediateRestart is set to true the

BswSchedulableEntitiy shall be immediately re-started after termination
if it was activated by this BswEvent while it was already started.

This parameter shall not be set to true when the mapped BswEvent
refers to a BswSchedulableEntitiy which minimumStartInterval attribute
is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

938 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswPositionInTask [ECUC_Rte_09068]
Parent Container RteBswEventToTaskMapping
Description Each BswSchedulableEntity activation mapped to an OsTask has a

specific position within the task execution. For periodic activation this is
the order of execution. For event driver activation this is the order of
evaluation which actual BswSchedulableEntity has to be executed. In
case of direct function calls this parameter is necessary to provide an
ordering of events when several ExecutableEntities are invoked by the
same RTE API.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswServerQueueLength [ECUC_Rte_09134]
Parent Container RteBswEventToTaskMapping
Description Specifies the length of the queue for the server call serialization.
Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

939 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOsSchedulePoint [ECUC_Rte_09022]
Parent Container RteBswEventToTaskMapping
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

940 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswEventPredecessorSyncPointRef [ECUC_Rte_09130]
Parent Container RteBswEventToTaskMapping
Description The RteBswEventPredecessorSyncPointRef is necessary to provide a

cross core synchronization in case of BswEvents triggered by the same
event source but mapped to tasks belonging to different partitions on
different cores.

The synchronization point must be reached by all referencing
BswEvents before the execution in all related tasks is continued.

In case of RteBswEventPredecessorSyncPointRef the
BswModuleEntity activated by the mapped BswEvent is executed after
the synchronization point is passed.

Multiplicity 0..1
Type Reference to RteSyncPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswEventRef [ECUC_Rte_09064]
Parent Container RteBswEventToTaskMapping
Description Reference to the BswEvent.
Multiplicity 1..*
Type Foreign reference to BSW-EVENT

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

941 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswEventSuccessorSyncPointRef [ECUC_Rte_09131]
Parent Container RteBswEventToTaskMapping
Description The RteBswEventSuccessorSyncPointRef is necessary to provide a

cross core synchronization in case of BswEvents triggered by the same
event source but mapped to tasks belonging to different partitions on
different cores.

The synchronization point must be reached by all referencing
BswEvents before the execution in all related tasks is continued.

In case of RteBswEventSuccessorSyncPointRef the BswModuleEntity
activated by the mapped BswEvent is executed before the
synchronization point is entered.

Multiplicity 0..1
Type Reference to RteSyncPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswMappedToTaskRef [ECUC_Rte_09067]
Parent Container RteBswEventToTaskMapping
Description Reference to the OsTask the BswSchedulableEntity activated by the

RteBswEventRef is mapped to. If no reference to the OsTask is
specified the BswSchedulableEntity activated by this BswEvent is
executed in the context of the caller.

Multiplicity 0..1
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

942 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswUsedOsAlarmRef [ECUC_Rte_09069]
Parent Container RteBswEventToTaskMapping
Description If an OsAlarm is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswUsedOsEventRef [ECUC_Rte_09070]
Parent Container RteBswEventToTaskMapping
Description If an OsEvent is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswUsedOsSchTblExpiryPointRef [ECUC_Rte_09071]
Parent Container RteBswEventToTaskMapping
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

BswEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

943 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteRipsFillRoutineRef [ECUC_Rte_89005]
Parent Container RteBswEventToTaskMapping
Description Reference to a Buffer-Fill Routine implemented by an RTE

Implementation Plug-In. This routine gets invoked directly before the
ExecutableEntity is started.

Tags:
atp.Status=draft

Attributes:
requiresIndex=true

Multiplicity 0..*
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPluginFillFlush

Routine]
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

944 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteRipsFlushRoutineRef [ECUC_Rte_89006]
Parent Container RteBswEventToTaskMapping
Description Reference to a Buffer-Flush Routine implemented by an RTE

Implementation Plug-In. This routine gets invoked directly after the
ExecutableEntity has terminated.

Tags:
atp.Status=draft

Attributes:
requiresIndex=true

Multiplicity 0..*
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPluginFillFlush

Routine]
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.3 BSW Trigger configuration

8.9.2.3.1 BSW Trigger connection

The RteBswRequiredTriggerConnection container is defined in the context of
the RteBswModuleInstance which is the required trigger context. So the reference
to the RteBswRequiredTriggerRef is sufficient to define the required trigger. For
the released trigger the tuple of RteBswReleasedTriggerModInstRef and RteB-
swReleasedTriggerRef is specified.

945 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

BswModuleTemplate

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

InternalBehavior

BswInternalBehavior
BswTriggerDirectImplementation

+ task: Identifier

RteBswRequiredTriggerConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswReleasedTriggerRef:
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = TRIGGER

RteBswRequiredTriggerRef:
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = TRIGGER

RteBswModuleInstance: EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswReleasedTriggerModInstRef:
EcucReferenceDef

+reference

+reference

+destination

«atpVariation,atpSplitable»

+triggerDirectImplementation

0..*

0..*

+masteredTrigger 1

+reference

«atpVariation,atpSplitable»

+requiredTrigger

0..*

«atpSplitable»
+internalBehavior 0..*

+subContainer

«atpVariation,atpSplitable»

+releasedTrigger

0..*

Figure 8.23: Configuration of BSW Trigger connection

SWS Item [ECUC_Rte_09077]
Container Name RteBswRequiredTriggerConnection
Description Defines the connection between one requiredTrigger of this BSW

Module instance and one releasedTrigger instance.
Configuration Parameters

Name RteBswReleasedTriggerModInstRef [ECUC_Rte_09075]
Parent Container RteBswRequiredTriggerConnection
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswReleasedTriggerRef to unambiguously identify the Trigger
instance.

Multiplicity 1
Type Reference to RteBswModuleInstance

Post-Build Variant
Value

false

946 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswReleasedTriggerRef [ECUC_Rte_09076]
Parent Container RteBswRequiredTriggerConnection
Description References the releasedTrigger to which this requiredTrigger shall be

connected.
Multiplicity 1
Type Foreign reference to TRIGGER

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredTriggerRef [ECUC_Rte_09078]
Parent Container RteBswRequiredTriggerConnection
Description References one requiredTrigger which shall be connected to the

releasedTrigger.
Multiplicity 1
Type Foreign reference to TRIGGER

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.3.2 BSW Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteBswExternalTriggerConfig container and RteBswInternalTrigger-
Config container is defined in the context of the RteBswModuleInstance which
already predefines the context of the provided Trigger / BswInternalTrigger-
ingPoint.

947 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_CONSTR_09006] The references RteBswTriggerSourceRef has to
be consistent with the RteBswImplementationRef d The references RteB-
swTriggerSourceRef has to be consistent with the RteBswImplementationRef.
This means the referenced Trigger / BswInternalTriggeringPoint has to be-
long to the BswModuleDescription which is referenced by the related BswImple-
mentation. c()

From BSWMD-T

RteBswExternalTriggerConfig:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteBswTriggerSourceRef:
EcucForeignReferenceDef

destinationType = TRIGGER
upperMultiplicity = 1
lowerMultipl icity = 1

RteBswTriggerSourceQueueLength:
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultiplicity = 1
min = 0
max = 4294967295

RteBswInternalTriggerConfig:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteBswTriggerSourceRef: EcucForeignReferenceDef

destinationType = BSW-INTERNAL-TRIGGERING-POINT
upperMultiplicity = 1
lowerMultipl icity = 1

RteBswTriggerSourceQueueLength:
EcucIntegerParamDef

defaultValue = 0
lowerMultiplicity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

InternalBehavior

BswInternalBehavior
Identifiable

BswInternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]«atpVariation,atpSplitable»
+internalTriggeringPoint

0..*

+parameter

+parameter

«atpVariation,atpSplitable»

+releasedTrigger

0..*

+reference

+subContainer

«atpSplitable»

+internalBehavior 0..*

+subContainer

+reference

Figure 8.24: Configuration of BSW Trigger queuing

SWS Item [ECUC_Rte_09099]
Container Name RteBswExternalTriggerConfig
Description Defines the configuration of Inter Basic Software Module Entity

Triggering
Configuration Parameters

948 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswTriggerSourceQueueLength [ECUC_Rte_09101]
Parent Container RteBswExternalTriggerConfig
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswTriggerSourceRef [ECUC_Rte_09100]
Parent Container RteBswExternalTriggerConfig
Description Reference to a Trigger instance in the role releasedTrigger of the

related BSW Module instance.

The referenced Trigger has to belong to the same BSW Module
instance as the RteBswModuleInstance owning this parameter
configures.

Multiplicity 1
Type Foreign reference to TRIGGER

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

SWS Item [ECUC_Rte_09102]
Container Name RteBswInternalTriggerConfig
Description Defines the configuration of internal Basic Software Module Entity

Triggering
Configuration Parameters

949 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswTriggerSourceQueueLength [ECUC_Rte_09104]
Parent Container RteBswInternalTriggerConfig
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswTriggerSourceRef [ECUC_Rte_09103]
Parent Container RteBswInternalTriggerConfig
Description Reference to a BswInternalTriggeringPoint of the related BSW Module

instance.

The referenced BswInternalTriggeringPoint has to belong to the same
BSW Module instance as the RteBswModuleInstance owning this
parameter configures.

Multiplicity 1
Type Foreign reference to BSW-INTERNAL-TRIGGERING-POINT

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.4 BSW ModeDeclarationGroup configuration

The RteBswRequiredModeGroupConnection container is defined in the context
of the RteBswModuleInstance which is the required mode group context. So the

950 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

reference to the RteBswRequiredModeGroupRef is sufficient to define the required
mode group. For the provided mode group the tuple of RteBswProvidedModeGrp-
ModInstRef and RteBswProvidedModeGroupRef is specified.

BswModuleTemplate

RteBswRequiredModeGroupConnection:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteBswProvidedModeGroupRef: EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

RteBswRequiredModeGroupRef: EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

RteBswModuleInstance: EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswProvidedModeGrpModInstRef:
EcucReferenceDef

ARElement
AtpType

ModeDeclarationMappingSet

AtpStructureElement
Identifiable

ModeDeclarationMapping

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

RteModeDeclarationMappingSetRef: EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1
destinationType = MODE-DECLARATION-MAPPING-SET

«atpVariation,atpSplitable»

+providedModeGroup

0..*

+reference

+modeDeclaration

1..* «atpVariation»

+reference

+secondMode 1

+destination

+reference

+firstMode 1..*

+modeDeclarationMapping

1..*

+initialMode

1

«isOfType»

+type
1
{redefines atpType}

+reference

«atpVariation,atpSplitable»

+requiredModeGroup

0..*

+subContainer

Figure 8.25: Configuration of BSW Scheduler overview

SWS Item [ECUC_Rte_09081]
Container Name RteBswRequiredModeGroupConnection
Description Defines the connection between one requiredModeGroup of this BSW

Module instance and one providedModeGroup instance.
Configuration Parameters

951 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswProvidedModeGroupRef [ECUC_Rte_09079]
Parent Container RteBswRequiredModeGroupConnection
Description References the providedModeGroupPrototype to which this

requiredModeGroup shall be connected.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswProvidedModeGrpModInstRef [ECUC_Rte_09080]
Parent Container RteBswRequiredModeGroupConnection
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedModeGroupRef to unambiguously identify the
ModeDeclarationGroupPrototype instance.

Multiplicity 1
Type Reference to RteBswModuleInstance

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredModeGroupRef [ECUC_Rte_09082]
Parent Container RteBswRequiredModeGroupConnection
Description References requiredModeGroupPrototype which shall be connected to

the providedModeGroupPrototype.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

952 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteModeDeclarationMappingSetRef [ECUC_Rte_09125]
Parent Container RteBswRequiredModeGroupConnection
Description This defines the effective ModeDeclarationMappingSet in the case that

the provided ModeDeclarationGroupPrototype and the required
ModeDeclarationGroupPrototype are not compatible.

Multiplicity 0..1
Type Foreign reference to MODE-DECLARATION-MAPPING-SET
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.5 BSW Client Server configuration

The RteBswRequiredClientServerConnection container is defined in the con-
text of the RteBswModuleInstance. So the reference to the RteBswRe-
quiredClientServerEntryRef is sufficient to define the required BswModule-
ClientServerEntry. For the provided BswModuleClientServerEntry the
RteBswProvidedClientServerEntryRef is specified.

953 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteBswModuleInstance: EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

Referrable

BswModuleClientServerEntry

+ isReentrant: Boolean [0..1]
+ isSynchronous: Boolean [0..1]

BswModuleTemplate

RteBswRequiredClientServerConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswRequiredClientServerEntryRef: EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryRef: EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultiplicity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryModInstRef: EcucReferenceDef

«atpVariation,atpSplitable»

+providedClientServerEntry

0..*

«atpVariation,atpSplitable»

+requiredClientServerEntry

0..*

+subContainer

+reference

+reference

+destination

+reference

Figure 8.26: Configuration of BSW Client Server Communication

SWS Item [ECUC_Rte_09117]
Container Name RteBswRequiredClientServerConnection
Description Defines the connection between one requiredClientServerEntry and

one providedClientServerEntry of a BswModuleDescription. This
container shall be provided on the client side of the connection.

Configuration Parameters

Name RteBswProvidedClientServerEntryModInstRef [ECUC_Rte_09124]
Parent Container RteBswRequiredClientServerConnection
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedClientServerEntryRef to unambiguously identify the
BswModuleClientServerEntry instance.

Multiplicity 1
Type Reference to RteBswModuleInstance

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

954 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswProvidedClientServerEntryRef [ECUC_Rte_09119]
Parent Container RteBswRequiredClientServerConnection
Description Reference the providedClientServerEntry for this connection.
Multiplicity 1
Type Foreign reference to BSW-MODULE-CLIENT-SERVER-ENTRY

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredClientServerEntryRef [ECUC_Rte_09118]
Parent Container RteBswRequiredClientServerConnection
Description Reference the requiredClientServerEntry for this connection.
Multiplicity 1
Type Foreign reference to BSW-MODULE-CLIENT-SERVER-ENTRY

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.6 BSW Sender Receiver configuration

The RteBswRequiredSenderReceiverConnection container is defined in the
context of the RteBswModuleInstance. So the reference to the RteBswRequired-
VariableDataPrototypeRef is sufficient to define the required VariableDat-
aPrototype. For the provided VariableDataPrototype the RteBswProvided-
VariableDataPrototypeRef is specified.

955 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteBswModuleInstance: EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger [0..1]

BswModuleTemplate

AutosarDataPrototype

VariableDataPrototype

RteBswRequiredSenderReceiverConnection:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswRequiredVariableDataPrototypeRef:
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = VARIABLE-DATA-PROTOTYPE

RteBswProvidedVariableDataPrototypeRef:
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = VARIABLE-DATA-PROTOTYPE

RteBswProvidedDataModInstRef: EcucReferenceDef

«atpVariation,atpSplitable»

+providedData

0..*

+reference

+subContainer

+reference

«atpVariation,atpSplitable»

+requiredData

0..*

+destination

+reference

Figure 8.27: Configuration of BSW Sender Receiver Communication

SWS Item [ECUC_Rte_09120]
Container Name RteBswRequiredSenderReceiverConnection
Description Defines the connection between one requiredData and one

providedData of a BswModuleDescription. This container shall be
provided on the receiver side of the connection.

Configuration Parameters

Name RteBswProvidedDataModInstRef [ECUC_Rte_09123]
Parent Container RteBswRequiredSenderReceiverConnection
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedVariableDataPrototypeRef to unambiguously identify
the VariableDataPrototype instance.

Multiplicity 1
Type Reference to RteBswModuleInstance

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

956 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswProvidedVariableDataPrototypeRef [ECUC_Rte_09122]
Parent Container RteBswRequiredSenderReceiverConnection
Description Reference the providedData for this connection.
Multiplicity 1
Type Foreign reference to VARIABLE-DATA-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredVariableDataPrototypeRef [ECUC_Rte_09121]
Parent Container RteBswRequiredSenderReceiverConnection
Description Reference the requiredData for this connection.
Multiplicity 1
Type Foreign reference to VARIABLE-DATA-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

8.9.2.7 BSW Mode Machine Instance configuration

This configuration provides the settings for the implementation of a Basic Software
Scheduler assigned mode machine instance (see [SWS_Rte_07534].

The RteBswModeMachineInstanceConfig container is defined in the context of
the RteBswModuleInstance which already predefines the context of the ModeDec-
larationGroupPrototype in the RteBswModeManagerRef .

[SWS_Rte_CONSTR_09101] The reference RteBswModeManagerRef has to be
consistent with the RteBswImplementationRef d The reference RteBswModeM-
anagerRef has to be consistent with the RteBswImplementationRef. This means
the referenced ModeDeclarationGroupPrototype has to be a providedMode-
Group in the BswModuleDescription which is referenced by the related BswIm-
plementation. c()

957 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteBswModuleInstance:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

(from RTE)

RteBswModeMachineInstanceConfig:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteBswModeManagerRef: EcucForeignReferenceDef

destinationType = MODE-DECLARATION-GROUP-PROTOTYPE
upperMultipl icity = 1
lowerMultiplicity = 1

RteModeMachineInstanceResponsibleRipsPluginRef:
EcucUriReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

(from RteModeConfiguration)

RteRipsPlugin:
EcucDestinationUriDef

(from RteRips)

RteBswModeMachineQueueLength:
EcucIntegerParamDef

defaultValue = 1
lowerMultiplicity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

+parameter

+subContainer

+reference

+destinationUri+reference

Figure 8.28: Configuration of a Basic Software Scheduler assigned mode machine in-
stance

SWS Item [ECUC_Rte_09148]
Container Name RteBswModeMachineInstanceConfig
Description Defines the configuration of Basic Software Scheduler assigned

(SWS_Rte_07534) mode machine instances.
Configuration Parameters

Name RteBswModeMachineQueueLength [ECUC_Rte_09150]
Parent Container RteBswModeMachineInstanceConfig
Description Length of mode machine instance queue on the trigger source side.

If there is no RteBswModeMachineQueueLength configured for a
mode machine instance the value given in the
BswModeSenderPolicy.queueLength applies.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 1
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

958 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteBswModeManagerRef [ECUC_Rte_09149]
Parent Container RteBswModeMachineInstanceConfig
Description Reference to a ModeDeclarationGroupPrototype of the related BSW

Module instance.

The referenced ModeDeclarationGroupPrototype has to belong to the
same BSW Module instance as the RteBswModuleInstance owning
this parameter configures.

Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeMachineInstanceResponsibleRipsPluginRef
[ECUC_Rte_89013]

Parent Container RteBswModeMachineInstanceConfig
Description Optional reference to the configuration container of the RTE

Implementation Plug-in implementing the protection of the mode
machine instance.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

8.10 Configuration of Synchronization Points

With synchronization points it possible to ensure the correct execution order in case of
RTEEvents activated by the identical event source (in particular the same mode man-
ager) but mapped to OsTasks belonging to different partitions which in turn are be-
longing to different cores. With this configuration it is possible to ensure for instance the

959 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

execution of all on-exit ExecutableEntitys before the on-transition Exe-
cutableEntitys when required. Therefore the current applicability is constraint to
RTEEvents triggered by mode communication.

RteOsInteraction:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = *

RteSyncPoint:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

RteBswEventToTaskMapping:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteEventPredecessorSyncPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteEventSuccessorSyncPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteBswEventPredecessorSyncPointRef:
EcucReferenceDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteBswEventSuccessorSyncPointRef:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

+reference

+reference +reference

+reference

+destination

+subContainer

+destination +destination

+destination

Figure 8.29: Configuration of Synchronization Points

SWS Item [ECUC_Rte_09127]
Container Name RteSyncPoint
Description The RteSyncPoint is necessary to provide an cross core

synchronization in case of RteEvents triggered by the same event
source but mapped to tasks belonging to different partitions on
different cores.

The synchronization point must be reached by all referencing
RteEvents before the execution in all related tasks is continued.

In case of Rte(Bsw)EventSuccessorSyncPointRef the ExecutableEntity
activated by the mapped event is executed before the synchronization
point is entered.

In case of Rte(Bsw)EventPredecessorSyncPointRef the
ExecutableEntity activated by the mapped event is executed after the
synchronization point is passed.

Configuration Parameters

No Included Containers

RteEventPredecessorSyncPointRef and RteEventSuccessorSync-
PointRef are only applicable for RteEventToTaskMappings where the mapped
RTEEvent is either a SwcModeSwitchEvent or a ModeSwitchedAckEvent.
RteBswEventPredecessorSyncPointRef and RteBswEventSuccessorSync-
PointRef are only applicable for RteBswEventToTaskMappings where the
mapped BswEvent is either a BswModeSwitchEvent or a BswModeSwitchedAck-
Event.

960 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.11 Configuration of Initialization

In order to support different interactions with the start up code of the ECU the RTE
supports different initialization strategies for variables implementing VariableDat-
aPrototypes. Basically the initialization can be done either by start-up code or by the
Rte_Start function. Further on it is possible to avoid any initialization for data which
has to be reset safe or is explicitly initialized by other SW, e.g. the RAM Blocks might
be initialized by NVRAM Manager.

Software Component Template and BSW Module Description Template
Rte: EcucModuleDef

upperMultiplicity = 1
lowerMultipl icity = 0

RteInitial izationBehavior:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 1

RteSectionInitial izationPolicy:
EcucStringParamDef

upperMultipl icity = *
lowerMultipl icity = 1

RteInitializationStrategy:
EcucEnumerationParamDef

upperMultipl icity = 1
lowerMultiplicity = 1

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION_AND_PARTITION_RESTART:
EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION: EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_NONE: EcucEnumerationLiteralDef

«primitive»
SectionInitializationPolicyType

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..*]
+ sectionInitial izationPolicy: SectionInitial izationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

RTE_INITIALIZATION_STRATEGY_AT_RTE_START_AND_PARTITION_RESTART:
EcucEnumerationLiteralDef

+literal

+literal

+literal

+parameter

+parameter

+literal

+container

Figure 8.30: Configuration of initialization strategy

SWS Item [ECUC_Rte_09087]
Container Name RteInitializationBehavior
Description Specifies the initialization strategy for variables allocated by RTE with

the purpose to implement VariableDataPrototypes.

The container defines a set of RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

Configuration Parameters

Name RteInitializationStrategy [ECUC_Rte_09089]
Parent Container RteInitializationBehavior
Description Definition of the initialization strategy applicable for the

SectionInitializationPolicys selected by RteSectionInitializationPolicy.
Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_INITIALIZATION_ST

RATEGY_AT_DATA_DEC
LARATION

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute.

961 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE_INITIALIZATION_ST
RATEGY_AT_DATA_DEC
LARATION_AND_PARTIT
ION_RESTART

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute and during
execution of Rte_RestartPartition to
the value defined by the related
initValue attribute.

RTE_INITIALIZATION_ST
RATEGY_AT_RTE_STAR
T_AND_PARTITION_RES
TART

Variables shall be initialized during
execution of Rte_Start and
Rte_RestartPartition to the value
defined by the related initValue
attribute.

RTE_INITIALIZATION_ST
RATEGY_NONE

Variables shall not be initialized at all.

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSectionInitializationPolicy [ECUC_Rte_09088]
Parent Container RteInitializationBehavior
Description This parameter describes the SectionInitializationPolicys for which a

particular RTE initialization strategy applies.

The SectionInitializationPolicy describes the intended initialization of
MemorySections.

The following values are standardized in AUTOSAR Methodology:

• NO-INIT: No initialization and no clearing is performed. Such
data elements must not be read before one has written a value
into it.

• INIT: To be used for data that are initialized by every reset to the
specified value (initValue).

• POWER-ON-INIT: To be used for data that are initialized by
"Power On" to the specified value (initValue). Note: there might
be several resets between power on resets.

• CLEARED: To be used for data that are initialized by every reset
to zero.

• POWER-ON-CLEARED: To be used for data that are initialized
by "Power On" to zero. Note: there might be several resets
between power on resets.

Multiplicity 1..*
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

962 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

[SWS_Rte_07075] d The RTE generator shall reject configurations where not all
occurring sectionInitializationPolicy attribute values are configured to an
RteInitializationStrategy. c(SRS_Rte_00018)

The call of Rte_Start may trigger RunnableEntitys for initialization purpose.
Those RunnableEntitys are either triggered by SwcModeSwitchEvents or
InitEvents. To support the scheduling of such RunnableEntitys in the start up
code of the ECU (e.g. by BswM or EcuM) its possible to map such RTEEvents to
RteInitializationRunnableBatch containers which results in the existence of
Rte_Init APIs.

Rte: EcucModuleDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RtePositionInTask:
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultipl icity = 0
min = 0
max = 65535

RteInitial izationRunnableBatch:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

RteUsedInitFnc:
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

+reference

+parameter

+destination

+container

Figure 8.31: Configuration of Rte_Init functions

SWS Item [ECUC_Rte_09115]
Container Name RteInitializationRunnableBatch

963 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description This container corresponds to an Rte_Init_<shortName of this
container> function invoking the mapped RunnableEntities.

Configuration Parameters

No Included Containers

Rte_Init API may only schedule RunnableEntitys for initialization purpose ore
which are on-entry Runnable Entities.

[SWS_Rte_CONSTR_09063] Restricted kinds of RTEEvents which may
mapped to RteInitializationRunnableBatch containers d Only SwcMod-
eSwitchEvents with activation = onEntry and referring to the initialMode or
InitEvents may be mapped to RteInitializationRunnableBatch containers
with the means of a RteUsedInitFnc reference. c()

[SWS_Rte_06769] d The RTE Generator shall reject configurations vio-
lating [SWS_Rte_CONSTR_09063]. c(SRS_Rte_00143, SRS_Rte_00240,
SRS_Rte_00018)

[SWS_Rte_CONSTR_09064] A single RteInitializationRunnableBatch con-
tainer may not handle RTEEvents of different partitions d All RTEEvents
mapped to a RteInitializationRunnableBatch container may only trigger
RunnableEntitys belonging to the same partition. c()

[SWS_Rte_06770] d The RTE Generator shall reject configurations vio-
lating [SWS_Rte_CONSTR_09064]. c(SRS_Rte_00143, SRS_Rte_00240,
SRS_Rte_00018)

8.12 Configuration of Task Chains

The configuration of RteOsTaskChain enables the definition of the task chain behav-
ior. Please note [SWS_Rte_04558] and [SWS_Rte_04559].

RteOsInteraction:
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteOsTaskChain:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RtePredecessorOsTaskRef:
EcucReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1

RteSuccessorOsTaskRef:
EcucReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1

OsTask:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

(from OS)

+reference

+destination+reference

+destination

+subContainer

Figure 8.32: Configuration of task chains

964 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_09135]
Container Name RteOsTaskChain
Description This container holds the configuration of one task chain configuration.
Configuration Parameters

Name RtePredecessorOsTaskRef [ECUC_Rte_09136]
Parent Container RteOsTaskChain
Description OsTask which shall chain another OsTask when it terminates.
Multiplicity 1
Type Reference to OsTask

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name RteSuccessorOsTaskRef [ECUC_Rte_09137]
Parent Container RteOsTaskChain
Description OsTask which shall be chained from the predecessor OsTask.
Multiplicity 1
Type Reference to OsTask

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

No Included Containers

8.13 Configuration of distributed shared mode queues

The section lists the configuration for the general settings for distributed shared
mode queues.

965 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RteDistributedSharedModeQueue:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

RteModeMachineInstanceConfig:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

(from RteModeConfiguration)

RteDSMQResponsibleRipsPluginRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

Rte: EcucModuleDef

upperMultipl icity = 1
lowerMultiplicity = 0

(from RTE)

OsTask: EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

(from OS)

RteRipsPlugin:
EcucDestinationUriDef

(from RteRips)

RteDSMQOsTaskRef: EcucReferenceDef

lowerMultipl icity = 1
upperMultiplicity = *

RteDSMQModeMachineInstanceRef:
EcucChoiceReferenceDef

lowerMultipl icity = 1
upperMultipl icity = *

RteBswModeMachineInstanceConfig:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

(from RteBswModeConfiguration)

+reference

+reference

+reference

+destination

+container

+destinationUri

+destination

+destination

Figure 8.33: Configuration of RTE Implementation Plug-Ins

SWS Item [ECUC_Rte_09145]
Container Name RteDistributedSharedModeQueue
Description This container holds the configuration of a distributed shared mode

queue.
Configuration Parameters

Name RteDSMQModeMachineInstanceRef [ECUC_Rte_09146]
Parent Container RteDistributedSharedModeQueue
Description Reference to the mode machine instances which participate in this

distributed shared mode queue.
Multiplicity 1..*
Type Choice reference to [RteBswModeMachineInstanceCon-

fig,RteModeMachineInstanceConfig]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

966 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteDSMQOsTaskRef [ECUC_Rte_09147]
Parent Container RteDistributedSharedModeQueue
Description Reference to the DSMQ transition OsTasks which are used to

exclusively schedule on-entry ExecutableEntitys, on-transition
ExecutableEntitys, on-exit ExecutableEntitys, and ModeSwitchAck
ExecutableEntity activated by mode machine instances of this
distributed shared mode queue.

Multiplicity 1..*
Type Reference to OsTask
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteDSMQResponsibleRipsPluginRef [ECUC_Rte_89014]
Parent Container RteDistributedSharedModeQueue
Description Optional reference to the configuration container of the RTE

Implementation Plug-in implementing the protection of all mode
machine instances assigned to this distributed shared mode queue.

Tags:
atp.Status=draft

Multiplicity 0..1
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

967 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

8.14 Configuration of RTE Implementation Plug-Ins

8.14.1 General configuration definitions for Uri References

Please note, that for the structural decoupling of the RTE’s configuration and the config-
uration of RTE Implementation Plug-Ins Uri References are used. See doc-
ument [5], section Uri Reference. Thereby each RTE Implementation Plug-In
define its own EcucModuleDef. AUTOSAR itself does not standardize those Ecuc-
ModuleDefs. Instead the required references in the ECU configuration of the RTE are
defined as EcucUriReferenceDefs and for the reference destination containers the
EcucDestinationUriDefs are standardized in the RteRipsUriDefSet.

SWS Item ECUC_Rte_89003
EcucDestinationUriDefSet
Name

RteRipsUriDefSet

Description Defines the set of DestinationUriDefs for the RTE Implementation
Plug-in support.

Included EcucDestinationUriDefs
Name Description
RteRipsInvocationHandler Defines the configuration container content of an invocation handler

of an RTE Implementation Plug-In.
RteRipsPlugin Defines the configuration container content of the RIPS Plug-in

holding the Rte relevant settings.
RteRipsPluginFillFlush
Routine

Defines the configuration container content of a Fill-Flush Routine
implemented by a RTE Implementation Plug-In.

SWS Item [ECUC_Rte_89009]
EcucDestinationUriDef
Name

RteRipsInvocationHandler

Description Defines the configuration container content of an invocation handler of
an RTE Implementation Plug-In.

destinationUriNesting
Contract

targetContainer

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
RteRipsInvocation
HandlerFnc

0..* This container describes an invocation handler function
implemented by an RTE Implementation Plug-In to
handle the invocation of server runnables and triggered
runnables via a transformer.

Tags:
atp.Status=draft

SWS Item [ECUC_Rte_89004]
EcucDestinationUriDef
Name

RteRipsPlugin

Description Defines the configuration container content of the RIPS Plug-in holding
the Rte relevant settings.

968 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

destinationUriNesting
Contract

targetContainer

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
RteRipsPluginProps 1 This container defines the identity of the Rte

Implementation Plug-in and provides the RTE relevant
parameters of the Rte Implementation Plug-in. The
shortName of the container defines the name of the Rte
Implementation Plug-in used for the API infixes.

Tags:
atp.Status=draft

SWS Item [ECUC_Rte_89007]
EcucDestinationUriDef
Name

RteRipsPluginFillFlushRoutine

Description Defines the configuration container content of a Fill-Flush Routine
implemented by a RTE Implementation Plug-In.

destinationUriNesting
Contract

targetContainer

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
RteRipsPluginFillFlush
RoutineFnc

0..* This container describes a Fill-Flush Routine function
implemented by a RTE Implementation Plug-In to
handle the buffering for implicit communication.

Tags:
atp.Status=draft

The general configuration of the RTE Generator concerning the used RTE Imple-
mentation Plug-Ins are defined in the container RteRips.

8.14.2 General configuration of RTE Implementation Plug-Ins utilization

The section lists the configuration for the general settings to enable the RTE Imple-
mentation Plug-In support by RTE Generator.

969 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

RTE_RIPS_OFF:
EcucEnumerationLiteralDef

RTE_RIPS_ON:
EcucEnumerationLiteralDef

RteRips:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = 1

RteRipsSupport:
EcucEnumerationParamDef

upperMultiplicity = 1
lowerMultipl icity = 1
defaultValue = RTE_RIPS_OFF

Rte: EcucModuleDef

upperMultipl icity = 1
lowerMultipl icity = 0

(from RTE)

RteRipsPluginConfigurationRef:
EcucUriReferenceDef

lowerMultiplicity = 0
upperMultipl icity = *
requiresIndex = true

RteRipsPlugin:
EcucDestinationUriDef

AUTOSARParameterDefinition:
EcucDefinitionCollection

(from ECUCParameterDefinitions)

RteRipsUriDefSet:
EcucDestinationUriDefSet

:EcucDestinationUriPolicy

destinationUriNestingContract = targetContainer

RtePluginSupportsIReadIWrite:
EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 1
upperMultipl icity = 1

RTE_RIPS_INSTANTIATION_BY_RTE:
EcucEnumerationLiteralDef

RTE_RIPS_INSTANTIATION_BY_PLUGIN:
EcucEnumerationLiteralDef

RteRipsGlobalCopyInstantiationPolicy:
EcucEnumerationParamDef

upperMultipl icity = 1
lowerMultiplicity = 1
defaultValue = RTE_RIPS_INSTANTIATION_BY_RTE

RteRipsPluginProps:
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = 1

+container

+container

+literal

+parameter

+literal

+destinationUriPolicy

+parameter

+destinationUriDef

+literal

+module

+parameter

+literal

+reference +destinationUri

Figure 8.34: Configuration of RTE Implementation Plug-Ins

SWS Item [ECUC_Rte_89000]
Container Name RteRips
Description This container provides the configuration of the Rte Implementation

Plug-In support by RTE. If the container is NOT defined, the support for
Rte Implementation Plug-Ins (RIPS) is globally disabled.

Tags:
atp.Status=draft

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Configuration Parameters

970 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteRipsSupport [ECUC_Rte_89001]
Parent Container RteRips
Description Globally enables or disables the support for Rte Implementation

Plug-Ins (RIPS)

Tags:
atp.Status=draft

Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_RIPS_OFF Support for Rte Implementation

Plug-Ins (RIPS) is globally disabled.
RTE_RIPS_ON Support for Rte Implementation

Plug-Ins (RIPS) is globally enabled.
Default Value RTE_RIPS_OFF
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteRipsPluginConfigurationRef [ECUC_Rte_89002]
Parent Container RteRips
Description Reference to the configuration container of the RTE Implementation

Plug-in holding the RTE relevant settings. All referenced RTE
Implementation Plug-ins are considered for the RTE generation.

Tags:
atp.Status=draft

Attributes:
requiresIndex=true

Multiplicity 0..*
Type Reference to destinationUri [RteRipsUriDefSet/RteRipsPlugin]
Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

The general implementation properties of the RTE Implementation Plug-In are
defined in RteRipsPluginProps.

SWS Item [ECUC_Rte_79000]

971 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Container Name RteRipsPluginProps
Description This container defines the identity of the Rte Implementation Plug-in

and provides the RTE relevant parameters of the Rte Implementation
Plug-in. The shortName of the container defines the name of the Rte
Implementation Plug-in used for the API infixes.

Tags:
atp.Status=draft

Configuration Parameters

Name RtePluginSupportsIReadIWrite [ECUC_Rte_79002]
Parent Container RteRipsPluginProps
Description Denotes if or if not the plug-in supports the Rte_Rips_IRead/IWrite

macros for primitive data.

Tags:
atp.Status=draft

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Scope / Dependency scope: local

Name RteRipsGlobalCopyInstantiationPolicy [ECUC_Rte_79001]
Parent Container RteRipsPluginProps
Description Globally enables or disables the support for Rte Implementation

Plug-Ins (RIPS)

Tags:
atp.Status=draft

Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_RIPS_INSTANTIATI

ON_BY_PLUGIN
The Rte Implementation Plug-In shall
provide the global copy(s) for each
Communication Graph.

RTE_RIPS_INSTANTIATI
ON_BY_RTE

The RTE shall provide an individual
global copy for each Communication
Graph.

Default Value RTE_RIPS_INSTANTIATION_BY_RTE
Post-Build Variant
Value

false

Scope / Dependency scope: local

No Included Containers

The container RteRipsPluginProps is mandatory to describe the properties and
the name infix used for the RTE Implementation Plug-In Services and header
files.

972 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_70092] DRAFT d The RTE Implementation Plug-In shall describe
its properties with an instance of an RteRipsPluginProps. c(SRS_Rte_00313)

8.14.3 Configuration of Fill-Flush-Routines of RTE Implementation Plug-Ins

The section lists the configuration for the Fill-Flush-Routines needed in case a RTE
Implementation Plug-In implements implicit communication. The details are de-
scribed in section 7.3.4.7.1.

RteRipsFil lRoutineRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultipl icity = *
requiresIndex = true

RteRipsPluginFil lFlushRoutineFnc:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultiplicity = 0

(from RteEventToTaskMapping)

RteBswEventToTaskMapping:
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultipl icity = *

(from
RteBswEventToTaskMapping)

RteRipsFlushRoutineRef:
EcucUriReferenceDef

lowerMultiplicity = 0
upperMultipl icity = *
requiresIndex = true

RteRipsUriDefSet:
EcucDestinationUriDefSet

RteRipsPluginFillFlushRoutine:
EcucDestinationUriDef

:EcucDestinationUriPolicy

destinationUriNestingContract = targetContainer

RTE_RIPS_CONSIDER_MODE_DISABLINGS:
EcucEnumerationLiteralDef

RTE_RIPS_IGNORE_MODE_DISABLINGS:
EcucEnumerationLiteralDef

RteRipsModeDisablingHandling:
EcucEnumerationParamDef

upperMultipl icity = 1
lowerMultipl icity = 1

RteRipsPluginFillFlushRoutineFncSymbol:
EcucFunctionNameDef

upperMultipl icity = 1
lowerMultipl icity = 1

RteRipsOsSchedulePoint:
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NONE:
EcucEnumerationLiteralDef

UNCONDITIONAL:
EcucEnumerationLiteralDef

+literal

+parameter

+destinationUri

+container

+parameter

+destinationUri

+literal

+reference

+destinationUriPolicy

+reference

+reference

+literal

+reference

+parameter

+destinationUriDef

+literal

Figure 8.35: Configuration of Fill-Flush-Routines of RTE Implementation Plug-Ins

SWS Item [ECUC_Rte_79003]
Container Name RteRipsPluginFillFlushRoutineFnc

973 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Description This container describes a Fill-Flush Routine function implemented by
a RTE Implementation Plug-In to handle the buffering for implicit
communication.

Tags:
atp.Status=draft

Configuration Parameters

Name RteRipsModeDisablingHandling [ECUC_Rte_79004]
Parent Container RteRipsPluginFillFlushRoutineFnc
Description This parameter configures whether mode disabling dependencies are

considered for the invocation of Rte_Rips_FillFlushRoutines.

Tags:
atp.Status=draft

Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_RIPS_CONSIDER_

MODE_DISABLINGS
Support for Rte Implementation
Plug-Ins (RIPS) is globally disabled.

RTE_RIPS_IGNORE_MO
DE_DISABLINGS

Support for Rte Implementation
Plug-Ins (RIPS) is globally enabled.

Post-Build Variant
Value

false

Scope / Dependency scope: local

Name RteRipsOsSchedulePoint [ECUC_Rte_79006]
Parent Container RteRipsPluginFillFlushRoutineFnc
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the Rte_Rips_FillFlushRoutine.

Tags:
atp.Status=draft

Multiplicity 0..1
Type EcucEnumerationParamDef
Range NONE No Schedule Point shall be introduced

at the end of the execution of this
Rte_Rips_FillFlushRoutine.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this Rte_Rips_FillFlushRoutine.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Scope / Dependency scope: local

974 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name RteRipsPluginFillFlushRoutineFncSymbol [ECUC_Rte_79005]
Parent Container RteRipsPluginFillFlushRoutineFnc
Description C-Symbol of the Rte_Rips_FillFlushRoutine function.

Tags:
atp.Status=draft

Multiplicity 1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Scope / Dependency scope: local

No Included Containers

8.14.4 Configuration of invocation handlers of RTE Implementation Plug-Ins

The section lists the configuration for the invocation handles needed in case a RTE
Implementation Plug-In needs to invoke server runnables respectively the
triggered runnables. The details are described in section 7.3.8.4.

RteRipsInvocationHandlerRef:
EcucUriReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

RteRipsInvocationHandlerFnc:
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultiplicity = *

RteRipsInvocationHandler:
EcucDestinationUriDef

:EcucDestinationUriPolicy

destinationUriNestingContract = targetContainer

RteRipsInvocationHandlerFncSymbol:
EcucFunctionNameDef

upperMultipl icity = 1
lowerMultiplicity = 1

RteEventToTaskMapping:
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultipl icity = 0

(from RteEventToTaskMapping)

RteRipsUriDefSet:
EcucDestinationUriDefSet

+container

+parameter

+reference

+destinationUriDef

+destinationUriPolicy

+destinationUri

Figure 8.36: Configuration of invocation handler of RTE Implementation Plug-Ins

975 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Rte_79007]
Container Name RteRipsInvocationHandlerFnc
Description This container describes an invocation handler function implemented

by an RTE Implementation Plug-In to handle the invocation of server
runnables and triggered runnables via a transformer.

Tags:
atp.Status=draft

Configuration Parameters

Name RteRipsInvocationHandlerFncSymbol [ECUC_Rte_79008]
Parent Container RteRipsInvocationHandlerFnc
Description C-Symbol of the Rte_Rips_FillFlushRoutine function.

Tags:
atp.Status=draft

Multiplicity 1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Value

false

Scope / Dependency scope: local

No Included Containers

976 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A Metamodel Restrictions

This chapter lists all the restrictions to the AUTOSAR meta-model this version of the
AUTOSAR RTE specification document relies on. The RTE generator shall reject con-
figuration where any of the specified restrictions are violated.

A.1 Restrictions concerning WaitPoint

1. [SWS_Rte_01358] d The RTE shall raise an error if [constr_1091] is violated, so
if RunnableEntity has WaitPoint connected to any of the following RTE-
Events:

• OperationInvokedEvent

• SwcModeSwitchEvent

• TimingEvent

• BackgroundEvent

• DataReceiveErrorEvent

• ExternalTriggerOccurredEvent

• InternalTriggerOccurredEvent

• DataWriteCompletedEvent

These events can only start a runnable. c(SRS_Rte_00092, SRS_Rte_00018)
Note: The only events that can unblock a WaitPoint are those listed in [con-
str_1091].

Rationale: For OperationInvokedEvents, SwcModeSwitchEvents,
TimingEvents, BackgroundEvents DataReceiveErrorEvent, Ex-
ternalTriggerOccurredEvent, InternalTriggerOccurredEvent,
and DataWriteCompletedEvent it suffices to allow the activation of a
RunnableEntity.

2. [SWS_Rte_07402] d The RTE generator shall reject a model where two (or
more) different RunnableEntitys in the same internal behavior each have a
WaitPoint referencing the same DataReceivedEvent, and the runnables are
mapped to different tasks. c(SRS_Rte_00092, SRS_Rte_00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

977 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.2 Restrictions concerning RTEEvent

1. [SWS_Rte_03526] d The RTE generator shall reject configurations in which a
RunnableEntity is triggered by multiple OperationInvokedEvents but vi-
olating the constraint [constr_2000] Compatibility of ClientServerOperations trig-
gering the same RunnableEntity as defined in document [2] c(SRS_Rte_00072,
SRS_Rte_00018)

Rationale: The signature of the RunnableEntity is dependent on its
connected RTEEvent. Multiple OperationInvokedEvents are only sup-
ported if all referred ClientServerOperations would result in the same
RunnableEntity prototype for the server runnable (see 5.7.5.6).

2. [SWS_Rte_03010] d One runnable entity shall only be resumed by one sin-
gle RTEEvent on its WaitPoint. The RTE doesn’t support the WaitPoint
of one runnable entity connected to several RTEEvents. c(SRS_Rte_00092,
SRS_Rte_00018)

Rationale: The WaitPoint of the runnable entity is caused by calling of the
RTE API. One runnable entity can only call one RTE API at a time, and so it can
only wait for one RTEEvent.

3. [SWS_Rte_07007] d The RTE generator shall reject configurations where dif-
ferent execution instances of a runnable entity, which use implicit data access,
are mapped to different preemption areas. c(SRS_Rte_00018, SRS_Rte_00128,
SRS_Rte_00129, SRS_Rte_00133, SRS_Rte_00142)

Rationale: Buffers used for implicit communication shall be consistent during the
whole task execution. If it is guaranteed that one task does not preempt the other,
direct accesses to the same copy buffer from different tasks are possible.

4. [SWS_Rte_07403] d The RTE generator shall reject a model where in the same
SwcInternalBehavior two (or more) different DataReceivedEvents, that
reference the same VariableDataPrototype with event semantics, trig-
ger different runnable entities mapped to different tasks. c(SRS_Rte_00072,
SRS_Rte_00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

A.3 Restrictions concerning queued implementation policy

1. [SWS_Rte_03018] d RTE does not support receiving with WaitPoint for Vari-
ableDataPrototypes with their swImplPolicy attribute is not set to queued.
c(SRS_Rte_00109, SRS_Rte_00092, SRS_Rte_00018)

978 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Requirement [SWS_Rte_03018] rejects configurations where a DataRe-
ceivedEvent is referenced by a WaitPoint and references a VariableDat-
aPrototype referenced by a NvDataInterface.

Rationale: unqueued implementation policy indicates that the receiver shall not
wait for the VariableDataPrototype.

2. All the VariableAccesses in the dataSendPoint role referring to one Vari-
ableDataPrototype through one PPortPrototype are considered to have
the same behavior by sending and acknowledgment reception. All DataSend-
CompletedEvents that reference VariableAccesses in the dataSendPoint
role referring to the same VariableDataPrototype are considered equiva-
lent.

Rationale: The API Rte_Send/Rte_Write is dependent on the port name and
the VariableDataPrototype name, not on the VariableAccesses. For
each combination of one VariableDataPrototype and one port only one API
will be generated and implemented for sending or acknowledgement reception.

A.4 Restrictions concerning ServerCallPoint

1. [SWS_Rte_03014] d All the ServerCallPoints referring to one
ClientServerOperation through one RPortPrototype are consid-
ered to have the same behavior by calling service. The RTE generator shall
reject configuration where this is violated. c(SRS_Rte_00051, SRS_Rte_00018)

Rationale: The API Rte_Call is dependent on the port name and the operation
name, not on the ServerCallPoints. For each combination of one operation
and one port only one API will be generated and implemented for calling a ser-
vice. It is e.g. not possible to have different timeout values specified for different
ServerCallPoints of the same ClientServerOperation. It is also not al-
lowed to specify both, a synchronous and an asynchronous server call point for
the same ClientServerOperation instance.

2. [SWS_Rte_03605] d If several require ports of a software component are cate-
gorized by the same client/server interface, all invocations of the same operation
of this client/server interface have to be either synchronous, or all invocations of
the same operation have to be asynchronous. This restriction applies under the
following conditions:

• the usage of the indirect API is specified for at least one of the respective
port prototypes and/or

• the software component supports multiple instantiation, and the RTE gener-
ation shall be performed in compatibility mode.

c(SRS_Rte_00051, SRS_Rte_00018)

979 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rationale: The signature of Rte_Call and the existence of Rte_Result de-
pend on the kind of invocation.

3. [SWS_Rte_07170] d The RTE generator shall reject the configuration where
[constr_2006] is violated. c(SRS_Rte_00051, SRS_Rte_00018)

Rationale: The support of several AsynchronousServerCallResultPoints per
AsynchronousServerCallPoint would potentially support multiple Asyn-
chronousServerCallReturnsEvents as well as multiple WaitPoints for
the same AsynchronousServerCallPoint.

A.5 Restriction concerning multiple instantiation of software
components

1. [SWS_Rte_07101] d The RTE generator shall reject configurations where [con-
str_2024] is violated, so in which a PortAPIOption with enableTakeAddress
= TRUE is defined by a software-component supporting multiple instantiation. c
(SRS_Rte_00018)

Rationale: The main focus of the feature is support for configuration of AU-
TOSAR Services which are limited to single instances.

A.6 Restrictions concerning runnable entity

1. [SWS_Rte_03527] d The RTE does NOT support multiple Runnable Entities that
share the same entry point. c(SRS_Rte_00072, SRS_Rte_00018)

Rationale: The name of the runnable entity entry point is formed by a combi-
nation of SWC symbol prefix and symbol attribute of RunnableEntity. This
means that two runnables in different SWCs can have the same symbol attribute
as long as different SWC prefixes are used.

2. [SWS_Rte_02733] d The RTE Generator shall reject a configuration where a
runnable has the attribute canBeInvokedConcurrently set to true and the
attribute minimumStartInterval set to greater zero. c(SRS_Rte_00018)

Rationale: If a runnable should run concurrently (i.e., have several Exe-
cutableEntity execution-instances), this implies that the minimum in-
terval between the start of the runnables is zero. The configuration to be rejected
is inconsistent.

980 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.7 Restrictions concerning runnables with dependencies on
modes

1. Operations may not be disabled by a mode disabling dependency.

[SWS_Rte_02706] d RTE shall reject the configurations violating [constr_1523].
c(SRS_Rte_00143, SRS_Rte_00018)

[SWS_Rte_03869] d RTE shall reject the configurations violating [constr_4098].
c(SRS_Rte_00143, SRS_Rte_00018)

Rationale: It is a preferable implementation, if the server responds with an ex-
plicit application error, when the server operation is not supported in a mode.
To implement the disabling of operations would require a high amount of book
keeping even for internal client server communication to prevent that the unique
request response mapping gets lost.

2. Only a category 1 runnable may be triggered by

• a SwcModeSwitchEvent

• an RTEEvent with a mode disabling dependency

[SWS_Rte_02500] d The RTE generator shall reject configurations with cate-
gory 2 runnables connected to SwcModeSwitchEvents and RTEEvents / Bsw-
Events with mode disabling dependencys if the mode machine instance is
synchronous. The rejection may be reduced to a warning when the RTE gener-
ator is explicitly set to a non strict mode. c(SRS_Rte_00143, SRS_Rte_00213,
SRS_Rte_00018)

Rationale: The above runnables are executed or terminated on the transitions
between different modes. To execute the mode switch withing finite time, also
these runnables have to be executed within finite execution time.

3. All on-entry ExecutableEntitys, on-transition ExecutableEnti-
tys, and on-exit ExecutableEntitys of the same core local mode
user group should be mapped to the same task in case of synchronous mode
switching procedure.

[SWS_Rte_02662] d The RTE generator shall reject configurations with on-entry,
on-transition, or on-exit ExecutableEntity’s of the same core local mode
user group that are mapped to different tasks in case of synchronous mode
switching procedure. c(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

In case of asynchronous mode switching procedure, a mapping of all affected
runnables to no task is also possible.

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

981 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4. To guarantee that all mode disabling dependent ExecutableEntitys of
a core local mode user group have terminated before the start of the on-
exit ExecutableEntitys of the transition, the mode disabling depen-
dent ExecutableEntitys should run with higher or equal priority.

[SWS_Rte_02663] d The RTE generator shall reject configurations with mode
disabling dependent ExecutableEntitys that are mapped to a task with
lower priority than the task that contains the on-entry ExecutableEnti-
tys and on-exit ExecutableEntitys of that core local mode user
group supporting a synchronous mode switching procedure. c(SRS_Rte_00143,
SRS_Rte_00213, SRS_Rte_00018)

5. [SWS_Rte_02664] d The RTE generator shall reject configurations of a task with

• on-exit ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-transition ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-exit ExecutableEntitys mapped after on-transition Exe-
cutableEntitys

of the same mode machine instance supporting a synchronous mode switch-
ing procedure. c(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

6. [SWS_Rte_06839] d The RTE generator shall reject configurations of a DSMQ
transition OsTask with

• on-exit ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-exit ExecutableEntitys mapped after on-transition Exe-
cutableEntitys or

• on-exit ExecutableEntitys mapped after ModeSwitchAck Exe-
cutableEntitys or

• on-transition ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-transition ExecutableEntitys mapped after ModeSwitchAck
ExecutableEntitys or

• on-entry ExecutableEntitys mapped after ModeSwitchAck Exe-
cutableEntitys

of mode machine instances belonging to a distributed shared
mode group. c(SRS_Rte_00310, SRS_Rte_00143, SRS_Rte_00213,
SRS_Rte_00018)

982 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch in combination with a distributed shared mode
group.

7. [SWS_Rte_07157] d The RTE generator shall reject configurations with

• on-exit ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-transition ExecutableEntitys mapped after on-entry Exe-
cutableEntitys or

• on-exit ExecutableEntitys mapped after on-transition Exe-
cutableEntitys

of the same software component or Basic Software Module for a mode ma-
chine instance supporting an asynchronous mode switching procedure. c
(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

Rationale: This restriction simplifies the implementation of the semantics of an
asynchronous mode switch.

8. If a mode is used to trigger a runnable for entering or leaving the mode, but this
runnable has a mode disabling dependency on the same mode, the mode
disabling dependency inhibits the activation of the runnable on the transition
(see section 4.4.4).

To prevent such a misleading configuration, it is strongly recommended
not to configure a mode disabling dependency for an on-entry Exe-
cutableEntity or on-exit ExecutableEntity, using the same mode.

9. In case that the mode machine instance is initialized by Rte_Init API the related
on-entry Runnable Entities for the initialMode have to be executed
in the context of the Rte_Init API. In order to enable the complete transition
to the initialMode it is required that all on-entry Runnable Entities
are mapped to RteInitializationRunnableBatch containers otherwise a
part of the on-entry Runnable Entities wouldn’t be scheduled during the
transition to the initialMode.

[SWS_Rte_CONSTR_09062] Entire mapping of on-entry Runnable En-
tities for initialMode to RteInitializationRunnableBatch contain-
ers d Either all or none of the on-entry Runnable Entities of a particular
mode machine instance for the initialMode shall be mapped to RteIni-
tializationRunnableBatch containers. c()

[SWS_Rte_06768] d The RTE Generator shall reject configurations vio-
lating [SWS_Rte_CONSTR_09062]. c(SRS_Rte_00143, SRS_Rte_00240,
SRS_Rte_00018)

Please note as well [SWS_Rte_CONSTR_09063] which limits the applicability of
the mapping to RteInitializationRunnableBatch containers.

983 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.8 Restriction concerning SwcInternalBehavior

1. [SWS_Rte_07686] d The RTE Generator shall reject configurations where
an ApplicationSwComponentType, ServiceSwComponentType, Com-
plexDeviceDriverSwComponentType, EcuAbstractionSwComponent-
Type, SensorActuatorSwComponentType or ServiceProxySwCompo-
nentType does not contain a SwcInternalBehavior. c(SRS_Rte_00018)

A.9 Restrictions concerning Initial Value

1. [SWS_Rte_07642] d When the external configuration switch strictInitial-
ValuesCheck is enabled, the RTE Generator shall reject configurations where
a SwAddrMethod has a sectionInitializationPolicy set to init but no
initValues are specified on the sender or receiver side. c(SRS_Rte_00068,
SRS_Rte_00108, SRS_Rte_00018)

Rationale: The initValue is used to guarantee that the RTE won’t deliver un-
defined values.

2. [SWS_Rte_08311] d When the external configuration switch strictInitial-
ValuesCheck is enabled, the RTE Generator shall reject configurations where
a SwAddrMethod has a sectionInitializationPolicy set to init but
no initValue is specified on the inter runnable variable. c(SRS_Rte_00068,
SRS_Rte_00108, SRS_Rte_00018)

Rationale: The initValue is used to guarantee that the RTE won’t deliver un-
defined values.

3. [SWS_Rte_07681] d If strict checking of initial values is enabled
(see [SWS_Rte_07680]), the RTE Generator shall reject configurations
where a ParameterDataPrototype has no initValues. c(SRS_Rte_00108,
SRS_Rte_00018)

Rationale: This allows to provide the values with a calibration without any in-
volvements from the RTE Generator, and still permits to enable a stricter check
on projects where it is required.

A.10 Restriction concerning PerInstanceMemory

1. [SWS_Rte_07045] d The RTE generator shall reject configurations where the
type attribute of a ’C’ typed PerInstanceMemory is equal to the name
of a ImplementationDataType contained in the input configuration. c
(SRS_Rte_00013, SRS_Rte_00077)

Rationale: This would lead to equally named C type definitions.

984 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.11 Restrictions concerning unconnected r-port

1. [SWS_Rte_03019] d If strict checking has been enabled (see [SWS_Rte_05099])
there shall not be unconnected r-port. The RTE generator shall in this case reject
the configuration with unconnected r-port. c(SRS_Rte_00139, SRS_Rte_00018)

Rationale: Unconnected r-port is considered as wrong configuration of the sys-
tem.

2. [SWS_Rte_02750] d The RTE Generator shall reject configurations where an r-
port typed with a ParameterInterface is not connected and an initValue of
a ParameterRequireComSpec is not provided for each ParameterDataPro-
totypes of this ParameterInterface. c(SRS_Rte_00139, SRS_Rte_00159,
SRS_Rte_00018)

A.12 Restrictions regarding communication of mode switch noti-
fications

1. [SWS_Rte_02670] dRTE shall not support connections with multiple senders
(n:1 communication) of mode switch notifications connected to the
same receiver. The RTE generator shall reject configurations with multiple
senders of mode switch notifications connected to the same receiver.
c(SRS_Rte_00131, SRS_Rte_00018)

Rationale: No use case is known to justify the required complexity.

2. [SWS_Rte_08788] d RTE shall reject configurations

• where one ModeDeclarationGroupPrototype of a provide port is con-
nected to ModeDeclarationGroupPrototypes of require ports from
more than one partition

and

• where at least one of the mode user partitions can be restarted

and

• where the modeUserErrorBehavior of ModeDeclarationGroup is not
set to lastMode

c(SRS_Rte_00131, SRS_Rte_00018)

3. For each ModeDeclarationGroup, used in the SW-C’s ports, RTE needs a
unique mapping to an ImplementationDataType.

[SWS_Rte_02738] d RTE shall reject a configuration, in which there is not ex-
actly one ModeRequestTypeMap referencing the ModeDeclarationGroup
used in a ModeDeclarationGroupPrototype of the SW-C’s ports. c
(SRS_Rte_00144, SRS_Rte_00018)

985 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.13 Restrictions regarding Measurement and Calibration

1. [SWS_Rte_03951] d RTE does not support measurement of queued communi-
cation. c(SRS_Rte_00153, SRS_Rte_00018)

Rationale: Measurement of queued communication is not supported yet. Rea-
sons are:

• A queue can be empty. What’s to measure then? Data interpretation is
ambiguous.

• Which of the queue entries the measurement data has to be taken from
(first pending entry, last entry, an intermediate one, mean value, min. or
max. value)? Needs might differ out of user view? Data interpretation is
ambiguous.

• Compared e.g. to sender-receiver last-is-best approach only inefficient so-
lutions are possible because implementation of queues entails storage of
information dynamically at different memory locations. So always additional
copies are required.

2. [SWS_Rte_03970] d The RTE generator shall reject configurations violating [con-
str_1092] so containing require ports attached to ParameterSwComponent-
Types. c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00018)

Rationale: Require ports on ParameterSwComponentTypes don’t make
sense. ParameterSwComponentTypes only have to provide calibration param-
eters to other SwComponentTypes.

A.14 Restriction concerning ExclusiveAreaImplMechanism

1. Usage of WaitPoints is restricted depending on ExclusiveAreaImplMech-
anism
If an exclusive area’s configuration value for ExclusiveAreaImplMechanism is In-
terruptBlocking or OsResource, no runnable entity shall contain any WaitPoint
inside this exclusive area.

Please note that a wait point can either be a modelling WaitPoint e. g. a Wait-
Point in the SW-C description caused by the usage of a blocking API (e. g.
Rte_Receive) or an implementation wait point caused by a special implementa-
tion to fulfill the requirements of the ECU configuration, e. g. the runnable-to-task
mapping.

Rationale: The operating system has the limitation that a WaitEvent call is
not allowed with disabled interrupts. Therefore the implementation mechanism
InterruptBlocking cannot be used if the exclusive area contains a WaitPoint.

Further the operating system has the limitation that an OS WaitPoint cannot
be entered with occupied OS Resources. This implies that the implementation

986 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

mechanism OsResource cannot be used if the exclusive area contains a Wait-
Point.

A.15 Restrictions concerning AtomicSwComponentTypes

1. [SWS_Rte_07190] d The RTE generator shall reject configurations where multi-
ple SwComponentTypes have the same component type symbol regardless
of the ARPackage hierarchy. c(SRS_Rte_00018)

Rational: This is required to generated unique names for the Application Header
Files and component data structures.

2. [SWS_Rte_07191] d The RTE generator shall reject configurations where a
SwComponentType has PortPrototypes typed by different PortInter-
faces with equal short name but conflicting ApplicationErrors. Applica-
tionErrors are conflicting if ApplicationErrors with same name do have
different errorCodes. c(SRS_Rte_00018)

Rational: This is required to generated unique symbolic names for Applica-
tionErrors. (see also [SWS_Rte_02576])

A.16 Restriction concerning the enableUpdate attribute of Non-
queuedReceiverComSpecs

1. [SWS_Rte_07654] d The RTE Generator shall reject configurations violating
[constr_1103] so where a VariableDataPrototype is referenced by a Non-
queuedReceiverComSpec with the enableUpdate attribute enabled, when
this VariableDataPrototype is referenced by a VariableAccess in the
dataReadAccess role. c(SRS_Rte_00179, SRS_Rte_00018)

Rational: the update flag is restricted to explicit communication currently.

A.17 Restrictions concerning the large and dynamic data type

1. [SWS_Rte_07810] d The RTE shall reject the configuration if a dataEle-
ment that contain an ImplementationDataType with subElements with ar-
raySizeSemantics equal to variableSize resolves to another type than
uint8[n]. c(SRS_Rte_00018)

Rationale: COM limits the dynamic signals to the ComSignalType UINT_8DYN
(see the requirement COM569). COM doesn’t support dynamic signals included
into signal groups. See more explanations in chapter 4.3.1.14.

987 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

2. [SWS_Rte_08423] d The RTE shall reject the configuration if an Imple-
mentationDataType does not have a dynamicArraySizeProfile de-
fined and contains a subElement with the category ARRAY that in turn con-
tains a subElement with arraySizeSemantics set to variableSize. c
(SRS_Rte_00018)

3. [SWS_Rte_07811] d The RTE shall reject configurations where a dataElement
mapped to a Com I-PDU with ComIPduType equal to TP and swImplPolicy is
different from queued and supportedFeatures of the PortAPIOption is not
set to supportsBufferLocking. c(SRS_Rte_00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

4. [SWS_Rte_08603] d The RTE shall reject configurations where a dataElemnt
mapped to a LdCom I-PDU with LdComApiType equals to LdCom_TP and
swImplPolicy is different from queued and supportedFeatures of the
PortAPIOption is not set to supportsBufferLocking. c(SRS_Rte_00018)

5. [SWS_Rte_08604] d The RTE shall reject configurations where a
ClientServerOperation mapped to a Com I-PDU with ComIPduType
equal to TP and supportedFeatures of the PortAPIOption is not set to
supportsBufferLocking. c(SRS_Rte_00018)

6. [SWS_Rte_08605] d The RTE shall reject configurations where a
ClientServerOperation mapped to a LdCom I-PDU with LdComApi-
Type equals to LdCom_TP and supportedFeatures of the PortAPIOption
is not set to supportsBufferLocking. c(SRS_Rte_00018)

7. [SWS_Rte_07812] d The RTE shall reject the configuration if a dataElement
with an ImplementationDataType with subElements with arraySizeSe-
mantics equal to variableSize has a swImplPolicy different from queued.
c(SRS_Rte_00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

A.18 Restriction concerning REFERENCE types

1. [SWS_Rte_07670] d The RTE shall reject a configuration violating [constr_1295].
c(SRS_Rte_00018)

Rationale: Only for AUTOSAR services, complex device drivers or ECU abstrac-
tion, the use of references is allowed to prevent the misuse of references for
communication via the referenced memory (intra-partition scope). For example,
such a misuse could occur with application software components communicating
together and mapped to different partitions or ECUs.

988 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

A.19 Restriction concerning ModeDeclarationGroup categories
and value attributes

1. [SWS_Rte_06801] d The RTE generator shall reject a configuration if constraint
[constr_1298] is violated. c(SRS_Rte_00018)

[SWS_Rte_06802] d The RTE generator shall reject a configuration if constraint
[constr_1299] is violated. c(SRS_Rte_00018)

[SWS_Rte_06803] d The RTE generator shall reject a configuration if constraint
[constr_1181] is violated. c(SRS_Rte_00018)

Rationale: In case of category EXPLICIT_ORDER the onTransitionValue
and value attributes are required to generate the according definitions (see
5.5.4 and 6.4.2). Thereby unique numbers are required. In case of ALPHA-
BETIC_ORDER the definition of those values are meaningless and causing the
risk of inconsistency to the numbering according the alphabetical sorting.

A.20 Restrictions concerning C/S Interfaces

1. [SWS_Rte_07845] d The Rte Generator shall reject configurations where
a ClientServerOperation in a PPortPrototype is defined but no
RunnableEntity is triggered by an OperationInvokedEvent that refer-
ences the ClientServerOperation. c(SRS_Rte_00029, SRS_Rte_00018)

Rationale: Otherwise the implementation by a server runnable of the operation
in the C/S interface does not exist.

989 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

B External Requirements

A summary on model constraints is provided in document [33].

990 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

C MISRA C Compliance

In general, all RTE code, whether generated or not, shall conform to the MISRA C
standard [SWS_Rte_01168] [27]. This chapter lists all the MISRA C rules that may be
violated by the generated RTE.

The MISRA C standard was defined with having mainly hand-written code in mind. Part
of the MISRA C rules only apply to hand-written code, they do not make much sense
in the context of automatic code generation. Additionally, there are some rules that are
violated because of technical reasons, mainly to reduce RTE overhead.

The rules listed in this chapter are expected to be violated by RTE code. Violations to
the rules listed here do not need to be documented as non-compliant to MISRA C in
the generated code itself.

MISRA rule 2.3
Description A project should not contain unused type declarations.
Violations This is in support of [SWS_Rte_02648].

Table C.1: MISRA rule 2.3

MISRA rules 5.1 to 5.1, Dir1.1

Description
Identifiers (internal and external) shall not rely on significance of more than 31
characters. Furthermore the compiler/linker shall be checked to ensure that 31
character significance and case sensitivity are supported for external identifiers.

Violations The defined RTE naming convention may result in identifiers with more than 31
characters. The compliance to this rule is under user’s control.

Table C.2: MISRA rules 5.1 to 5.1, Dir1.1

MISRA rule 8.5
Description An external object or function shall be declared once and in one and only one file.
Violations This is in support of application header file generation.

Table C.3: MISRA rule 8.5

MISRA rule 8.8

Description The static storage class specifier shall be used in all declarations of objects and
functions that have internal linkage.

Violations E.g. for the purpose of monitoring during calibration or debugging it may be nec-
essary to use non-static declarations at file scope.

Table C.4: MISRA rule 8.8

MISRA rule 12.3
Description The comma operator should not be used.

Violations Function-like macros may have to use the comma operator. Function-like macros
are required for efficiency reasons [SRS_BSW_00330].

Table C.5: MISRA rule 12.3

991 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

MISRA rule 11.2

Description Conversions shall not be performed between a pointer to an incomplete type and
any other type.

Violations
Casting to/from pointer type may be needed for the interface with COM. Casting
from a pointer to a data element with status to a pointer to a data ele-
ment without status.

Table C.6: MISRA rule 11.2

MISRA rule 11.3

Description A cast shall not be performed between a pointer to object type and a pointer to a
different object type.

Violations
Casting to/from pointer type may be needed for the interface with COM. Casting
from a pointer to a data element with status to a pointer to a data ele-
ment without status.

Table C.7: MISRA rule 11.3

MISRA rule 8.7

Description Functions and objects should not be defined with external linkage if they are refer-
enced in only one translation unit.

Violations Support the use cases where SW-Cs are delivered as OBJ code and the ports
might not be connected during generation time.

Table C.8: MISRA rule 8.7

MISRA rule 11.5
Description A conversion should not be performed from pointer to void into pointer to object.

Violations
Casting to/from pointer type may be needed for the interface with COM. Casting
from a pointer to a data element with status to a pointer to a data element without
status.

Table C.9: MISRA rule 11.5

992 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

D Referenced Meta Classes

Class ARPackage

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage

Note AUTOSAR package, allowing to create top level packages to structure the contained ARElements.

ARPackages are open sets. This means that in a file based description system multiple files can be used
to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.
Base ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, MultilanguageReferrable,

Referrable

Attribute Type Mul. Kind Note

arPackage ARPackage * aggr This represents a sub package within an ARPackage,
thus allowing for an unlimited package hierarchy.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableElement * aggr Elements that are part of this package

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceBase ReferenceBase * aggr This denotes the reference bases for the package. This is
the basis for all relative references within the package.
The base needs to be selected according to the base
attribute within the references.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortLabel
xml.sequenceOffset=10

Table D.1: ARPackage

Class AbstractAccessPoint (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::AccessCount

Note Abstract class indicating an access point from an ExecutableEntity.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses AsynchronousServerCallResultPoint, ExternalTriggeringPointIdent, InternalTriggeringPoint, ModeAccess
PointIdent, ModeSwitchPoint, ParameterAccess, ServerCallPoint , VariableAccess

Attribute Type Mul. Kind Note
– – – – –

Table D.2: AbstractAccessPoint

Class AbstractProvidedPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a provided PortPrototype.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PPortPrototype, PRPortPrototype

5

993 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class AbstractProvidedPortPrototype (abstract)

Attribute Type Mul. Kind Note

providedCom
Spec

PPortComSpec * aggr Provided communication attributes per interface element
(data element or operation).

Table D.3: AbstractProvidedPortPrototype

Class AbstractRequiredPortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This abstract class provides the ability to become a required PortPrototype.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Port
Prototype, Referrable

Subclasses PRPortPrototype, RPortPrototype

Attribute Type Mul. Kind Note

requiredCom
Spec

RPortComSpec * aggr Required communication attributes, one for each
interface element.

Table D.4: AbstractRequiredPortPrototype

Class AnyInstanceRef

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::AnyInstanceRef

Note Describes a reference to any instance in an AUTOSAR model. This is the most generic form of an
instance ref. Refer to the superclass notes for more details.

Base ARObject , AtpInstanceRef

Attribute Type Mul. Kind Note

base AtpClassifier 1 ref This is the base from which navigation path begins.

Stereotypes: atpDerived

contextElement AtpFeature * ref This is one step in the navigation path specified by the
instance ref.

target AtpFeature 1 ref This is the target of the instance ref.

Table D.5: AnyInstanceRef

Enumeration ApiPrincipleEnum

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This enumeration represents the ability to control the granularity of API generation.

Literal Description
common The Rte or SchM API is provided for the whole software component / BSW Module

Tags: atp.EnumerationValue=0

perExecutable The Rte or SchM API is provided for a specific ExecutableEntity of a software component / BSW
Module

Tags: atp.EnumerationValue=1

Table D.6: ApiPrincipleEnum

994 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table D.7: ApplicationArrayDataType

Class ApplicationArrayElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of the elements of an application array data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls how the information about the array
size shall be interpreted.

indexDataType ApplicationPrimitive
DataType

0..1 ref This reference can be taken to assign a CompuMethod of
category TEXTTABLE to the array. The texttable entries
associate a textual value to an index number such that
the element with that index number is represented by a
symbolic name.

maxNumberOf
Elements

PositiveInteger 0..1 attr The maximum number of elements that the array can
contain.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.8: ApplicationArrayElement

Class ApplicationCompositeDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for all application data types composed of other data types.

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Subclasses ApplicationArrayDataType, ApplicationRecordDataType

Attribute Type Mul. Kind Note
– – – – –

Table D.9: ApplicationCompositeDataType

995 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ApplicationCompositeElementDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note This class represents a data prototype which is aggregated within a composite application data type
(record or array). It is introduced to provide a better distinction between target and context in instance
Refs.

Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationArrayElement, ApplicationRecordElement

Attribute Type Mul. Kind Note

type ApplicationDataType 1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table D.10: ApplicationCompositeElementDataPrototype

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Attribute Type Mul. Kind Note
– – – – –

Table D.11: ApplicationDataType

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

errorCode Integer 1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table D.12: ApplicationError

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

5

996 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ApplicationPrimitiveDataType

Attribute Type Mul. Kind Note
– – – – –

Table D.13: ApplicationPrimitiveDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

element (or-
dered)

ApplicationRecord
Element

1..* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.14: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Tags: atp.Status=draft

Table D.15: ApplicationRecordElement

Class ApplicationRuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents rule based values for DataPrototypes typed by ApplicationDataTypes
(ApplicationArrayDataType or a compound ApplicationPrimitiveDataType which also boils down to an
array-nature).

5

997 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ApplicationRuleBasedValueSpecification

Base ARObject , AbstractRuleBasedValueSpecification, ValueSpecification

Attribute Type Mul. Kind Note

category Identifier 1 attr This represents the category of the RuleBasedValue
Specification

Tags: xml.sequenceOffset=-20

swAxis
Cont (ordered)

RuleBasedAxisCont * aggr This represents the axis values of a Compound Primitive
Data Type (curve or map).

The first swAxisCont describes the x-axis, the second sw
AxisCont describes the y-axis, the third swAxisCont
describes the z-axis. In addition to this, the axis can be
denoted in swAxisIndex.

swValueCont RuleBasedValueCont 0..1 aggr This represents the values of an array or Compound
Primitive Data Type.

Table D.16: ApplicationRuleBasedValueSpecification

Class ApplicationSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note
– – – – –

Table D.17: ApplicationSwComponentType

Class ApplicationValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class represents values for DataPrototypes typed by ApplicationDataTypes (this includes in
particular compound primitives).

For further details refer to ASAM CDF 2.0. This meta-class corresponds to some extent with
SW-INSTANCE in ASAM CDF 2.0.

Base ARObject , ValueSpecification

Attribute Type Mul. Kind Note

category Identifier 1 attr Specifies to which category of ApplicationDataType this
ApplicationValueSpecification can be applied (e.g. as an
initial value), thus imposing constraints on the structure
and semantics of the contained values, see [constr_1006]
and [constr_2051].

swAxis
Cont (ordered)

SwAxisCont * aggr This represents the axis values of a Compound Primitive
Data Type (curve or map).

The first swAxisCont describes the x-axis, the second sw
AxisCont describes the y-axis, the third swAxisCont
describes the z-axis. In addition to this, the axis can be
denoted in swAxisIndex.

swValueCont SwValueCont 0..1 aggr This represents the values of a Compound Primitive Data
Type.

Table D.18: ApplicationValueSpecification

998 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

direction ArgumentDirection
Enum

1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table D.19: ArgumentDataPrototype

Enumeration ArgumentDirectionEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note Use cases:

• Arguments in ClientServerOperation can have different directions that need to be formally
indicated because they have an impact on how the function signature looks like eventually.

• Arguments in BswModuleEntry already determine a function signature, but the direction is
used to specify the semantics, especially of pointer arguments.

Literal Description

in The argument value is passed to the callee.

Tags: atp.EnumerationValue=0

inout The argument value is passed to the callee but also passed back from the callee to the caller.

Tags: atp.EnumerationValue=1

out The argument value is passed from the callee to the caller.

Tags: atp.EnumerationValue=2

Table D.20: ArgumentDirectionEnum

Enumeration ArraySizeSemanticsEnum

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.

Literal Description

fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.

Tags: atp.EnumerationValue=0

variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.

Tags: atp.EnumerationValue=1

Table D.21: ArraySizeSemanticsEnum

999 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ArrayValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specifies the values for an array.

Base ARObject , CompositeValueSpecification, ValueSpecification

Attribute Type Mul. Kind Note

element (or-
dered)

ValueSpecification * aggr The value for a single array element. All Value
Specifications aggregated by ArrayValueSpecification
shall have the same structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.22: ArrayValueSpecification

Class AssemblySwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in the context of a
CompositionSwComponentType.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mul. Kind Note

provider AbstractProvidedPort
Prototype

0..1 iref Instance of providing port.

requester AbstractRequiredPort
Prototype

0..1 iref Instance of requiring port.

Table D.23: AssemblySwConnector

Class AsynchronousServerCallPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note An AsynchronousServerCallPoint is used for asynchronous invocation of a ClientServerOperation.
IMPORTANT: a ServerCallPoint cannot be used concurrently. Once the client RunnableEntity has made
the invocation, the ServerCallPoint cannot be used until the call returns (or an error occurs!) at which
point the ServerCallPoint becomes available again.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable, ServerCallPoint

Attribute Type Mul. Kind Note
– – – – –

Table D.24: AsynchronousServerCallPoint

Class AsynchronousServerCallResultPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note If a RunnableEntity owns a AsynchronousServerCallResultPoint it is entitled to get the result of the
referenced AsynchronousServerCallPoint.
If it is associated with AsynchronousServerCallReturnsEvent, this RTEEvent notifies the completion of
the required ClientServerOperation or a timeout. The occurrence of this event can either unblock a Wait
Point or can lead to the invocation of a RunnableEntity.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

5

1000 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class AsynchronousServerCallResultPoint

Attribute Type Mul. Kind Note

asynchronous
ServerCallPoint

AsynchronousServer
CallPoint

1 ref The referenced Asynchronous Server Call Point defines
the asynchronous server call from which the results are
returned.

Table D.25: AsynchronousServerCallResultPoint

Class AsynchronousServerCallReturnsEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised when an asynchronous server call is finished.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

eventSource AsynchronousServer
CallResultPoint

1 ref The referenced AsynchronousServerCallResultPoint
which is raises the RTEEvent in case of returning
asynchronous server call.

Table D.26: AsynchronousServerCallReturnsEvent

Class AtomicSwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note An atomic software component is atomic in the sense that it cannot be further decomposed and
distributed across multiple ECUs.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Subclasses ApplicationSwComponentType, ComplexDeviceDriverSwComponentType, EcuAbstractionSwComponent
Type, NvBlockSwComponentType, SensorActuatorSwComponentType, ServiceProxySwComponent
Type, ServiceSwComponentType

Attribute Type Mul. Kind Note

internalBehavior SwcInternalBehavior 0..1 aggr The SwcInternalBehaviors owned by an AtomicSw
ComponentType can be located in a different physical file.
Therefore the aggregation is «atpSplitable».

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=internalBehavior, variationPoint.short
Label
vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the AtomicSw
ComponentType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table D.27: AtomicSwComponentType

Class «atpMixedString» AttributeValueVariationPoint (abstract)

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariationPoints

Note This class represents the ability to derive the value of the Attribute from a system constant (by Sw
SystemconstDependentFormula). It also provides a bindingTime.

Base ARObject , FormulaExpression, SwSystemconstDependentFormula

5

1001 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpMixedString» AttributeValueVariationPoint (abstract)

Subclasses AbstractEnumerationValueVariationPoint , AbstractNumericalVariationPoint , BooleanValueVariationPoint,
FloatValueVariationPoint, IntegerValueVariationPoint, PositiveIntegerValueVariationPoint, Unlimited
IntegerValueVariationPoint

Attribute Type Mul. Kind Note

bindingTime BindingTimeEnum 0..1 attr This is the binding time in which the attribute value needs
to be bound.

If this attribute is missing, the attribute is not a variation
point. In particular this means that It needs to be a single
value according to the type specified in the pure model. It
is an error if it is still a formula.

Tags: xml.attribute=true

blueprintValue String 0..1 attr This represents a description that documents how the
value shall be defined when deriving objects from the
blueprint.

Tags: xml.attribute=true

sd String 0..1 attr This special data is provided to allow synchronization of
Attribute value variation points with variant management
systems. The usage is subject of agreement between the
involved parties.

Tags: xml.attribute=true

shortLabel PrimitiveIdentifier 0..1 attr This allows to identify the variation point. It is also
intended to allow RTE support for CompileTime Variation
points.

Tags: xml.attribute=true

Table D.28: AttributeValueVariationPoint

Class AutosarDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, ParameterDataPrototype, VariableDataPrototype

Attribute Type Mul. Kind Note

type AutosarDataType 1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table D.29: AutosarDataPrototype

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for ECU software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table D.30: AutosarDataType

1002 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class BackgroundEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is used to trigger RunnableEntities that are supposed to be executed in the background.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.31: BackgroundEvent

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependant base type.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SwBaseType

Attribute Type Mul. Kind Note

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table D.32: BaseType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mul. Kind Note

baseType
Encoding

BaseTypeEncoding
String

1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags: xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags: xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags: xml.sequenceOffset=100

5

1003 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BaseTypeDirectDefinition

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with

shortName: "MyUnsignedInt"
nativeDeclaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags: xml.sequenceOffset=120

Table D.33: BaseTypeDirectDefinition

Enumeration BindingTimeEnum

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This enumerator specifies the applicable binding times for the pre build variation points.

Literal Description

codeGeneration
Time

• Coding by hand, based on requirements document.

• Tool based code generation, e.g. from a model.

• The model may contain variants.

• Only code for the selected variant(s) is actually generated.

Tags: atp.EnumerationValue=0

linkTime Configure what is included in object code, and what is omitted
Based on which variant(s) are selected
E.g. for modules that are delivered as object code (as opposed to those that are delivered as source
code)

Tags: atp.EnumerationValue=1

preCompileTime This is typically the C-Preprocessor.
Exclude parts of the code from the compilation process, e.g.,
because they are not required for the selected variant,
because they are incompatible with the selected variant,
because they require resources that are not present in the selected variant.
Object code is only generated for the selected variant(s).
The code that is excluded at this stage code will not be available at later stages.

Tags: atp.EnumerationValue=2

5

1004 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration BindingTimeEnum

systemDesignTime • Designing the VFB.

• Software Component types (PortInterfaces).

• SWC Prototypes and the Connections between SWCprototypes.

• Designing the Topology

• ECUs and interconnecting Networks

• Designing the Communication Matrix and Data Mapping

Tags: atp.EnumerationValue=3

Table D.34: BindingTimeEnum

Class «atpMixedString» BooleanValueVariationPoint

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariationPoints

Note This class represents an attribute value variation point for Boolean attributes.

Note that this class might be used in the extended meta-model on

Base ARObject , AttributeValueVariationPoint , FormulaExpression, SwSystemconstDependentFormula

Attribute Type Mul. Kind Note
– – – – –

Table D.35: BooleanValueVariationPoint

Class BswApiOptions (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note This meta-class represents the ability to define options for the definition of the signature of function
prototypes.

Base ARObject

Subclasses BswClientPolicy, BswDataReceptionPolicy , BswDataSendPolicy, BswExclusiveAreaPolicy, BswInternal
TriggeringPointPolicy, BswParameterPolicy, BswPerInstanceMemoryPolicy, BswReleasedTriggerPolicy

Attribute Type Mul. Kind Note

enableTake
Address

Boolean 0..1 attr If set to true, the BSW Module is able to use the API
reference for deriving a pointer to an object

Table D.36: BswApiOptions

Class BswAsynchronousServerCallPoint

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Represents an asynchronous procedure call point via the BSW Scheduler.

Base ARObject , BswModuleCallPoint , Referrable

Attribute Type Mul. Kind Note

calledEntry BswModuleClientServer
Entry

1 ref The entry to be called.

Table D.37: BswAsynchronousServerCallPoint

1005 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class BswAsynchronousServerCallResultPoint

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note The callback point for an BswAsynchronousServerCallPoint i.e. the point at which the result can be
retrieved from the BSW Scheduler.

Base ARObject , BswModuleCallPoint , Referrable

Attribute Type Mul. Kind Note

asynchronous
ServerCallPoint

BswAsynchronous
ServerCallPoint

1 ref The call point invoking the call to which the result belongs.

Table D.38: BswAsynchronousServerCallResultPoint

Class BswBackgroundEvent

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A recurring BswEvent which is used to perform background activities. It is similar to a BswTimingEvent
but has no fixed time period and is activated only with low priority.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.39: BswBackgroundEvent

Class BswCalledEntity

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BSW module entity which is designed to be called from another BSW module or cluster.

Base ARObject , BswModuleEntity , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.40: BswCalledEntity

Class BswDataReceivedEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note This event is thrown on reception of the referenced data via Sender-Receiver-Communication over the
BSW Scheduler.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

data VariableDataPrototype 1 ref The received data.

Table D.41: BswDataReceivedEvent

Class BswDataReceptionPolicy (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the reception policy for the referred data in sender-receiver communication over the BSW
Scheduler. To be used for inter-partition and/or inter-core communication.

Base ARObject , BswApiOptions

5

1006 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswDataReceptionPolicy (abstract)

Subclasses BswQueuedDataReceptionPolicy

Attribute Type Mul. Kind Note

receivedData VariableDataPrototype 1 ref The data received over the BSW Scheduler using this
policy.

Table D.42: BswDataReceptionPolicy

Class BswEvent (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Base class of various kinds of events which are used to trigger a BswModuleEntity of this BSW module or
cluster. The event is local to the BSW module or cluster. The short name of the meta-class instance is
intended as an input to configure the required API of the BSW Scheduler.

Base ARObject , AbstractEvent , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswOperationInvokedEvent, BswScheduleEvent

Attribute Type Mul. Kind Note

context
Limitation

BswDistinguished
Partition

* ref The existence of this reference indicates that the usage of
the event is limited to the context of the referred Bsw
DistinguishedPartitions.

disabledInMode ModeDeclaration * iref The modes, in which this event is disabled.

Stereotypes: atpSplitable
Tags: atp.Splitkey=disabledInMode

startsOnEvent BswModuleEntity 1 ref The entity which is started by the event.

Table D.43: BswEvent

Class BswExclusiveAreaPolicy

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note The ExclusiveArea for which the BSW Scheduler using this policy.

Base ARObject , BswApiOptions

Attribute Type Mul. Kind Note

apiPrinciple ApiPrincipleEnum 0..1 attr Specifies for this ExclusiveArea if either one common set
of Enter and Exit APIs for the whole BSW module is
requested from the SchM or if the set of Enter and Exit
APIs is expected per BswModuleEntity.
The default value is "common".

exclusiveArea ExclusiveArea 1 ref The ExclusiveArea for which the BSW Scheduler using
this policy.

Table D.44: BswExclusiveAreaPolicy

Enumeration BswExecutionContext
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Note Specifies the execution context required or guaranteed for the call associated with this service.

Literal Description

hook Context of an OS "hook" routine always

Tags: atp.EnumerationValue=0

5

1007 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration BswExecutionContext
interruptCat1 CAT1 interrupt context always

Tags: atp.EnumerationValue=1

interruptCat2 CAT2 interrupt context always

Tags: atp.EnumerationValue=2

task Task context always

Tags: atp.EnumerationValue=3

unspecified The execution context is not specified by the API

Tags: atp.EnumerationValue=4

Table D.45: BswExecutionContext

Class BswExternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A BswEvent resulting from a trigger released by another module or cluster.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

trigger Trigger 1 ref The trigger associated with this event. The trigger is
external to this module.

Table D.46: BswExternalTriggerOccurredEvent

Class BswImplementation

Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation

Note Contains the implementation specific information in addition to the generic specification (BswModule
Description and BswBehavior).
It is possible to have several different BswImplementations referring to the same BswBehavior.

Tags: atp.recommendedPackage=BswImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

arRelease
Version

RevisionLabelString 1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains three
levels (major, minor, revision) which are defined by
AUTOSAR.

behavior BswInternalBehavior 1 ref The behavior of this implementation.

This relation is made as an association because

• it follows the pattern of the SWCT

• since ARElement cannot be splitted, but we want
supply the implementation later, the Bsw
Implementation is not aggregated in BswBehavior

5

1008 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswImplementation

preconfigured
Configuration

EcucModule
ConfigurationValues

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.

If the BswImplementation represents a cluster of several
modules, more than one EcucModuleConfigurationValues
element can be referred (at most one per module),
otherwise at most one such element can be referred.

Tags: xml.roleWrapperElement=true

recommended
Configuration

EcucModule
ConfigurationValues

* ref Reference to one or more sets of recommended
configuration values for this module or module cluster.

vendorApiInfix Identifier 0..1 attr In driver modules which can be instantiated several times
on a single ECU, SRS_BSW_00347 requires that the
names of files, APIs, published parameters and memory
allocation keywords are extended by the vendorId and a
vendor specific name.
This parameter is used to specify the vendor specific
name. In total, the implementation specific API name is
generated as follows:
<ModuleName>_<vendorId>_ <vendorApiInfix>_<API
name from SWS>.

E.g. assuming that the vendorId of the implementer is
123 and the implementer chose a vendorApiInfix of
"v11r456" an API name Can_Write defined in the SWS
will translate to Can_123_v11r456_Write.

This attribute is mandatory for all modules with upper
multiplicity > 1. It shall not be used for modules with
upper multiplicity =1.

See also SWS_BSW_00102.

vendorSpecific
ModuleDef

EcucModuleDef * ref Reference to

• the vendor specific EcucModuleDef used in this
BswImplementation if it represents a single
module

• several EcucModuleDefs used in this Bsw
Implementation if it represents a cluster of
modules

• one or no EcucModuleDefs used in this Bsw
Implementation if it represents a library

Tags: xml.roleWrapperElement=true

Table D.47: BswImplementation

Class BswInternalBehavior
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities visible by the BSW
Scheduler.
It is possible to have several different BswInternalBehaviors referring to the same BswModuleDescription.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

5

1009 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswInternalBehavior
arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the Basic Software
Module.
The aggregation of arTypedPerInstanceMemory is subject
to variability with the purpose to support variability in the
Basic Software Module’s implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

bswPerInstance
MemoryPolicy

BswPerInstance
MemoryPolicy

* aggr Policy for a arTypedPerInstanceMemory The policy
selects the options of the Schedule Manager API
generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

clientPolicy BswClientPolicy * aggr Policy for a requiredClientServerEntry. The policy selects
the options of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=clientPolicy, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

distinguished
Partition

BswDistinguished
Partition

* aggr Indicates an abstract partition context in which the
enclosing BswModuleEntity can be executed.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.ShortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

entity BswModuleEntity * aggr A code entity for which the behavior is described

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=5

event BswEvent * aggr An event required by this module behavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

exclusiveArea
Policy

BswExclusiveArea
Policy

* aggr Policy for an ExclusiveArea in this BswInternalBehavior.
The policy selects the options of the Schedule Manager
API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=exclusiveAreaPolicy, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a basic software
module for its implementation.

Stereotypes: atpSplitable
Tags: atp.Splitkey=includedDataTypeSet

5

1010 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswInternalBehavior
internal
TriggeringPoint

BswInternalTriggering
Point

* aggr An internal triggering point.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=2

internal
TriggeringPoint
Policy

BswInternalTriggering
PointPolicy

* aggr Policy for an internalTriggeringPoint in this BswInternal
Behavior.. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=internalTriggeringPointPolicy, variation
Point.shortPoint
vh.latestBindingTime=preCompileTime

modeReceiver
Policy

BswModeReceiver
Policy

* aggr Implementation policy for the reception of mode switches.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=modeReceiverPolicy, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

modeSender
Policy

BswModeSenderPolicy * aggr Implementation policy for providing a mode group.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=modeSenderPolicy, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

parameterPolicy BswParameterPolicy * aggr Policy for a perInstanceParameter in this BswInternal
Behavior. The policy selects the options of the Schedule
Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=parameterPolicy, variatioPoint.short
Label
vh.latestBindingTime=preCompileTime

perInstance
Parameter

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) needed by this BswInternal
Behavior. The role name perInstanceParameter is chosen
in analogy to the similar role in the context of SwcInternal
Behavior.

In contrast to constantMemory, this object is not allocated
locally by the module’s code, but by the BSW Scheduler
and it is accessed from the BSW module via the BSW
Scheduler API. The main use case is the support of
software emulation of calibration data.

The aggregation is subject to variability with the purpose
to support implementation variants.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=atp.Splitkey shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

5

1011 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswInternalBehavior
receptionPolicy BswDataReception

Policy
* aggr Data reception policy for inter-partition and/or inter-core

communication.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=receptionPolicy, variationPoint.short
Label
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

releasedTrigger
Policy

BswReleasedTrigger
Policy

* aggr Policy for a releasedTrigger. The policy selects the
options of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=releasedTriggerPolicy, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

schedulerName
Prefix

BswSchedulerName
Prefix

* aggr Optional definition of one or more prefixes to be used for
the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=schedulerNamePrefix, variation
Point.ShortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

sendPolicy BswDataSendPolicy * aggr Policy for a providedData. The policy selects the options
of the Schedule Manager API generation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=sendPolicy, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

BswService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation is subject to variability with the purpose
to support the conditional existence of ServiceNeeds.

The aggregation is splitable in order to support that
ServiceNeeds might be provided in later development
steps.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=serviceDependency, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

triggerDirect
Implementation

BswTriggerDirect
Implementation

* aggr Specifies a trigger to be directly implemented via OS
calls.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=triggerDirectImplementation, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table D.48: BswInternalBehavior

1012 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class BswInternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A BswEvent, which can happen sporadically. The event is activated by explicit calls from the module to
the BSW Scheduler. The main purpose for such an event is to cause a context switch, e.g. from an ISR
context into a task context. Activation and switching are handled within the same module or cluster only.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

eventSource BswInternalTriggering
Point

1 ref The activation point is the source of this event.

Table D.49: BswInternalTriggerOccurredEvent

Class BswInternalTriggeringPoint

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Represents the activation point for one or more BswInternalTriggerOccurredEvents.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, specifies a
queued processing of the internal trigger event.

Table D.50: BswInternalTriggeringPoint

Class BswInterruptEntity

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BSW module entity, which is designed to be triggered by an interrupt.

Base ARObject , BswModuleEntity , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

interrupt
Category

BswInterruptCategory 1 attr Category of the interrupt

interruptSource String 1 attr Allows a textual documentation of the intended interrupt
source.

Table D.51: BswInterruptEntity

Class BswModeReceiverPolicy

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the details for the reception of a mode switch for the referred mode group.

Base ARObject

Attribute Type Mul. Kind Note

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to TRUE the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

requiredMode
Group

ModeDeclarationGroup
Prototype

1 ref The required mode group for which the policy is specified.

5

1013 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModeReceiverPolicy

supports
Asynchronous
ModeSwitch

Boolean 1 attr Specifies whether the module can handle the reception of
an asynchronous mode switch (true) or not (false).

Table D.52: BswModeReceiverPolicy

Class BswModeSenderPolicy

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the details for the sending of a mode switch for the referred mode group.

Base ARObject

Attribute Type Mul. Kind Note

ackRequest BswModeSwitchAck
Request

0..1 aggr Request for acknowledgement

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to TRUE the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

providedMode
Group

ModeDeclarationGroup
Prototype

1 ref The provided mode group for which the policy is specified.

queueLength PositiveInteger 1 attr Length of call queue on the sender side. The queue is
implemented by the RTE resp.BswScheduler. The value
must be greater or equal to 0. Setting the value of queue
Length to 0 implies non-queued communication.

Table D.53: BswModeSenderPolicy

Class BswModeSwitchAckRequest

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Requests acknowledgements that a mode switch has been processed successfully

Base ARObject

Attribute Type Mul. Kind Note

timeout TimeValue 1 attr Number of seconds before an error is reported.

Table D.54: BswModeSwitchAckRequest

Class BswModeSwitchEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A BswEvent resulting from a mode switch.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

activation ModeActivationKind 1 attr Kind of activation w.r.t. to the referred mode.

mode (ordered) ModeDeclaration 1..2 iref Reference to one or two Modes that initiate the Mode
Switch Event.

Table D.55: BswModeSwitchEvent

1014 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class BswModeSwitchedAckEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note The event is raised after a switch of the referenced mode group has been acknowledged or an error
occurs. The referenced mode group must be provided by this module.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

modeGroup ModeDeclarationGroup
Prototype

1 ref A mode group provided by this module. The
acknowledgement of a switch of this group raises this
event.

Table D.56: BswModeSwitchedAckEvent

Class BswModuleCallPoint (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Represents a point at which a BswModuleEntity handles a procedure call into a BswModuleEntry, either
directly or via the BSW Scheduler.

Base ARObject , Referrable

Subclasses BswAsynchronousServerCallPoint, BswAsynchronousServerCallResultPoint, BswDirectCallPoint, Bsw
SynchronousServerCallPoint

Attribute Type Mul. Kind Note

context
Limitation

BswDistinguished
Partition

* ref The existence of this reference indicates that the call
point is used only in the context of the referred Bsw
DistinguishedPartitions.

Table D.57: BswModuleCallPoint

Class BswModuleClientServerEntry

Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Note This meta-class represents a single API entry into the BSW module or cluster that has the ability to be
called in client-server fashion via the BSW Scheduler.

In this regard it is more special than BswModuleEntry and can be seen as a wrapper around the Bsw
ModuleEntry to which it refers (property encapsulatedEntry).

Tags: atp.recommendedPackage=BswModuleEntrys

Base ARObject , Referrable

Attribute Type Mul. Kind Note

encapsulated
Entry

BswModuleEntry 1 ref The underlying BswModuleEntry.

Tags: xml.sequenceOffset=5

isReentrant Boolean 0..1 attr Reentrancy from the viewpoint of clients invoking the
service via the BSW Scheduler:

• True: Enables the service to be invoked again,
before the service has finished.

• False: It is prohibited to invoke the service again
before is has finished.

Tags: xml.sequenceOffset=10

5

1015 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleClientServerEntry

isSynchronous Boolean 0..1 attr Synchronicity from the viewpoint of clients invoking the
service via the BSW Scheduler:

• True: This calls a synchronous service, i.e. the
service is completed when the call returns.

• False: The service (on semantical level) may not
be complete when the call returns.

Tags: xml.sequenceOffset=15

Table D.58: BswModuleClientServerEntry

Class BswModuleDependency

Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Note This class collects the dependencies of a BSW module or cluster on a certain other BSW module.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

serviceItem ServiceNeeds * aggr A single item (example: Nv block) for which the quality of
a service is defined.

The aggregation is marked as «atpSplitable» to allow for
extension during the ECU configuration process.

This association is deprecated since R4.0.3, since
ServiceNeeds shall be associated with the new element
BswServiceDependency within the BswInternalBehavior.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=removed
xml.sequenceOffset=20

targetModuleId PositiveInteger 0..1 attr AUTOSAR identifier of the target module of which the
dependencies are defined.

This information is optional, because the target module
may also be identified by targetModuleRef.

Tags: xml.sequenceOffset=5

targetModule
Ref

BswModuleDescription 0..1 ref Reference to the target module. It is an «atpUriDef»
because the reference shall be used to identify the target
module without actually needing the description of that
target module.

Stereotypes: atpUriDef; atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=7

Table D.59: BswModuleDependency

Class BswModuleDescription

Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview

Note Root element for the description of a single BSW module or BSW cluster.
In case it describes a BSW module, the short name of this element equals the name of the BSW module.

Tags: atp.recommendedPackage=BswModuleDescriptions

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AtpStructureElement ,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

5

1016 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleDescription

Attribute Type Mul. Kind Note

bswModule
Dependency

BswModuleDependency * aggr Describes the dependency to another BSW module.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

bswModule
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=bswModuleDocumentation, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

expectedEntry BswModuleEntry * ref Indicates an entry which is required by this module.
Replacement of outgoingCallback / requiredEntry.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=expectedEntry, variationPoint.short
Label
vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry * ref Specifies an entry provided by this module which can be
called by other modules. This includes "main" functions,
interrupt routines, and callbacks.
Replacement of providedEntry / expectedCallback.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=implementedEntry, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

internalBehavior BswInternalBehavior * aggr The various BswInternalBehaviors associated with a Bsw
ModuleDescription can be distributed over several
physical files. Therefore the aggregation is «atpSplitable».

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by the
AUTOSAR standard. For non-standardized modules, a
proprietary identifier can be optionally chosen.

Tags: xml.sequenceOffset=5

providedClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module provides a client server entry
which can be called from another parition or core.This
entry is declared locally to this context and will be
connected to the requiredClientServerEntry of another or
the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

providedData VariableDataPrototype * aggr Specifies a data prototype provided by this module in
order to be read from another partition or core.The
providedData is declared locally to this context and will be
connected to the requiredData of another or the same
module via the configuration of the BSW Scheduler.

5
5

1017 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleDescription

4
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedMode
Group

ModeDeclarationGroup
Prototype

* aggr A set of modes which is owned and provided by this
module or cluster. It can be connected to the required
ModeGroups of other modules or clusters via the
configuration of the BswScheduler. It can also be
synchronized with modes provided via ports by an
associated ServiceSwComponentType, EcuAbstraction
SwComponentType or ComplexDeviceDriverSw
ComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTrigger Trigger * aggr A Trigger released by this module or cluster. It can be
connected to the requiredTriggers of other modules or
clusters via the configuration of the BswScheduler. It can
also be synchronized with Triggers provided via ports by
an associated ServiceSwComponentType, Ecu
AbstractionSwComponentType or ComplexDeviceDriver
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

requiredClient
ServerEntry

BswModuleClientServer
Entry

* aggr Specifies that this module requires a client server entry
which can be implemented on another parition or
core.This entry is declared locally to this context and will
be connected to the providedClientServerEntry of another
or the same module via the configuration of the BSW
Scheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredData VariableDataPrototype * aggr Specifies a data prototype required by this module in oder
to be provided from another partition or core.The required
Data is declared locally to this context and will be
connected to the providedData of another or the same
module via the configuration of the BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

requiredMode
Group

ModeDeclarationGroup
Prototype

* aggr Specifies that this module or cluster depends on a certain
mode group. The requiredModeGroup is local to this
context and will be connected to the providedModeGroup
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

5

1018 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleDescription

requiredTrigger Trigger * aggr Specifies that this module or cluster reacts upon an
external trigger.This requiredTrigger is declared locally to
this context and will be connected to the providedTrigger
of another module or cluster via the configuration of the
BswScheduler.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table D.60: BswModuleDescription

Class BswModuleEntity (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies the smallest code fragment which can be described for a BSW module or cluster within
AUTOSAR.

Base ARObject , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswCalledEntity, BswInterruptEntity, BswSchedulableEntity

Attribute Type Mul. Kind Note

accessedMode
Group

ModeDeclarationGroup
Prototype

* ref A mode group which is accessed via API call by this
entity. It must be a ModeDeclarationGroupPrototype
required by this module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

activationPoint BswInternalTriggering
Point

* ref Activation point used by the module entity to activate one
or more internal triggers.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

callPoint BswModuleCallPoint * aggr A call point used in the code of this entitiy.

The variablity of this association is especially targeted at
debug scenarios: It is possible to have one variant calling
into the AUTOSAR debug module and another one which
doesn’t.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

calledEntry BswModuleEntry * ref The entry of another (or the same) BSW module which is
called by this entry (usually via C function call). This
information allows to set up a model of call chains.

The variablity of this association is especially targeted at
debug scenarios: It is possible to have one variant calling
into the AUTOSAR debug module and another one which
doesn’t.

Note that this relation has been merked as obsolete, since
the more powerful definition of a callPoint should be used.

Stereotypes: atpVariation
Tags: atp.Status=removed
vh.latestBindingTime=preCompileTime

dataReceive
Point

BswVariableAccess * aggr The data is received via the BSW Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

5

1019 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleEntity (abstract)

dataSendPoint BswVariableAccess * aggr The data is sent via the BSW Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

implemented
Entry

BswModuleEntry 1 ref The entry which is implemented by this module entity.

issuedTrigger Trigger * ref A trigger issued by this entity via BSW Scheduler API call.
It must be a BswTrigger released (i.e. owned) by this
module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

managedMode
Group

ModeDeclarationGroup
Prototype

* ref A mode group which is managed by this entity. It must be
a ModeDeclarationGroupPrototype provided by this
module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

schedulerName
Prefix

BswSchedulerName
Prefix

0..1 ref A prefix to be used in generated names for the Bsw
ModuleScheduler in the context of this BswModuleEntity,
for example entry point prototypes, macros for dealing
with exclusive areas, header file names.

Details are defined in the SWS RTE.

The prefix supersedes default rules for the prefix of those
names.

Table D.61: BswModuleEntity

Class BswModuleEntry

Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces

Note This class represents a single API entry (C-function prototype) into the BSW module or cluster.

The name of the C-function is equal to the short name of this element with one exception: In case of
multiple instances of a module on the same CPU, special rules for "infixes" apply, see description of class
BswImplementation.

Tags: atp.recommendedPackage=BswModuleEntrys

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

argument (or-
dered)

SwServiceArg * aggr An argument belonging to this BswModuleEntry.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=45

bswEntryKind BswEntryKindEnum 0..1 attr This describes whether the entry is concrete or abstract.
If the attribute is missing the entry is considered as
concrete.

Tags: xml.sequenceOffset=40

callType BswCallType 1 attr The type of call associated with this service.

Tags: xml.sequenceOffset=25

execution
Context

BswExecutionContext 1 attr Specifies the execution context which is required (in case
of entries into this module) or guaranteed (in case of
entries called from this module) for this service.

Tags: xml.sequenceOffset=30

5

1020 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswModuleEntry

function
Prototype
Emitter

NameToken 0..1 attr This attribute is used to control the generation of function
prototypes. If set to "RTE", the RTE generates the
function prototypes in the Module Interlink Header File.

isReentrant Boolean 1 attr Reentrancy from the viewpoint of function callers:

• True: Enables the service to be invoked again,
before the service has finished.

• False: It is prohibited to invoke the service again
before is has finished.

Tags: xml.sequenceOffset=15

isSynchronous Boolean 1 attr Synchronicity from the viewpoint of function callers:

• True: This calls a synchronous service, i.e. the
service is completed when the call returns.

• False: The service (on semantical level) may not
be complete when the call returns.

Tags: xml.sequenceOffset=20

returnType SwServiceArg 0..1 aggr The return type belonging to this bswModuleEntry.

Tags: xml.sequenceOffset=40

role Identifier 0..1 attr Specifies the role of the entry in the given context. It shall
be equal to the standardized name of the service call,
especially in cases where no ServiceIdentifier is specified,
e.g. for callbacks. Note that the ShortName is not always
sufficient because it maybe vendor specific (e.g. for
callbacks which can have more than one instance).

Tags: xml.sequenceOffset=10

serviceId PositiveInteger 0..1 attr Refers to the service identifier of the Standardized
Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be used for
proprietary identification.

Tags: xml.sequenceOffset=5

swServiceImpl
Policy

SwServiceImplPolicy
Enum

1 attr Denotes the implementation policy as a standard function
call, inline function or macro. This has to be specified on
interface level because it determines the signature of the
call.

Tags: xml.sequenceOffset=35

Table D.62: BswModuleEntry

Class BswOperationInvokedEvent

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note This event is thrown on operation invocation in Client-Server-Communication via the BSW Scheduler. Its
"entry" reference provides the BswClientServerEntry that is called subsequently.

Note this event is not needed in case of direct function calls.
Base ARObject , AbstractEvent , BswEvent , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

entry BswModuleClientServer
Entry

1 ref The providedClientServerEntry invoked by this event.

Table D.63: BswOperationInvokedEvent

1021 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class BswQueuedDataReceptionPolicy

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Reception policy attributes specific for queued receiving.

Base ARObject , BswApiOptions, BswDataReceptionPolicy

Attribute Type Mul. Kind Note

queueLength PositiveInteger 1 attr Length of queue for received events.

Table D.64: BswQueuedDataReceptionPolicy

Class BswSchedulableEntity

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BSW module entity, which is designed for control by the BSW Scheduler. It may for example implement a
so-called "main" function.

Base ARObject , BswModuleEntity , ExecutableEntity , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.65: BswSchedulableEntity

Class BswScheduleEvent (abstract)

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note BswEvent that is able to start a BswSchedulabeEntity.

Base ARObject , AbstractEvent , BswEvent , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswAsynchronousServerCallReturnsEvent, BswBackgroundEvent, BswDataReceivedEvent, Bsw
ExternalTriggerOccurredEvent, BswInternalTriggerOccurredEvent, BswModeManagerErrorEvent, Bsw
ModeSwitchEvent, BswModeSwitchedAckEvent, BswTimingEvent

Attribute Type Mul. Kind Note
– – – – –

Table D.66: BswScheduleEvent

Class BswSchedulerNamePrefix
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A prefix to be used in names of generated code artifacts which make up the interface of a BSW module
to the BswScheduler.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.67: BswSchedulerNamePrefix

Class BswSynchronousServerCallPoint

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Represents a synchronous procedure call point via the BSW Scheduler.

Base ARObject , BswModuleCallPoint , Referrable

Attribute Type Mul. Kind Note

5

1022 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswSynchronousServerCallPoint

calledEntry BswModuleClientServer
Entry

1 ref The entry to be called.

calledFrom
WithinExclusive
Area

ExclusiveAreaNesting
Order

0..1 ref This indicates that the call point is located at the deepest
level inside one or more ExclusiveAreas that are nested
in the given order.

Table D.68: BswSynchronousServerCallPoint

Class BswTimingEvent

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note A recurring BswEvent driven by a time period.

Base ARObject , AbstractEvent , BswEvent , BswScheduleEvent , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

period TimeValue 1 attr Requirement for the time period (in seconds) by which
this event is triggered.

Table D.69: BswTimingEvent

Class BswTriggerDirectImplementation

Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note Specifies a released trigger to be directly implemented via OS calls, for example in a Complex Driver
module.

Base ARObject

Attribute Type Mul. Kind Note

masteredTrigger Trigger 1 ref The trigger which is directly mastered by this module.

There may be several different BswTriggerDirect
Implementations mastering the same Trigger. This may
be required e.g. due to memory partitioning.

task Identifier 1 attr The name of the OS task, which is controlled by the
referred trigger. This means, that the module uses the
trigger condition to directly activate an OS task instead of
calling an API of the BswScheduler. The task name is
required by the RTE generator resp. BswScheduler to
raise the appropriate events in components or modules
receiving the trigger.

Table D.70: BswTriggerDirectImplementation

Class BswVariableAccess
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior

Note The presence of a BswVariableAccess implies that a BswModuleEntity needs access to a VariableData
Prototype via the BSW Scheduler.

The kind of access is specified by the role in which the class is used.

Base ARObject , Referrable

Attribute Type Mul. Kind Note

accessed
Variable

VariableDataPrototype 1 ref The data accessed via the BSW Scheduler.

5

1023 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class BswVariableAccess
context
Limitation

BswDistinguished
Partition

* ref The existence of this reference indicates that the variable
is recevied resp. sent only in the context of the referred
BswDistinguishedPartitions.

Table D.71: BswVariableAccess

Class BufferProperties

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Configuration of the buffer properties the transformer needs to work.

Base ARObject

Attribute Type Mul. Kind Note

buffer
Computation

CompuScale 0..1 aggr If the transformer changes the size of the data, the
CompuScale can be used to specify a rule to derive the
size of the output data based on the size of the input data.

headerLength Integer 1 attr Defines the length of the header (in bits) this transformer
will add in front of the data.

inPlace Boolean 1 attr If set, the transformer uses the input buffer as output
buffer.

Table D.72: BufferProperties

Enumeration CSTransformerErrorReactionEnum
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Possible kinds of error reaction in case of a hard transformer error.

Literal Description

applicationOnly The application is responsible for any error reaction. No autonomous error reaction of RTE and
transformer.

Tags: atp.EnumerationValue=0

autonomous RTE and Transformer coordinate an autonomous error reaction on their own.

Tags: atp.EnumerationValue=1

Table D.73: CSTransformerErrorReactionEnum

Class CalibrationParameterValue
Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::CalibrationParameter

Values
Note Specifies instance specific calibration parameter values used to initialize the memory objects

implementing calibration parameters in the generated RTE code.

RTE generator will use the implInitValue to override the initial values specified for the DataPrototypes of a
component type.

The applInitValue is used to exchange init values with the component vendor not publishing the
transformation algorithm between ApplicationDataTypes and ImplementationDataTypes or defining an
instance specific initialization of components which are only defined with ApplicationDataTypes.

Note: If both representations of init values are available these need to represent the same content.

Note further that in this case an explicit mapping of ValueSpecification is not implemented because
calibration parameters are delivered back after the calibration phase.

Base ARObject

5

1024 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class CalibrationParameterValue
Attribute Type Mul. Kind Note

applInitValue ValueSpecification 0..1 aggr This is the initial value specification structured according
to the ApplicationDataType

implInitValue ValueSpecification 0..1 aggr This is the initial value specification structured according
to the ImplementationDataType

initialized
Parameter

FlatInstanceDescriptor 1 ref This represents the parameter that is initialized by the
CalibrationParameterValue.

Table D.74: CalibrationParameterValue

Class ClientIdDefinition
Package M2::AUTOSARTemplates::SystemTemplate

Note Several clients in one client-ECU can communicate via inter-ECU client-server communication with a
server on a different ECU, if a client identifier is used to distinguish the different clients.
The Client Identifier of the transaction handle that is used by the RTE can be defined by this element.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

clientId Numerical 1 attr The Client Identifier of the transaction handle used for an
inter-ECU client server communication is defined by this
attribute. If defined the RTE generator shall use this client
Id.

clientServer
Operation

ClientServerOperation 1 iref Reference to the ClientServerOperation that is called by
the client.

Table D.75: ClientIdDefinition

Class ClientServerApplicationErrorMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class represents the ability to map ApplicationErrors onto each other.

Base ARObject

Attribute Type Mul. Kind Note

firstApplication
Error

ApplicationError 1 ref This represents the first ApplicationError in the context of
the ClientServerApplicationErrorMapping.

second
ApplicationError

ApplicationError 1 ref This represents the second ApplicationError in the
context of the ClientServerApplicationErrorMapping.

Table D.76: ClientServerApplicationErrorMapping

Class ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

operation ClientServerOperation 1..* aggr ClientServerOperation(s) of this ClientServerInterface.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

5

1025 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ClientServerInterface
possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table D.77: ClientServerInterface

Class ClientServerInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of ClientServerOperations in context of two different ClientServerInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mul. Kind Note

errorMapping ClientServerApplication
ErrorMapping

* aggr Map two different ApplicationErrors defined in the context
of two different ClientServerInterfaces.

operation
Mapping

ClientServerOperation
Mapping

1..* aggr Mapping of two ClientServerOperations in two different
ClientServerInterfaces

Table D.78: ClientServerInterfaceMapping

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

argument (or-
dered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table D.79: ClientServerOperation

Class ClientServerOperationMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two particular ClientServerOperations in context of two different ClientServer
Interfaces.

Base ARObject

Attribute Type Mul. Kind Note

argument
Mapping

DataPrototypeMapping * aggr Defines the mapping of two particular ArgumentData
Prototypes with unequal names or unequal semantic
(resolution or range) in context of Operations.

firstOperation ClientServerOperation 1 ref First to-be-mapped ClientServerOperation of a Client
ServerInterface.

firstToSecond
Data
Transformation

DataTransformation 0..1 ref This reference indicates that a DataTransformation is
intended in the context of the ClientServerOperation
Mapping.

second
Operation

ClientServerOperation 1 ref Second to-be-mapped ClientServerOperation of a Client
ServerInterface.

Table D.80: ClientServerOperationMapping

1026 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ClientServerToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note This element maps the ClientServerOperation to call- and return-SystemSignals.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

callSignal SystemSignal 1 ref Reference to the callSignal to which the IN and INOUT
ArgumentDataPrototypes are mapped.

clientServer
Operation

ClientServerOperation 1 iref Reference to a ClientServerOperation, which is mapped
to a call SystemSignal and a return SystemSignal.

returnSignal SystemSignal 0..1 ref Reference to the returnSignal to which the OUT and
INOUT ArgumentDataPrototypes are mapped.

Tags: atp.Status=shallBecomeMandatory

Table D.81: ClientServerToSignalMapping

Class Code
Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note A generic code descriptor. The type of the code (source or object) is defined via the category attribute of
the associated engineering object.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

artifact
Descriptor

AutosarEngineering
Object

1..* aggr Refers to the artifact belonging to this code descriptor.

callbackHeader ServiceNeeds * ref The association callbackHeader describes in which
header files the function declarations of callback functions
are provided to a service module.
With this information the service module can include the
appropriate header files in its configuration files.

Table D.82: Code

Class ComplexDeviceDriverSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ComplexDeviceDriverSwComponentType is a special AtomicSwComponentType that has direct
access to hardware on an ECU and which is therefore linked to a specific ECU or specific hardware. The
ComplexDeviceDriverSwComponentType introduces the possibility to link from the software
representation to its hardware description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the ComplexDeviceDriverSwComponent
Type to the description of the used HwElements.

Table D.83: ComplexDeviceDriverSwComponentType

1027 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class CompositionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn are typed by Sw
ComponentTypes) as well as SwConnectors for primarily connecting SwComponentPrototypes among
each others and towards the surface of the CompositionSwComponentType. By this means hierarchical
structures of software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mul. Kind Note

component SwComponent
Prototype

* aggr The instantiated components that are part of this
composition.
The aggregation of SwComponentPrototype is subject to
variability with the purpose to support the conditional
existence of a SwComponentPrototype. Please be aware:
if the conditional existence of SwComponentPrototypes is
resolved post-build the deselected SwComponent
Prototypes are still contained in the ECUs build but the
instances are inactive in in that they are not scheduled by
the RTE.

The aggregation is marked as atpSplitable in order to
allow the addition of service components to the ECU
extract during the ECU integration.

The use case for having 0 components owned by the
CompositionSwComponentType could be to deliver an
empty CompositionSwComponentType to e.g. a supplier
for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to establish a
connection among PortPrototypes. They can have many
roles in the context of a CompositionSwComponentType.
Details are refined by subclasses.

The aggregation of SwConnectors is subject to variability
with the purpose to support variant data flow.

The aggregation is marked as atpSplitable in order to
allow the extension of the ECU extract with AssemblySw
Connectors between ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU integration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstantSpecificationMapping to be
applied for initValues of PPortComSpecs and RPortCom
Spec.

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
used ApplicationDataTypes in PortInterfaces.

Background: when developing subsystems it may happen
that ApplicationDataTypes are used on the surface of
CompositionSwComponentTypes. In this case it would be
reasonable to be able to also provide the intended

5
5

1028 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class CompositionSwComponentType

4
mapping to the ImplementationDataTypes. However, this
mapping shall be informal and not technically binding for
the implementers mainly because the RTE generator is
not concerned about the CompositionSwComponent
Types.

Rationale: if the mapping of ApplicationDataTypes on the
delegated and inner
PortPrototype matches then the mapping to
ImplementationDataTypes is not impacting compatibility.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
RTEEventProps

InstantiationRTEEvent
Props

* aggr This allows to define instantiation specific properties for
RTE Events, in particular for instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

Table D.84: CompositionSwComponentType

Class CompuConst

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the value of a computation method scale is constant.

Base ARObject

Attribute Type Mul. Kind Note

compuConst
ContentType

CompuConstContent 1 aggr This is the actual content of the constant compu method
scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=10
xml.typeElement=false
xml.typeWrapperElement=false

Table D.85: CompuConst

Class CompuMethod

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.

Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.

Tags: atp.recommendedPackage=CompuMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

compuInternal
ToPhys

Compu 0..1 aggr This specifies the computation from internal values to
physical values.

Tags: xml.sequenceOffset=80

compuPhysTo
Internal

Compu 0..1 aggr This represents the computation from physical values to
the internal values.

Tags: xml.sequenceOffset=90

5

1029 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class CompuMethod

displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.

Tags: xml.sequenceOffset=20

unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.

Tags: xml.sequenceOffset=30

Table D.86: CompuMethod

Class CompuNominatorDenominator

Package M2::MSR::AsamHdo::ComputationMethod

Note This class represents the ability to express a polynomial either as Nominator or as Denominator.

Base ARObject

Attribute Type Mul. Kind Note

v (ordered) Numerical * attr this is the list of polynomial factors. Note that the first vf
represents the power=0. The polynomial is v[0] * x0̂ + v[1]
* x1̂ ...

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table D.87: CompuNominatorDenominator

Class CompuRationalCoeffs

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express a rational function by specifying the coefficients of
nominator and denominator.

Base ARObject

Attribute Type Mul. Kind Note
compu
Denominator

CompuNominator
Denominator

1 aggr This is the denominator of the expression.

Tags: xml.sequenceOffset=30

compu
Numerator

CompuNominator
Denominator

1 aggr This is the numerator of the rational expression.

Tags: xml.sequenceOffset=20

Table D.88: CompuRationalCoeffs

Class CompuScale

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to specify one segment of a segmented computation method.

Base ARObject

Attribute Type Mul. Kind Note

5

1030 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class CompuScale

desc MultiLanguageOverview
Paragraph

0..1 aggr <desc> represents a general but brief description of the
object in question.

Tags: xml.sequenceOffset=30

compuInverse
Value

CompuConst 0..1 aggr This is the inverse value of the constraint. This supports
the case that the scale is not reversible per se.

Tags: xml.sequenceOffset=60

compuScale
Contents

CompuScaleContents 0..1 aggr This represents the computation details of the scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask PositiveInteger 0..1 attr In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35

shortLabel Identifier 0..1 attr This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.

Tags: xml.sequenceOffset=20

symbol CIdentifier 0..1 attr The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.

Tags: xml.sequenceOffset=25

upperLimit Limit 0..1 attr This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table D.89: CompuScale

Class CompuScaleConstantContents

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that a particular scale of the computation method is constant.

Base ARObject , CompuScaleContents

Attribute Type Mul. Kind Note

compuConst CompuConst 1 aggr This represents the fact that the scale is a constant. The
use case is mainly a non interplolated scale. It is a
simplification of the fact that a constant scale can also be
expressed as Rational Function of oder 0.

Tags: xml.sequenceOffset=90

Table D.90: CompuScaleConstantContents

1031 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class CompuScales

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to stepwise express a computation method.

Base ARObject , CompuContent

Attribute Type Mul. Kind Note
compu
Scale (ordered)

CompuScale * aggr This represents one scale within the compu method. Note
that it contains a Variationpoint in order to support
blueprints of enumerations.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

Table D.91: CompuScales

Class «atpMixedString» ConditionByFormula

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class represents a condition which is computed based on system constants according to the
specified expression. The expected result is considered as boolean value.

The result of the expression is interpreted as a condition.

• "0" represents "false";

• a value other than zero is considered "true"
Base ARObject , FormulaExpression, SwSystemconstDependentFormula

Attribute Type Mul. Kind Note

bindingTime BindingTimeEnum 1 attr This attribute specifies the point in time when condition
may be evaluated at earliest. At this point in time all
referenced system constants shall have a value.

Tags: xml.attribute=true

Table D.92: ConditionByFormula

Class ConsistencyNeeds

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define requirements on the implicit communication behavior.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

dpgDoesNot
Require
Coherency

DataPrototypeGroup * aggr This group of VariableDataPrototypes does not require
coherency with respect to the implicit communication
behavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

1032 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ConsistencyNeeds

dpgRequires
Coherency

DataPrototypeGroup * aggr This group of VariableDataPrototypes requires coherency
with respect to the implicit communication behavior, i.e.
all read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a coherent
manner.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

regDoesNot
RequireStability

RunnableEntityGroup * aggr This group of RunnableEntities does not require stability
with respect to the implicit communication behavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

regRequires
Stability

RunnableEntityGroup * aggr This group of RunnableEntities requires stability with
respect to the implicit communication behavior, i.e. all
read and write access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of the
RunnableEntityGroup need to be handled in a stable
manner.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table D.93: ConsistencyNeeds

Class ConstantSpecificationMapping

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to create an association of two ConstantSpecifications. One Constant
Specification is supposed to be defined in the application domain while the other should be defined in the
implementation domain.

Hence the ConstantSpecificationMapping needs to be used where a ConstantSpecification defined in
one domain needs to be associated to a ConstantSpecification in the other domain.

This information is crucial for the RTE generator.

Base ARObject

Attribute Type Mul. Kind Note

applConstant ConstantSpecification 1 ref A ConstantSpecification defined in the application
domain.

implConstant ConstantSpecification 1 ref A ConstantSpecification defined in the implementation
domain.

Table D.94: ConstantSpecificationMapping

Class DataConstr
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to specify constraints on data.

Tags: atp.recommendedPackage=DataConstrs

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

5

1033 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class DataConstr
dataConstrRule DataConstrRule * aggr This is one particular rule within the data constraints.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table D.95: DataConstr

Class DataMapping (abstract)

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of port elements (data elements and parameters) to frames and signals.

Base ARObject

Subclasses ClientServerToSignalMapping, SenderReceiverCompositeElementToSignalMapping, SenderReceiverTo
SignalGroupMapping, SenderReceiverToSignalMapping, TriggerToSignalMapping

Attribute Type Mul. Kind Note

communication
Direction

Communication
DirectionType

0..1 attr This attribute controls the direction into which the mapped
SystemSignal is communicated with respect to the kind of
PortPrototype used as the context element of the Data
Mapping.

eventGroup ConsumedEventGroup * ref Via this reference a connection between the VFB View
and the Ethernet EventGroups can be created.

eventHandler EventHandler * ref Via this reference a connection between the VFB View
and the Ethernet EventHandlers can be created.

introduction DocumentationBlock 0..1 aggr This represents introductory documentation about the
data mapping.

serviceInstance AbstractService
Instance

* ref Via this reference a connection between the VFB View
and the Ethernet Services can be created.

Table D.96: DataMapping

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.

Table D.97: DataPrototype

Class DataPrototypeGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define a collection of DataPrototypes that are subject to the
formal definition of implicit communication behavior. The definition of the collection can be nested.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

5

1034 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class DataPrototypeGroup

Attribute Type Mul. Kind Note

dataPrototype
Group

DataPrototypeGroup * iref This represents the ability to define nested groups of
VariableDataPrototypes.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

implicitData
Access

VariableDataPrototype * iref This represents a collection of VariableDataPrototypes
that belong to the enclosing DataPrototypeGroup

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.98: DataPrototypeGroup

Class DataPrototypeMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two particular VariableDataPrototypes, ParameterDataPrototypes or Argument
DataPrototypes with unequal names and/or unequal semantic (resolution or range) in context of two
different SenderReceiverInterface, NvDataInterface or ParameterInterface or Operations.

If the semantic is unequal following rules apply:
The textTableMapping is only applicable if the referred DataPrototypes are typed by AutosarDataType
referring to CompuMethods of category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or
BITFIELD_TEXTTABLE.

In the case that the DataPrototypes are typed by AutosarDataType either referring to CompuMethods of
category LINEAR, IDENTICAL or referring to no CompuMethod (which is similar as IDENTICAL) the
linear conversion factor is calculated out of the factorSiToUnit and offsetSiToUnit attributes of the referred
Units and the CompuRationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Base ARObject

Attribute Type Mul. Kind Note

firstData
Prototype

AutosarDataPrototype 1 ref First to be mapped DataPrototype in context of a Sender
ReceiverInterface, NvDataInterface, ParameterInterface
or Operation.

firstToSecond
Data
Transformation

DataTransformation 0..1 ref This reference defines the need to execute the Data
Transformation <Mip>_<transformerId> functions of the
transformation chain when communicating from the Data
PrototypeMapping.firstDataPrototype to the Data
PrototypeMapping.secondDataPrototype.

This reference also specifies the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain (i.e. from the DataPrototype
Mapping.secondDataPrototype to the DataPrototype
Mapping.firstDataPrototype) if the referenced Data
Transformation is symmetric, i.e. attribute Data
Transformation.dataTransformationKind is set to
symmetric.

secondData
Prototype

AutosarDataPrototype 1 ref Second to be mapped DataPrototype in context of a
SenderReceiverInterface, NvDataInterface, Parameter
Interface or Operation.

secondToFirst
Data
Transformation

DataTransformation 0..1 ref This defines the need to execute the reverse Data
Transformation <Mip>_Inv_<transformerId> functions of
the transformation chain when communicating from the
DataPrototypeMapping.secondDataPrototype to the Data
PrototypeMapping.firstDataPrototype.

subElement
Mapping

SubElementMapping * aggr This represents the owned SubelementMapping.

5

1035 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class DataPrototypeMapping

textTable
Mapping

TextTableMapping 0..2 aggr Applied TextTableMapping(s)

Table D.99: DataPrototypeMapping

Class DataPrototypeTransformationProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note DataPrototypeTransformationProps allows to set the attributes for the different Transformation
Technologies that are DataPrototype specific.

Base ARObject

Attribute Type Mul. Kind Note

dataPrototype
Ref

DataPrototypeInSystem
Ref

0..1 aggr Reference to a DataPrototype that is transported in the
serialized ISignal.

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation for the
referenced primitive DataPrototype.
If a network representation is provided then the baseType
shall be used by the Transformer as input for the
serialization/deserilaization.

transformation
Props

TransformationProps 0..1 ref Collection of AutosarDataPrototype related configuration
settings for a transformer.

Table D.100: DataPrototypeTransformationProps

Class DataReceiveErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised by the RTE when the Com layer detects and notifies an error concerning the
reception of the referenced data element.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

data VariableDataPrototype 0..1 iref Data element referenced by event

Table D.101: DataReceiveErrorEvent

Class DataReceivedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when the referenced data elements are received.
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

data VariableDataPrototype 0..1 iref Data element referenced by event

Table D.102: DataReceivedEvent

1036 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class DataSendCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when the referenced data elements have been sent or an error occurs.
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

eventSource VariableAccess 1 ref The variable access that triggers the event.

Table D.103: DataSendCompletedEvent

Class DataTransformation
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

data
Transformation
Kind

DataTransformationKind
Enum

0..1 attr This attribute controls the kind of DataTransformation to
be applied.

executeDespite
Data
Unavailability

Boolean 1 attr Specifies whether the transformer chain is executed even
if no input data are available.

transformer
Chain (ordered)

Transformation
Technology

1..* ref This attribute represents the definition of a chain of
transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table D.104: DataTransformation

Enumeration DataTransformationErrorHandlingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This enumeration defines different ways how a RunnableEntity shall handle transformer errors.

Literal Description

noTransformerError
Handling

A runnable does not handle transformer errors.

Tags: atp.EnumerationValue=0

transformerError
Handling

The runnable implements the handling of transformer errors.

Tags: atp.EnumerationValue=1

Table D.105: DataTransformationErrorHandlingEnum

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

Base ARObject

Attribute Type Mul. Kind Note

applicationData
Type

ApplicationDataType 1 ref This is the corresponding ApplicationDataType

implementation
DataType

AbstractImplementation
DataType

1 ref This is the corresponding AbstractImplementationData
Type.

Table D.106: DataTypeMap

1037 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class DataTypeMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.
In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

Tags: atp.recommendedPackage=DataTypeMappingSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

dataTypeMap DataTypeMap * aggr This is one particular association between an Application
DataType and its AbstractImplementationDataType.

modeRequest
TypeMap

ModeRequestTypeMap * aggr This is one particular association between an Mode
DeclarationGroup and its AbstractImplementationData
Type.

Table D.107: DataTypeMappingSet

Enumeration DataTypePolicyEnum

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note This class lists the supported DataTypePolicies.

Literal Description

legacy In case the System Description doesn’t use a complete Software Component Description (VFB View)
this value can be chosen. This supports the inclusion of legacy signals.

The aggregation of SwDataDefProps shall be used to configure the "ComSignalDataInvalidValue"
and the Data Semantics.

Tags: atp.EnumerationValue=0

network
Representation
FromComSpec

Ignore any networkRepresentationProps of this ISignal and use the networkRepresentation from the
ComSpec.

Please note that the usage does not imply the existence of the SwDataDefProps in the role network
Representation aggregated by the SenderComSpec or ReceiverComSpec if an ImplementationData
Type is defined.

Tags: atp.EnumerationValue=1

override If this value is chosen the requirements specified in the ComSpec (networkRepresentationFromCom
Spec) are not fullfilled by the aggregated SwDataDefProps. In this case the networkRepresentation is
specified by the aggregated swDataDefProps.

Tags: atp.EnumerationValue=2

transformingISignal This literal indicates that a transformer chain shall be used to communicate the ISignal as UINT8_N
over the bus.

Tags: atp.EnumerationValue=4

Table D.108: DataTypePolicyEnum

Class DataWriteCompletedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised if an implicit write access was successful or an error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

5

1038 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class DataWriteCompletedEvent

eventSource VariableAccess 1 ref The variable access that triggers the event.

Table D.109: DataWriteCompletedEvent

Class DelegationSwConnector

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note A delegation connector delegates one inner PortPrototype (a port of a component that is used inside the
composition) to a outer PortPrototype of compatible type that belongs directly to the composition (a port
that is owned by the composition).

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, SwConnector

Attribute Type Mul. Kind Note

innerPort PortPrototype 1 iref The port that belongs to the ComponentPrototype in the
composition

Tags: xml.typeElement=true

outerPort PortPrototype 1 ref The port that is located on the outside of the Composition
Type

Table D.110: DelegationSwConnector

Class DependencyOnArtifact

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Dependency on the existence of another artifact, e.g. a library.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

artifact
Descriptor

AutosarEngineering
Object

1 aggr The specified artifact needs to exist.

usage DependencyUsage
Enum

1..* attr Specification for which process step(s) this dependency is
required.

Table D.111: DependencyOnArtifact

Class EcuAbstractionSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ECUAbstraction is a special AtomicSwComponentType that resides between a software-component
that wants to access ECU periphery and the Microcontroller Abstraction. The EcuAbstractionSw
ComponentType introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note

hardware
Element

HwDescriptionEntity * ref Reference from the EcuAbstractionComponentType to the
description of the used HwElements.

Table D.112: EcuAbstractionSwComponentType

1039 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class EcucDestinationUriDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate

Note Description of an EcucDestinationUriDef that is used as target of EcucUriReferenceDefs.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

destinationUri
Policy

EcucDestinationUri
Policy

1 aggr Description of the targeted EcucContainerDef.

Table D.113: EcucDestinationUriDef

Class EcucForeignReferenceDef

Package M2::AUTOSARTemplates::ECUCParameterDefTemplate

Note Specify a reference to an XML description of an entity described in another AUTOSAR template.

Base ARObject , AtpDefinition, EcucAbstractExternalReferenceDef , EcucAbstractReferenceDef , Ecuc
CommonAttributes, EcucDefinitionElement , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

destinationType String 1 attr The type in the AUTOSAR Metamodel to which instance
this reference is allowed to point to.

Table D.114: EcucForeignReferenceDef

Class EcucModuleConfigurationValues

Package M2::AUTOSARTemplates::ECUCDescriptionTemplate

Note Head of the configuration of one Module. A Module can be a BSW module as well as the RTE and ECU
Infrastructure.

As part of the BSW module description, the EcucModuleConfigurationValues element has two different
roles:

The recommendedConfiguration contains parameter values recommended by the BSW module vendor.

The preconfiguredConfiguration contains values for those parameters which are fixed by the
implementation and cannot be changed.

These two EcucModuleConfigurationValues are used when the base EcucModuleConfigurationValues
(as part of the base ECU configuration) is created to fill parameters with initial values.

Tags: atp.recommendedPackage=EcucModuleConfigurationValuess

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

container EcucContainerValue 1..* aggr Aggregates all containers that belong to this module
configuration.

atpVariation: [RS_ECUC_00078]

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=definition, shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

definition EcucModuleDef 1 ref Reference to the definition of this EcucModule
ConfigurationValues element. Typically, this is a vendor
specific module configuration.

Tags: xml.sequenceOffset=-10

5

1040 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class EcucModuleConfigurationValues

ecucDefEdition RevisionLabelString 1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform to / are
based on.

For the Definition of ModuleDef ECUC Parameters the
AdminData shall be used to express the semantic
changes. The compatibility rules between the definition
and value revision labels is up to the module’s vendor.

implementation
ConfigVariant

EcucConfiguration
VariantEnum

1 attr Specifies the kind of deliverable this EcucModule
ConfigurationValues element provides. If this element is
not used in a particular role (e.g. preconfigured
Configuration or recommendedConfiguration) then the
value must be one of VariantPreCompile, VariantLink
Time, VariantPostBuild.

module
Description

BswImplementation 0..1 ref Referencing the BSW module description, which this
EcucModuleConfigurationValues element is configuring.
This is optional because the EcucModuleConfiguration
Values element is also used to configure the ECU
infrastructure (memory map) or Application SW-Cs.
However in case the EcucModuleConfigurationValues are
used to configure the module, the reference is mandatory
in order to fetch module specific "common" published
information.

postBuildVariant
Used

Boolean 0..1 attr Indicates whether a module implementation has or plans
to have (i.e., introduced at link or post-build time) new
post-build variation points. TRUE means yes, FALSE
means no. If the attribute is not defined, FALSE
semantics shall be assumed.

Table D.115: EcucModuleConfigurationValues

Class EcucModuleDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate

Note Used as the top-level element for configuration definition for Software Modules, including BSW and RTE
as well as ECU Infrastructure.

Tags: atp.recommendedPackage=EcucModuleDefs

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpDefinition, CollectableElement , Ecuc
DefinitionElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

apiServicePrefix CIdentifier 0..1 attr For CDD modules this attribute holds the apiService
Prefix.

The shortName of the module definition of a Complex
Driver is always "Cdd". Therefore for CDD modules the
module apiServicePrefix is described with this attribute.

container EcucContainerDef 1..* aggr Aggregates the top-level container definitions of this
specific module definition.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=11

postBuildVariant
Support

Boolean 0..1 attr Indicates if a module supports different post-build variants
(previously known as post-build selectable configuration
sets). TRUE means yes, FALSE means no.

5

1041 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class EcucModuleDef
refinedModule
Def

EcucModuleDef 0..1 ref Optional reference from the Vendor Specific Module
Definition to the Standardized Module Definition it refines.
In case this EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION
this reference shall not be provided. In case this Ecuc
ModuleDef has the category
VENDOR_SPECIFIC_MODULE_DEFINITION this
reference is mandatory.

Stereotypes: atpUriDef

supported
ConfigVariant

EcucConfiguration
VariantEnum

* attr Specifies which ConfigurationVariants are supported by
this software module.
This attribute is optional if the EcucModuleDef has the
category STANDARDIZED_MODULE_DEFINITION. If
the category attribute of the EcucModuleDef is set to
VENDOR_SPECIFIC_MODULE_DEFINITION then this
attribute is mandatory.

Table D.116: EcucModuleDef

Class EcucUriReferenceDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate

Note Definition of reference with a destination that is specified via a destinationUri. With such a reference it is
possible to define a reference to a EcucContainerDef in a different module independent from the
concrete definition of the target container.

Base ARObject , AtpDefinition, EcucAbstractInternalReferenceDef , EcucAbstractReferenceDef , EcucCommon
Attributes, EcucDefinitionElement , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

destinationUri EcucDestinationUriDef 1 ref Any EcucContainerDef with a destinationUri that is
identical to the destinationUri that is referenced here
defines a valid target.

Stereotypes: atpUriDef

Table D.117: EcucUriReferenceDef

Class EngineeringObject (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::EngineeringObject

Note This class specifies an engineering object. Usually such an object is represented by a file artifact. The
properties of engineering object are such that the artifact can be found by querying an ASAM catalog file.

The engineering object is uniquely identified by domain+category+shortLabel+revisionLabel.

Base ARObject

Subclasses AutosarEngineeringObject, BuildEngineeringObject, Graphic

Attribute Type Mul. Kind Note

category NameToken 1 attr This denotes the role of the engineering object in the
development cycle.
Categories are such as

• SWSRC for source code

• SWOBJ for object code
5

5

1042 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class EngineeringObject (abstract)

4
• SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags: xml.sequenceOffset=20

domain NameToken 0..1 attr This denotes the domain in which the engineering object
is stored. This allows to indicate various segments in the
repository keeping the engineering objects. The domain
may segregate companies, as well as automotive
domains. Details need to be defined by the Methodology.

Attribute is optional to support a default domain.

Tags: xml.sequenceOffset=40

revisionLabel RevisionLabelString * attr This is a revision label denoting a particular version of the
engineering object.

Tags: xml.sequenceOffset=30

shortLabel NameToken 1 attr This is the short name of the engineering object. Note
that it is modeled as NameToken and not as Identifier
since in ASAM-CC it is also a NameToken.

Tags: xml.sequenceOffset=10

Table D.118: EngineeringObject

Class ExclusiveArea
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Prevents an executable entity running in the area from being preempted.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.119: ExclusiveArea

Class ExecutableEntity (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Abstraction of executable code.
Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses BswModuleEntity , RunnableEntity

Attribute Type Mul. Kind Note

activation
Reason

ExecutableEntity
ActivationReason

* aggr If the ExecutableEntity provides at least one activation
Reason element the RTE resp. BSW Scheduler shall
provide means to read the activation vector of this
executable entity execution.

If no activationReason element is provided the feature of
being able to determine the activating RTEEvent is
disabled for this ExecutableEntity.

canEnter
ExclusiveArea

ExclusiveArea * ref This means that the executable entity can enter/leave the
referenced exclusive area through explicit API calls.

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* ref This represents the set of ExclusiveAreaNestingOrders
recognized by this ExecutableEntity.

5

1043 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ExecutableEntity (abstract)

minimumStart
Interval

TimeValue 1 attr Specifies the time in seconds by which two consecutive
starts of an ExecutableEntity are guaranteed to be
separated.

reentrancyLevel ReentrancyLevelEnum 0..1 attr The reentrancy level of this ExecutableEntity. See the
documentation of the enumeration type ReentrancyLevel
Enum for details.

Please note that nonReentrant interfaces can have also
reentrant or multicoreReentrant implementations, and
reentrant interfaces can also have multicoreReentrant
implementations.

runsInside
ExclusiveArea

ExclusiveArea * ref The executable entity runs completely inside the
referenced exclusive area.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this code entity. Via an
association to the same SwAddrMethod, it can be
specified that several code entities (even of different
modules or components) shall be located in the same
memory without already specifying the memory section
itself.

Table D.120: ExecutableEntity

Class ExecutableEntityActivationReason

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note This meta-class represents the ability to define the reason for the activation of the enclosing Executable
Entity.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note

bitPosition PositiveInteger 1 attr This attribute allows for defining the position of the
enclosing ExecutableEntityActivationReason in the
activation vector.

Table D.121: ExecutableEntityActivationReason

Class ExternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when the referenced trigger have been occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

trigger Trigger 0..1 iref Reference to the applicable Trigger.

Table D.122: ExternalTriggerOccurredEvent

Class ExternalTriggeringPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger

Note If a RunnableEntity owns an ExternalTriggeringPoint it is entitled to raise an ExternalTriggerOccurred
Event.

Base ARObject

5

1044 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ExternalTriggeringPoint

Attribute Type Mul. Kind Note

ident ExternalTriggeringPoint
Ident

0..1 aggr The aggregation in the role ident provides the ability to
make the ExternalTriggeringPoint identifiable.

From the semantical point of view, the ExternalTriggering
Point is considered a first-class Identifiable and therefore
the aggregation in the role ident shall always exist (until it
may be possible to let ModeAccessPoint directly inherit
from Identifiable).

Tags: atp.Status=shallBecomeMandatory
xml.sequenceOffset=-100

trigger Trigger 0..1 iref The trigger taken for the ExternalTriggeringPoint.

Tags: xml.namePlural=TRIGGER-IREF
xml.roleElement=false
xml.roleWrapperElement=true
xml.typeElement=true
xml.typeWrapperElement=false

Table D.123: ExternalTriggeringPoint

Class FlatInstanceDescriptor

Package M2::AUTOSARTemplates::CommonStructure::FlatMap

Note Represents exactly one node (e.g. a component instance or data element) of the instance tree of a
software system. The purpose of this element is to map the various nested representations of this
instance to a flat representation and assign a unique name (shortName) to it.

Use cases:

• Specify unique names of measurable data to be used by MCD tools

• Specify unique names of calibration data to be used by MCD tool

• Specify a unique name for an instance of a component prototype in the ECU extract of the
system description

Note that in addition it is possible to assign alias names via AliasNameAssignment.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

ecuExtract
Reference

AtpFeature 0..1 iref Refers to the instance in the ECU extract. This is valid
only, if the FlatMap is used in the context of an ECU
extract.

The reference shall be such that it uniquely defines the
object instance. For example, if a data prototype is
declared as a role within an SwcInternalBehavior, it is not
enough to state the SwcInternalBehavior as context and
the aggregated data prototype as target. In addition, the
reference shall also include the complete path identifying
instance of the component prototype and the Atomic
SoftwareComponentType, which is refered by the
particular SwcInternalBehavior.

Tags: xml.sequenceOffset=40

5

1045 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class FlatInstanceDescriptor

role Identifier 0..1 attr The role denotes the particular role of the downstream
memory location described by this FlatInstanceDescriptor.

It applies to use case where one upstream object results
in multiple downstream objects, e.g. ModeDeclaration
GroupPrototypes which are measurable. In this case the
RTE will provide locations for current mode, previous
mode and next mode.

rtePluginProps RtePluginProps 0..1 aggr The properties of a communication graph with respect to
the utilization of RTE Implementation Plug-in.

Stereotypes: atpSplitable
Tags: atp.Splitkey=rtePluginProps

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this FlatInstanceDescriptor.

upstream
Reference

AtpFeature 0..1 iref Refers to the instance in the context of an "upstream"
descriptions, wich could be the system or system extract
description, the basic software module description or (if a
flat map is used in preliminary context) a description of an
atomic component or composition. This reference is
optional in case the flat map is used in ECU context.

The reference shall be such that it uniquely defines the
object instance in the given context. For example, if a
data prototype is declared as a role within an SwcInternal
Behavior, it is not enough to state the SwcInternal
Behavior as context and the aggregated data prototype
as target. In addition, the reference shall also include the
complete path identifying the instance of the component
prototype that contains the particular instance of Swc
InternalBehavior.

Tags: xml.sequenceOffset=20

Table D.124: FlatInstanceDescriptor

Class FlatMap

Package M2::AUTOSARTemplates::CommonStructure::FlatMap

Note Contains a flat list of references to software objects. This list is used to identify instances and to resolve
name conflicts. The scope is given by the RootSwCompositionPrototype for which it is used, i.e. it can be
applied to a system, system extract or ECU-extract.

An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of a software
component before integration into a system. In this case it is not referred by a RootSwComposition
Prototype.

Tags: atp.recommendedPackage=FlatMaps

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

instance FlatInstanceDescriptor 1..* aggr A descriptor instance aggregated in the flat map.

The variation point accounts for the fact, that the system
in scope can be subject to variability, and thus the
existence of some instances is variable.

The aggregation has been made splitable because the
content might be contributed by different stakeholders at
different times in the workflow. Plus, the overall size might

5
5

1046 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class FlatMap

4
be so big that eventually it becomes more manageable if
it is distributed over several files.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

Table D.125: FlatMap

Enumeration HandleInvalidEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Strategies of handling the reception of invalidValue.

Literal Description

dontInvalidate Invalidation is switched off.

Tags: atp.EnumerationValue=0

external
Replacement

Replace a received invalidValue. The replacement value is sourced from the externalReplacement.

Tags: atp.EnumerationValue=1

keep The application software is supposed to handle signal invalidation on RTE API level either by Data
ReceiveErrorEvent or check of error code on read access.

Tags: atp.EnumerationValue=2

replace Replace a received invalidValue. The replacement value is specified by the initValue.

Tags: atp.EnumerationValue=3

Table D.126: HandleInvalidEnum

Enumeration HandleOutOfRangeEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note A value of this type is taken for controlling the range checking behavior of the AUTOSAR RTE.

Literal Description

default The RTE will use the initValue if the actual value is out of the specified bounds.

Tags: atp.EnumerationValue=0

external
Replacement

This indicates that the value replacement is sourced from the attribute replaceWith.

Tags: atp.EnumerationValue=1

ignore The RTE will ignore any attempt to send or receive the corresponding dataElement if the value is out
of the specified range.

Tags: atp.EnumerationValue=2

invalid The RTE will use the invalidValue if the value is out of the specified bounds.

Tags: atp.EnumerationValue=3

none A range check is not required.

Tags: atp.EnumerationValue=4

saturate The RTE will saturate the value of the dataElement such that it is limited to the applicable upper
bound if it is greater than the upper bound. Consequently, it is limited to the applicable lower bound if
the value is less than the lower bound.

Tags: atp.EnumerationValue=5

Table D.127: HandleOutOfRangeEnum

1047 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Enumeration HandleOutOfRangeStatusEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note This enumeration defines how the RTE handles values that are out of range.

Literal Description

indicate The RTE sets the return status to RTE_E_OUT_OF_RANGE if the received value is out of range and
the attribute handleOutOfRange is not set to "none" or "invalid".

Tags: atp.EnumerationValue=0

silent The RTE sets the return status to RTE_E_OK

Tags: atp.EnumerationValue=1

Table D.128: HandleOutOfRangeStatusEnum

Enumeration HandleTimeoutEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Strategies of handling a reception timeout violation.

Literal Description
none If set to none no replacement shall take place.

Tags: atp.EnumerationValue=0

replace If set to replace, the replacement value shall be the ComInitValue.

Tags: atp.EnumerationValue=1

replaceByTimeout
SubstitutionValue

If set to replace, the replacement value shall be the timeout substitution value.

Tags: atp.EnumerationValue=2

Table D.129: HandleTimeoutEnum

Class HwElement
Package M2::AUTOSARTemplates::EcuResourceTemplate

Note This represents the ability to describe Hardware Elements on an instance level. The particular types of
hardware are distinguished by the category. This category determines the applicable attributes. The
possible categories and attributes are defined in HwCategory.

Tags: atp.recommendedPackage=HwElements

Base ARElement , ARObject , CollectableElement , HwDescriptionEntity , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

hwElement
Connection

HwElementConnector * aggr This represents one particular connection between two
hardware elements.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

hwPinGroup HwPinGroup * aggr This aggregation is used to describe the connection
facilities of a hardware element. Note that hardware
element has no pins but only pingroups.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

5

1048 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class HwElement
nestedElement HwElement * ref This association is used to establish hierarchies of hw

elements. Note that one particular HwElement can be
target of this association only once. I.e. multiple
instantiation of the same HwElement is not supported (at
any hierarchy level).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table D.130: HwElement

Class ISignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignalIPdus to multiple receivers.

To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to
be mapped into several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.

ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).

In case of the SystemSignalGroup an ISignal must be created for each SystemSignal contained in the
SystemSignalGroup.

Tags: atp.recommendedPackage=ISignals

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

data
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=dataTransformation, variation
Point.shortLabel
vh.latestBindingTime=codeGenerationTime

dataTypePolicy DataTypePolicyEnum 1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.

If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used.
If the "override" policy is chosen the requirements
specified in the PortInterface and in the ComSpec are not
fulfilled by the networkRepresentationProps.
In case the System Description doesn’t use a complete
Software Component Description (VFB View) the "legacy"
policy can be chosen.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.

Stereotypes: atpSplitable
Tags: atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

5

1049 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ISignal

initValue ValueSpecification 0..1 aggr Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.

This value can be used to configure the Signal’s "Init
Value".

If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec.
In this case the initvalues in SenderComSpec and/or
ReceiverComSpec override this optional value
specification. Further restrictions apply from the RTE
specification.

length Integer 1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE.
Indicates maximum size for dynamic length signals.

The ISignal length of zero bits is allowed.

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.

The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in the
network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDataInvalid
Value" and the Data Semantics.

systemSignal SystemSignal 1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout
Substitution
Value

ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this
ISignal.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.

Table D.131: ISignal

1050 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ISignalGroup

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note SignalGroup of the Interaction Layer. The RTE supports a "signal fan-out" where the same System
Signal Group is sent in different SignalIPdus to multiple receivers.

An ISignalGroup refers to a set of ISignals that shall always be kept together. A ISignalGroup represents
a COM Signal Group.

Therefore it is recommended to put the ISignalGroup in the same Package as ISignals (see
atp.recommendedPackage)

Tags: atp.recommendedPackage=ISignalGroup

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

comBased
SignalGroup
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignalGroup
based on the COMBasedTransformer approach.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=comBasedSignalGroup
Transformation, variationPoint.shortLabel
vh.latestBindingTime=codeGenerationTime

iSignal ISignal * ref Reference to a set of ISignals that shall always be kept
together.

systemSignal
Group

SystemSignalGroup 1 ref Reference to the SystemSignalGroup that is defined on
VFB level and that is supposed to be transmitted in the
ISignalGroup.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignalGroup specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignal
Groups are described in the TransformationTechnology
class.

Table D.132: ISignalGroup

Class ISignalProps

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Additional ISignal properties that may be stored in different files.

Base ARObject

Attribute Type Mul. Kind Note

handleOutOf
Range

HandleOutOfRange
Enum

1 attr This attribute defines the outOfRangeHandling for
received and sent signals.

Table D.133: ISignalProps

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

5

1051 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class Identifiable (abstract)

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractEvent , AbstractImplementationDataTypeElement , AbstractServiceInstance,
ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartitionMapping, AsynchronousServer
CallResultPoint, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AutosarOperationArgument
Instance, AutosarVariableInstance, BswInternalTriggeringPoint, BswModuleDependency, BuildAction
Entity , BuildActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClassContent
Conditional, ClientIdDefinition, ClientServerOperation, Code, CollectableElement , ComManagement
Mapping, CommConnectorPort , CommunicationConnector , CommunicationController , Compiler,
ConsistencyNeeds, ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , Crypto
ServiceMapping, DataPrototypeGroup, DataTransformation, DependencyOnArtifact, DiagEvent
DebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticFunctionInhibit
Source, DiagnosticMasterToSlaveEventMapping, DiagnosticRoutineSubfunction, DoIpLogicAddress, EC
UMapping, EOCExecutableEntityRefAbstract , EcuPartition, EcucContainerValue, EcucDefinition
Element , EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, End
ToEndProtection, ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMap
Assertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction,
FMFeatureSelection, FlatInstanceDescriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTp
Node, FlexrayTpPduPool, FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster ,
GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPv6Ext
HeaderFilterList, ISignalToIPduMapping, ISignalTriggering, IdentCaption, InternalTriggeringPoint, J1939
SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker,
MacMulticastGroup, McDataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping,
ModeSwitchPoint, NetworkEndpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor, Packageable
Element , ParameterAccess, PduToFrameMapping, PduTriggering, PerInstanceMemory, Physical
Channel , PortGroup, PortInterfaceMapping, PossibleErrorReaction, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass,
SecureCommunicationAuthenticationProps, SecureCommunicationFreshnessProps, ServerCallPoint ,
ServiceNeeds, SocketAddress, SomeipTpChannel, SpecElementReference, StackUsage, Structured
Req, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartition
Mapping, SwcToEcuMapping, SwcToImplMapping, SystemMapping, TcpOptionFilterList, Timing
Condition, TimingConstraint , TimingDescription, TimingExtensionResource, TimingModeInstance, Tls
CryptoCipherSuite, Topic1, TpAddress, TraceableText, TracedFailure, TransformationProps,
TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, ViewMap, VlanConfig, Wait
Point

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags: xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

5

1052 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class Identifiable (abstract)

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models.
The form of the UUID (Universally Unique Identifier) is
taken from a standard defined by the Open Group (was
Open Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and by
many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed.
If the id namespace is omitted, DCE is assumed.
An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table D.134: Identifiable

Class Implementation (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Description of an implementation a single software component or module.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses BswImplementation, SwcImplementation

Attribute Type Mul. Kind Note

buildAction
Manifest

BuildActionManifest 0..1 ref A manifest specifying the intended build
actions for the software delivered with this
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

codeDescriptor Code 1..* aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this implementation has
been released

generated
Artifact

DependencyOnArtifact * aggr Relates to an artifact that will be generated during the
integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

5

1053 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class Implementation (abstract)

linker Linker * aggr Specifies the linker for which this implementation has
been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data belonging to
this implementation. The aggregtion is «atpSplitable»
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programming
Language

Programminglanguage
Enum

1 attr Programming language the implementation was created
in.

requiredArtifact DependencyOnArtifact * aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the
implementation might cause different dependencies, e.g.
the number of used libraries.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

required
GeneratorTool

DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
generate additional artifacts during integration.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

resource
Consumption

ResourceConsumption 1 aggr All static and dynamic resources for each implementation
are described within the ResourceConsumption class.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

swVersion RevisionLabelString 1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.

swcBsw
Mapping

SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table D.135: Implementation

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

5

1054 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ImplementationDataType

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

Tags: atp.Status=draft

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table D.136: ImplementationDataType

Class ImplementationDataTypeElement

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.

This element either consists of further subElements or it is further defined via its swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such a local declaration:

• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

5

1055 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ImplementationDataTypeElement

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

Tags: atp.Status=draft

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table D.137: ImplementationDataTypeElement

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

Base ARObject , Referrable

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mul. Kind Note

symbol CIdentifier 1 attr The symbol to be used as (depending on the concrete
case) either a complete replacement or a prefix.

Table D.138: ImplementationProps

Class IncludedDataTypeSet

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::IncludedDataTypes

Note An includedDataTypeSet declares that a set of AutosarDataType is used by a basic software module or a
software component for its implementation and the AutosarDataType becomes part of the contract.

This information is required if the AutosarDataType is not used for any DataPrototype owned by this
software component or if the enumeration literals, lowerLimit and upperLimit constants shall be
generated with a literalPrefix.

The optional literalPrefix is used to add a common prefix on enumeration literals, lowerLimit and upper
Limit constants created by the RTE.

Base ARObject

Attribute Type Mul. Kind Note

dataType AutosarDataType 1..* ref AutosarDataType belonging to the includedDataTypeSet

5

1056 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class IncludedDataTypeSet

literalPrefix Identifier 0..1 attr LiteralPrefix defines a common prefix for all AutosarData
Types of the includedDataTypeSet to be added on
enumeration literals, lowerLimit and upperLimit constants
created by the RTE.

Table D.139: IncludedDataTypeSet

Class IncludedModeDeclarationGroupSet

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note An IncludedModeDeclarationGroupSet declares that a set of ModeDeclarationGroups used by the
software component for its implementation and consequently these ModeDeclarationGroups become
part of the contract.

Base ARObject

Attribute Type Mul. Kind Note

mode
Declaration
Group

ModeDeclarationGroup 1..* ref This represents the referenced ModeDeclarationGroup.

prefix Identifier 0..1 attr The prefix shall be used by the RTE generator as a prefix
for the creation of symbols related to the referenced
ModeDeclarationGroups, e.g
RTE_TRANSITION_<ModeDeclarationGroup>.

Table D.140: IncludedModeDeclarationGroupSet

Class InitEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This RTEEvent is supposed to be used for initialization purposes, i.e. for starting and restarting a
partition. It is not guaranteed that all RunnableEntities referenced by this InitEvent are executed before
the ’regular’ RunnableEntities are executed for the first time. The execution order depends on the task
mapping.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.141: InitEvent

Class InstantiationDataDefProps

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::InstantiationDataDefProps

Note This is a general class allowing to apply additional SwDataDefProps to particular instantiations of a Data
Prototype.

Typically the accessibility and further information like alias names for a particular data is modeled on the
level of DataPrototypes (especially VariableDataPrototypes, ParameterDataPrototypes). But due to the
recursive structure of the meta-model concerning data types (a composite (data) type consists out of
data prototypes) a part of the MCD information is described in the data type (in case of Application
CompositeDataType).

5
5

1057 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class InstantiationDataDefProps

4
This is a strong restriction in the reuse of data typed because the data type should be re-used for
different VariableDataPrototypes and ParameterDataPrototypes to guarantee type compatibility on
C-implementation level (e.g. data of a Port is stored in PIM or a ParameterDataPrototype used as ROM
Block and shall be typed by the same data type as NVRAM Block).

This class overcomes such a restriction if applied properly.

Base ARObject

Attribute Type Mul. Kind Note

parameter
Instance

AutosarParameterRef 0..1 aggr This is the particular ParameterDataPrototypes on which
the swDataDefProps shall be applied.

swDataDef
Props

SwDataDefProps 1 aggr These are the particular data definition properties which
shall be applied

variableInstance AutosarVariableRef 0..1 aggr This is the particular VariableDataPrototypes on which
the swDataDefProps shall be applied.

Table D.142: InstantiationDataDefProps

Class InstantiationRTEEventProps (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note This meta class represents the ability to refine the properties of RTEEvents for particular instances of a
software component.

Base ARObject

Subclasses InstantiationTimingEventProps

Attribute Type Mul. Kind Note

refinedEvent RTEEvent 1 iref This instance ref denotes the Timing Event for which the
period shall be refined on an instance level.

shortLabel Identifier 1 attr The main purpose of the shortLabel is to contribute to the
splitkey of aggregations that are «atpSplitable».

Table D.143: InstantiationRTEEventProps

Class InternalBehavior (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Common base class (abstract) for the internal behavior of both software components and basic software
modules/clusters.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswInternalBehavior, SwcInternalBehavior

Attribute Type Mul. Kind Note

constant
Memory

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) implemented by this Internal
Behavior.

The shortName of ParameterDataPrototype has to be
equal to the ”C’ identifier of the described constant.

The characteristic value(s) might be shared between
SwComponentPrototypes of the same SwComponent
Type.

5
5

1058 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class InternalBehavior (abstract)

4
The aggregation of constantMemory is subject to
variability with the purpose to support variability in the
software component or module implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstanSpecificationMapping to be
applied for the particular InternalBehavior

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular InternalBehavior

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

exclusiveArea ExclusiveArea * aggr This specifies an ExclusiveArea for this InternalBehavior.
The exclusiveArea is local to the component resp.
module.
The aggregation of ExclusiveAreas is subject to variability.
Note: the number of ExclusiveAreas might vary due to the
conditional existence of RunnableEntities or BswModule
Entities.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* aggr This represents the set of ExclusiveAreaNestingOrder
owned by the InternalBehavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

staticMemory VariableDataPrototype * aggr Describes a read and writeable static memory object
representing measurerment variables implemented by
this software component.
The term "static" is used in the meaning of
"non-temporary" and does not necessarily specify a linker
encapsulation. This kind of memory is only supported if
supportsMultipleInstantiation is FALSE.

The shortName of the VariableDataPrototype has to be
equal with the ”C’ identifier of the described variable.

The aggregation of staticMemory is subject to variability
with the purpose to support variability in the software
component’s implementations.

Typically different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table D.144: InternalBehavior

1059 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class InternalTriggerOccurredEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when the referenced internal trigger have been occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

eventSource InternalTriggeringPoint 1 ref Internal Triggering Point that triggers the event.

Table D.145: InternalTriggerOccurredEvent

Class InternalTriggeringPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger

Note If a RunnableEntity owns an InternalTriggeringPoint it is entitled to trigger the execution of Runnable
Entities of the corresponding software-component.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.

Table D.146: InternalTriggeringPoint

Class InvalidationPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical result as if the
handleInvalid attribute was set to dontInvalidate.

Base ARObject

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1 ref Reference to the dataElement for which the Invalidation
Policy applies.

handleInvalid HandleInvalidEnum 0..1 attr This attribute controls how invalidation is applied to the
dataElement.

Table D.147: InvalidationPolicy

Class McDataInstance
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note Describes the specific properties of one data instance in order to support measurement and/or
calibration of this data instance.

The most important attributes are:

• Its shortName is copied from the ECU Flat map (if applicable) and will be used as identifier and
for display by the MC system.

• The category is copied from the corresponding data type (ApplicationDataType if defined,
otherwise ImplementationDataType) as far as applicable.

• The symbol is the one used in the programming language. It will be used to find out the actual
memory address by the final generation tool with the help of linker generated information.

5
5

1060 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class McDataInstance

4
It is assumed that in the M1 model this part and all the aggregated and referred elements (with the
exception of the Flat Map and the references from ImplementationElementInParameterInstanceRef and
McAccessDetails) are completely generated from "upstream" information. This means, that even if an
element like e.g. a CompuMethod is only used via reference here, it will be copied into the M1 artifact
which holds the complete McSupportData for a given Implementation.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr The existence of this attribute turns the data instance into
an array of data. The attribute determines the size of the
array in terms of number of elements.

displayIdentifier McdIdentifier 0..1 attr An optional attribute to be used to set the ASAM ASAP2
DISPLAY_IDENTIFIER attribute.

flatMapEntry FlatInstanceDescriptor 0..1 ref Reference to the corresponding entry in the ECU Flat
Map. This allows to trace back to the original specification
of the generated data instance. This link shall be added
by the RTE generator mainly for documentation purposes.

The reference is optional because

• The McDataInstance may represent an array or
struct in which only the subElements correspond
to FlatMap entries.

• The McDataInstance may represent a task local
buffer for rapid prototyping access which is
different from the "main instance" used for
measurement access.

instanceIn
Memory

ImplementationElement
InParameterInstance
Ref

0..1 aggr Reference to the corresponding data instance in the
description of calibration data structures published by the
RTE generator. This is used to support emulation
methods inside the ECU, it is not required for A2L
generation.

mcDataAccess
Details

McDataAccessDetails 0..1 aggr Refers to "upstream" information on how the RTE uses
this data instance.
Use Case: Rapid Prototyping

mcData
Assignment

RoleBasedMcData
Assignment

* aggr An assignment between McDataInstances.
This supports the indication of related McDataElement
implementing the of "RP global buffer", "RP global
measurement buffer", "RP enabler flag".

resulting
Properties

SwDataDefProps 0..1 aggr These are the generated properties resulting from
decisions taken by the RTE generator for the actually
implemented data instance. Only those properties are
relevant here, which are needed for the measurement
and calibration system.

resultingRptSw
Prototyping
Access

RptSwPrototyping
Access

0..1 aggr Describes the implemented accessibility of data and
modes by the rapid prototyping tooling.

role Identifier 0..1 attr An optional attribute to be used for additional information
on the role of this data instance, for example in the
context of rapid prototyping.

rptImplPolicy RptImplPolicy 0..1 aggr Describes the implemented code preparation for rapid
prototyping at data accesses for a hook based bypassing.

5

1061 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class McDataInstance

subElement (or-
dered)

McDataInstance * aggr This relation indicates, that the target element is part of a
"struct" which is given by the source element. This
information will be used by the final generator to set up
the correct addressing scheme.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbol SymbolString 0..1 attr This String is used to determine the memory address
during final generation of the MC configuration data (e.g.
"A2L" file) . It shall be the name of the element in the
programming language such that it can be identified in
linker generated information.

In case the McDataInstance is part of composite data in
the programming language, the symbol String may
include parts denoting the element context, unless the
context is given by the symbol attribute of an enclosing
McDataInstance. This means in particular for the C
language that the "." character shall be used as a
separator between the name of a "struct" variable the
name of one of its elements.

The symbol can differ from the shortName in case of
generated C data declarations.

It is an optional attribute since it may be missing in case
the instance represents an element (e.g. a single array
element) which has no name in the linker map.

Stereotypes: atpSplitable
Tags: atp.Splitkey=symbol

Table D.148: McDataInstance

Class McParameterElementGroup

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note Denotes a group of calibration parameters which are handled by the RTE as one data structure.

Base ARObject

Attribute Type Mul. Kind Note

ramLocation VariableDataPrototype 1 ref Refers to the RAM location of this parameter group. To be
used for the init-RAM method.

romLocation ParameterData
Prototype

1 ref Refers to the ROM location of this parameter group. To
be used for the init-RAM method.

shortLabel Identifier 1 attr Assigns a name to this element.

Tags: xml.sequenceOffset=-100

Table D.149: McParameterElementGroup

Class McSupportData

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note Root element for all measurement and calibration support data related to one Implementation artifact on
an ECU. There shall be one such element related to the RTE implementation (if it owns MC data) and a
separate one for each module or component, which owns private MC data.

Base ARObject

5

1062 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class McSupportData

Attribute Type Mul. Kind Note

emulation
Support

McSwEmulationMethod
Support

* aggr Describes the calibration method used by the RTE. This
information is not needed for A2L generation, but to setup
software emulation in the ECU.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

mcParameter
Instance

McDataInstance * aggr A data instance to be used for calibration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

mcVariable
Instance

McDataInstance * aggr A data instance to be used for measurement.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

measurable
System
ConstantValues

SwSystemconstant
ValueSet

* ref Sets of system constant values to be transferred to the
MCD system, because the system constants have been
specified with
"swCalibrationAccess" = readonly.

rptSupportData RptSupportData 0..1 aggr The rapid prototyping support data belonging to this
implementation. The aggregtion is «atpSplitable»
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags: atp.Splitkey=rptSupportData

Table D.150: McSupportData

Class McSwEmulationMethodSupport

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport

Note This denotes the method used by the RTE to handle the calibration data. It is published by the RTE
generator and can be used e.g. to generate the corresponding emulation method in a Complex Driver.

According to the actual method given by the category attribute, not all attributes are always needed:

• double pointered method: only baseReference is mandatory

• single pointered method: only referenceTable is mandatory

• initRam method: only elementGroup(s) are mandatory

Note: For single/double pointered method the group locations are implicitly accessed via the reference
table and their location can be found from the initial values in the M1 model of the respective pointers.
Therefore, the description of elementGroups is not needed in these cases. Likewise, for double pointered
method the reference table description can be accessed via the M1 model under baseReference.

Base ARObject

Attribute Type Mul. Kind Note

category Identifier 1 attr Identifies the actual method. The possible names shall
correspond to the symbols of the ECU configuration
parameter for the calibration method of the RTE, and can
include vendor specific methods.

Tags: xml.sequenceOffset=-90

baseReference VariableDataPrototype 0..1 ref Refers to the base pointer in case of the double-pointered
method.

5

1063 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class McSwEmulationMethodSupport

elementGroup McParameterElement
Group

* aggr Denotes the grouping of calibration parameters in the
actual RTE code. Depending on the category, this
information maybe required to set up the emulation code.

referenceTable VariableDataPrototype 0..1 ref Refers to the pointer table in case of the single-pointered
method.

shortLabel Identifier 1 attr Assigns a name to this element.

Tags: xml.sequenceOffset=-100

Table D.151: McSwEmulationMethodSupport

Enumeration MemoryAllocationKeywordPolicyType

Package M2::MSR::DataDictionary::AuxillaryObjects

Note Enumeration to specify the name pattern of the Memory Allocation Keyword.

Literal Description

addrMethodShort
Name

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod. This is the
default value if the attribute does not exist.

Tags: atp.EnumerationValue=0

addrMethodShort
NameAndAlignment

The MemorySection shortNames of referring MemorySections and therefore the belonging Memory
Allocation Keywords in the code are build with the shortName of the SwAddrMethod and a variable
alignment postfix.

Thereby the alignment postfix needs to be consistent with the alignment attribute of the related
MemorySection.

Tags: atp.EnumerationValue=1

Table D.152: MemoryAllocationKeywordPolicyType

Class MemorySection

Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note Provides a description of an abstract memory section used in the Implementation for code or data. It shall
be declared by the Implementation Description of the module or component, which actually allocates the
memory in its code. This means in case of data prototypes which are allocated by the RTE, that the
generated Implementation Description of the RTE shall contain the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or component specific
section name used in the code. For details see the document "Specification of Memory Mapping".
Typically the section name is build according the pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]
where

• [<SwAddrMethod shortName>] is the shortName of the referenced SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the specialization in the
case that several MemorySections for different purpose of the same Implementation Description
referring to the same or equally named SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the case that the
memoryAllocationKeywordPolicy value of the referenced SwAddrMethod is set to addrMethod
ShortNameAndAlignment

5
5

1064 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class MemorySection

4
MemorySection used to Implement the code of RunnableEntitys and BswSchedulableEntitys shall have a
symbol (if missing: shortName) identical to the referred SwAddrMethod to conform to the generated RTE
header files.

In addition to the section name described above, a prefix is used in the corresponding macro code in
order to define a name space. This prefix is by default given by the shortName of the BswModule
Description resp. the SwComponentType. It can be superseded by the prefix attribute.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

alignment AlignmentType 0..1 attr The attribute describes the alignment of objects within
this memory section.

executableEntity ExecutableEntity * ref Reference to the ExecutableEntitites located in this
section. This allows to locate different Executable
Entitities in different sections even if the associated Sw
Addrmethod is the same.

This is applicable to code sections only.

memClass
Symbol

CIdentifier 0..1 attr Defines a specific symbol in order to generate the
compiler abstraction "memclass" code for this Memory
Section. The existence of this attribute supersedes the
usage of swAddrmethod.shortName for this purpose.

The complete name of the "memclass" preprocessor
symbol is constructed as <prefix>_<memClassSymbol>
where prefix is defined in the same way as for the
enclosing MemorySection. See also
AUTOSAR_SWS_CompilerAbstraction
SWS_COMPILER_00040.

option Identifier * attr This attribute introduces the ability to specify further
intended properties of this MemorySection.
The following two values are standardized (to be used for
code sections only and exclusively to each other):

• INLINE - The code section is declared with the
compiler abstraction macro INLINE.

• LOCAL_INLINE - The code section is declared
with the compiler abstraction macro
LOCAL_INLINE

In both cases (INLINE and LOCAL_INLINE) the inline
expansion depends on the compiler specific
implementation of these macros. Depending on this, the
code section either corresponds to an actual section in
memory or is put into the section of the caller. See
AUTOSAR_SWS_CompilerAbstraction for more details.

prefix SectionNamePrefix 0..1 ref The prefix used to set the memory section’s namespace
in the code. The existence of a prefix element
supersedes rules for a default prefix (such as the Bsw
ModuleDescription’s shortName). This allows the user to
define several name spaces for memory sections within
the scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

swAddrmethod SwAddrMethod 1 ref This association indicates that this module specific
(abstract) memory section is part of an overall SwAddr
Method, referred by the upstream declarations (e.g.
calibration parameters, data element prototypes, code
entities) which share a common addressing strategy. This

5
5

1065 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class MemorySection

4
can be evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or component,
which allocates the memory in its code. This means in
case of data prototypes which are allocated by the RTE,
that the software components only declare the grouping
of its data prototypes to SwAddrMethods, and the
generated Implementation Description of the RTE actually
sets up this association.

symbol Identifier 0..1 attr Defines the section name as explained in the main
description. By using this attribute for code generation
(instead of the shortName) it is possible to define several
different MemorySections having the same name - e.g.
symbol = CODE - but using different sectionName
Prefixes.

Table D.153: MemorySection

Class ModeAccessPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note A ModeAccessPoint is required by a RunnableEntity owned by a Mode Manager or Mode User.
Its semantics implies the ability to access the current mode (provided by the RTE) of a ModeDeclaration
GroupPrototype’s ModeDeclarationGroup.

Base ARObject

Attribute Type Mul. Kind Note

ident ModeAccessPointIdent 0..1 aggr The aggregation in the role ident provides the ability to
make the ModeAccessPoint identifiable.

From the semantical point of view, the ModeAccessPoint
is considered a first-class Identifiable and therefore the
aggregation in the role ident shall always exist (until it
may be possible to let ModeAccessPoint directly inherit
from Identifiable).

Tags: atp.Status=shallBecomeMandatory
xml.sequenceOffset=-100

modeGroup ModeDeclarationGroup
Prototype

0..1 iref The mode declaration group that is accessed by this
runnable.

Tags: xml.typeElement=true

Table D.154: ModeAccessPoint

Enumeration ModeActivationKind
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Kind of mode switch condition used for activation of an event, as further described for each
enumeration field.

Literal Description

onEntry On entering the referred mode.

Tags: atp.EnumerationValue=0

onExit On exiting the referred mode.

Tags: atp.EnumerationValue=1

5

1066 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration ModeActivationKind
onTransition On transition of the 1st referred mode to the 2nd referred mode.

Tags: atp.EnumerationValue=2

Table D.155: ModeActivationKind

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Declaration of one Mode. The name and semantics of a specific mode is not defined in the meta-model.

Tags: atp.ManifestKind=ExecutionManifest,MachineManifest

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for
generating the source code representation of this Mode
Declaration.

Table D.156: ModeDeclaration

Class ModeDeclarationGroup

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.

Tags: atp.ManifestKind=ExecutionManifest,MachineManifest
atp.recommendedPackage=ModeDeclarationGroups

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

initialMode ModeDeclaration 1 ref The initial mode of the ModeDeclarationGroup. This
mode is active before any mode switches occurred.

mode
Declaration

ModeDeclaration 1..* aggr The ModeDeclarations collected in this ModeDeclaration
Group.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

modeManager
ErrorBehavior

ModeErrorBehavior 0..1 aggr This represents the ability to define the error behavior
expected by the mode manager in case of errors on the
mode user side (e.g. terminated mode user).

modeTransition ModeTransition * aggr This represents the avaliable ModeTransitions of the
ModeDeclarationGroup

modeUserError
Behavior

ModeErrorBehavior 0..1 aggr This represents the definition of the error behavior
expected by the mode user in case of errors on the mode
manager side (e.g. terminated mode manager).

onTransition
Value

PositiveInteger 0..1 attr The value of this attribute shall be taken into account by
the RTE generator for programmatically representing a
value used for the transition between two statuses.

Table D.157: ModeDeclarationGroup

1067 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ModeDeclarationGroupPrototype

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note The ModeDeclarationGroupPrototype specifies a set of Modes (ModeDeclarationGroup) which is
provided or required in the given context.

Tags: atp.ManifestKind=ExecutionManifest,MachineManifest

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr This allows for specifying whether or not the enclosing
ModeDeclarationGroupPrototype can be measured at
run-time.

type ModeDeclarationGroup 1 tref The "collection of ModeDeclarations" (= ModeDeclaration
Group) supported by a component

Stereotypes: isOfType

Table D.158: ModeDeclarationGroupPrototype

Class ModeDeclarationMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class implements a container for ModeDeclarationGroupMappings

Tags: atp.recommendedPackage=PortInterfaceMappingSets

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

mode
Declaration
Mapping

ModeDeclaration
Mapping

1..* aggr This represents the collection of ModeDeclaration
Mappings owned by the enclosing ModeDeclaration
MappingSet.

Table D.159: ModeDeclarationMappingSet

Class ModeErrorBehavior
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note This represents the ability to define the error behavior in the context of mode handling.

Base ARObject

Attribute Type Mul. Kind Note

defaultMode ModeDeclaration 0..1 ref This represents the ModeDeclaration that is considered
the error mode in the context of the enclosing Mode
DeclarationGroup.

errorReaction
Policy

ModeErrorReaction
PolicyEnum

1 attr This represents the ability to define the policy in terms of
which default model shall apply in case an error occurs.

Table D.160: ModeErrorBehavior

Enumeration ModeErrorReactionPolicyEnum

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note This represents the ability to specify the reaction on a mode error.

Literal Description

defaultMode This represents the ability to switch to the defaultMode in case of a mode error.

Tags: atp.EnumerationValue=0

5

1068 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration ModeErrorReactionPolicyEnum

lastMode This represents the ability to keep the last mode in case of a mode error.

Tags: atp.EnumerationValue=1

Table D.161: ModeErrorReactionPolicyEnum

Class ModeInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of ModeDeclarationGroupPrototypes in context of two different ModeInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mul. Kind Note

modeMapping ModeDeclarationGroup
PrototypeMapping

1 aggr Mapping of two ModeDeclarationGroupPrototypes in two
different ModeInterfaces

Table D.162: ModeInterfaceMapping

Class ModeRequestTypeMap

Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration

Note Specifies a mapping between a ModeDeclarationGroup and an ImplementationDataType. This
ImplementationDataType shall be used to implement the ModeDeclarationGroup.

Base ARObject

Attribute Type Mul. Kind Note

implementation
DataType

AbstractImplementation
DataType

1 ref This is the corresponding AbstractImplementationData
Type. It shall be modeled along the idea of an "unsigned
integer-like" data type.

modeGroup ModeDeclarationGroup 1 ref This is the corresponding ModeDeclarationGroup.

Table D.163: ModeRequestTypeMap

Class ModeSwitchInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

modeGroup ModeDeclarationGroup
Prototype

1 aggr The ModeDeclarationGroupPrototype of this mode
interface.

Table D.164: ModeSwitchInterface

1069 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ModeSwitchPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ModeDeclarationGroup

Note A ModeSwitchPoint is required by a RunnableEntity owned a Mode Manager. Its semantics implies the
ability to initiate a mode switch.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

modeGroup ModeDeclarationGroup
Prototype

0..1 iref The mode declaration group that is switched by this
runnable.

Table D.165: ModeSwitchPoint

Class ModeSwitchReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to mode communication

Base ARObject , RPortComSpec

Attribute Type Mul. Kind Note

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to "true" the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup
Prototype

0..1 ref ModeDeclarationGroupPrototype (of the same Port
Interface) to which these communication attributes apply.

Tags: atp.Status=shallBecomeMandatory

supports
Asynchronous
ModeSwitch

Boolean 1 attr This attribute controls the behavior of the corresponding
RPortPrototype with respect to the question whether it
can deal with asynchronous mode switch requests, i.e. if
set to true, the RPortPrototype is able to deal with an
asynchronous mode switch request.

Table D.166: ModeSwitchReceiverComSpec

Class ModeSwitchSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of PPortPrototypes with respect to mode communication

Base ARObject , PPortComSpec

Attribute Type Mul. Kind Note

enhancedMode
Api

Boolean 0..1 attr This controls the creation of the enhanced mode API that
returns information about the previous mode and the next
mode. If set to "true" the enhanced mode API is
supposed to be generated. For more details please refer
to the SWS_RTE.

modeGroup ModeDeclarationGroup
Prototype

1 ref ModeDeclarationGroupPrototype (of the same Port
Interface) to which these communication attributes apply.

modeSwitched
Ack

ModeSwitchedAck
Request

0..1 aggr If this aggregation exists an acknowledgement for the
successful processing of the mode switch request is
required.

queueLength PositiveInteger 1 attr Length of call queue on the mode user side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

Table D.167: ModeSwitchSenderComSpec

1070 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ModeSwitchedAckEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when the referenced modes have been received or an error occurs.
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

eventSource ModeSwitchPoint 1 ref Mode switch point that triggers the event.

Table D.168: ModeSwitchedAckEvent

Class ModeSwitchedAckRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests acknowledgements that a mode switch has been proceeded successfully

Base ARObject

Attribute Type Mul. Kind Note

timeout TimeValue 1 attr Number of seconds before an error is reported or in case
of allowed redundancy, the value is sent again.

Table D.169: ModeSwitchedAckRequest

Class NonqueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to non-queued receiving.

Base ARObject , RPortComSpec, ReceiverComSpec

Attribute Type Mul. Kind Note

aliveTimeout TimeValue 1 attr Specify the amount of time (in seconds) after which the
software component (via the RTE) needs to be notified if
the corresponding data item have not been received
according to the specified timing description.

If the aliveTimeout attribute is 0 no timeout monitoring
shall be performed.

enableUpdate Boolean 1 attr This attribute controls whether application code is entitled
to check whether the value of the corresponding Variable
DataPrototype has been updated.

filter DataFilter 0..1 aggr The applicable filter algorithm for filtering the value of the
corresponding dataElement.

handleData
Status

Boolean 0..1 attr If this attribute is set to true than the Rte_IStatus API shall
exist. If the attribute does not exist or is set to false then
the Rte_IStatus API may still exist in response to the
existence of further conditions.

handleNever
Received

Boolean 1 attr This attribute specifies whether for the corresponding
VariableDataPrototype the "never received" flag is
available. If yes, the RTE is supposed to assume that
initially the VariableDataPrototype has not been received
before.
After the first reception of the corresponding VariableData
Prototype the flag is cleared.

5
5

1071 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class NonqueuedReceiverComSpec

4
• If the value of this attribute is set to "true" the flag

is required.

• If set to "false", the RTE shall not support the
"never received" functionality for the
corresponding VariableDataPrototype.

handleTimeout
Type

HandleTimeoutEnum 1 attr This attribute controls the behavior with respect to the
handling of timeouts.

initValue ValueSpecification 0..1 aggr Initial value to be used in case the sending component is
not yet initialized. If the sender also specifies an initial
value the receiver’s value will be used.

timeout
Substitution
Value

ValueSpecification 0..1 aggr This attribute represents the substitution value applicable
in the case of a timeout.

Table D.170: NonqueuedReceiverComSpec

Class NonqueuedSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for non-queued sender/receiver communication (sender side)

Base ARObject , PPortComSpec, SenderComSpec

Attribute Type Mul. Kind Note

initValue ValueSpecification 1 aggr Initial value to be sent if sender component is not yet fully
initialized, but receiver needs data already.

Table D.171: NonqueuedSenderComSpec

Class NumericalRuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to support a rule-based initialization approach for data types with an array-nature
(ImplementationDataType of category ARRAY).

Base ARObject , AbstractRuleBasedValueSpecification, ValueSpecification

Attribute Type Mul. Kind Note

ruleBased
Values

RuleBasedValue
Specification

1 aggr This represents the rule based value specification for the
array.

Tags: xml.roleElement=true
xml.roleWrapperElement=false
xml.typeWrapperElement=false

Table D.172: NumericalRuleBasedValueSpecification

Class NumericalValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note A numerical ValueSpecification which is intended to be assigned to a Primitive data element.
Note that the numerical value is a variant, it can be computed by a formula.

Base ARObject , ValueSpecification

Attribute Type Mul. Kind Note

5

1072 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class NumericalValueSpecification

value Numerical 1 attr This is the value itself.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.173: NumericalValueSpecification

Class NvBlockDataMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note Defines the mapping between the VariableDataPrototypes in the NvBlockComponents ports and the
VariableDataPrototypes of the RAM Block.

The data types of the referenced VariableDataPrototypes in the ports and the referenced sub-element
(inside a CompositeDataType) of the VariableDataPrototype representing the RAM Block shall be
compatible.

Base ARObject

Attribute Type Mul. Kind Note

nvRamBlock
Element

AutosarVariableRef 1 aggr Reference to a VariableDataPrototype of a RAM Block.

readNvData AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a pPort of the
NvBlockComponent providing read access to the RAM
Block.If there is no PortPrototype providing read access
(write-only) the reference can be omitted.

writtenNvData AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a rPort of the Nv
BlockComponent providing write access to the RAM
Block. If there is no port providing write access
(read-only) the reference can be omitted.

writtenReadNv
Data

AutosarVariableRef 0..1 aggr Reference to a VariableDataPrototype of a PRPort
Prototype of the NvBlockSwComponentType providing
write and read access to the RAM Block.

Table D.174: NvBlockDataMapping

Class NvBlockDescriptor

Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent

Note Specifies the properties of exactly on NVRAM Block.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

clientServerPort RoleBasedPort
Assignment

* aggr The RoleBasedPortAssignement defines which client
server port of the NvBlockSwComponentType serves for
which kind of service or notification. In case of
notifications one common callback function is provided by
the RTE for each individual kind of notification defined by
the "role".

The aggregation of RoleBasedPortAssignment is subject
to variability with the purpose to support the conditional
existence of ports.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstanSpecificationMapping to be
applied for the particular NVRAM Block

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

5

1073 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class NvBlockDescriptor

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular NVRAM Block.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of InstantiationDataDefProps are the
refinement of some data def properties of individual
instantiations within the context of a NvBlockSw
ComponentType.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of ports, component internal memory objects
and those attributes.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

modeSwitch
EventTriggered
Activity

ModeSwitchEvent
TriggeredActivity

* aggr This represents the collection of ModeSwitchEvent
TriggeredActivities related to the enclosing NvBlock
Descriptor.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=modeSwitchEventTriggeredActivity,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

nvBlockData
Mapping

NvBlockDataMapping 1..* aggr Defines the mapping between the VariableData
Prototypes in the NvBlockComponents ports and the
VariableDataPrototypes of the RAM Block.

The aggregation of NvBlockDataMapping is subject to
variability with the purpose to support the conditional
existence of nv data ports.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

nvBlockNeeds NvBlockNeeds 1 aggr Specifies the abstract needs on the configuration of the
NVRAM Manager for the single NVRAM Block described
by this NvBlockDescriptor.

In addition, it may define requirements for writing
strategies in an implementation of an NvBlockSw
ComponentType by the RTE.

Please note that the attributes nDataSets and nRom
Blocks are not relevant for this aggregation because the
RTE will allocate just one block anyway. In a different
context, however, they do make sense.

ramBlock VariableDataPrototype 1 aggr Defines the RAM Block of the NVRAM Block provided by
NvBlockSwComponentType.

romBlock ParameterData
Prototype

0..1 aggr Defines the ROM Block of the NVRAM Block provided by
NvBlockSwComponentType.

supportDirty
Flag

Boolean 0..1 attr Specifies whether calling of NvM functions for writing
and/or status control of potentially modified RAM Blocks
to NV memory shall be controlled by the RTE.

timingEvent TimingEvent 0..1 ref this reference can be taken to identify the TimingEvent to
be used by the RTE for implementing a cyclic writing
strategy for this block

Table D.175: NvBlockDescriptor

1074 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class NvBlockNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds

Note Specifies the abstract needs on the configuration of a single NVRAM Block.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceNeeds

Attribute Type Mul. Kind Note

calcRamBlock
Crc

Boolean 0..1 attr Defines if CRC (re)calculation for the permanent RAM
Block is required.

checkStatic
BlockId

Boolean 0..1 attr Defines if the Static Block Id check shall be enabled.

cyclicWriting
Period

TimeValue 0..1 attr This represents the period for cyclic writing of NvData to
store the associated RAM Block.

nDataSets PositiveInteger 0..1 attr Number of data sets to be provided by the NVRAM
manager for this block.
This is the total number of ROM Blocks and RAM Blocks.

nRomBlocks PositiveInteger 0..1 attr Number of ROM Blocks to be provided by the NVRAM
manager for this block. Please note that these multiple
ROM Blocks are given in a contiguous area.

ramBlockStatus
Control

RamBlockStatusControl
Enum

0..1 attr This attribute defines how the management of the RAM
Block status is controlled.

readonly Boolean 0..1 attr True: data of this NVRAM Block are write protected for
normal operation (but protection can be disabled)
false: no restriction

reliability NvBlockNeeds
ReliabilityEnum

0..1 attr Reliability against data loss on the non-volatile medium.

resistantTo
ChangedSw

Boolean 0..1 attr Defines whether an NVRAM Block shall be treated
resistant to configuration changes (true) or not (false). For
details how to handle initialization in the latter case,
please refer to the NVRAM specification.

restoreAtStart Boolean 0..1 attr Defines whether the associated RAM Block shall be
implicitly restored during startup by the basic software.

selectBlockFor
FirstInitAll

Boolean 0..1 attr If this attribute is set to true the NvM shall process this
block in the NvM_FirstInitAll() function.

storeAt
Shutdown

Boolean 0..1 attr Defines whether or not the associated RAM Block shall be
implicitly stored during shutdown by the basic software.

storeCyclic Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored periodically by the basic software.

store
Emergency

Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored in case of ECU failure (e.g. loss of
power) by the basic software. If the attribute store
Emergency is set to true the associated RAM Block shall
be configured to have immediate priority.

storeImmediate Boolean 0..1 attr Defines whether or not the associated RAM Block shall
be implicitly stored immediately during or after execution
of the according SW-C RunnableEntity by the basic
software.

useAuto
ValidationAt
ShutDown

Boolean 0..1 attr If set to true the RAM Block shall be auto validated during
shutdown phase.

useCRCComp
Mechanism

Boolean 0..1 attr If set to true the CRC of the RAM Block shall be
compared during a write job with the CRC which was
calculated during the last successful read or write job in
order to skip unnecessary NVRAM writings.

5

1075 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class NvBlockNeeds

writeOnlyOnce Boolean 0..1 attr Defines write protection after first write:
true: This block is prevented from being changed/erased
or being replaced with the default ROM data after first
initialization by the software-component.
false: No such restriction.

writeVerification Boolean 0..1 attr Defines if Write Verification shall be enabled for this
NVRAM Block.

writing
Frequency

PositiveInteger 0..1 attr Provides the amount of updates to this block from the
application point of view. It has to be provided in "number
of write access per year".

writingPriority NvBlockNeedsWriting
PriorityEnum

0..1 attr Requires the priority of writing this block in case of
concurrent requests to write other blocks.

Table D.176: NvBlockNeeds

Class NvBlockSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The NvBlockSwComponentType defines non volatile data which data can be shared between Sw
ComponentPrototypes. The non volatile data of the NvBlockSwComponentType are accessible via
provided and required ports.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note

nvBlock
Descriptor

NvBlockDescriptor * aggr Specification of the properties of exactly one NVRAM
Block.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table D.177: NvBlockSwComponentType

Class NvDataInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A non volatile data interface declares a number of VariableDataPrototypes to be exchanged between non
volatile block components and atomic software components.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

nvData VariableDataPrototype 1..* aggr The VariableDataPrototype of this nv data interface.

Table D.178: NvDataInterface

1076 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class NvRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes of RPortPrototypes with respect to Nv data communication on the required
side.

Base ARObject , RPortComSpec

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr The initial value owned by the NvComSpec

variable VariableDataPrototype 1 ref The VariableDataPrototype the ComSpec applies for.

Table D.179: NvRequireComSpec

Class OperationInvokedEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The OperationInvokedEvent references the ClientServerOperation invoked by the client.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

operation ClientServerOperation 0..1 iref The operation to be executed as the consequence of the
event.

Table D.180: OperationInvokedEvent

Class PPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port providing a certain port interface.

Base ARObject , AbstractProvidedPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

provided
Interface

PortInterface 1 tref The interface that this port provides.

Stereotypes: isOfType

Table D.181: PPortPrototype

Class PRPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This kind of PortPrototype can take the role of both a required and a provided PortPrototype.

Base ARObject , AbstractProvidedPortPrototype, AbstractRequiredPortPrototype, AtpBlueprintable, Atp
Feature, AtpPrototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

provided
Required
Interface

PortInterface 1 tref This represents the PortInterface used to type the PRPort
Prototype

Stereotypes: isOfType

Table D.182: PRPortPrototype

1077 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ParameterAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note The presence of a ParameterAccess implies that a RunnableEntity needs access to a ParameterData
Prototype.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

accessed
Parameter

AutosarParameterRef 1 aggr Refernce to the accessed calibration parameter.

swDataDef
Props

SwDataDefProps 0..1 aggr This allows denote instance and access specific
properties, mainly input values and common axis.

Table D.183: ParameterAccess

Class ParameterDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A parameter element used for parameter interface and internal behavior, supporting signal like parameter
and characteristic value communication patterns and parameter and characteristic value definition.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the ParameterDataPrototype

Table D.184: ParameterDataPrototype

Class ParameterInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A parameter interface declares a number of parameter and characteristic values to be exchanged
between parameter components and software components.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

parameter ParameterData
Prototype

1..* aggr The ParameterDataPrototype of this ParameterInterface.

Table D.185: ParameterInterface

Class ParameterProvideComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the provided side of a connection.

Base ARObject , PPortComSpec

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding
ParameterDataPrototype.

parameter ParameterData
Prototype

1 ref The ParameterDataPrototype to which the Parameter
ComSpec applies.

Table D.186: ParameterProvideComSpec

1078 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ParameterRequireComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note "Communication" specification that applies to parameters on the required side of a connection.

Base ARObject , RPortComSpec

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr The initial value applicable for the corresponding
ParameterDataPrototype.

parameter ParameterData
Prototype

1 ref The ParameterDataPrototype to which the Parameter
RequireComSpec applies.

Table D.187: ParameterRequireComSpec

Class ParameterSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The ParameterSwComponentType defines parameters and characteristic values accessible via provided
Ports. The provided values are the same for all connected SwComponentPrototypes

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, SwComponentType

Attribute Type Mul. Kind Note

constant
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstanSpecificationMapping to be
applied for the particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular ParameterSwComponentType

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified.

The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of PortPrototypes

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.188: ParameterSwComponentType

Class PerInstanceMemory

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PerInstanceMemory

Note Defines a ’C’ typed memory-block that needs to be available for each instance of the SW-component.
This is typically only useful if supportsMultipleInstantiation is set to "true" or if the software-component
defines NVRAM access via permanent blocks.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

initValue String 0..1 attr Specifies initial value(s) of the PerInstanceMemory

5

1079 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class PerInstanceMemory

swDataDef
Props

SwDataDefProps 0..1 aggr This represents the ability to to allocate RAM at specific
memory sections, for example, to support the RAM Block
recovery strategy by mapping to uninitialized RAM.

type CIdentifier 1 attr The name of the "C"-type

typeDefinition String 1 attr A definition of the type with the syntax of a ’C’ typedef.

Table D.189: PerInstanceMemory

Class PortAPIOption

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note Options how to generate the signatures of calls for an AtomicSwComponentType in order to
communicate over a PortPrototype (for calls into a RunnableEntity as well as for calls from a Runnable
Entity to the PortPrototype).

Base ARObject

Attribute Type Mul. Kind Note

enableTake
Address

Boolean 1 attr If set to true, the software-component is able to use the
API reference for deriving a pointer to an object.

errorHandling DataTransformation
ErrorHandlingEnum

0..1 attr This specifies whether a RunnableEntity accessing a Port
Prototype that is referenced by this PortAPIOption shall
specifically handle transformer errors or not.

indirectAPI Boolean 1 attr If set to true this attribute specifies an "indirect API" to be
generated for the associated port which means that the
software-component is able to access the actions on a
port via a pointer to an object representing a port. This
allows e.g. iterating over ports in a loop. This option has
no effect for PPortPrototypes of client/server interfaces.

port PortPrototype 1 ref The option is valid for generated functions related to
communication over this port

portArg
Value (ordered)

PortDefinedArgument
Value

* aggr An argument value defined by this port.

supported
Feature

SwcSupportedFeature * aggr This collection specifies which features are supported by
the RunnableEntitys which access a PortPrototype that it
referenced by this PortAPIOption.

Table D.190: PortAPIOption

Class PortDefinedArgumentValue

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the ClientServerOperations
provided by a given PortPrototype. Note that this is restricted to PPortPrototypes of a ClientServer
Interface.

Base ARObject

Attribute Type Mul. Kind Note

value ValueSpecification 1 aggr Specifies the actual value.

valueType ImplementationData
Type

1 tref The implementation type of this argument value. It should
not be composite type or a pointer.

Stereotypes: isOfType

Table D.191: PortDefinedArgumentValue

1080 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class PortInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ClientServerInterface, DataInterface, ModeSwitchInterface, TriggerInterface

Attribute Type Mul. Kind Note

isService Boolean 1 attr This flag is set if the PortInterface is to be used for
communication between an

• ApplicationSwComponentType or

• ServiceProxySwComponentType or

• SensorActuatorSwComponentType or

• ComplexDeviceDriverSwComponentType

• ServiceSwComponentType

• EcuAbstractionSwComponentType

and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU.
Otherwise the flag is not set.

serviceKind ServiceProviderEnum 0..1 attr This attribute provides further details about the nature of
the applied service.

Table D.192: PortInterface

Class PortInterfaceMapping (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Specifies one PortInterfaceMapping to support the connection of Ports typed by two different Port
Interfaces with PortInterface elements having unequal names and/or unequal semantic (resolution or
range).

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, Referrable

Subclasses ClientServerInterfaceMapping, ModeInterfaceMapping, TriggerInterfaceMapping, VariableAndParameter
InterfaceMapping

Attribute Type Mul. Kind Note
– – – – –

Table D.193: PortInterfaceMapping

Class PortPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support the conditional
existence of ports.

Base ARObject , AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses AbstractProvidedPortPrototype, AbstractRequiredPortPrototype

Attribute Type Mul. Kind Note

clientServer
Annotation

ClientServerAnnotation * aggr Annotation of this PortPrototype with respect to
client/server communication.

delegatedPort
Annotation

DelegatedPort
Annotation

0..1 aggr Annotations on this delegated port.

5

1081 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class PortPrototype (abstract)

ioHwAbstraction
Server
Annotation

IoHwAbstractionServer
Annotation

* aggr Annotations on this IO Hardware Abstraction port.

modePort
Annotation

ModePortAnnotation * aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnnotation * aggr Annotations on this non voilatile data port.

parameterPort
Annotation

ParameterPort
Annotation

* aggr Annotations on this parameter port.

senderReceiver
Annotation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports sender/receiver
communication.

triggerPort
Annotation

TriggerPortAnnotation * aggr Annotations on this trigger port.

Table D.194: PortPrototype

Class PostBuildVariantCondition
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class specifies the value which must be assigned to a particular variant criterion in order to bind the
variation point. If multiple criterion/value pairs are specified, they shall all match to bind the variation
point.

In other words binding can be represented by

(criterion1 == value1) && (condition2 == value2) ...

Base ARObject

Attribute Type Mul. Kind Note

matching
Criterion

PostBuildVariant
Criterion

1 ref This is the criterion which needs to match the value in
order to make the PostbuildVariantCondition to be true.

value Integer 1 attr This is the particular value of the post-build variant
criterion.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.195: PostBuildVariantCondition

Class PostBuildVariantCriterion
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class specifies one particular PostBuildVariantSelector.

Tags: atp.recommendedPackage=PostBuildVariantCriterions

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

compuMethod CompuMethod 1 ref The compuMethod specifies the possible values for the
variant criterion serving as an enumerator.

Table D.196: PostBuildVariantCriterion

1082 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class PostBuildVariantCriterionValue
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class specifies a the value which must be assigned to a particular variant criterion in order to bind
the variation point. If multiple criterion/value pairs are specified, they all must must match to bind the
variation point.

Base ARObject

Attribute Type Mul. Kind Note

annotation Annotation * aggr This provides the ability to add information why the value
is set like it is.

Tags: xml.sequenceOffset=30

value Integer 1 attr This is the particular value of the post-build variant
criterion.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

variantCriterion PostBuildVariant
Criterion

1 ref This association selects the variant criterion whose value
is specified.

Tags: xml.sequenceOffset=10

Table D.197: PostBuildVariantCriterionValue

Class PostBuildVariantCriterionValueSet
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to denote one set of postBuildVariantCriterionValues.

Tags: atp.recommendedPackage=PostBuildVariantCriterionValueSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

postBuildVariant
CriterionValue

PostBuildVariant
CriterionValue

* aggr This is is one particular postbuild variant criterion/value
pair being part of the PostBuildVariantSet.

Table D.198: PostBuildVariantCriterionValueSet

Class PredefinedVariant
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This specifies one predefined variant. It is characterized by the union of all system constant values and
post-build variant criterion values aggregated within all referenced system constant value sets and post
build variant criterion value sets plus the value sets of the included variants.

Tags: atp.recommendedPackage=PredefinedVariants

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

includedVariant PredefinedVariant * ref The associated variants are considered part of this
PredefinedVariant. This means the settings of the
included variants are included in the settings of the
referencing PredefinedVariant. Nevertheless the included
variants might be included in several predefined variants.

postBuildVariant
CriterionValue
Set

PostBuildVariant
CriterionValueSet

* ref This is the postBuildVariantCriterionValueSet contributing
to the predefinded variant.

5

1083 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class PredefinedVariant
sw
Systemconstant
ValueSet

SwSystemconstant
ValueSet

* ref This ist the set of Systemconstant Values contributing to
the predefined variant.

Table D.199: PredefinedVariant

Class QueuedReceiverComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to queued receiving.

Base ARObject , RPortComSpec, ReceiverComSpec

Attribute Type Mul. Kind Note

queueLength PositiveInteger 1 attr Length of queue for received events.

Table D.200: QueuedReceiverComSpec

Class QueuedSenderComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes specific to distribution of events (PPortPrototype, SenderReceiverInterface and
dataElement carries an "event").

Base ARObject , PPortComSpec, SenderComSpec

Attribute Type Mul. Kind Note
– – – – –

Table D.201: QueuedSenderComSpec

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

required
Interface

PortInterface 1 tref The interface that this port requires, i.e. the port depends
on another port providing the specified interface.

Stereotypes: isOfType

Table D.202: RPortPrototype

Class RTEEvent (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note Abstract base class for all RTE-related events
Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage

Referrable, Referrable

Subclasses AsynchronousServerCallReturnsEvent, BackgroundEvent, DataReceiveErrorEvent, DataReceivedEvent,
DataSendCompletedEvent, DataWriteCompletedEvent, ExternalTriggerOccurredEvent, InitEvent,
InternalTriggerOccurredEvent, ModeSwitchedAckEvent, OperationInvokedEvent, SwcModeManagerError
Event, SwcModeSwitchEvent, TimingEvent, TransformerHardErrorEvent

5

1084 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RTEEvent (abstract)

Attribute Type Mul. Kind Note

disabledMode ModeDeclaration * iref Reference to the Modes that disable the Event.

Stereotypes: atpSplitable
Tags: atp.Splitkey=contextPort, contextModeDeclaration
GroupPrototype, targetModeDeclaration

startOnEvent RunnableEntity 0..1 ref RunnableEntity starts when the corresponding RTEEvent
occurs.

Table D.203: RTEEvent

Class RapidPrototypingScenario

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta class provides the ability to describe a Rapid Prototyping Scenario. Such a Rapid Prototyping
Scenario consist out of two main aspects, the description of the byPassPoints and the relation to an rpt
Hook.

Tags: atp.recommendedPackage=RapidPrototypingScenarios

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

hostSystem System 1 ref System which describes the software components of the
host ECU.

rptContainer RptContainer 1..* aggr Top-level rptContainer definitions of this specific rapid
prototyping scenario.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptProfile RptProfile * aggr Defiens the applicable Rapid Prototyping profils which are
especially defining the smbol of the service functions and
the valid id range.
The order of the RptProfiles determines the order of the
service function invocation by RTE.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

rptSystem System 0..1 ref System which describes the rapid prototyping algorithm in
the format of AUTOSAR Software Components.

Stereotypes: atpSplitable
Tags: atp.Splitkey=rptSystem

Table D.204: RapidPrototypingScenario

Class ReceiverComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Receiver-specific communication attributes (RPortPrototype typed by SenderReceiverInterface).

Base ARObject , RPortComSpec

Subclasses NonqueuedReceiverComSpec, QueuedReceiverComSpec

Attribute Type Mul. Kind Note

5

1085 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ReceiverComSpec (abstract)

composite
Network
Representation

CompositeNetwork
Representation

* aggr This represents a CompositeNetworkRepresentation
defined in the context of a ReceiverComSpec. The
purpose of this aggregation is to be able to specify the
network representation of leaf elements of Application
CompositeDataTypes.

dataElement AutosarDataPrototype 0..1 ref Data element these attributes belong to.

handleOutOf
Range

HandleOutOfRange
Enum

1 attr This attribute controls how values that are out of the
specified range are handled according to the values of
HandleOutOfRangeEnum.

handleOutOf
RangeStatus

HandleOutOfRange
StatusEnum

0..1 attr Control the way how return values are created in case of
an out-of-range situation.

maxDelta
CounterInit

PositiveInteger 0..1 attr Initial maximum allowed gap between two counter values
of two consecutively received valid Data, i.e. how many
subsequent lost data is accepted. For example, if the
receiver gets Data with counter 1 and MaxDeltaCounter
Init is 1, then at the next reception the receiver can accept
Counters with values 2 and 3, but not 4.

Note that if the receiver does not receive new Data at a
consecutive read, then the receiver increments the
tolerance by 1.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

maxNoNewOr
RepeatedData

PositiveInteger 0..1 attr The maximum amount of missing or repeated Data which
the receiver does not expect to exceed under normal
communication conditions.

network
Representation

SwDataDefProps 0..1 aggr A networkRepresentation is used to define how the data
Element is mapped to a communication bus.

replaceWith VariableAccess 0..1 aggr This aggregation is used to identify the AutosarData
Prototype to be taken for sourcing an external
replacement in the out-of-range handling.

syncCounterInit PositiveInteger 0..1 attr Number of Data required for validating the consistency of
the counter that shall be received with a valid counter (i.e.
counter within the allowed lock-in range) after the
detection of an unexpected behavior of a received
counter.

transformation
ComSpecProps

TransformationCom
SpecProps

* aggr This references the TransformationComSpecProps which
define port-specific configuration for data transformation.

usesEndToEnd
Protection

Boolean 0..1 attr This indicates whether the corresponding dataElement
shall be transmitted using end-to-end protection.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.205: ReceiverComSpec

Class ReferenceValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Specifies a reference to a data prototype to be used as an initial value for a pointer in the software.

Base ARObject , ValueSpecification

Attribute Type Mul. Kind Note

referenceValue DataPrototype 1 ref The referenced data prototype.

Table D.206: ReferenceValueSpecification

1086 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, DiagnosticDebounceAlgorithmProps, Diagnostic
EnvModeElement , EthernetPriorityRegeneration, EventHandler, ExclusiveAreaNestingOrder, Hw
DescriptionEntity , ImplementationProps, LinSlaveConfigIdent, ModeTransition, MultilanguageReferrable,
PncMappingIdent, SingleLanguageReferrable, SocketConnectionBundle, TimeSyncServerConfiguration,
TpConnectionIdent

Attribute Type Mul. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Tags: xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table D.207: Referrable

Primitive RevisionLabelString

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This primitive represents a revision label which identifies an engineering object. It represents a pattern
which

• requires three integers representing from left to right MajorVersion, MinorVersion, PatchVersion.

• may add an application specific suffix separated by one of ".", "_", ";".

Legal patterns are for example:

4.0.0
4.0.0.1234565
4.0.0_vendor specific;13
4.0.0;12

Tags: xml.xsd.customType=REVISION-LABEL-STRING
xml.xsd.pattern=[0-9]+\.[0-9]+\.[0-9]+([\._;].*)?
xml.xsd.type=string

Table D.208: RevisionLabelString

Class RoleBasedPortAssignment

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServiceMapping

Note This class specifies an assignment of a role to a particular service port (RPortPrototype or PPort
Prototype) of an AtomicSwComponentType. With this assignment, the role of the service port can be
mapped to a specific ServiceNeeds element, so that a tool is able to create the correct connector.

Base ARObject

Attribute Type Mul. Kind Note

5

1087 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RoleBasedPortAssignment

portPrototype PortPrototype 1 ref Service PortPrototype used in the assigned role. This
PortPrototype shall either belong to the same AtomicSw
ComponentType as the SwcInternalBehavior which owns
the ServiceDependency or to the same NvBlockSw
ComponentType as the NvBlockDescriptor.

role Identifier 1 attr This is the role of the assigned Port in the given context.

The value shall be a shortName of the Blueprint of a Port
Interface as standardized in the Software Specification of
the related AUTOSAR Service.

Table D.209: RoleBasedPortAssignment

Class RootSwCompositionPrototype

Package M2::AUTOSARTemplates::SystemTemplate

Note The RootSwCompositionPrototype represents the top-level-composition of software components within a
given System. According to the use case of the System, this may for example be the a more or less
complete VFB description, the software of a System Extract or the software of a flat ECU Extract with
only atomic SWCs.

Therefore the RootSwComposition will only occasionally contain all atomic software components that are
used in a complete VFB System. The OEM is primarily interested in the required functionality and the
interfaces defining the integration of the Software Component into the System. The internal structure of
such a component contains often substantial intellectual property of a supplier. Therefore a top-level
software composition will often contain empty compositions which represent subsystems.

The contained SwComponentPrototypes are fully specified by their SwComponentTypes (including Port
Prototypes, PortInterfaces, VariableDataPrototypes, SwcInternalBehavior etc.), and their ports are
interconnected using SwConnectorPrototypes.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

calibration
ParameterValue
Set

CalibrationParameter
ValueSet

* ref Used CalibrationParameterValueSet for instance specific
initialization of calibration parameters.

Stereotypes: atpSplitable
Tags: atp.Splitkey=calibrationParameterValueSet

flatMap FlatMap 0..1 ref The FlatMap used in the scope of this RootSw
CompositionPrototype.

Stereotypes: atpSplitable
Tags: atp.Splitkey=flatMap

software
Composition

CompositionSw
ComponentType

1 tref We assume that there is exactly one top-level composition
that includes all Component instances of the system

Stereotypes: isOfType

Table D.210: RootSwCompositionPrototype

Enumeration RptAccessEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines the access rights to a data object with respect to rapid prototyping.

Literal Description

enabled The related data element is accessible by RP tool.

Tags: atp.EnumerationValue=0

5

1088 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration RptAccessEnum
none The related data element is not accessible by RP tool.

Tags: atp.EnumerationValue=1

protected The data element is known to the RP tool however its usage for RP can be restricted.
Use case: limitation based on access rights

Tags: atp.EnumerationValue=2

Table D.211: RptAccessEnum

Class RptContainer

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note This meta class defines a byPassPoint and the relation to a rptHook.

Additionally it may contain further rptContainers if the byPassPoint is not atomic. For example a byPass
Point refereing to a RunnableEntity may contain rptContainers referring to the data access points of the
RunnableEntity.

The RptContainer structure on M1 shall follow the M1 structure of the Software Component Descriptions.
The category attribute denotes which level of the Software Component Description is annotated.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

byPassPoint AtpFeature 1..* iref byPassPoint desribes the required preparation of the host
ECU. At a byPassPoint the host ECU shall be capable to
communicate with a RPT System in order to support the
execution of the rapid prototyping algorithms with the
original data calculated by the host system and to replace
dedicated results of the host system by the results of the
rapid prototyping algorithm.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=byPassPoint
vh.latestBindingTime=preCompileTime

explicitRpt
ProfileSelection

RptProfile * ref This attribute defines the applicable RptProfiles for the
specific RptContainer. If not any references to a specific
RptProfile is defined, all RptProfiles defined in the Rapid
PrototypingScenario are applicable.

Tags: atp.Splitkey=explicitRptProfileSelection

rptContainer RptContainer * aggr Sub-level rptContainer definitions of this specific rapid
prototyping scenario.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptExecutable
EntityProperties

RptExecutableEntity
Properties

0..1 aggr Describes the required code preparation for rapid
prototyping at ExecutableEntity invocation.

rptHook RptHook 0..1 aggr The rptHook describes the link between a byPassPoint
and the rapid prototyping algorithm.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=rptHook, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

rptImplPolicy RptImplPolicy 0..1 aggr Describes the required code preparation for rapid
prototyping at data accesses.

rptSw
Prototyping
Access

RptSwPrototyping
Access

0..1 aggr Describes the required accessibility of data and modes by
the rapid prototyping tooling.

Table D.212: RptContainer

1089 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Enumeration RptEnablerImplTypeEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Describes the required / implemented usage of enabler flags for data access in the code.

Literal Description
none No "RP enabler" is implemented.

Tags: atp.EnumerationValue=0

rptEnablerRam "RP enabler" is implemented as a RAM variable

Tags: atp.EnumerationValue=1

rptEnablerRamAnd
Rom

The RTE generator implements both the RAM and ROM "RP enabler".

Tags: atp.EnumerationValue=3

rptEnablerRom "RP enabler" is implemented as a calibrateable ROM variable.

Tags: atp.EnumerationValue=2

Table D.213: RptEnablerImplTypeEnum

Class RptExecutableEntityEvent

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note This describes an ExecutableEntity event instance which can be bypassed.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

execution
Context

RptExecutionContext 1..* ref This describes the context in which the event of the
executable entity is executed.

mcData
Assignment

RoleBasedMcData
Assignment

* aggr Reference to related McDataElements describing the
implementation of "RP runnable disabler flag" and
"stimulation enabler flag"

The possible roles of the RoleBasedMcData
Assignment.role attribute are:

• RpRunnableDisablerFlag"

rptEventId PositiveInteger 1 attr RPT event id used for service points call.

rptExecutable
EntityProperties

RptExecutableEntity
Properties

1 aggr Describes the implemented code preparation for rapid
prototyping at ExecutableEntity invocation.

rptImplPolicy RptImplPolicy 0..1 aggr Describes the RptImplPolicy of a RptExecutableEvent for
service based bypassing.

rptServicePoint
Post

RptServicePoint 1..* ref This describes the applicable Post Service Points for a
RTEEvent / BswEvent of a bypassed ExecutableEntity.

rptServicePoint
Pre

RptServicePoint 1..* ref This describes the applicable Pre Service Points for a
RTEEvent / BswEvent of a bypassed ExecutableEntity.

Table D.214: RptExecutableEntityEvent

Class RptExecutableEntityProperties

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note Describes the code preparation for rapid prototyping at ExecutableEntity invocation.

Base ARObject

Attribute Type Mul. Kind Note

maxRptEventId PositiveInteger 1 attr Highest RPT event id useable for RTE generated service
points.
This attribute is relevant, if dedicated id range shall be
applied to the ExecutableEntitys of a software component
or specific ExecutableEntitys.

5

1090 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RptExecutableEntityProperties

minRptEventId PositiveInteger 1 attr Lowest RPT event id useable for RTE generated service
points.
This attribute is relevant, if dedicated id range shall be
applied to the ExecutableEntitys of a software component
or specific ExecutableEntitys.

rptExecution
Control

RptExecutionControl
Enum

1 attr This attribute specifies the rapid prototyping control of the
executable

rptServicePoint RptServicePointEnum 1 attr Enables generation of service points by the RTE
generator.

Table D.215: RptExecutableEntityProperties

Enumeration RptExecutionControlEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines rapid prototyping preparation of an ExecutableEntity.

Literal Description

conditional The ExecutableEntity is only executed when the rapid prototyping disable flag is NOT set.

Tags: atp.EnumerationValue=0

none The ExecutableEntity is executed without specific rapid prototyping condition.

Tags: atp.EnumerationValue=1

Table D.216: RptExecutionControlEnum

Class RptImplPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note Describes the code preparation for rapid prototyping at data accesses.

Base ARObject

Attribute Type Mul. Kind Note

rptEnablerImpl
Type

RptEnablerImplType
Enum

1 attr For Level 2 or Level3 this property determines how the
RTE implements the additional "RP enabler" flag.

rptPreparation
Level

RptPreparationEnum 1 attr Mandates RP preparation level for access to VariableData
Prototype within generated RTE implementation.

Table D.217: RptImplPolicy

Enumeration RptPreparationEnum

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Determines the RP preparation level for access to VariableDataPrototypes within the generated RTE
implementation.

Literal Description
none No RP preparation for VariableDataPrototype.

Tags: atp.EnumerationValue=0

rptLevel1 The RTE implementation uses an "RP global buffer" for measurement and post-build hooking
purposes.

Tags: atp.EnumerationValue=1

5

1091 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Enumeration RptPreparationEnum

rptLevel2 As rpLevel1 but the RTE implementation also uses both "RP enabler flag" to permit RP overwrite at
run-time.

Tags: atp.EnumerationValue=2

rptLevel3 As rpLevel2 but the RTE implementation also uses "RP global measurement buffer" to record the
original ECU-generated value in addition to the RP value.

Tags: atp.EnumerationValue=3

Table D.218: RptPreparationEnum

Class RptProfile

Package M2::AUTOSARTemplates::SWComponentTemplate::RPTScenario

Note The RptProfile describes the common properties of a Rapid Prototyping method.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

maxService
PointId

PositiveInteger 1 attr Highest service point id useable for RTE generated
service points.

minServicePoint
Id

PositiveInteger 1 attr Lowest service point id useable for RTE generated
service points.

servicePoint
SymbolPost

CIdentifier 1 attr Complete symbol of the function implementing the post
service point. This symbol is used for post-build hooking
purposes.

servicePoint
SymbolPre

CIdentifier 1 attr Complete symbol of the function implementing the pre
service point. This symbol is used for post-build hooking
purposes.

stimEnabler RptEnablerImplType
Enum

1 attr Defines if the service points support the stimulation
enabler.
If RptProfile.stimEnabler is "none" then no stimulation
enabler is passed to the service function. Otherwise the
stimulation enabler will be passed as a parameter.

Table D.219: RptProfile

Class RptSupportData

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Root element for rapid prototyping support data related to one Implementation artifact on an ECU, in
particular the RTE.
The rapid prototyping support data may reference to elements provided for McSupportData.

Base ARObject

Attribute Type Mul. Kind Note

execution
Context

RptExecutionContext 1..* aggr Defines an environment for the execution of Executable
Entites.

rptComponent RptComponent 1..* aggr Description of components for which rapid prototyping
support is implemented.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

rptServicePoint RptServicePoint 1..* aggr This aggregation represents the collection of service
points associated with the enclosing RptSuportData

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.220: RptSupportData

1092 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class RptSwPrototypingAccess

Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport::RptSupport

Note Describes the accessibility of data and modes by the rapid prototyping tooling.

Base ARObject

Attribute Type Mul. Kind Note

rptHookAccess RptAccessEnum 1 attr The related data element can be modified using a
post-build hooking tool. An ENABLED VariableData
Prototype is implicitly READABLE/WRITABLE.

rptReadAccess RptAccessEnum 1 attr The related data element can be used as input for bypass
functionality by RP tool. If rptImplPolicy is not specified
then RTE generation must ensure at least suitable MC
read points are created.

rptWriteAccess RptAccessEnum 1 attr The related data element can be used as output for
bypass functionality by RP tool. The data element must
be prepared to rptLevel2 and related write service points
are present.

Table D.221: RptSwPrototypingAccess

Class RtePluginProps

Package M2::AUTOSARTemplates::CommonStructure::FlatMap

Note The properties of a communication graph with respect to the utilization of RTE Implementation Plug-in.

Base ARObject

Attribute Type Mul. Kind Note

associatedRte
Plugin

EcucContainerValue 1 ref This associates a communication graph to a specific RTE
Implementation Plug-in.

Table D.222: RtePluginProps

Class RuleBasedValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note This meta-class is used to support a rule-based initialization approach for data types with an array-nature
(ApplicationArrayDataType and ImplementationDataType of category ARRAY) or a compound Application
PrimitiveDataType (which also boils down to an array-nature).

Base ARObject

Attribute Type Mul. Kind Note

arguments RuleArguments 1 aggr This represents the arguments for the RuleBasedValue
Specification.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

maxSizeToFill Integer 0..1 attr If a rule is chosen which does not fill until the end, this
determines until which size the rule shall fill the values.

Tags: xml.sequenceOffset=40

5

1093 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RuleBasedValueSpecification

rule Identifier 1 attr This denotes the name of the rule of the RuleBasedValue
Specification. The rule determines the calculation
specification according which the arguments are used to
calculated the values.

Tags: xml.sequenceOffset=20

Table D.223: RuleBasedValueSpecification

Class RunnableEntity

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note A RunnableEntity represents the smallest code-fragment that is provided by an AtomicSwComponent
Type and are executed under control of the RTE. RunnableEntities are for instance set up to respond to
data reception or operation invocation on a server.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , ExecutableEntity , Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

argument (or-
dered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an argument to
a RunnableEntity.

asynchronous
ServerCall
ResultPoint

AsynchronousServer
CallResultPoint

* aggr The server call result point admits a runnable to fetch the
result of an asynchronous server call.

The aggregation of AsynchronousServerCallResultPoint
is subject to variability with the purpose to support the
conditional existence of client server PortPrototypes and
the variant existence of server call result points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

canBeInvoked
Concurrently

Boolean 1 attr If the value of this attribute is set to "true" the enclosing
RunnableEntity can be invoked concurrently (even for one
instance of the corresponding AtomicSwComponent
Type). This implies that it is the responsibility of the
implementation of the RunnableEntity to take care of this
form of concurrency. Note that the default value of this
attribute is set to "false".

dataRead
Access

VariableAccess * aggr RunnableEntity has implicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataReadAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointBy
Argument

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.
The result is passed back to the application by means of
an argument in the function signature.

The aggregation of dataReceivePointByArgument is
subject to variability with the purpose to support the

5
5

1094 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RunnableEntity

4
conditional existence of sender receiver PortPrototype or
the variant existence of data receive points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataReceive
PointByValue

VariableAccess * aggr RunnableEntity has explicit read access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The result is passed back to the application by means of
the return value.
The aggregation of dataReceivePointByValue is subject
to variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of data receive points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataSendPoint VariableAccess * aggr RunnableEntity has explicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataSendPoint is subject to variability
with the purpose to support the conditional existence of
sender receiver PortPrototype or the variant existence of
data send points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

dataWrite
Access

VariableAccess * aggr RunnableEntity has implicit write access to dataElement
of a sender-receiver PortPrototype or nv data of a nv data
PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the conditional
existence of sender receiver ports or the variant existence
of dataWriteAccess in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

external
TriggeringPoint

ExternalTriggeringPoint * aggr The aggregation of ExternalTriggeringPoint is subject to
variability with the purpose to support the conditional
existence of trigger ports or the variant existence of
external triggering points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=externalTriggeringPoint, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

internal
TriggeringPoint

InternalTriggeringPoint * aggr The aggregation of InternalTriggeringPoint is subject to
variability with the purpose to support the variant
existence of internal triggering points in the
implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

1095 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RunnableEntity

modeAccess
Point

ModeAccessPoint * aggr The runnable has a mode access point.
The aggregation of ModeAccessPoint is subject to
variability with the purpose to support the conditional
existence of mode ports or the variant existence of mode
access points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=modeAccessPoint, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

modeSwitch
Point

ModeSwitchPoint * aggr The runnable has a mode switch point.
The aggregation of ModeSwitchPoint is subject to
variability with the purpose to support the conditional
existence of mode ports or the variant existence of mode
switch points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

parameter
Access

ParameterAccess * aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a Parameter
DataPrototype which may either be local or within a Port
Prototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the conditional
existence of parameter ports and component local
parameters as well as the variant existence of Parameter
Access (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that a
RunnableEntity needs read access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of read
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

serverCallPoint ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint.
The aggregation of ServerCallPoint is subject to variability
with the purpose to support the conditional existence of
client server PortPrototypes or the variant existence of
server call points in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

symbol CIdentifier 1 attr The symbol describing this RunnableEntity’s entry point.
This is considered the API of the RunnableEntity and is
required during the RTE contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

5

1096 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class RunnableEntity

writtenLocal
Variable

VariableAccess * aggr The presence of a writtenLocalVariable implies that a
RunnableEntity needs write access to a VariableData
Prototype in the role of implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of writtenLocalVariable is subject to
variability with the purpose to support the conditional
existence of implicitInterRunnableVariable and explicit
InterRunnableVariable or the variant existence of written
LocalVariable (points) in the implementation.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table D.224: RunnableEntity

Class RunnableEntityArgument

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RunnableEntity

Note This meta-class represents the ability to provide specific information regarding the arguments to a
RunnableEntity.

Base ARObject

Attribute Type Mul. Kind Note

symbol CIdentifier 1 attr This represents the symbol to be generated into the
actual signature on the level of the C programming
language.

Table D.225: RunnableEntityArgument

Class RunnableEntityGroup

Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior

Note This meta-class represents the ability to define a collection of RunnableEntities. The collection can be
nested.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

runnableEntity RunnableEntity * iref This represents a collection of RunnableEntitys that
belong to the enclosing RunnableEntityGroup.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

runnableEntity
Group

RunnableEntityGroup * iref This represents the ability to define nested groups of
RunnableEntitys.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.226: RunnableEntityGroup

1097 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class Sdg

Package M2::MSR::AsamHdo::SpecialData

Note Sdg (SpecialDataGroup) is a generic model which can be used to keep arbitrary information which is not
explicitly modeled in the meta-model.

Sdg can have various contents as defined by sdgContentsType. Special Data should only be used
moderately since all elements should be defined in the meta-model.

Thereby SDG should be considered as a temporary solution when no explicit model is available. If an sdg
Caption is available, it is possible to establish a reference to the sdg structure.

Base ARObject

Attribute Type Mul. Kind Note

gid NameToken 1 attr This attributes specifies an identifier. Gid comes from the
SGML/XML-Term "Generic Identifier" which is the
element name in XML. The role of this attribute is the
same as the name of an XML - element.

Tags: xml.attribute=true

sdgCaption SdgCaption 0..1 aggr This aggregation allows to assign the properties of
Identifiable to the sdg. By this, a shortName etc. can be
assigned to the Sdg.

Tags: xml.sequenceOffset=20

sdgCaptionRef SdgCaption 0..1 ref This association allows to reuse an already existing
caption.

Tags: xml.name=SDG-CAPTION-REF
xml.sequenceOffset=25

sdgContents
Type

SdgContents 0..1 aggr This is the content of the Sdg.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=30
xml.typeElement=false
xml.typeWrapperElement=false

Table D.227: Sdg

Class ScaleConstr
Package M2::MSR::AsamHdo::Constraints::GlobalConstraints

Note This meta-class represents the ability to specify constraints as a list of intervals (called scales).

Base ARObject

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr <desc> represents a general but brief description of the
object in question.

Tags: xml.sequenceOffset=30

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

shortLabel Identifier 0..1 attr This element specifies a short name for the scaleConstr.
This can for example be used to create more specific
messages of a constraint checker. The constraints cannot
be associated in the meta-model, therefore shortLabel is
somehow a substitute for shortName.

Tags: xml.sequenceOffset=20

5

1098 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class ScaleConstr
upperLimit Limit 0..1 attr This specifies the upper limit of a the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

validity ScaleConstrValidity
Enum

0..1 attr Specifies if the values defined by the scales are
considered to be valid. If the attribute is missing then the
default value is "VALID".

Tags: xml.attribute=true

Table D.228: ScaleConstr

Class SectionNamePrefix
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::MemorySectionUsage

Note A prefix to be used for generated code artifacts defining a memory section name in the source code of
the using module or SWC.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note

implementedIn DependencyOnArtifact 0..1 ref Optional reference that allows to Indicate the code artifact
(header file) containing the preprocessor implementation
of memory sections with this prefix.

The usage of this link supersedes the usage of a memory
mapping header with the default name (derived from the
BswModuleDescription’s shortName).

Table D.229: SectionNamePrefix

Class SenderComSpec (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for a sender port (PPortPrototype typed by SenderReceiverInterface).

Base ARObject , PPortComSpec

Subclasses NonqueuedSenderComSpec, QueuedSenderComSpec

Attribute Type Mul. Kind Note

composite
Network
Representation

CompositeNetwork
Representation

* aggr This represents a CompositeNetworkRepresentation
defined in the context of a SenderComSpec.

dataElement AutosarDataPrototype 0..1 ref Data element these quality of service attributes apply to.

handleOutOf
Range

HandleOutOfRange
Enum

1 attr This attribute controls how out-of-range values shall be
dealt with.

network
Representation

SwDataDefProps 0..1 aggr A networkRepresentation is used to define how the data
Element is mapped to a communication bus.

transmission
Acknowledge

Transmission
Acknowledgement
Request

0..1 aggr Requested transmission acknowledgement for data
element.

usesEndToEnd
Protection

Boolean 0..1 attr This indicates whether the corresponding dataElement
shall be transmitted using end-to-end protection.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.230: SenderComSpec

1099 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1..* aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

Table D.231: SenderReceiverInterface

Class SenderReceiverToSignalGroupMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of a sender receiver communication data element with a composite datatype to a signal group.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1 iref Reference to a data element with a composite datatype
which is mapped to a signal group.

signalGroup SystemSignalGroup 1 ref Reference to the signal group, which contain all primitive
datatypes of the composite type

typeMapping SenderRecComposite
TypeMapping

1 aggr The CompositeTypeMapping maps the the Application
ArrayElements and ApplicationRecordElements to
Signals of the SignalGroup.

Table D.232: SenderReceiverToSignalGroupMapping

Class SenderReceiverToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1 iref Reference to the data element.

systemSignal SystemSignal 1 ref Reference to the system signal used to carry the data
element.

Table D.233: SenderReceiverToSignalMapping

Class SensorActuatorSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note The SensorActuatorSwComponentType introduces the possibility to link from the software representation
of a sensor/actuator to its hardware description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

5

1100 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SensorActuatorSwComponentType

Attribute Type Mul. Kind Note

sensorActuator HwDescriptionEntity 1 ref Reference from the Sensor Actuator Software Component
Type to the description of the actual hardware.

Table D.234: SensorActuatorSwComponentType

Enumeration ServerArgumentImplPolicyEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This defines how the argument type of the servers RunnableEntity is implemented.

Literal Description

useArgumentType The argument type of the RunnableEntity is derived from the AutosarDataType of the Argument
Prototype.

Tags: atp.EnumerationValue=0

useVoid The argument type of the RunnableEntity is void.

Tags: atp.EnumerationValue=2

Table D.235: ServerArgumentImplPolicyEnum

Class ServerCallPoint (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note If a RunnableEntity owns a ServerCallPoint it is entitled to invoke a particular ClientServerOperation of a
specific RPortPrototype of the corresponding AtomicSwComponentType

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Subclasses AsynchronousServerCallPoint, SynchronousServerCallPoint

Attribute Type Mul. Kind Note

operation ClientServerOperation 0..1 iref The operation that is called by this runnable.

timeout TimeValue 1 attr Time in seconds before the server call times out and
returns with an error message. It depends on the call type
(synchronous or asynchronous) how this is reported.

Table D.236: ServerCallPoint

Class ServerComSpec

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Communication attributes for a server port (PPortPrototype and ClientServerInterface).

Base ARObject , PPortComSpec

Attribute Type Mul. Kind Note

operation ClientServerOperation 0..1 ref Operation these communication attributes apply to.

queueLength PositiveInteger 1 attr Length of call queue on the server side. The queue is
implemented by the RTE. The value shall be greater or
equal to 1. Setting the value of queueLength to 1 implies
that incoming requests are rejected while another request
that arrived earlier is being processed.

transformation
ComSpecProps

TransformationCom
SpecProps

* aggr This references the TransformationComSpecProps which
define port-specific configuration for data transformation.

Table D.237: ServerComSpec

1101 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class ServiceProxySwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This class provides the ability to express a software-component which provides access to an internal
service for remote ECUs. It acts as a proxy for the service providing access to the service.

An important use case is the request of vehicle mode switches: Such requests can be communicated via
sender-receiver interfaces across ECU boundaries, but the mode manager being responsible to perform
the mode switches is an AUTOSAR Service which is located in the Basic Software and is not visible in
the VFB view. To handle this situation, a ServiceProxySwComponentType will act as proxy for the mode
manager. It will have R-Ports to be connected with the mode requestors on VFB level and Service-Ports
to be connected with the local mode manager at ECU integration time.

Apart from the semantics, a ServiceProxySwComponentType has these specific properties:

• A prototype of it can be mapped to more than one ECUs in the system description.

• Exactly one additional instance of it will be created in the ECU-Extract per ECU to which the
prototype has been mapped.

• For remote communication, it can have only R-Ports with sender-receiver interfaces and 1:n
semantics.

• There shall be no connectors between two prototypes of any ServiceProxySwComponentType.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note
– – – – –

Table D.238: ServiceProxySwComponentType

Class ServiceSwComponentType

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note ServiceSwComponentType is used for configuring services for a given ECU. Instances of this class are
only to be created in ECU Configuration phase for the specific purpose of the service configuration.

Tags: atp.recommendedPackage=SwComponentTypes

Base ARElement , ARObject , AtomicSwComponentType, AtpBlueprint , AtpBlueprintable, AtpClassifier , Atp
Type, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Sw
ComponentType

Attribute Type Mul. Kind Note
– – – – –

Table D.239: ServiceSwComponentType

Class SubElementMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This meta-class allows for the definition of mappings of elements of a composite data type.

Base ARObject

Attribute Type Mul. Kind Note

firstElement SubElementRef 0..1 aggr This represents the first element referenced in the scope
of the mapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

5

1102 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SubElementMapping

secondElement SubElementRef 0..1 aggr This represents the second element referenced in the
scope of the mapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

textTable
Mapping

TextTableMapping 0..2 aggr This allows for the text-table translation of individual
elements of a composite data type.

Table D.240: SubElementMapping

Class SwAddrMethod
Package M2::MSR::DataDictionary::AuxillaryObjects

Note Used to assign a common addressing method, e.g. common memory section, to data or code objects.
These objects could actually live in different modules or components.

Tags: atp.recommendedPackage=SwAddrMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
memory
Allocation
KeywordPolicy

MemoryAllocation
KeywordPolicyType

0..1 attr Enumeration to specify the name pattern of the Memory
Allocation Keyword.

option Identifier * attr This attribute introduces the ability to specify further
intended properties of the MemorySection in with the
related objects shall be placed.

These properties are handled as to be selected. The
intended options are mentioned in the list.

In the Memory Mapping configuration, this option list is
used to determine an appropriate MemMapAddressing
ModeSet.

section
Initialization
Policy

SectionInitialization
PolicyType

0..1 attr Specifies the expected initialization of the variables
(inclusive those which are implementing VariableData
Prototypes). Therefore this is an implementation
constraint for initialization code of BSW modules
(especially RTE) as well as the start-up code which
initializes the memory segment to which the AutosarData
Prototypes referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical semantic
as the attribute value "INIT"

sectionType MemorySectionType 0..1 attr Defines the type of memory sections which can be
associated with this addresssing method.

Table D.241: SwAddrMethod

Class SwBaseType

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

5

1103 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwBaseType

Attribute Type Mul. Kind Note
– – – – –

Table D.242: SwBaseType

Enumeration SwCalibrationAccessEnum
Package M2::MSR::DataDictionary::DataDefProperties

Note Determines the access rights to a data object w.r.t. measurement and calibration.

Literal Description

notAccessible The element will not be accessible via MCD tools, i.e. will not appear in the ASAP file.

Tags: atp.EnumerationValue=0

readOnly The element will only appear as read-only in an ASAP file.

Tags: atp.EnumerationValue=1

readWrite The element will appear in the ASAP file with both read and write access.

Tags: atp.EnumerationValue=2

Table D.243: SwCalibrationAccessEnum

Class SwComponentPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note Role of a software component within a composition.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

type SwComponentType 1 tref Type of the instance.

Stereotypes: isOfType

Table D.244: SwComponentPrototype

Class SwComponentType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Base class for AUTOSAR software components.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses AtomicSwComponentType, CompositionSwComponentType, ParameterSwComponentType

Attribute Type Mul. Kind Note

consistency
Needs

ConsistencyNeeds * aggr This represents the collection of ConsistencyNeeds
owned by the enclosing SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

5

1104 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwComponentType (abstract)

port PortPrototype * aggr The PortPrototypes through which this SwComponent
Type can communicate.

The aggregation of PortPrototype is subject to variability
with the purpose to support the conditional existence of
PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swComponent
Documentation

SwComponent
Documentation

0..1 aggr This adds a documentation to the SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which UnitGroups are
relevant in the context of referencing SwComponentType.

Table D.245: SwComponentType

Class SwConnector (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Composition

Note The base class for connectors between ports. Connectors have to be identifiable to allow references from
the system constraint template.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses AssemblySwConnector, DelegationSwConnector, PassThroughSwConnector

Attribute Type Mul. Kind Note

mapping PortInterfaceMapping 0..1 ref Reference to a PortInterfaceMapping specifying the
mapping of unequal named PortInterface elements of the
two different PortInterfaces typing the two PortPrototypes
which are referenced by the ConnectorPrototype.

Table D.246: SwConnector

Class «atpVariation» SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data

5
5

1105 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mul. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags: xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags: xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

5
5

1106 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
• the data type of an array or record element within

an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags: xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags: xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.

Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags: xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags: xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags: xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240

5

1107 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags: xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
Size
Mult (ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

5

1108 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table D.247: SwDataDefProps

Enumeration SwImplPolicyEnum

Package M2::MSR::DataDictionary::DataDefProperties

Note Specifies the implementation strategy with respect to consistency mechanisms of variables.

Literal Description

const forced implementation such that the running software within the ECU shall not modify it. For example
implemented with the "const" modifier in C. This can be applied for parameters (not for those in
NVRAM) as well as argument data prototypes.

Tags: atp.EnumerationValue=0

fixed This data element is fixed. In particular this indicates, that it might also be implemented e.g. as in
place data, (#DEFINE).

Tags: atp.EnumerationValue=1

measurementPoint The data element is created for measurement purposes only. The data element is never read directly
within the ECU software. In contrast to a "standard" data element in an unconnected provide port is,
this unconnection is guaranteed for measurementPoint data elements.

Tags: atp.EnumerationValue=2

queued The content of the data element is queued and the data element has ’event’ semantics, i.e. data
elements are stored in a queue and all data elements are processed in ’first in first out’ order.
The queuing is intended to be implemented by RTE Generator.
This value is not applicable for parameters.

Tags: atp.EnumerationValue=3

standard This is applicable for all kinds of data elements. For variable data prototypes the ’last is best’
semantics applies. For parameter there is no specific implementation directive.

Tags: atp.EnumerationValue=4

Table D.248: SwImplPolicyEnum

Class SwPointerTargetProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This element defines, that the data object (which is specified by the aggregating element) contains a
reference to another data object or to a function in the CPU code. This corresponds to a pointer in the
C-language.

The attributes of this element describe the category and the detailed properties of the target which is
either a data description or a function signature.

Base ARObject

Attribute Type Mul. Kind Note

functionPointer
Signature

BswModuleEntry 0..1 ref The referenced BswModuleEntry serves as the signature
of a function pointer definition. Primary use case: function
pointer passed as argument to other function.

Tags: xml.sequenceOffset=40

5

1109 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwPointerTargetProps

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of the target data type.

Tags: xml.sequenceOffset=30

targetCategory Identifier 0..1 attr This specifies the category of the target:

• In case of a data pointer, it shall specify the
category of the referenced data.

• In case of a function pointer, it could be used to
denote the category of the referenced Bsw
ModuleEntry. Since currently no categories for
BswModuleEntry are defined it will be empty.

Tags: xml.sequenceOffset=5

Table D.249: SwPointerTargetProps

Class SwRecordLayout

Package M2::MSR::DataDictionary::RecordLayout

Note Defines how the data objects (variables, calibration parameters etc.) are to be stored in the ECU
memory. As an example, this definition specifies the sequence of axis points in the ECU memory.
Iterations through axis values are stored within the sub-elements swRecordLayoutGroup.

Tags: atp.recommendedPackage=SwRecordLayouts

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

swRecord
LayoutGroup

SwRecordLayoutGroup 1 aggr This is the top level record layout group.

Tags: xml.roleElement=true
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table D.250: SwRecordLayout

Class SwServiceArg

Package M2::MSR::DataDictionary::ServiceProcessTask

Note Specifies the properties of a data object exchanged during the call of an SwService, e.g. an argument or
a return value.

The SwServiceArg can also be used in the argument list of a C-macro. For this purpose the category
shall be set to "MACRO". A reference to implementationDataType can optional be added if the actual
argument has an implementationDataType.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

direction ArgumentDirection
Enum

0..1 attr Specifies the direction of the data transfer. The direction
shall indicate the direction of the actual information that is
being consumed by the caller and/or the callee, not the
direction of formal arguments in C.

The attribute is optional for backwards compatibility
reasons.
For example, if a pointer is used to pass a memory
address for the expected result, the direction shall be

5
5

1110 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwServiceArg

4
"out".
If a pointer is used to pass a memory address with
content to be read by the callee, its direction shall be "in".

Tags: xml.sequenceOffset=10

swArraysize ValueList 0..1 aggr This turns the argument of the service to an array.

Tags: xml.sequenceOffset=20

swDataDef
Props

SwDataDefProps 0..1 aggr Data properties of this SwServiceArg.

Tags: xml.sequenceOffset=30

Table D.251: SwServiceArg

Class SwSystemconst

Package M2::MSR::DataDictionary::SystemConstant

Note This element defines a system constant which serves an input to
select a particular variation point. In particular a system constant serves as an operand of the binding
function (swSyscond) in a Variation point.

Note that the binding process can only happen if a value was assigned to to the referenced system
constants.

Tags: atp.recommendedPackage=SwSystemconsts

Base ARElement , ARObject , AtpDefinition, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This denotes the data defintion properties of the system
constant. This supports to express the limits and
optionally a conversion within the internal to physical
values by a compu method.

Tags: xml.sequenceOffset=40

Table D.252: SwSystemconst

Class «atpMixedString» SwSystemconstDependentFormula (abstract)

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This class represents an expression depending on system constants.

Base ARObject , FormulaExpression

Subclasses AttributeValueVariationPoint , BlueprintFormula, ConditionByFormula, FMFormulaByFeaturesAndSw
Systemconsts

Attribute Type Mul. Kind Note
sysc SwSystemconst 1 ref This refers to a system constant. The internal (coded)

value of the system constant shall be used.

Tags: xml.sequenceOffset=50

syscString SwSystemconst 1 ref syscString indicates that the referenced system constant
shall be evaluated as a string according to
[TPS_SWCT_01431].

Table D.253: SwSystemconstDependentFormula

1111 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class SwSystemconstValue

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class assigns a particular value to a system constant.

Base ARObject

Attribute Type Mul. Kind Note

annotation Annotation * aggr This provides the ability to add information why the value
is set like it is.

Tags: xml.sequenceOffset=30

swSystemconst SwSystemconst 1 ref This is the system constant to which the value applies.

Tags: xml.sequenceOffset=10

value Numerical 1 attr This is the particular value of a system constant. It is
specified as Numerical. Further restrictions may apply by
the definition of the system constant.

The value attribute defines the internal value of the Sw
Systemconst as it is processed in the Formula Language.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table D.254: SwSystemconstValue

Class SwSystemconstantValueSet

Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to specify a set of system constant values.

Tags: atp.recommendedPackage=SwSystemconstantValueSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note
sw
Systemconstant
Value

SwSystemconstValue * aggr This is one particular value of a system constant.

Table D.255: SwSystemconstantValueSet

5

1112 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class «atpMixed» SwValues

Package M2::MSR::CalibrationData::CalibrationValue

Note This meta-class represents a list of values. These values can either be the input values of a curve
(abscissa values) or the associated values (ordinate values).

In case of multidimensional structures, the values are ordered such that the lowest index runs the fastest.
In particular for maps and cuboids etc. the resulting long value list can be subsectioned using Value
Group. But the processing needs to be done as if vg is not there.

Note that numerical values and textual values should not be mixed.
Base ARObject

Attribute Type Mul. Kind Note
v Numerical 1 attr This is a non variant Value. It is provided for sake of

Compatibility to ASAM CDF.

Tags: xml.sequenceOffset=40

vf Numerical 1 attr This allows to specify the value as VariationPoint. It is
distinguished to non variant for sake of compatibility to
ASAM CDF 2.0.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

5

1113 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpMixed» SwValues
vg ValueGroup 1 aggr This allows to have intersections in the values in order to

support specific rendering (eg. using stylesheets). For
tools it is important that the v values are always
processed in the same (flattened) order and the tool is
able to interpret it without respecting vg.

Tags: xml.sequenceOffset=50

vt VerbatimString 1 attr This represents the values of textual data elements
(Strings). Note that vt uses the | to separate the values for
the different bitfield masks in case that the semantics of
the related DataPrototype is described by means of a
BITFIELD_TEXTTABLE in the associated CompuMethod.

Tags: xml.sequenceOffset=30

vtf NumericalOrText 1 aggr Thias aggregation represents the ability to provide a value
that is either numerical or text which existence is subject
to variability.

From the formal point of view, the aggregation needs to
have the multiplicity 1 because SwValues is modelled with
stereotype «atpMixed». Nevertheless, the existence of vtf
is optional and subject to constraints.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.256: SwValues

Class SwcBswMapping

Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping

Note Maps an SwcInternalBehavior to an BswInternalBehavior. This is required to coordinate the API
generation and the scheduling for AUTOSAR Service Components, ECU Abstraction Components and
Complex Driver Components by the RTE and the BSW scheduling mechanisms.

Tags: atp.recommendedPackage=SwcBswMappings

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

bswBehavior BswInternalBehavior 1 ref The mapped BswInternalBehavior

runnable
Mapping

SwcBswRunnable
Mapping

* aggr A mapping between a pair of SWC and BSW runnables.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swcBehavior SwcInternalBehavior 1 ref The mapped SwcInternalBehavior.

synchronized
ModeGroup

SwcBswSynchronized
ModeGroupPrototype

* aggr A pair of SWC and BSW mode group prototypes to be
synchronized by the scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

synchronized
Trigger

SwcBswSynchronized
Trigger

* aggr A pair of SWC and BSW Triggers to be synchronized by
the scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.257: SwcBswMapping

1114 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class SwcBswRunnableMapping

Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping

Note Maps a BswModuleEntity to a RunnableEntity if it is implemented as part of a BSW module (in the case of
an AUTOSAR Service, a Complex Driver or an ECU Abstraction). The mapping can be used by a tool to
find relevant information on the behavior, e.g. whether the bswEntity shall be running in interrupt context.

Base ARObject

Attribute Type Mul. Kind Note

bswEntity BswModuleEntity 1 ref The mapped BswModuleEntity

swcRunnable RunnableEntity 1 ref The mapped SWC runnable.

Table D.258: SwcBswRunnableMapping

Class SwcBswSynchronizedTrigger

Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping

Note Synchronizes a Trigger provided by a component via a port with a Trigger provided by a BSW module or
cluster.

Base ARObject

Attribute Type Mul. Kind Note

bswTrigger Trigger 1 ref The BSW Trigger.

swcTrigger Trigger 1 iref The SWC Trigger provided by a particular port.

Table D.259: SwcBswSynchronizedTrigger

Class SwcExclusiveAreaPolicy

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note Options how to generate the ExclusiveArea related APIs. If no SwcExclusiveAreaPolicy is specified for
an ExclusiveArea the default values apply.

Base ARObject

Attribute Type Mul. Kind Note

apiPrinciple ApiPrincipleEnum 1 attr Specifies for this ExclusiveArea if either one common set
of Enter and Exit APIs for the whole software component
is requested from the Rte or if the set of Enter and Exit
APIs is expected per RunnableEntity.
The default value is "common".

exclusiveArea ExclusiveArea 1 ref This reference represents the ExclusiveArea for which the
policy applies.

Table D.260: SwcExclusiveAreaPolicy

Class SwcImplementation

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation

Note This meta-class represents a specialization of the general Implementation meta-class with respect to the
usage in application software.

Tags: atp.recommendedPackage=SwcImplementations

Base ARElement , ARObject , CollectableElement , Identifiable, Implementation, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

5

1115 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwcImplementation

behavior SwcInternalBehavior 1 ref The internal behavior implemented by this
Implementation.

perInstance
MemorySize

PerInstanceMemory
Size

* aggr Allows a definition of the size of the per-instance memory
for this implementation.
The aggregation of PerInstanceMemorySize is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects, in this case PerInstance
Memory.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

required
RTEVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the RTE. The
semantics is that (if the association exists) the
corresponding code has been created to fit to the
vendor-mode RTE provided by this specific vendor.
Attempting to integrate the code with another RTE
generated in vendor mode is in general not possible.

Table D.261: SwcImplementation

Class SwcInternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior

Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant aspects of the
software-component with respect to the RTE, i.e. the RunnableEntities and the RTEEvents they respond
to.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, InternalBehavior , Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

arTypedPer
Instance
Memory

VariableDataPrototype * aggr Defines an AUTOSAR typed memory-block that needs to
be available for each instance of the SW-component.

This is typically only useful if supportsMultipleInstantiation
is set to "true" or if the component defines NVRAM
access via permanent blocks.

The aggregation of arTypedPerInstanceMemory is subject
to variability with the purpose to support variability in the
software component’s implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

event RTEEvent * aggr This is a RTEEvent specified for the particular Swc
InternalBehavior.

The aggregation of RTEEvent is subject to variability with
the purpose to support the conditional existence of RTE
events. Note: the number of RTE events might vary due
to the conditional existence of PortPrototypes using Data

5
5

1116 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwcInternalBehavior

4
ReceivedEvents or due to different scheduling needs of
algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

exclusiveArea
Policy

SwcExclusiveArea
Policy

* aggr Options how to generate the ExclusiveArea related APIs.
When no SwcExclusiveAreaPolicy is specified for an
ExclusiveArea the default values apply.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=exclusiveAreaPolicy
vh.latestBindingTime=preCompileTime

explicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component.
The aggregation of explicitInterRunnableVariable is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

handle
TerminationAnd
Restart

HandleTerminationAnd
RestartEnum

1 attr This attribute controls the behavior with respect to
stopping and restarting. The corresponding AtomicSw
ComponentType may either not support stop and restart,
or support only stop, or support both stop and restart.

implicitInter
Runnable
Variable

VariableDataPrototype * aggr Implement state message semantics for establishing
communication among runnables of the same
component.
The aggregation of implicitInterRunnableVariable is
subject to variability with the purpose to support variability
in the software components implementations. Typically
different algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

includedData
TypeSet

IncludedDataTypeSet * aggr The includedDataTypeSet is used by a software
component for its implementation.

Stereotypes: atpSplitable
Tags: atp.Splitkey=includedDataTypeSet

includedMode
Declaration
GroupSet

IncludedMode
DeclarationGroupSet

* aggr This aggregation represents the included Mode
DeclarationGroups

Stereotypes: atpSplitable
Tags: atp.Splitkey=includedModeDeclarationGroupSet

instantiation
DataDefProps

InstantiationDataDef
Props

* aggr The purpose of this is that within the context of a given
SwComponentType some data def properties of individual
instantiations can be modified.
The aggregation of InstantiationDataDefProps is subject
to variability with the purpose to support the conditional
existence of PortPrototypes and component local
memories like "perInstanceParameter" or "arTypedPer
InstanceMemory".

5
5

1117 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwcInternalBehavior

4
Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=instantiationDataDefProps, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Memory

PerInstanceMemory * aggr Defines a per-instance memory object needed by this
software component.
The aggregation of PerInstanceMemory is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

perInstance
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) that needs
to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true".
The aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOption PortAPIOption * aggr Options for generating the signature of port-related calls
from a runnable to the RTE and vice versa.
The aggregation of PortPrototypes is subject to variability
with the purpose to support the conditional existence of
ports.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=portAPIOption, variationPoint.short
Label
vh.latestBindingTime=preCompileTime

runnable RunnableEntity * aggr This is a RunnableEntity specified for the particular Swc
InternalBehavior.

The aggregation of RunnableEntity is subject to variability
with the purpose to support the conditional existence of
RunnableEntities. Note: the number of RunnableEntities
might vary due to the conditional existence of Port
Prototypes using DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

service
Dependency

SwcService
Dependency

* aggr Defines the requirements on AUTOSAR Services for a
particular item.

The aggregation of SwcServiceDependency is subject to
variability with the purpose to support the conditional
existence of ports as well as the conditional existence of
ServiceNeeds.

The SwcServiceDependency owned by an SwcInternal
Behavior can be located in a different physical file in order

5
5

1118 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwcInternalBehavior

4
to support that SwcServiceDependency might be
provided in later development
steps or even by different expert domain (e.g OBD expert
for Obd related Service Needs) tools. Therefore the
aggregation is «atpSplitable».

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

shared
Parameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s) shared
between SwComponentPrototypes of the same Sw
ComponentType
The aggregation of sharedParameter is subject to
variability with the purpose to support variability in the
software components implementations. Typically different
algorithms in the implementation are requiring different
number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

supports
Multiple
Instantiation

Boolean 1 attr Indicate whether the corresponding software-component
can be multiply instantiated on one ECU. In this case the
attribute will result in an appropriate component API on
programming language level (with or without instance
handle).

variationPoint
Proxy

VariationPointProxy * aggr Proxy of a variation points in the C/C++ implementation.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table D.262: SwcInternalBehavior

Class SwcModeManagerErrorEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This represents the ability to react on errors occurring during mode handling.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

modeGroup ModeDeclarationGroup
Prototype

1 iref This represents the ModeDeclarationGroupPrototype for
which the error behavior of the mode manager applies.

Table D.263: SwcModeManagerErrorEvent

Class SwcModeSwitchEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This event is raised upon a received mode change.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

activation ModeActivationKind 1 attr Specifies if the event is activated on entering or exiting
the referenced Mode.

5

1119 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SwcModeSwitchEvent
mode (ordered) ModeDeclaration 1..2 iref Reference to one or two Modes that initiate the SwcMode

SwitchEvent.

Table D.264: SwcModeSwitchEvent

Class SwcServiceDependency

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServiceMapping

Note Specialization of ServiceDependency in the context of an SwcInternalBehavior. It allows to associate
ports, port groups and (in special cases) data defined for an atomic software component to a given
ServiceNeeds element.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable, ServiceDependency

Attribute Type Mul. Kind Note

assignedData RoleBasedData
Assignment

* aggr Defines the role of an associated data object of the same
component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

assignedPort RoleBasedPort
Assignment

* aggr Defines the role of an associated port of the same
component.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=assignedPort, variationPoint.short
Label
vh.latestBindingTime=preCompileTime

representedPort
Group

PortGroup 0..1 ref This reference specifies an association between the
ServiceNeeeds and a PortGroup, for example to request
a communication mode which applies for communication
via these ports. The referred PortGroup shall be local to
this atomic SWC, but via the links between the Port
Groups, a tool can evaluate this information such that all
the ports linked via this port group on the same ECU can
be found.

serviceNeeds ServiceNeeds 1 aggr The associated ServiceNeeds.

Table D.265: SwcServiceDependency

Class SymbolProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform
to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.266: SymbolProps

1120 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class SynchronousServerCallPoint

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall

Note This means that the RunnableEntity is supposed to perform a blocking wait for a response from the
server.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable, ServerCallPoint

Attribute Type Mul. Kind Note

calledFrom
WithinExclusive
Area

ExclusiveAreaNesting
Order

0..1 ref This indicates that the call point is located at the deepest
level inside one or more ExclusiveAreas that are nested
in the given order.

Table D.267: SynchronousServerCallPoint

Class SystemMapping

Package M2::AUTOSARTemplates::SystemTemplate

Note The system mapping aggregates all mapping aspects (mapping of SW components to ECUs, mapping of
data elements to signals, and mapping constraints).

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

application
PartitionToEcu
Partition
Mapping

ApplicationPartitionTo
EcuPartitionMapping

* aggr Mapping of ApplicationPartitions to EcuPartitions

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

com
Management
Mapping

ComManagement
Mapping

* aggr Mappings between Mode Management PortGroups and
communication channels.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

cryptoService
Mapping

CryptoServiceMapping * aggr This aggregation represents the collection of crypto
service mappings in the context of the enclosing System
Mapping.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

dataMapping DataMapping * aggr The data mappings defined.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild

ecuResource
Mapping

ECUMapping * aggr Mapping of hardware related topology elements onto their
counterpart definitions in
the ECU Resource Template.

atpVariation: The ECU Resource type might be variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

j1939Controller
ApplicationTo
J1939NmNode
Mapping

J1939Controller
ApplicationToJ1939Nm
NodeMapping

* aggr Mapping of a J1939ControllerApplication to a J1939Nm
Node.

mapping
Constraint

MappingConstraint * aggr Constraints that limit the mapping freedom for the
mapping of SW components to ECUs.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

5

1121 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class SystemMapping

pncMapping PncMapping * aggr Mappings between Virtual Function Clusters and Partial
Network Clusters.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

resource
Estimation

EcuResourceEstimation * aggr Resource estimations for this set of mappings, zero or
one per ECU instance.
atpVariation: Used ECUs are variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

signalPath
Constraint

SignalPathConstraint * aggr Constraints that limit the mapping freedom for the
mapping of data elements to signals.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

swImplMapping SwcToImplMapping * aggr The mappings of AtomicSoftwareComponent Instances to
Implementations.

atpVariation: Derived, because SwcToEcuMapping is
variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swMapping SwcToEcuMapping * aggr The mappings of SW components to ECUs.

atpVariation: SWC shall be mapped to other ECUs.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swcTo
Application
Partition
Mapping

SwcToApplication
PartitionMapping

* aggr Allows to map a given SwComponentPrototype to a
formally defined partition at a point in time when the
corresponding EcuInstance is not yet known or defined.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=postBuild

Table D.268: SystemMapping

Class SystemSignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.

Tags: atp.recommendedPackage=SystemSignals

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

dynamicLength Boolean 1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).

physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.

Table D.269: SystemSignal

1122 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class SystemSignalGroup

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note A signal group refers to a set of signals that must always be kept together. A signal group is used to
guarantee the atomic transfer of AUTOSAR composite data types.

The SystemSignalGroup defines a signal grouping on VFB level. On cluster level the Signal grouping is
described by the ISignalGroup element.

Tags: atp.recommendedPackage=SystemSignalGroups

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

systemSignal SystemSignal * ref Reference to a set of SystemSignals that must always be
kept together.

transforming
SystemSignal

SystemSignal 0..1 ref Optional reference to the SystemSignal which shall
contain the transformed (linear) data.

Table D.270: SystemSignalGroup

Class TextTableMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of two DataPrototypes typed by AutosarDataTypes that refer to CompuMethods of
category TEXTTABLE, SCALE_LINEAR_AND_TEXTTABLE or BITFIELD_TEXTTABLE.

Base ARObject

Attribute Type Mul. Kind Note

bitfieldTextTable
MaskFirst

PositiveInteger 0..1 attr This attribute can be used to support the mapping of bit
field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the first
element of the TextTableMapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

bitfieldTextTable
MaskSecond

PositiveInteger 0..1 attr This attribute can be used to support the mapping of bit
field to bit field, boolean values to bit fields, and vice
versa. The attribute defines the bit mask for the second
element of the TextTableMapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

identical
Mapping

Boolean 1 attr If identicalMapping is set == true the values of the two
referenced DataPrototypes do not need any conversion of
the values.

mapping
Direction

MappingDirectionEnum 1 attr Specifies the conversion direction for which the TextTable
Mapping is applicable.

valuePair TextTableValuePair * aggr Defines a pair of values which are translated into each
other.

Table D.271: TextTableMapping

1123 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class TextValueSpecification

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note The purpose of TextValueSpecification is to define the labels that correspond to enumeration values.

Base ARObject , ValueSpecification

Attribute Type Mul. Kind Note

value VerbatimString 1 attr This is the value itself.

Note that vt uses the | operator to separate the values for
the different bitfield masks in case that the semantics of
the related DataPrototype is described by means of a
BITFIELD_TEXTTABLE in the associated CompuMethod.

Table D.272: TextValueSpecification

Class TimingEvent

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note TimingEvent references the RunnableEntity that need to be started in response to the TimingEvent

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

offset TimeValue 0..1 attr The value makes an assumption about the time offset of
the first activation of the RunnableEntity triggered by the
mapped TimingEvent relative to the periodic activation of
the time base of this TimingEvent. Unit: second.

period TimeValue 1 attr Period of timing event in seconds. The value of this
attribute shall be greater than zero.

Table D.273: TimingEvent

Class «atpVariation» TransformationISignalProps (abstract)

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note TransformationISignalProps holds all the attributes for the different TransformationTechnologies that are
ISignal specific.

Tags: vh.latestBindingTime=postBuild

Base ARObject , Describable

Subclasses EndToEndTransformationISignalProps, SOMEIPTransformationISignalProps, UserDefinedTransformation
ISignalProps

Attribute Type Mul. Kind Note

csErrorReaction CSTransformerError
ReactionEnum

0..1 attr Defines whether the transformer chain of client/server
communication coordinates an autonomous error reaction
together with the RTE or whether any error reaction is the
responsibility of the application.

dataPrototype
Transformation
Props

DataPrototype
TransformationProps

* aggr Fine granular modeling of TransfromationProps on the
level of DataPrototypes.

transformer Transformation
Technology

1 ref Reference to the TransformationTechnology description
that contains transformer specific and ISignal
independent configuration properties.

Table D.274: TransformationISignalProps

1124 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class TransformationTechnology

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A TransformationTechnology is a transformer inside a transformer chain.

Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

bufferProperties BufferProperties 1 aggr Aggregation of the mandatory BufferProperties.

hasInternal
State

Boolean 0..1 attr This attribute defines whether the Transformer has an
internal state or not.

needsOriginal
Data

Boolean 0..1 attr Specifies whether this transformer gets access to the
SWC’s original data.

protocol String 1 attr Specifies the protocol that is implemented by this
transformer.

transformation
Description

Transformation
Description

0..1 aggr A transformer can be configured with transformer specific
parameters which are represented by the Transformer
Description.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild

transformer
Class

TransformerClassEnum 1 attr Specifies to which transformer class this transformer
belongs.

version String 1 attr Version of the implemented protocol.

Table D.275: TransformationTechnology

Enumeration TransformerClassEnum
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Specifies the transformer class of a transformer.

Literal Description

custom The transformer is a custom transformer.

Tags: atp.EnumerationValue=0

safety The transformer is a safety transformer.

Tags: atp.EnumerationValue=1

security The transformer is a security transformer.

Tags: atp.EnumerationValue=2

serializer The transformer is a serializing transformer.

Tags: atp.EnumerationValue=3

Table D.276: TransformerClassEnum

Class TransformerHardErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note The event is raised when data are received which should trigger a Client/Server operation or an external
trigger but during transformation of the data a hard transformer error occurred.

Base ARObject , AbstractEvent , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, Multilanguage
Referrable, RTEEvent , Referrable

Attribute Type Mul. Kind Note

5

1125 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class TransformerHardErrorEvent
operation ClientServerOperation 0..1 iref This represents the ClientServerOperation to which the

TransformerHardErrorEvent refers to.
trigger Trigger 0..1 iref Trigger for which the transformer can trigger this

TransformerHardErrorEvent

Table D.277: TransformerHardErrorEvent

Class TransmissionAcknowledgementRequest

Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

Note Requests transmission acknowledgement that data has been sent successfully. Success/failure is
reported via a SendPoint of a RunnableEntity.

Base ARObject

Attribute Type Mul. Kind Note

timeout TimeValue 1 attr Number of seconds before an error is reported or in case
of allowed redundancy, the value is sent again.

Table D.278: TransmissionAcknowledgementRequest

Class Trigger

Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration

Note A trigger which is provided (i.e. released) or required (i.e. used to activate something) in the given
context.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

swImplPolicy SwImplPolicyEnum 0..1 attr This attribute, when set to value queued, allows for a
queued processing of Triggers.

triggerPeriod MultidimensionalTime 0..1 aggr Optional definition of a period in case of a periodically
(time or angle) driven external trigger.

Table D.279: Trigger

Class TriggerInterface

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A trigger interface declares a number of triggers that can be sent by an trigger source.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

trigger Trigger 1..* aggr The Trigger of this trigger interface.

Table D.280: TriggerInterface

1126 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Class TriggerInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of unequal named Triggers in context of two different TriggerInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mul. Kind Note

triggerMapping TriggerMapping 1..* aggr Mapping of two Trigger in two different TriggerInterface

Table D.281: TriggerInterfaceMapping

Class TriggerToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note This meta-class represents the ability to map a trigger to a SystemSignal of size 0. The Trigger does not
transport any other information than its existence, therefore the limitation in terms of signal length.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

systemSignal SystemSignal 1 ref This is the SystemSignal taken to transport the Trigger
over the network.

Tags: xml.sequenceOffset=20

trigger Trigger 1 iref This represents the Trigger that shall be used to trigger
RunnableEntities deployed to a remote ECU.

Tags: xml.sequenceOffset=10

Table D.282: TriggerToSignalMapping

Class Unit
Package M2::MSR::AsamHdo::Units

Note This is a physical measurement unit. All units that might be defined should stem from SI units. In order to
convert one unit into another factor and offset are defined.

For the calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset
(offsetSiToUnit) are applied as follows:

x [{unit}] := y * [{siUnit}] * factorSiToUnit [[unit]/{siUnit}] + offsetSiToUnit [{unit}]

For the calculation from a unit to SI-unit the reciprocal of the factor (factorSiToUnit) and the negation of
the offset (offsetSiToUnit) are applied.

y {siUnit} := (x*{unit} - offsetSiToUnit [{unit}]) / (factorSiToUnit [[unit]/{siUnit}]

Tags: atp.recommendedPackage=Units

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

displayName SingleLanguageUnit
Names

0..1 aggr This specifies how the unit shall be displayed in
documents or in user interfaces of tools.The displayName
corresponds to the Unit.Display in an ASAM MCD-2MC
file.

Tags: xml.sequenceOffset=20

factorSiToUnit Float 0..1 attr This is the factor for the conversion from SI Units to units.

The inverse is used for conversion from units to SI Units.

Tags: xml.sequenceOffset=30

5

1127 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class Unit
offsetSiToUnit Float 0..1 attr This is the offset for the conversion from and to siUnits.

Tags: xml.sequenceOffset=40

physical
Dimension

PhysicalDimension 0..1 ref This association represents the physical dimension to
which the unit belongs to. Note that only values with units
of the same physical dimensions might be converted.

Tags: xml.sequenceOffset=50

Table D.283: Unit

Class «atpMixed» ValueList

Package M2::MSR::DataDictionary::DataDefProperties

Note This is a generic list of numerical values.

Base ARObject

Attribute Type Mul. Kind Note
v Numerical 1 attr This is a particular numerical value without variation.

Tags: xml.sequenceOffset=30

vf (ordered) Numerical * attr This is one entry in the list of numerical values

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true
xml.roleWrapperElement=false
xml.typeElement=false
xml.typeWrapperElement=false

Table D.284: ValueList

Class ValueSpecification (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Constants

Note Base class for expressions leading to a value which can be used to initialize a data object.

Base ARObject

Subclasses AbstractRuleBasedValueSpecification, ApplicationValueSpecification, CompositeValueSpecification,
ConstantReference, NotAvailableValueSpecification, NumericalValueSpecification, ReferenceValue
Specification, TextValueSpecification

Attribute Type Mul. Kind Note

shortLabel Identifier 0..1 attr This can be used to identify particular value specifications
for human readers, for example elements of a record type.

Table D.285: ValueSpecification

Class VariableAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::DataElements

Note The presence of a VariableAccess implies that a RunnableEntity needs access to a VariableData
Prototype.

The kind of access is specified by the role in which the class is used.

Base ARObject , AbstractAccessPoint , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

5

1128 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class VariableAccess
Attribute Type Mul. Kind Note

accessed
Variable

AutosarVariableRef 1 aggr This denotes the accessed variable.

scope VariableAccessScope
Enum

0..1 attr This attribute allows for constraining the scope of the
corresponding communication. For example, it possible to
express whether the communication is intended to cross
the boundary of an ECU or whether it is intended not to
cross the boundary of a single partition.

Table D.286: VariableAccess

Class VariableAndParameterInterfaceMapping

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Defines the mapping of VariableDataPrototypes or ParameterDataPrototypes in context of two different
SenderReceiverInterfaces, NvDataInterfaces or ParameterInterfaces.

Base ARObject , AtpBlueprint , AtpBlueprintable, Identifiable, MultilanguageReferrable, PortInterfaceMapping,
Referrable

Attribute Type Mul. Kind Note

dataMapping DataPrototypeMapping 1..* aggr Defines the mapping of two particular VariableData
Prototypes or ParameterDataPrototypes with unequal
names and/or unequal semantic (resolution or range) in
context of two different SenderReceiverInterfaces, Nv
DataInterfaces or ParameterInterfaces

Table D.287: VariableAndParameterInterfaceMapping

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table D.288: VariableDataPrototype

Class VariationPoint
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling

Note This meta-class represents the ability to express a "structural variation point". The container of the
variation point is part of the selected variant if swSyscond evaluates to true and each postBuildVariant
Criterion is fulfilled.

Base ARObject

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr This allows to describe shortly the purpose of the
variation point.

Tags: xml.sequenceOffset=20

5

1129 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class VariationPoint
blueprint
Condition

DocumentationBlock 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint.

Note that variationPoints are not allowed within a
blueprintCondition.

Tags: xml.sequenceOffset=28

formalBlueprint
Condition

BlueprintFormula 0..1 aggr This denotes a formal blueprintCondition. This shall be
not in contradiction with blueprintCondition or formal
BlueprintGenerator. It is recommended only to use one of
the two.

Tags: atp.Status=obsolete
xml.sequenceOffset=29

formalBlueprint
Generator

BlueprintGenerator 0..1 aggr This represents a description that documents how the
variation point shall be resolved when deriving objects
from the blueprint by using ARMQL.

Note that variationPoints are not allowed within a formal
BlueprintGenerator.

Tags: atp.Status=draft
xml.sequenceOffset=30

postBuildVariant
Condition

PostBuildVariant
Condition

* aggr This is the set of post build variant conditions which all
shall be fulfilled in order to (postbuild) bind the variation
point.

Tags: xml.sequenceOffset=40

sdg Sdg 0..1 aggr An optional special data group is attached to every
variation point. These data can be used by external
software systems to attach application specific data. For
example, a variant management system might add an
identifier, an URL or a specific classifier.

Tags: xml.sequenceOffset=50

shortLabel Identifier 0..1 attr This provides a name to the particular variation point to
support the RTE generator. It is necessary for supporting
splitable aggregations and if binding time is later than
codeGenerationTime, as well as some RTE conditions. It
needs to be unique with in the enclosing Identifiables with
the same ShortName.

Tags: xml.sequenceOffset=10

swSyscond ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point.
Note that the mulitplicity is 0..1 in order to support pure
postBuild variants.

Tags: xml.sequenceOffset=30

Table D.289: VariationPoint

Class VariationPointProxy

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::VariantHandling

Note The VariationPointProxy represents variation points of the C/C++ implementation. In case of bindingTime
= compileTime the RTE provides defines which can be used for Pre Processor directives to implement
compileTime variability.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

5

1130 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class VariationPointProxy

Attribute Type Mul. Kind Note

conditionAccess ConditionByFormula 0..1 aggr This condition acts as Binding Function for the Variation
Point.

implementation
DataType

ImplementationData
Type

0..1 ref This association to ImplementationDataType shall be
taken as an implementation hint by the RTE generator.

postBuildValue
Access

PostBuildVariant
Criterion

0..1 ref This represents the applicable PostBuildVariantCriterion
in the context of a VariationPointProxy.

Note that the technical details how to access the
particular postBuildValueAccess are still considered
internal to the RTE and are consequently not
standardized.

postBuildVariant
Condition

PostBuildVariant
Condition

* aggr This represents that applicable PostBuoldVariant
Condition in the context of aVariationPointProxy.

valueAccess AttributeValueVariation
Point

0..1 aggr This value acts as Binding Function for the VariationPoint.

Table D.290: VariationPointProxy

Class WaitPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTEEvents

Note This defines a wait-point for which the RunnableEntity can wait.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

timeout TimeValue 1 attr Time in seconds before the WaitPoint times out and the
blocking wait call returns with an error indicating the
timeout.

trigger RTEEvent 1 ref This is the RTEEvent this WaitPoint is waiting for.

Table D.291: WaitPoint

Class «atpVariation» SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw
AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess
5

5

1131 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,

invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mul. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags: xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags: xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

• the data type of an array or record element within
an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags: xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags: xml.sequenceOffset=255

5

1132 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.

Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags: xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags: xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags: xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

5
5

1133 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags: xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
Size
Mult (ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

5

1134 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table D.292: SwDataDefProps

1135 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

E Referenced ECUC Configuration Parameters

E.1 Com

E.1.1 ComGroupSignal

SWS Item [ECUC_Com_00520]
Container Name ComGroupSignal
Description This container contains the configuration parameters of group signals.

I.e. signals that are included within a signal group.
Post-Build Variant
Multiplicity

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Name ComBitPosition [ECUC_Com_00259]
Parent Container ComGroupSignal
Description Starting position within the I-PDU. This parameter refers to the position

in the I-PDU and not in the shadow buffer. If the endianness
conversion is configured to Opaque the parameter ComBitPosition
shall define the bit0 of the first byte like in little endian byte order

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComBitSize [ECUC_Com_00158]
Parent Container ComGroupSignal
Description Size in bits, for integer signal types. For ComSignalType UINT8_N and

UINT8_DYN the size shall be configured by ComSignalLength. For
ComSignalTypes FLOAT32 and FLOAT64 the size is already defined
by the signal type and therefore may be omitted.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 64
Default Value
Post-Build Variant
Multiplicity

true

1136 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComHandleId [ECUC_Com_00165]
Parent Container ComGroupSignal
Description The numerical value used as the ID.

This ID identifies signals and signal groups in the COM APIs using
Com_SignalIdType or Com_SignalGroupIdType parameter
respectively.

Multiplicity 0..1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

1137 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComSignalDataInvalidValue [ECUC_Com_00391]
Parent Container ComGroupSignal
Description Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification. In case the ComSignalType is FLOAT32, FLOAT64 the
string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification. In case the ComSignalType is
BOOLEAN the string shall be interpreted as defined in the chapter
Boolean Type in the AUTOSAR EcuC specification. In case the
ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted
as a decimal representation of the characters separated by blanks, e.g.
"97 98 100" means a string "abd", where the char "a" is in byte 0(lowest
address), "b" is in byte 1, and "d" is in byte 2 and (highest address).
For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be
interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

dependency: In case of UINT8_N the length of
ComSignalDataInvalidValue has to be the same as ComSignalLength.

Name ComSignalEndianness [ECUC_Com_00157]
Parent Container ComGroupSignal
Description Defines the endianness of the signal’s network representation.
Multiplicity 1
Type EcucEnumerationParamDef
Range BIG_ENDIAN

LITTLE_ENDIAN
OPAQUE

Post-Build Variant
Value

true

1138 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSignalInitValue [ECUC_Com_00170]
Parent Container ComGroupSignal
Description Initial value for this signal. In case of UINT8_N the default value is a

string of length ComSignalLength with all bytes set to 0x00. In case of
UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification. In case the ComSignalType is FLOAT32, FLOAT64 the
string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification. In case the ComSignalType is
BOOLEAN the string shall be interpreted as defined in the chapter
Boolean Type in the AUTOSAR EcuC specification. In case the
ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted
as a decimal representation of the characters separated by blanks, e.g.
"97 98 100" means a string "abd", where the char "a" is in byte 0(lowest
address), "b" is in byte 1, and "d" is in byte 2 and (highest address).
For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be
interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value 0
Regular Expression
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: In case of UINT8_N the length of ComSignalInitValue
has to be the same as ComSignalLength.

1139 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComSignalLength [ECUC_Com_00437]
Parent Container ComGroupSignal
Description Description: For ComSignalType UINT8_N this parameter specifies the

length n in bytes. For ComSignalType UINT8_DYN it specifies the
maximum length in bytes. For all other types this parameter shall be
ignored.

The supported maximum length is restricted by the used transportation
system. For non TP-PDUs the maximum size of a PDU, and therefore
also of any included signal, is limited by the concrete bus
characteristic. For example, the limit is 8 bytes for CAN and LIN, 64
bytes for CAN FD and 254 for FlexRay.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComSignalType [ECUC_Com_00127]
Parent Container ComGroupSignal
Description The AUTOSAR type of the signal. Whether or not the signal is signed

or unsigned can be found by examining the value of this attribute. This
type could also be used to reserved appropriate storage in AUTOSAR
COM.

Multiplicity 1
Type EcucEnumerationParamDef
Range BOOLEAN

FLOAT32
FLOAT64
SINT16
SINT32
SINT64
SINT8
UINT16
UINT32
UINT64
UINT8

1140 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

UINT8_DYN
UINT8_N

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTimeoutSubstitutionValue [ECUC_Com_10006]
Parent Container ComGroupSignal
Description The signal substitution value will be used in case of a timeout and

ComRxDataTimeoutAction is set to SUBSTITUTE. In case of UINT8_N
the default value is a string of length ComSignalLength with all bytes
set to 0x00.

In case ofUINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification.

In case the ComSignalType is FLOAT32, FLOAT64 the string shall be
interpreted as defined in the chapter Float Type in the AUTOSAR EcuC
specification.

In case the ComSignalType is BOOLEAN the string shall be interpreted
as defined in the chapter Boolean Type in the AUTOSAR EcuC
specification.

In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be
interpreted as a decimal representation of the characters separated by
blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in
byte 0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest
address). For the ComSignalType UINT8_DYN the dynamic length
shall be set to the number of configured characters. An empty string ""
shall be interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1141 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTransferProperty [ECUC_Com_00560]
Parent Container ComGroupSignal
Description Optionally defines whether this group signal shall contribute to the

TRIGGERED_ON_CHANGE transfer property of the signal group. If at
least one group signal of a signal group has the "ComTransferProperty"
configured all other group signals of that signal group shall have the
attribute configured as well.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A change of the value of this group

signal shall not be considered in the
evaluation of the signal groups
ComTransferProperty.

TRIGGERED_ON_CHAN
GE

A change of the value of this group
signal shall be considered in the
evaluation of the signal groups
ComTransferProperty.

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSystemTemplateSystemSignalRef [ECUC_Com_00002]
Parent Container ComGroupSignal
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignal (System Template) which this ComSignal (or
ComGroupSignal) represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

1142 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Dependency
ComFilter 0..1 This container contains the configuration parameters of

the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify
the transmission mode conditions.

E.1.2 ComIPdu

SWS Item [ECUC_Com_00340]
Container Name ComIPdu
Description Contains the configuration parameters of the AUTOSAR COM

module’s I-PDUs.
Post-Build Variant
Multiplicity

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Name ComIPduCallout [ECUC_Com_00387]
Parent Container ComIPdu
Description This parameter defines the existence and the name of a callout

function for the corresponding I-PDU. If this parameter is omitted no
I-PDU callout shall take place for the corresponding I-PDU.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

1143 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name ComIPduCancellationSupport [ECUC_Com_00709]
Parent Container ComIPdu
Description Defines for I-PDUs with ComIPduType NORMAL: If the underlying

IF-modul supports cancellation of transmit requests.

Defines for I-PDUs with ComIPduType TP: If the underlying TP-module
supports RX and TX cancellation of ongoing requests.

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU
dependency: This parameter shall not be set to true if
ComCancellationSupport is set to false

Name ComIPduDirection [ECUC_Com_00493]
Parent Container ComIPdu
Description The direction defines if this I-PDU, and therefore the contributing

signals and signal groups, shall be sent or received.
Multiplicity 1
Type EcucEnumerationParamDef
Range RECEIVE

SEND
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

dependency: If configured to Sent also a ComTxIpdu container shall
be included, see ECUC_Com_00496

1144 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComIPduHandleId [ECUC_Com_00175]
Parent Container ComIPdu
Description The numerical value used as the ID of this I-PDU. The

ComIPduHandleId is required by the API calls Com_RxIndication,
Com_TpRxIndication, Com_StartOfReception and Com_CopyRxData
to receive I-PDUs from the PduR (ComIP-duDirection: Receive), as
well as the PduId passed to an Rx-I-PDU-callout. For Tx-I-PDUs
(ComIPduDirection: Send), this handle Id is used for the APIs calls
Com_TxConfirmation, Com_TriggerTransmit, Com_TriggerIPDUSend
or Com_TriggerIPDUSendWithMetaData, Com_CopyTxData and
Com_TpTxConfirmation to transmit respectively confirm transmissions
of I-PDUs, as well as the PduId passed to the Tx-I-PDU-callout
configured with ComIPduCallout and/or
ComIPduTriggerTransmitCallout.

Multiplicity 0..1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name ComIPduSignalProcessing [ECUC_Com_00119]
Parent Container ComIPdu
Description For the definition of the two modes Immediate and Deferred.
Multiplicity 1
Type EcucEnumerationParamDef
Range DEFERRED signal indication / confirmations are

deferred for example to a cyclic task
IMMEDIATE the signal indications / confirmations

are performed in Com_RxIndication/
Com_TxConfirmation

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

1145 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComIPduTriggerTransmitCallout [ECUC_Com_00765]
Parent Container ComIPdu
Description If there is a trigger transmit callout defined for this I-PDU this

parameter contains the name of the callout function.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name ComIPduType [ECUC_Com_00761]
Parent Container ComIPdu
Description Defines if this I-PDU is a normal I-PDU that can be sent unfragmented

or if this is a large I-PDU that shall be sent via the Transport Protocol of
the underlying bus.

Multiplicity 1
Type EcucEnumerationParamDef
Range NORMAL sent or received via normal L-PDU

TP sent or received via TP
Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComIPduGroupRef [ECUC_Com_00206]
Parent Container ComIPdu
Description Reference to the I-PDU groups this I-PDU belongs to.
Multiplicity 0..*
Type Reference to ComIPduGroup
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

1146 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComIPduSignalGroupRef [ECUC_Com_00519]
Parent Container ComIPdu
Description References to all signal groups contained in this I-Pdu
Multiplicity 0..*
Type Reference to ComSignalGroup
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComIPduSignalRef [ECUC_Com_00518]
Parent Container ComIPdu
Description References to all signals contained in this I-PDU.
Multiplicity 0..*
Type Reference to ComSignal
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

1147 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComPduIdRef [ECUC_Com_00711]
Parent Container ComIPdu
Description Reference to the "global" Pdu structure to allow harmonization of

handle IDs in the COM-Stack.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency
ComIPduCounter 0..1 This optional container contains the configuration

parameters of PDU Counter.
ComIPduReplication 0..1 This optional container contains the information needed

for each I-PDU replicated.
ComTxIPdu 0..1 This container contains additional transmission related

configuration parameters of the AUTOSAR COM
module’s I-PDUs.

E.1.3 ComSignal

SWS Item [ECUC_Com_00344]
Container Name ComSignal
Description Contains the configuration parameters of the AUTOSAR COM

module’s signals.
Post-Build Variant
Multiplicity

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Name ComBitPosition [ECUC_Com_00259]
Parent Container ComSignal
Description Starting position within the I-PDU. This parameter refers to the position

in the I-PDU and not in the shadow buffer. If the endianness
conversion is configured to Opaque the parameter ComBitPosition
shall define the bit0 of the first byte like in little endian byte order

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value

1148 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComBitSize [ECUC_Com_00158]
Parent Container ComSignal
Description Size in bits, for integer signal types. For ComSignalType UINT8_N and

UINT8_DYN the size shall be configured by ComSignalLength. For
ComSignalTypes FLOAT32 and FLOAT64 the size is already defined
by the signal type and therefore may be omitted.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 64
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComDataInvalidAction [ECUC_Com_00314]
Parent Container ComSignal
Description This parameter defines the action performed upon reception of an

invalid signal. Relating to signal groups the action in case if one of the
included signals is an invalid signal. If Replace is used the
ComSignalInitValue will be used for the replacement.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range NOTIFY

REPLACE Literal for DataInvalidAction
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1149 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComErrorNotification [ECUC_Com_00499]
Parent Container ComSignal
Description Only valid on sender side: Name of Com_CbkTxErr callback function

to be called. If this parameter is omitted no error notification shall take
place.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComFirstTimeout [ECUC_Com_00183]
Parent Container ComSignal
Description Defines the length of the first deadline monitoring timeout period in

seconds. This timeout is used immediately after start (or restart) of the
deadline monitoring service. The timeout period of the successive
periods is configured by ECUC_Com_00263.

Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. 3600]
Default Value
Post-Build Variant
Multiplicity

true

1150 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComHandleId [ECUC_Com_00165]
Parent Container ComSignal
Description The numerical value used as the ID.

This ID identifies signals and signal groups in the COM APIs using
Com_SignalIdType or Com_SignalGroupIdType parameter
respectively.

Multiplicity 0..1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name ComInitialValueOnly [ECUC_Com_00811]
Parent Container ComSignal
Description This parameter defines that the respective signal’s initial value shall be

put into the respective PDU but there will not be any update of the
value through the RTE. Thus the Com implementation does not need
to expect any API calls for this signal (group).

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1151 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComInvalidNotification [ECUC_Com_00315]
Parent Container ComSignal
Description Only valid on receiver side: Name of Com_CbkInv callback function to

be called. Name of the function which notifies the RTE about the
reception of an invalidated signal/ signal group. Only applicable if
ComDataInvalidAction is configured to NOTIFY.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComNotification [ECUC_Com_00498]
Parent Container ComSignal
Description On sender side: Name of Com_CbkTxAck callback function to be

called. On receiver side: Name of Com_CbkRxAck callback function to
be called.

If this parameter is omitted no notification shall take place.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

1152 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComRxDataTimeoutAction [ECUC_Com_00412]
Parent Container ComSignal
Description This parameter defines the action performed upon expiration of the

reception deadline monitoring timer.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NONE no replacement shall take place

REPLACE signals shall be replaced by their
ComSignalInitValue

SUBSTITUTE signals shall be replaced by their
ComTimeoutSubstitutionValue

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

1153 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComSignalDataInvalidValue [ECUC_Com_00391]
Parent Container ComSignal
Description Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification. In case the ComSignalType is FLOAT32, FLOAT64 the
string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification. In case the ComSignalType is
BOOLEAN the string shall be interpreted as defined in the chapter
Boolean Type in the AUTOSAR EcuC specification. In case the
ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted
as a decimal representation of the characters separated by blanks, e.g.
"97 98 100" means a string "abd", where the char "a" is in byte 0(lowest
address), "b" is in byte 1, and "d" is in byte 2 and (highest address).
For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be
interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

dependency: In case of UINT8_N the length of
ComSignalDataInvalidValue has to be the same as ComSignalLength.

Name ComSignalEndianness [ECUC_Com_00157]
Parent Container ComSignal
Description Defines the endianness of the signal’s network representation.
Multiplicity 1
Type EcucEnumerationParamDef
Range BIG_ENDIAN

LITTLE_ENDIAN
OPAQUE

Post-Build Variant
Value

true

1154 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSignalInitValue [ECUC_Com_00170]
Parent Container ComSignal
Description Initial value for this signal. In case of UINT8_N the default value is a

string of length ComSignalLength with all bytes set to 0x00. In case of
UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification. In case the ComSignalType is FLOAT32, FLOAT64 the
string shall be interpreted as defined in the chapter Float Type in the
AUTOSAR EcuC specification. In case the ComSignalType is
BOOLEAN the string shall be interpreted as defined in the chapter
Boolean Type in the AUTOSAR EcuC specification. In case the
ComSignal is a UINT8_N, UINT8_DYN the string shall be interpreted
as a decimal representation of the characters separated by blanks, e.g.
"97 98 100" means a string "abd", where the char "a" is in byte 0(lowest
address), "b" is in byte 1, and "d" is in byte 2 and (highest address).
For the ComSignalType UINT8_DYN the dynamic length shall be set to
the number of configured characters. An empty string "" shall be
interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value 0
Regular Expression
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: In case of UINT8_N the length of ComSignalInitValue
has to be the same as ComSignalLength.

1155 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name ComSignalLength [ECUC_Com_00437]
Parent Container ComSignal
Description Description: For ComSignalType UINT8_N this parameter specifies the

length n in bytes. For ComSignalType UINT8_DYN it specifies the
maximum length in bytes. For all other types this parameter shall be
ignored.

The supported maximum length is restricted by the used transportation
system. For non TP-PDUs the maximum size of a PDU, and therefore
also of any included signal, is limited by the concrete bus
characteristic. For example, the limit is 8 bytes for CAN and LIN, 64
bytes for CAN FD and 254 for FlexRay.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComSignalType [ECUC_Com_00127]
Parent Container ComSignal
Description The AUTOSAR type of the signal. Whether or not the signal is signed

or unsigned can be found by examining the value of this attribute. This
type could also be used to reserved appropriate storage in AUTOSAR
COM.

Multiplicity 1
Type EcucEnumerationParamDef
Range BOOLEAN

FLOAT32
FLOAT64
SINT16
SINT32
SINT64
SINT8
UINT16
UINT32
UINT64
UINT8

1156 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

UINT8_DYN
UINT8_N

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTimeout [ECUC_Com_00263]
Parent Container ComSignal
Description Defines the length of the deadline monitoring timeout period in

seconds. The period for the first timeout period can be configured
separately by ECUC_Com_00183.

Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. 3600]
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTimeoutNotification [ECUC_Com_00552]
Parent Container ComSignal
Description On sender side: Name of Com_CbkTxTOut callback function to be

called. On receiver side: Name of Com_CbkRxTOut callback function
to be called.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1157 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTimeoutSubstitutionValue [ECUC_Com_10006]
Parent Container ComSignal
Description The signal substitution value will be used in case of a timeout and

ComRxDataTimeoutAction is set to SUBSTITUTE. In case of UINT8_N
the default value is a string of length ComSignalLength with all bytes
set to 0x00.

In case ofUINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, UINT64,
SINT8, SINT16, SINT32, SINT64 the string shall be interpreted as
defined in the chapter Integer Type in the AUTOSAR EcuC
specification.

In case the ComSignalType is FLOAT32, FLOAT64 the string shall be
interpreted as defined in the chapter Float Type in the AUTOSAR EcuC
specification.

In case the ComSignalType is BOOLEAN the string shall be interpreted
as defined in the chapter Boolean Type in the AUTOSAR EcuC
specification.

In case the ComSignal is a UINT8_N, UINT8_DYN the string shall be
interpreted as a decimal representation of the characters separated by
blanks, e.g. "97 98 100" means a string "abd", where the char "a" is in
byte 0(lowest address), "b" is in byte 1, and "d" is in byte 2 and (highest
address). For the ComSignalType UINT8_DYN the dynamic length
shall be set to the number of configured characters. An empty string ""
shall be interpreted as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

1158 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTransferProperty [ECUC_Com_00232]
Parent Container ComSignal
Description Defines if a write access to this signal can trigger the transmission of

the corresponding I-PDU. If the I-PDU is triggered, depends also on
the transmission mode of the corresponding I-PDU.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A write access to this signal never

triggers the transmission of the
corresponding I-PDU.

TRIGGERED Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU.

TRIGGERED_ON_CHAN
GE

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU, but only in case the written
value is different to the locally stored
(last sent or initial value) in length or
value.

TRIGGERED_ON_CHAN
GE_WITHOUT_REPETITI
ON

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition,
but only in case the written value is
different to the locally stored (last sent
or initial value) in length or value.

TRIGGERED_WITHOUT_
REPETITION

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition.

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1159 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComUpdateBitPosition [ECUC_Com_00257]
Parent Container ComSignal
Description Bit position of update-bit inside I-PDU. If this attribute is omitted then

there is no update-bit. This setting must be consistently on sender and
on receiver side.

Range: 0..63 for CAN and LIN, 0..511 for CAN FD, 0..2031 for FlexRay,
0..4294967295 for TP.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSystemTemplateSystemSignalRef [ECUC_Com_00002]
Parent Container ComSignal
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignal (System Template) which this ComSignal (or
ComGroupSignal) represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1160 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Dependency
ComFilter 0..1 This container contains the configuration parameters of

the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify
the transmission mode conditions.

E.1.4 ComSignalGroup

SWS Item [ECUC_Com_00345]
Container Name ComSignalGroup
Description Contains the configuration parameters of the AUTOSAR COM

module’s signal groups.
Post-Build Variant
Multiplicity

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Name ComDataInvalidAction [ECUC_Com_00314]
Parent Container ComSignalGroup
Description This parameter defines the action performed upon reception of an

invalid signal. Relating to signal groups the action in case if one of the
included signals is an invalid signal. If Replace is used the
ComSignalInitValue will be used for the replacement.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range NOTIFY

REPLACE Literal for DataInvalidAction
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –

1161 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComErrorNotification [ECUC_Com_00499]
Parent Container ComSignalGroup
Description Only valid on sender side: Name of Com_CbkTxErr callback function

to be called. If this parameter is omitted no error notification shall take
place.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComFirstTimeout [ECUC_Com_00183]
Parent Container ComSignalGroup
Description Defines the length of the first deadline monitoring timeout period in

seconds. This timeout is used immediately after start (or restart) of the
deadline monitoring service. The timeout period of the successive
periods is configured by ECUC_Com_00263.

Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. 3600]
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1162 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComHandleId [ECUC_Com_00165]
Parent Container ComSignalGroup
Description The numerical value used as the ID.

This ID identifies signals and signal groups in the COM APIs using
Com_SignalIdType or Com_SignalGroupIdType parameter
respectively.

Multiplicity 0..1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name ComInitialValueOnly [ECUC_Com_00811]
Parent Container ComSignalGroup
Description This parameter defines that the respective signal’s initial value shall be

put into the respective PDU but there will not be any update of the
value through the RTE. Thus the Com implementation does not need
to expect any API calls for this signal (group).

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –

1163 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComInvalidNotification [ECUC_Com_00315]
Parent Container ComSignalGroup
Description Only valid on receiver side: Name of Com_CbkInv callback function to

be called. Name of the function which notifies the RTE about the
reception of an invalidated signal/ signal group. Only applicable if
ComDataInvalidAction is configured to NOTIFY.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComNotification [ECUC_Com_00498]
Parent Container ComSignalGroup
Description On sender side: Name of Com_CbkTxAck callback function to be

called. On receiver side: Name of Com_CbkRxAck callback function to
be called.

If this parameter is omitted no notification shall take place.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1164 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComRxDataTimeoutAction [ECUC_Com_00412]
Parent Container ComSignalGroup
Description This parameter defines the action performed upon expiration of the

reception deadline monitoring timer.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NONE no replacement shall take place

REPLACE signals shall be replaced by their
ComSignalInitValue

SUBSTITUTE signals shall be replaced by their
ComTimeoutSubstitutionValue

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComSignalGroupArrayAccess [ECUC_Com_10003]
Parent Container ComSignalGroup
Description Defines whether the uint8-array based access shall be used for this

ComSignalGroup.
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1165 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name ComTimeout [ECUC_Com_00263]
Parent Container ComSignalGroup
Description Defines the length of the deadline monitoring timeout period in

seconds. The period for the first timeout period can be configured
separately by ECUC_Com_00183.

Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. 3600]
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTimeoutNotification [ECUC_Com_00552]
Parent Container ComSignalGroup
Description On sender side: Name of Com_CbkTxTOut callback function to be

called. On receiver side: Name of Com_CbkRxTOut callback function
to be called.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1166 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTransferProperty [ECUC_Com_00232]
Parent Container ComSignalGroup
Description Defines if a write access to this signal can trigger the transmission of

the corresponding I-PDU. If the I-PDU is triggered, depends also on
the transmission mode of the corresponding I-PDU.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A write access to this signal never

triggers the transmission of the
corresponding I-PDU.

TRIGGERED Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU.

TRIGGERED_ON_CHAN
GE

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU, but only in case the written
value is different to the locally stored
(last sent or initial value) in length or
value.

TRIGGERED_ON_CHAN
GE_WITHOUT_REPETITI
ON

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition,
but only in case the written value is
different to the locally stored (last sent
or initial value) in length or value.

TRIGGERED_WITHOUT_
REPETITION

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition.

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1167 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComUpdateBitPosition [ECUC_Com_00257]
Parent Container ComSignalGroup
Description Bit position of update-bit inside I-PDU. If this attribute is omitted then

there is no update-bit. This setting must be consistently on sender and
on receiver side.

Range: 0..63 for CAN and LIN, 0..511 for CAN FD, 0..2031 for FlexRay,
0..4294967295 for TP.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSystemTemplateSignalGroupRef [ECUC_Com_00001]
Parent Container ComSignalGroup
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignalGroup (SystemTemplate) which this ComSignalGroup
represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1168 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Dependency
ComGroupSignal 0..* This container contains the configuration parameters of

group signals. I.e. signals that are included within a
signal group.

E.2 LdCom

Module SWS Item ECUC_LdCom_00001
Module Name LdCom
Module Description Configuration of the AUTOSAR LdCom module.
Post-Build Variant
Support

true

Supported Config
Variants

VARIANT-LINK-TIME, VARIANT-POST-BUILD, VARIANT-PRE-
COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency
LdComConfig 1 This container contains the configuration parameters

and sub containers of the AUTOSAR LdCom module.
LdComGeneral 1 Contains the general configuration parameters of the

LdCom module.

E.2.1 LdComConfig

SWS Item [ECUC_LdCom_00003]
Container Name LdComConfig
Description This container contains the configuration parameters and sub

containers of the AUTOSAR LdCom module.
Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
LdComIPdu 0..* Contains the configuration parameters of the IPdu inside

LdCom.

E.2.2 LdComIPdu

SWS Item [ECUC_LdCom_00006]
Container Name LdComIPdu
Description Contains the configuration parameters of the IPdu inside LdCom.

1169 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Configuration Parameters

Name LdComApiType [ECUC_LdCom_00002]
Parent Container LdComIPdu
Description Defines if this I-PDU is a normal I-PDU that shall be sent unfragmented

or if this is a large I-PDU that shall be sent via the Transport Protocol of
the underlying bus.

This setting is used by RTE to invoke the proper API.
Multiplicity 1
Type EcucEnumerationParamDef
Range LDCOM_IF sent or received via interface API.

LDCOM_TP sent or received via transport protocol
API.

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComHandleId [ECUC_LdCom_00005]
Parent Container LdComIPdu
Description This is the ID used by RTE to invoke LdCom. A corresponding

shortName is created, which is used for the invocations of the RTE.
The same ID is used for invocations by PduR.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

1170 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name LdComIPduDirection [ECUC_LdCom_00007]
Parent Container LdComIPdu
Description The direction defines if this IPdu, and therefore the contributing signal,

shall be sent or received.
Multiplicity 1
Type EcucEnumerationParamDef
Range LDCOM_RECEIVE

LDCOM_SEND
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name LdComRxCopyRxData [ECUC_LdCom_00013]
Parent Container LdComIPdu
Description Only on receiver side: Name of Rte_LdComCbkCopyRxData callback

function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComRxIndication [ECUC_LdCom_00014]
Parent Container LdComIPdu
Description Only on receiver side: Name of Rte_LdComCbkRxIndication callback

function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

1171 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComRxStartOfReception [ECUC_LdCom_00015]
Parent Container LdComIPdu
Description Only on receiver side: Name of Rte_LdComCbkStartOfReception

callback function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComTpRxIndication [ECUC_LdCom_00016]
Parent Container LdComIPdu
Description Only on receiver side: Name of Rte_LdComCbkTpRxIndication

callback function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

1172 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComTpTxConfirmation [ECUC_LdCom_00017]
Parent Container LdComIPdu
Description Only on sender side: Name of Rte_LdComCbkTpTxConfirmation

callback function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComTxConfirmation [ECUC_LdCom_00021]
Parent Container LdComIPdu
Description Only on sender side: Name of Rte_LdComCbkTxConfirmation callback

function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

1173 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComTxCopyTxData [ECUC_LdCom_00018]
Parent Container LdComIPdu
Description Only on sender side: Name of Rte_LdComCbkCopyTxData callback

function to be called.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComTxTriggerTransmit [ECUC_LdCom_00019]
Parent Container LdComIPdu
Description Only on sender side: Name of Rte_LdComCbkTriggerTransmit callback

function to be called. If defined TriggerTransmit has to be supported for
this signal.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

1174 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComPduRef [ECUC_LdCom_00010]
Parent Container LdComIPdu
Description Reference to the global Pdu.
Multiplicity 1
Type Reference to Pdu

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name LdComSystemTemplateSignalRef [ECUC_LdCom_00011]
Parent Container LdComIPdu
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignal (System Template).
Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

1175 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: ECU

No Included Containers

E.3 EcuC

Module SWS Item ECUC_EcuC_00008
Module Name EcuC
Module Description Virtual module to collect ECU Configuration specific / global

configuration information.
Post-Build Variant
Support

true

Supported Config
Variants

VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers
Container Name Multiplicity Scope / Dependency
EcucConfigSet 0..1 This container contains the configuration parameters

and sub containers of the global PduCollection.
EcucHardware 0..1 Hardware definition of this Ecu.
EcucPartitionCollection 0..1 Collection of Partitions defined for this ECU.
EcucPostBuildVariants 0..1 Collection of toplevel PostBuildSelectable variants.

The PredefinedVariants linked inside this container will
determine how many PostBuildSelectableVariants
exist. If this container exist the name pattern for
initialization of BSW modules will be
<Mip>_Config_<PredefinedVariant.shortName>. If this
container does not exist the name pattern for
initialization of BSW modlues will be <Mip>_Config.

EcucUnitGroupAssignment 0..1 Collection of UnitGroup references to support the
generation of ASAM MCD file.

EcucVariationResolver 0..1 Collection of PredefinedVariant elements containing
definition of values for SwSystemconst which shall be
applied when resolving the variability during ECU
Configuration.

E.3.1 EcucPartition

SWS Item [ECUC_EcuC_00005]
Container Name EcucPartition
Description Definition of one Partition on this ECU. One Partition will be

implemented using one Os-Application.
Post-Build Variant
Multiplicity

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE,
VARIANT-POST-BUILD

Link time –
Post-build time –

Configuration Parameters

1176 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name EcucPartitionBswModuleExecution [ECUC_EcuC_00037]
Parent Container EcucPartition
Description Denotes that this partition will execute BSW Modules. BSW Modules

can only be executed in such partitions.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name EcucPartitionQmBswModuleExecution [ECUC_EcuC_00069]
Parent Container EcucPartition
Description Denotes that this partition will execute QM BSW.
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name PartitionCanBeRestarted [ECUC_EcuC_00006]
Parent Container EcucPartition
Description Specifies the requirement whether the Partition can be restarted. If set

to true all software executing in this partition shall be capable of
handling a restart.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

1177 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name EcucPartitionBswModuleDistinguishedPartition [ECUC_EcuC_00068]
Parent Container EcucPartition
Description This maps the abstract partition of the Bsw Module to a concrete

Partition existing in the ECU.
Multiplicity 0..*
Type Foreign reference to BSW-DISTINGUISHED-PARTITION
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name EcucPartitionSoftwareComponentInstanceRef [ECUC_EcuC_00036]
Parent Container EcucPartition
Description References the SW Component instances from the Ecu Extract that

shall be executed in this partition.
Multiplicity 0..*
Type Instance reference to SW-COMPONENT-PROTOTYPE context: ROO

T-SW-COMPOSITION-PROTOTYPE
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

E.4 NvM

E.4.1 NvMBlockDescriptor

1178 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_NvM_00061]
Container Name NvMBlockDescriptor
Description Container for a management structure to configure the composition of

a given NVRAM Block Management Type. Its multiplicity describes the
number of configured NVRAM blocks, one block is required to be
configured. The NVRAM block descriptors are condensed in the
NVRAM block descriptor table.

Configuration Parameters

Name NvMBlockCrcType [ECUC_NvM_00476]
Parent Container NvMBlockDescriptor
Description Defines CRC data width for the NVRAM block. Default: NVM_CRC16,

i.e. CRC16 will be used if NVM_BLOCK_USE_CRC==true
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NVM_CRC16 (Default) CRC16 will be used if

NVM_BLOCK_USE_CRC==true.
NVM_CRC32 CRC32 is selected for this NVRAM

block if
NVM_BLOCK_USE_CRC==true.

NVM_CRC8 CRC8 is selected for this NVRAM block
if NVM_BLOCK_USE_CRC==true.

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_USE_CRC,
NVM_CALC_RAM_BLOCK_CRC

Name NvMBlockHeaderInclude [ECUC_NvM_00554]
Parent Container NvMBlockDescriptor
Description Defines the header file where the owner of the NVRAM block has the

declarations of the permanent RAM data block, ROM data block (if
configured) and the callback function prototype for each configured
callback. If no permanent RAM block, ROM block or callback functions
are configured then this configuration parameter shall be ignored.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression

1179 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockJobPriority [ECUC_NvM_00477]
Parent Container NvMBlockDescriptor
Description Defines the job priority for a NVRAM block (0 = Immediate priority).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockManagementType [ECUC_NvM_00062]
Parent Container NvMBlockDescriptor
Description Defines the block management type for the NVRAM block.[NVM137]
Multiplicity 1
Type EcucEnumerationParamDef
Range NVM_BLOCK_DATASET NVRAM block is configured to be of

dataset type.
NVM_BLOCK_NATIVE NVRAM block is configured to be of

native type.
NVM_BLOCK_REDUNDA
NT

NVRAM block is configured to be of
redundant type.

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

1180 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMBlockUseAutoValidation [ECUC_NvM_00557]
Parent Container NvMBlockDescriptor
Description Defines whether the RAM Block shall be auto validated during

shutdown phase.

true: if auto validation mechanism is used, false: otherwise
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockUseCrc [ECUC_NvM_00036]
Parent Container NvMBlockDescriptor
Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC

is reserved in RAM and NV memory.

true: CRC will be used for this NVRAM block. false: CRC will not be
used for this NVRAM block.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockUseCRCCompMechanism [ECUC_NvM_00556]
Parent Container NvMBlockDescriptor
Description Defines whether the CRC of the RAM Block shall be compared during

a write job with the CRC which was calculated during the last
successful read or write job.

true: if compare mechanism is used, false: otherwise
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

1181 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: local
dependency: False if NvMBlockUseCrc = False

Name NvMBlockUseSetRamBlockStatus [ECUC_NvM_00552]
Parent Container NvMBlockDescriptor
Description Defines if NvMSetRamBlockStatusApi shall be used for this block or

not.

Note: If NvMSetRamBlockStatusApi is disabled this configuration
parameter shall be ignored.

true: calling of NvMSetRamBlockStatus for this RAM block shall set the
status of the RAM block.

false: calling of NvMSetRamBlockStatus for this RAM block shall be
ignored.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockUseSyncMechanism [ECUC_NvM_00519]
Parent Container NvMBlockDescriptor
Description Defines whether an explicit synchronization mechanism with a RAM

mirror and callback routines for transferring data to and from NvM
module’s RAM mirror is used for NV block. true if synchronization
mechanism is used, false otherwise.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

1182 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMBlockWriteProt [ECUC_NvM_00033]
Parent Container NvMBlockDescriptor
Description Defines an initial write protection of the NV block

true: Initial block write protection is enabled. false: Initial block write
protection is disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBswMBlockStatusInformation [ECUC_NvM_00551]
Parent Container NvMBlockDescriptor
Description This parameter specifies whether BswM is informed about the current

status of the specified block.

True: Call BswM_NvM_CurrentBlockMode on changes False: Don’t
inform BswM at all

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMCalcRamBlockCrc [ECUC_NvM_00119]
Parent Container NvMBlockDescriptor
Description Defines CRC (re)calculation for the permanent RAM block or NVRAM

blocks which are configured to use explicit synchronization mechanism.

true: CRC will be (re)calculated for this permanent RAM block. false:
CRC will not be (re)calculated for this permanent RAM block.

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1183 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_USE_CRC

Name NvMInitBlockCallback [ECUC_NvM_00116]
Parent Container NvMBlockDescriptor
Description Entry address of a block specific callback routine which shall be called

if no ROM data is available for initialization of the NVRAM block.

If not configured, no specific callback routine shall be called for
initialization of the NVRAM block with default data.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMMaxNumOfReadRetries [ECUC_NvM_00533]
Parent Container NvMBlockDescriptor
Description Defines the maximum number of read retries.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 7
Default Value 0
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

1184 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: local

Name NvMMaxNumOfWriteRetries [ECUC_NvM_00499]
Parent Container NvMBlockDescriptor
Description Defines the maximum number of write retries for a NVRAM block with

[ECUC_NvM_00061]. Regardless of configuration a consistency check
(and maybe write retries) are always forced for each block which is
processed by the request NvM_WriteAll and NvM_WriteBlock.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 7
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMNvBlockBaseNumber [ECUC_NvM_00478]
Parent Container NvMBlockDescriptor
Description Configuration parameter to perform the link between the

NVM_NVRAM_BLOCK_IDENTIFIER used by the SW-Cs and the
FEE_BLOCK_NUMBER expected by the memory abstraction modules.
The parameter value equals the FEE_BLOCK_NUMBER or
EA_BLOCK_NUMBER shifted to the right by NvMDatasetSelectionBits
bits. (ref. to chapter 7.1.2.1).

Calculation Formula: value = TargetBlockRefer-
ence.[Ea/Fee]BlockConfiguration.[Ea/Fee]BlockNumber »
NvMDatasetSelectionBits

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65534
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: FEE_BLOCK_NUMBER, EA_BLOCK_NUMBER

1185 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMNvBlockLength [ECUC_NvM_00479]
Parent Container NvMBlockDescriptor
Description Defines the NV block data length in bytes.

Note: The implementer can add the attribute ’withAuto’ to the
parameter definition which indicates that the length can be calculated
by the generator automatically (e.g. by using the sizeof operator).
When ’withAuto’ is set to ’true’ for this parameter definition the
’isAutoValue’ can be set to ’true’. If ’isAutoValue’ is set to ’true’ the
actual value will not be considered during ECU Configuration but will
be (re-)calculated by the code generator and stored in the value
attribute afterwards.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65535
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMNvBlockNum [ECUC_NvM_00480]
Parent Container NvMBlockDescriptor
Description Defines the number of multiple NV blocks in a contiguous area

according to the given block management type.

1-255 For NVRAM blocks to be configured of block management type
NVM_BLOCK_DATASET. The actual range is limited according to
SWS_NvM_00444.

1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_NATIVE

2 For NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 255
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_MANAGEMENT_TYPE

1186 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMNvramBlockIdentifier [ECUC_NvM_00481]
Parent Container NvMBlockDescriptor
Description Identification of a NVRAM block via a unique block identifier.

Implementation Type: NvM_BlockIdType.

min = 2 max = 2ˆ (16- NVM_DATASET_SELECTION_BITS)-1

Reserved NVRAM block IDs: 0 -> to derive multi block request results
via NvM_GetErrorStatus 1 -> redundant NVRAM block which holds the
configuration ID (generation tool should check that this block is
correctly configured from type,CRC and size point of view)

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 2 .. 65535
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local
dependency: NVM_DATASET_SELECTION_BITS

Name NvMNvramDeviceId [ECUC_NvM_00035]
Parent Container NvMBlockDescriptor
Description Defines the NVRAM device ID where the NVRAM block is located.

Calculation Formula: value = TargetBlockRefer-
ence.[Ea/Fee]BlockConfiguration.[Ea/Fee]DeviceIndex

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 1
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: EA_DEVICE_INDEX, FEE_DEVICE_INDEX

1187 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMRamBlockDataAddress [ECUC_NvM_00482]
Parent Container NvMBlockDescriptor
Description Defines the start address of the RAM block data.

If this is not configured, no permanent RAM data block is available for
the selected block management type.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMReadRamBlockFromNvCallback [ECUC_NvM_00521]
Parent Container NvMBlockDescriptor
Description Entry address of a block specific callback routine which shall be called

in order to let the application copy data from the NvM module’s mirror
to RAM block. Implementation type: Std_ReturnType

E_OK: copy was successful E_NOT_OK: copy was not successful,
callback routine to be called again

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

1188 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMResistantToChangedSw [ECUC_NvM_00483]
Parent Container NvMBlockDescriptor
Description Defines whether a NVRAM block shall be treated resistant to

configuration changes or not. If there is no default data available at
configuration time then the application shall be responsible for
providing the default initialization data. In this case the application has
to use NvM_GetErrorStatus()to be able to distinguish between first
initialization and corrupted data.

true: NVRAM block is resistant to changed software. false: NVRAM
block is not resistant to changed software.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMRomBlockDataAddress [ECUC_NvM_00484]
Parent Container NvMBlockDescriptor
Description Defines the start address of the ROM block data.

If not configured, no ROM block is available for the selected block
management type.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

1189 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name NvMRomBlockNum [ECUC_NvM_00485]
Parent Container NvMBlockDescriptor
Description Defines the number of multiple ROM blocks in a contiguous area

according to the given block management type.

0-254 For NVRAM blocks to be configured of block management type
NVM_BLOCK_DATASET. The actual range is limited according to
SWS_NvM_00444.

0-1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_NATIVE

0-1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 254
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_MANAGEMENT_TYPE,
NVM_NV_BLOCK_NUM

Name NvMSelectBlockForFirstInitAll {NVM_SELECT_BLOCK_FOR_FIRST_I
NIT_ALL} [ECUC_NvM_00558]

Parent Container NvMBlockDescriptor
Description Defines whether a block will be processed or not by NvM_FirstInitAll. A

block can be configured to be processed even if it doesn’t have
permanent RAM and/or explicit synchronization.

TRUE: block will be processed by NvM_FirstInitAll

FALSE: block will not be processed by NvM_FirstInitAll
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

1190 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMSelectBlockForReadAll [ECUC_NvM_00117]
Parent Container NvMBlockDescriptor
Description Defines whether a NVRAM block shall be processed during

NvM_ReadAll or not. This configuration parameter has only influence
on those NVRAM blocks which are configured to have a permanent
RAM block or which are configured to use explicit synchronization
mechanism.

true: NVRAM block shall be processed by NvM_ReadAll false: NVRAM
block shall not be processed by NvM_ReadAll

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_RAM_BLOCK_DATA_ADDRESS

Name NvMSelectBlockForWriteAll [ECUC_NvM_00549]
Parent Container NvMBlockDescriptor
Description Defines whether a NVRAM block shall be processed during

NvM_WriteAll or not. This configuration parameter has only influence
on those NVRAM blocks which are configured to have a permanent
RAM block or which are configured to use explicit synchronization
mechanism.

true: NVRAM block shall be processed by NvM_WriteAll false: NVRAM
block shall not be processed by NvM_WriteAll

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Multiplicity

false

1191 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_RAM_BLOCK_DATA_ADDRESS

Name NvMSingleBlockCallback [ECUC_NvM_00506]
Parent Container NvMBlockDescriptor
Description Entry address of the block specific callback routine which shall be

invoked on termination of each asynchronous single block request
[NVM113].

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMStaticBlockIDCheck [ECUC_NvM_00532]
Parent Container NvMBlockDescriptor
Description Defines if the Static Block ID check is enabled.

false: Static Block ID check is disabled. true: Static Block ID check is
enabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

1192 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteBlockOnce [ECUC_NvM_00072]
Parent Container NvMBlockDescriptor
Description Defines write protection after first write. The NVRAM manager sets the

write protection bit either after the NV block was written the first time or
if the block was already written and it is detected as valid and
consistent during a read for it. [NVM276].

true: Defines write protection after first write is enabled.

false: Defines write protection after first write is disabled.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteRamBlockToNvCallback [ECUC_NvM_00520]
Parent Container NvMBlockDescriptor
Description Entry address of a block specific callback routine which shall be called

in order to let the application copy data from RAM block to NvM
module’s mirror. Implementation type: Std_ReturnType

E_OK: copy was successful E_NOT_OK: copy was not successful,
callback routine to be called again

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

1193 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteVerification [ECUC_NvM_00534]
Parent Container NvMBlockDescriptor
Description Defines if Write Verification is enabled.

false: Write verification is disabled. true: Write Verification is enabled.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteVerificationDataSize [ECUC_NvM_00538]
Parent Container NvMBlockDescriptor
Description Defines the number of bytes to compare in each step when comparing

the content of a RAM Block and a block read back.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65535
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
NvMTargetBlock
Reference

1 This parameter is just a container for the parameters for
EA and FEE

E.5 Os

E.5.1 OsAlarm

1194 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

SWS Item [ECUC_Os_00003]
Container Name OsAlarm
Description An OsAlarm may be used to asynchronously inform or activate a

specific task. It is possible to start alarms automatically at system
start-up depending on the application mode.

Configuration Parameters

Name OsAlarmAccessingApplication [ECUC_Os_00004]
Parent Container OsAlarm
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name OsAlarmCounterRef [ECUC_Os_00005]
Parent Container OsAlarm
Description Reference to the assigned counter for that alarm
Multiplicity 1
Type Reference to OsCounter

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
OsAlarmAction 1 This container defines which type of notification is used

when the alarm expires.
OsAlarmAutostart 0..1 If present this container defines if an alarm is started

automatically at system start-up depending on the
application mode.

1195 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

E.5.2 OsApplication

SWS Item [ECUC_Os_00114]
Container Name OsApplication
Description An AUTOSAR OS must be capable of supporting a collection of OS

objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

All objects which belong to the same OS-Application have access to
each other. Access means to allow to use these objects within API
services.

Access by other applications can be granted separately.
Configuration Parameters

Name OsTrusted [ECUC_Os_00115]
Parent Container OsApplication
Description Parameter to specify if an OS-Application is trusted or not.

true: OS-Application is trusted false: OS-Application is not trusted
(default)

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Name OsTrustedApplicationDelayTimingViolationCall [ECUC_Os_00395]
Parent Container OsApplication
Description Parameter to specify if a timing violation which occurs within an trusted

OS-Application is raised immediately of if it is delayed until the current
task returns to the calling OS-Application (return of
CallTrustedFunction) true: violation / call to ProtectionHook() is delayed
false: timing violation cause an immediate call to the ProtectionHook().

Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

1196 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name OsTrustedApplicationWithProtection [ECUC_Os_00394]
Parent Container OsApplication
Description Parameter to specify if a trusted OS-Application is executed with

memory protection or not.

true: OS-Application runs within a protected environment. This means
that write access is limited. false: OS-Application has full write access
(default)

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsAppAlarmRef [ECUC_Os_00231]
Parent Container OsApplication
Description Specifies the OsAlarms that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsAlarm
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsAppCounterRef [ECUC_Os_00234]
Parent Container OsApplication
Description References the OsCounters that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsCounter
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1197 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsAppEcucPartitionRef [ECUC_Os_00392]
Parent Container OsApplication
Description Denotes which "EcucPartition" is implemented by this "OSApplication".
Multiplicity 0..1
Type Reference to EcucPartition
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name OsAppIsrRef [ECUC_Os_00221]
Parent Container OsApplication
Description references which OsIsrs belong to the OsApplication
Multiplicity 0..*
Type Reference to OsIsr
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

1198 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name OsApplicationCoreRef [ECUC_Os_00393]
Parent Container OsApplication
Description Reference to the Core Definition in the Ecuc Module where the CoreId

is defined. This reference is used to describe to which Core the
OsApplication is bound.

Multiplicity 0..1
Type Reference to EcucCoreDefinition
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsAppScheduleTableRef [ECUC_Os_00230]
Parent Container OsApplication
Description References the OsScheduleTables that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsScheduleTable
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsAppTaskRef [ECUC_Os_00116]
Parent Container OsApplication
Description references which OsTasks belong to the OsApplication
Multiplicity 0..*
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

1199 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsRestartTask [ECUC_Os_00120]
Parent Container OsApplication
Description Optionally one task of an OS-Application may be defined as Restart

Task.

Multiplicity = 1: Restart Task is activated by the Operating System if the
protection hook requests it.

Multiplicity = 0: No task is automatically started after a protection error
happened.

Multiplicity 0..1
Type Reference to OsTask
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Included Containers
Container Name Multiplicity Scope / Dependency
OsApplicationHooks 1 Container to structure the OS-Application-specific hooks
OsApplicationTrusted
Function

0..* Container to structure the configuration parameters of
trusted functions

E.5.3 OsCounter

SWS Item [ECUC_Os_00026]
Container Name OsCounter
Description Configuration information for the counters that belong to the

OsApplication.

1200 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Configuration Parameters

Name OsCounterMaxAllowedValue [ECUC_Os_00027]
Parent Container OsCounter
Description Maximum possible allowed value of the system counter in ticks.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterMinCycle [ECUC_Os_00028]
Parent Container OsCounter
Description The MINCYCLE attribute specifies the minimum allowed number of

counter ticks for a cyclic alarm linked to the counter.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterTicksPerBase [ECUC_Os_00029]
Parent Container OsCounter
Description The TICKSPERBASE attribute specifies the number of ticks required to

reach a counterspecific unit. The interpretation is
implementation-specific.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 4294967295
Default Value
Post-Build Variant
Value

false

1201 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterType [ECUC_Os_00255]
Parent Container OsCounter
Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EcucEnumerationParamDef
Range HARDWARE This counter is driven by some

hardware e.g. a hardware timer unit.
SOFTWARE The counter is driven by some software

which calls the IncrementCounter
service.

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsSecondsPerTick [ECUC_Os_00030]
Parent Container OsCounter
Description Time of one counter tick in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range [0 .. INF]
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

1202 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name OsCounterAccessingApplication [ECUC_Os_00031]
Parent Container OsCounter
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
OsDriver 0..1 This Container contains the information who will drive

the counter. This configuration is only valid if the counter
has OsCounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL).

If the container exists the OS can use the GPT interface
to manage the timer. The user have to supply the GPT
channel.

If the counter is driven by some other (external to the
OS) source (like a TPU for example) this must be
described as a vendor specific extension.

OsTimeConstant 0..* Allows the user to define constants which can be e.g.
used to compare time values with timer tick values.
A time value will be converted to a timer tick

value during generation and can later on accessed

via the OsConstName. The conversation is done by

rounding time values to the nearest fitting tick

value.

E.5.4 OsEvent

SWS Item [ECUC_Os_00033]
Container Name OsEvent
Description Representation of OS events in the configuration context. Adopted

from the ISO 17356-6 specification.
Configuration Parameters

1203 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name OsEventMask [ECUC_Os_00034]
Parent Container OsEvent
Description If event mask would be set to AUTO in OIL, this parameter should be

omitted here.
Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

E.5.5 OsScheduleTable

SWS Item [ECUC_Os_00141]
Container Name OsScheduleTable
Description An OsScheduleTable addresses the synchronization issue by providing

an encapsulation of a statically defined set of alarms that cannot be
modified at runtime.

Configuration Parameters

Name OsScheduleTableDuration [ECUC_Os_00053]
Parent Container OsScheduleTable
Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

1204 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: local

Name OsScheduleTableRepeating [ECUC_Os_00144]
Parent Container OsScheduleTable
Description true: first expiry point on the schedule table shall be processed at final

expiry point delay ticks after the final expiry point is processed.

false: the schedule table processing stops when the final expiry point is
processed.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsScheduleTableCounterRef [ECUC_Os_00145]
Parent Container OsScheduleTable
Description This parameter contains a reference to the counter which drives the

schedule table.
Multiplicity 1
Type Reference to OsCounter

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsSchTblAccessingApplication [ECUC_Os_00054]
Parent Container OsScheduleTable
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

1205 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Dependency
OsScheduleTable
Autostart

0..1 This container specifies if and how the schedule table is
started on startup of the Operating System. The options
to start a schedule table correspond to the API calls to
start schedule tables during runtime.

OsScheduleTableExpiry
Point

1..* The point on a Schedule Table at which the OS activates
tasks and/or sets events

OsScheduleTableSync 0..1 This container specifies the synchronization parameters
of the schedule table.

E.5.6 OsScheduleTableExpiryPoint

SWS Item [ECUC_Os_00143]
Container Name OsScheduleTableExpiryPoint
Description The point on a Schedule Table at which the OS activates tasks and/or

sets events
Configuration Parameters

Name OsScheduleTblExpPointOffset [ECUC_Os_00062]
Parent Container OsScheduleTableExpiryPoint
Description The offset from zero (in ticks) at which the expiry point is to be

processed.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency
OsScheduleTableEvent
Setting

0..* Event that is triggered by that schedule table.

OsScheduleTableTask
Activation

0..* Task that is triggered by that schedule table.

1206 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

OsScheduleTbl
AdjustableExpPoint

0..1 Adjustable expiry point

E.5.7 OsTask

SWS Item [ECUC_Os_00073]
Container Name OsTask
Description This container represents an ISO 17356 task.
Configuration Parameters

Name OsTaskActivation [ECUC_Os_00074]
Parent Container OsTask
Description This attribute defines the maximum number of queued activation

requests for the task. A value equal to "1" means that at any time only
a single activation is permitted for this task. Note that the value must
be a natural number starting at 1.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 4294967295
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsTaskPriority [ECUC_Os_00075]
Parent Container OsTask
Description The priority of a task is defined by the value of this attribute. This value

has to be understood as a relative value, i.e. the values show only the
relative ordering of the tasks.

ISO 17356-3 defines the lowest priority as zero (0); larger values
correspond to higher priorities.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

1207 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Name OsTaskSchedule [ECUC_Os_00076]
Parent Container OsTask
Description The OsTaskSchedule attribute defines the preemptability of the task.

If this attribute is set to NON, no internal resources may be assigned to
this task.

Multiplicity 1
Type EcucEnumerationParamDef
Range FULL Task is preemptable.

NON Task is not preemptable.
Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsMemoryMappingCodeLocationRef [ECUC_Os_00402]
Parent Container OsTask
Description Reference to the memory mapping containing details about the section

where the code is placed.
Multiplicity 0..1
Type Foreign reference to SW-ADDR-METHOD

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsTaskAccessingApplication [ECUC_Os_00077]
Parent Container OsTask
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

1208 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Scope / Dependency scope: local

Name OsTaskEventRef [ECUC_Os_00078]
Parent Container OsTask
Description This reference defines the list of events the extended task may react

on.
Multiplicity 0..*
Type Reference to OsEvent
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsTaskResourceRef [ECUC_Os_00079]
Parent Container OsTask
Description This reference defines a list of resources accessed by this task.
Multiplicity 0..*
Type Reference to OsResource
Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time X All Variants

Link time –
Post-build time –

Value Configuration
Class

Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

1209 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Included Containers
Container Name Multiplicity Scope / Dependency
OsTaskAutostart 0..1 This container determines whether the task is activated

during the system start-up procedure or not for some
specific application modes.

If the task shall be activated during the system start-up,
this container is present and holds the references to the
application modes in which the task is auto-started.

OsTaskTimingProtection 0..1 This container contains all parameters regarding timing
protection of the task.

1210 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

F Examples

This chapter contains more detailed information for examples which were shown inside
the preceding chapters of the specification.

F.1 ModeDeclarationGroupMapping

The example for Mapping of ModeDeclarations in chapter 4.4.10 is based on the
following ARXML:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="

http://autosar.org/schema/r4.0" xsi:schemaLocation="http://autosar.
org/schema/r4.0 AUTOSAR_4-2-1.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Demo</SHORT-NAME>
<DESC>

<L-2 L="EN">Example about Connection of Mode Managers and Mode
Users with different number of ModeDeclarations</L-2>

</DESC>
<CATEGORY>EXAMPLE</CATEGORY>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>SwComponentTypes</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>ModeManager</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>EcuState</SHORT-NAME>
<PROVIDED-COM-SPECS>

<MODE-SWITCH-SENDER-COM-SPEC>
<ENHANCED-MODE-API>true</ENHANCED-MODE-API>
<MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-

PROTOTYPE">/Demo/PortInterfaces/
EcuStatesExtended/EcuStatesExtended</MODE-
GROUP-REF>

<QUEUE-LENGTH>1</QUEUE-LENGTH>
</MODE-SWITCH-SENDER-COM-SPEC>

</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF DEST="MODE-SWITCH-INTERFACE"

>/Demo/PortInterfaces/EcuStatesExtended</PROVIDED
-INTERFACE-TREF>

</P-PORT-PROTOTYPE>
</PORTS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ModeUser</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>EcuState</SHORT-NAME>
<REQUIRED-COM-SPECS>

1211 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<MODE-SWITCH-RECEIVER-COM-SPEC>
<ENHANCED-MODE-API>1</ENHANCED-MODE-API>
<SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>false</

SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>
</MODE-SWITCH-RECEIVER-COM-SPEC>

</REQUIRED-COM-SPECS>
<REQUIRED-INTERFACE-TREF DEST="MODE-SWITCH-INTERFACE"

>/Demo/PortInterfaces/EcuStatesBasic</REQUIRED-
INTERFACE-TREF>

</R-PORT-PROTOTYPE>
</PORTS>

</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>

<SHORT-NAME>DemoEcu</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>ModeManager</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ModeManager</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ModeUser</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ModeUser</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
<CONNECTORS>

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>ModeManager_EcuState_ModeUser_EcuState</

SHORT-NAME>
<MAPPING-REF DEST="MODE-INTERFACE-MAPPING">/Demo/

PortInterfaceMappingSets/
ModeSwitchInterfaceMapping/
EcuStatesExtended_2_EcuStatesBasic</MAPPING-REF>

<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE

">/Demo/SwComponentTypes/DemoEcu/ModeManager</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ModeManager/EcuState</TARGET-P
-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE
">/Demo/SwComponentTypes/DemoEcu/ModeUser</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ModeUser/EcuState</TARGET-R-
PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

</CONNECTORS>
</COMPOSITION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

1212 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>

<MODE-SWITCH-INTERFACE>
<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<MODE-GROUP>

<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS

>
<TYPE-TREF DEST="MODE-DECLARATION-GROUP">/Demo/

ModeDeclarationGroups/EcuStatesBasic</TYPE-TREF>
</MODE-GROUP>

</MODE-SWITCH-INTERFACE>
<MODE-SWITCH-INTERFACE>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<MODE-GROUP>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS

>
<TYPE-TREF DEST="MODE-DECLARATION-GROUP">/Demo/

ModeDeclarationGroups/EcuStatesExtended</TYPE-TREF>
</MODE-GROUP>

</MODE-SWITCH-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>ModeDeclarationGroups</SHORT-NAME>
<ELEMENTS>

<MODE-DECLARATION-GROUP>
<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<CATEGORY>EXPLICIT_ORDER</CATEGORY>
<INITIAL-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/STARTUP</INITIAL
-MODE-REF>

<MODE-DECLARATIONS>
<MODE-DECLARATION>

<SHORT-NAME>STARTUP</SHORT-NAME>
<DESC>

<L-2 L="EN">Startup phase of the Ecu</L-2>
</DESC>
<VALUE>1</VALUE>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>RUN</SHORT-NAME>
<DESC>

<L-2 L="EN">Run phase of the Ecu</L-2>
</DESC>
<VALUE>2</VALUE>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>POST_RUN</SHORT-NAME>
<DESC>

<L-2 L="EN">post run phase of the Ecu</L-2>
</DESC>
<VALUE>3</VALUE>

</MODE-DECLARATION>

1213 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<MODE-DECLARATION>
<SHORT-NAME>SHUTDOWN</SHORT-NAME>
<DESC>

<L-2 L="EN">shutdown phase of the Ecu</L-2>
</DESC>
<VALUE>4</VALUE>

</MODE-DECLARATION>
</MODE-DECLARATIONS>
<MODE-TRANSITIONS>
<MODE-TRANSITION>

<SHORT-NAME>STARTUP_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/RUN</ENTERED-
MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/STARTUP</
EXITED-MODE-REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>STARTUP_POST_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</
ENTERED-MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/STARTUP</
EXITED-MODE-REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>RUN_POST_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</
ENTERED-MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/RUN</EXITED-
MODE-REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>POST_RUN_SHUTDOWN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</
ENTERED-MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/POST_RUN</
EXITED-MODE-REF>

</MODE-TRANSITION>
</MODE-TRANSITIONS>
<ON-TRANSITION-VALUE>0</ON-TRANSITION-VALUE>

</MODE-DECLARATION-GROUP>
<MODE-DECLARATION-GROUP>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<CATEGORY>ALPHABETIC_ORDER</CATEGORY>
<INITIAL-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesExtended/StartUp</
INITIAL-MODE-REF>

<MODE-DECLARATIONS>
<MODE-DECLARATION>

1214 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>StartUp</SHORT-NAME>
<DESC>

<L-2 L="EN">Start up phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Run</SHORT-NAME>
<DESC>

<L-2 L="EN">Run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>PostRun1</SHORT-NAME>
<DESC>

<L-2 L="EN">First post run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>PostRun2</SHORT-NAME>
<DESC>

<L-2 L="EN">Second post run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>ShutDown</SHORT-NAME>
<DESC>

<L-2 L="EN">Shut down phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Sleep</SHORT-NAME>
<DESC>

<L-2 L="EN">Sleep mode of the Ecu with reduced
functionality</L-2>

</DESC>
</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Hibernate</SHORT-NAME>
<DESC>

<L-2 L="EN">Hibernate mode of the Ecu with extreme
reduced functionality</L-2>

</DESC>
</MODE-DECLARATION>

</MODE-DECLARATIONS>
</MODE-DECLARATION-GROUP>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>PortInterfaceMappingSets</SHORT-NAME>
<ELEMENTS>

<MODE-DECLARATION-MAPPING-SET>
<SHORT-NAME>EcuStateMapping</SHORT-NAME>
<MODE-DECLARATION-MAPPINGS>

<MODE-DECLARATION-MAPPING>
<SHORT-NAME>StartUp_2_STARTUP_</SHORT-NAME>
<FIRST-MODE-REFS>

1215 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/StartUp
</FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/STARTUP</
SECOND-MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>Run_2_RUN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/Run</
FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/RUN</SECOND-
MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>PostRunX_2_POST_RUN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/
PostRun1</FIRST-MODE-REF>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/
PostRun2</FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</
SECOND-MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>ShutDown_2_SHUTDOWN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/
ShutDown</FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</
SECOND-MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>Sleep_Hibernate_2_SHUTDOWN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/Sleep</
FIRST-MODE-REF>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/
Hibernate</FIRST-MODE-REF>

</FIRST-MODE-REFS>

1216 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</
SECOND-MODE-REF>

</MODE-DECLARATION-MAPPING>
</MODE-DECLARATION-MAPPINGS>

</MODE-DECLARATION-MAPPING-SET>
<PORT-INTERFACE-MAPPING-SET>

<SHORT-NAME>ModeSwitchInterfaceMapping</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>

<MODE-INTERFACE-MAPPING>
<SHORT-NAME>EcuStatesExtended_2_EcuStatesBasic</SHORT

-NAME>
<MODE-MAPPING>

<FIRST-MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-
PROTOTYPE">/Demo/PortInterfaces/
EcuStatesExtended/EcuStatesExtended</FIRST-MODE
-GROUP-REF>

<MODE-DECLARATION-MAPPING-SET-REF DEST="MODE-
DECLARATION-MAPPING-SET">/Demo/
PortInterfaceMappingSets/EcuStateMapping</MODE-
DECLARATION-MAPPING-SET-REF>

<SECOND-MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP
-PROTOTYPE">/Demo/PortInterfaces/EcuStatesBasic
/EcuStatesBasic</SECOND-MODE-GROUP-REF>

</MODE-MAPPING>
</MODE-INTERFACE-MAPPING>

</PORT-INTERFACE-MAPPINGS>
</PORT-INTERFACE-MAPPING-SET>

</ELEMENTS>
</AR-PACKAGE>

</AR-PACKAGES>
</AR-PACKAGE>

</AR-PACKAGES>
</AUTOSAR>

F.2 Stability need for received data

The example for Stability need for received data in example 4.7 is based on the
following ARXML:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="

http://autosar.org/schema/r4.0" xsi:schemaLocation="http://autosar.
org/schema/r4.0 AUTOSAR_4-2-1.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Demo</SHORT-NAME>
<CATEGORY>EXAMPLE</CATEGORY>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>SwComponentTypes</SHORT-NAME>
<ELEMENTS>

<COMPOSITION-SW-COMPONENT-TYPE>

1217 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>COMP_1</SHORT-NAME>
<DESC><L-2 L="EN">Stability need for received data (see

SWS RTE)</L-2></DESC>
<CONSISTENCY-NEEDSS>
<CONSISTENCY-NEEDS>

<SHORT-NAME>CN_BC</SHORT-NAME>
<DPG-DOES-NOT-REQUIRE-COHERENCYS>
<DATA-PROTOTYPE-GROUP>

<SHORT-NAME>CN_BC_DG1</SHORT-NAME>
<IMPLICIT-DATA-ACCESS-IREFS>
<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_B</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/
Demo/SwComponentTypes/ASWC_B/A</CONTEXT-PORT-
PROTOTYPE-REF>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/A/A</TARGET-
VARIABLE-DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_C</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/
Demo/SwComponentTypes/ASWC_C/A</CONTEXT-PORT-
PROTOTYPE-REF>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/A/A</TARGET-
VARIABLE-DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_B</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/
Demo/SwComponentTypes/ASWC_B/B</CONTEXT-PORT-
PROTOTYPE-REF>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/B/B</TARGET-
VARIABLE-DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_C</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

1218 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/
Demo/SwComponentTypes/ASWC_C/B</CONTEXT-PORT-
PROTOTYPE-REF>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/B/B</TARGET-
VARIABLE-DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

</IMPLICIT-DATA-ACCESS-IREFS>
</DATA-PROTOTYPE-GROUP>
</DPG-DOES-NOT-REQUIRE-COHERENCYS>
<REG-REQUIRES-STABILITYS>
<RUNNABLE-ENTITY-GROUP>

<SHORT-NAME>CN_BC_RG1</SHORT-NAME>
<RUNNABLE-ENTITY-IREFS>
<RUNNABLE-ENTITY-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_B</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

<TARGET-RUNNABLE-ENTITY-REF DEST="RUNNABLE-ENTITY">/
Demo/SwComponentTypes/ASWC_B/IB_ASWC_B/
ASWC_B_RUN1</TARGET-RUNNABLE-ENTITY-REF>

</RUNNABLE-ENTITY-IREF>
<RUNNABLE-ENTITY-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-

COMPONENT-PROTOTYPE">/Demo/SwComponentTypes/
COMP_1/ASWC_C</CONTEXT-SW-COMPONENT-PROTOTYPE-REF
>

<TARGET-RUNNABLE-ENTITY-REF DEST="RUNNABLE-ENTITY">/
Demo/SwComponentTypes/ASWC_C/IB_ASWC_C/
ASWC_C_RUN1</TARGET-RUNNABLE-ENTITY-REF>

</RUNNABLE-ENTITY-IREF>
</RUNNABLE-ENTITY-IREFS>

</RUNNABLE-ENTITY-GROUP>
</REG-REQUIRES-STABILITYS>

</CONSISTENCY-NEEDS>
</CONSISTENCY-NEEDSS>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>ASWC_A</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ASWC_A</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ASWC_B</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ASWC_B</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ASWC_C</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ASWC_C</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
</COMPOSITION-SW-COMPONENT-TYPE>

1219 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>ASWC_A</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/A</PROVIDED-
INTERFACE-TREF>

</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/B</PROVIDED-
INTERFACE-TREF>

</P-PORT-PROTOTYPE>
</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB_ASWC_A</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>ASWC_A_RUN1</SHORT-NAME>
<DATA-WRITE-ACCESSS>

<VARIABLE-ACCESS>
<SHORT-NAME>DWP_ASWC_A_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="P-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_A/A</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/A/A</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_A_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="P-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_A/B</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/B/B</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-WRITE-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

1220 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>ASWC_B</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/A</REQUIRED-
INTERFACE-TREF>

</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/B</REQUIRED-
INTERFACE-TREF>

</R-PORT-PROTOTYPE>
</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB_ASWC_B</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>ASWC_B_RUN1</SHORT-NAME>
<DATA-READ-ACCESSS>

<VARIABLE-ACCESS>
<SHORT-NAME>DWP_ASWC_B_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_B/A</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/A/A</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_B_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_B/B</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/B/B</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ASWC_C</SHORT-NAME>

1221 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<PORTS>
<R-PORT-PROTOTYPE>

<SHORT-NAME>A</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/A</REQUIRED-
INTERFACE-TREF>

</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/Demo/PortInterfaces/B</REQUIRED-
INTERFACE-TREF>

</R-PORT-PROTOTYPE>
</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB_ASWC_C</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>ASWC_C_RUN1</SHORT-NAME>
<DATA-READ-ACCESSS>

<VARIABLE-ACCESS>
<SHORT-NAME>DWP_ASWC_C_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_C/A</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/A/A</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_C_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-

PROTOTYPE">/Demo/SwComponentTypes/
ASWC_C/B</PORT-PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE
-DATA-PROTOTYPE">/Demo/PortInterfaces
/B/B</TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

1222 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>

<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>A</SHORT-NAME>
<DATA-ELEMENTS>

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>

</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>

</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE>

<SHORT-NAME>B</SHORT-NAME>
<DATA-ELEMENTS>

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>B</SHORT-NAME>

</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>

</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

F.3 CompuMethod with bitfield texttable conversion

The following CompuMethod of category BITFIELD_TEXTTABLE

Listing F.1: example for bit field text table CompuMethod

1 <COMPU-METHOD>
2 <SHORT-NAME>Texttable</SHORT-NAME>
3 <CATEGORY>BITFIELD_TEXTTABLE</CATEGORY>
4 <COMPU-INTERNAL-TO-PHYS>
5 <COMPU-SCALES>
6 <!-- problem -->
7 <COMPU-SCALE>
8 <SHORT-LABEL>problem</SHORT-LABEL>
9 <SYMBOL>problem_flat_tire</SYMBOL>

10 <MASK>0b11110000</MASK>
11 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
12 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
13 <COMPU-CONST>
14 <VT>flat tire</VT>
15 </COMPU-CONST>
16 </COMPU-SCALE>
17 <COMPU-SCALE>
18 <SHORT-LABEL>problem</SHORT-LABEL>
19 <SYMBOL>problem_low_pressure</SYMBOL>
20 <MASK>0b11110000</MASK>
21 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</LOWER-LIMIT>
22 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</UPPER-LIMIT>
23 <COMPU-CONST>

1223 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

24 <VT>low pressure</VT>
25 </COMPU-CONST>
26 </COMPU-SCALE>
27 <COMPU-SCALE>
28 <SHORT-LABEL>problem</SHORT-LABEL>
29 <SYMBOL>problem_unbalanced</SYMBOL>
30 <MASK>0b11110000</MASK>
31 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</LOWER-LIMIT>
32 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</UPPER-LIMIT>
33 <COMPU-CONST>
34 <VT>unbalanced</VT>
35 </COMPU-CONST>
36 </COMPU-SCALE>
37 <COMPU-SCALE>
38 <SHORT-LABEL>problem</SHORT-LABEL>
39 <SYMBOL>problem_unknown</SYMBOL>
40 <MASK>0b11110000</MASK>
41 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</LOWER-LIMIT>
42 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</UPPER-LIMIT>
43 <COMPU-CONST>
44 <VT>unknown</VT>
45 </COMPU-CONST>
46 </COMPU-SCALE>
47 <COMPU-SCALE>
48 <SHORT-LABEL>problem</SHORT-LABEL>
49 <SYMBOL>problem_invalid</SYMBOL>
50 <MASK>0b11110000</MASK>
51 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</LOWER-LIMIT>
52 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</UPPER-LIMIT>
53 <COMPU-CONST>
54 <VT>invalid</VT>
55 </COMPU-CONST>
56 </COMPU-SCALE>
57 <!-- rear right -->
58 <COMPU-SCALE>
59 <SHORT-LABEL>rearRight</SHORT-LABEL>
60 <SYMBOL>rearRight_no</SYMBOL>
61 <MASK>0b11001000</MASK>
62 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
63 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
64 <COMPU-CONST>
65 <VT>no</VT>
66 </COMPU-CONST>
67 </COMPU-SCALE>
68 <COMPU-SCALE>
69 <SHORT-LABEL>rearRight</SHORT-LABEL>
70 <SYMBOL>rearRight_yes</SYMBOL>
71 <MASK>0b11001000</MASK>
72 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</LOWER-LIMIT>
73 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</UPPER-LIMIT>
74 <COMPU-CONST>
75 <VT>yes</VT>
76 </COMPU-CONST>
77 </COMPU-SCALE>
78 <!-- rear left -->
79 <COMPU-SCALE>

1224 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

80 <SHORT-LABEL>rearLeft</SHORT-LABEL>
81 <SYMBOL>rearLeft_no</SYMBOL>
82 <MASK>0b11000100</MASK>
83 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
84 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
85 <COMPU-CONST>
86 <VT>no</VT>
87 </COMPU-CONST>
88 </COMPU-SCALE>
89 <COMPU-SCALE>
90 <SHORT-LABEL>rearLeft</SHORT-LABEL>
91 <SYMBOL>rearLeft_yes</SYMBOL>
92 <MASK>0b11000100</MASK>
93 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</LOWER-LIMIT>
94 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</UPPER-LIMIT>
95 <COMPU-CONST>
96 <VT>yes</VT>
97 </COMPU-CONST>
98 </COMPU-SCALE>
99 <!-- front right -->

100 <COMPU-SCALE>
101 <SHORT-LABEL>frontRight</SHORT-LABEL>
102 <SYMBOL>frontRight_no</SYMBOL>
103 <MASK>0b11000010</MASK>
104 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
105 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
106 <COMPU-CONST>
107 <VT>no</VT>
108 </COMPU-CONST>
109 </COMPU-SCALE>
110 <COMPU-SCALE>
111 <SHORT-LABEL>frontRight</SHORT-LABEL>
112 <SYMBOL>frontRight_yes</SYMBOL>
113 <MASK>0b11000010</MASK>
114 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</LOWER-LIMIT>
115 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</UPPER-LIMIT>
116 <COMPU-CONST>
117 <VT>yes</VT>
118 </COMPU-CONST>
119 </COMPU-SCALE>
120 <!-- front left -->
121 <COMPU-SCALE>
122 <SHORT-LABEL>frontLeft</SHORT-LABEL>
123 <SYMBOL>frontLeft_no</SYMBOL>
124 <MASK>0b11000001</MASK>
125 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
126 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
127 <COMPU-CONST>
128 <VT>no</VT>
129 </COMPU-CONST>
130 </COMPU-SCALE>
131 <COMPU-SCALE>
132 <SHORT-LABEL>frontLeft</SHORT-LABEL>
133 <SYMBOL>frontLeft_yes</SYMBOL>
134 <MASK>0b11000001</MASK>
135 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</LOWER-LIMIT>

1225 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

136 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</UPPER-LIMIT>
137 <COMPU-CONST>
138 <VT>yes</VT>
139 </COMPU-CONST>
140 </COMPU-SCALE>
141 </COMPU-SCALES>
142 </COMPU-INTERNAL-TO-PHYS>
143 </COMPU-METHOD>

results in this definitions:

Listing F.2: literals for bit field text table CompuMethod

1 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 */

2 #ifndef problem_BflMask
3 #define problem_BflMask 240U
4 #endif /* problem_BflMask */
5

6 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 with a single contiguous bit field*/

7 #ifndef problem_BflPn
8 #define problem_BflPn 4U
9 #endif /* problem_BflPn */

10

11 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 with a single contiguous bit field*/

12 #ifndef problem_BflLn
13 #define problem_BflLn 4U
14 #endif /* problem_BflLn */
15

16 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "problem_flat_tire"*/

17 #ifndef problem_flat_tire
18 #define problem_flat_tire 0U
19 #endif /* problem_flat_tire */
20

21 /* [SWS_Rte_03810] CompuScale with point range "0b00010000", symbol
attribute "problem_low_pressure"*/

22 #ifndef problem_low_pressure
23 #define problem_low_pressure 16U
24 #endif /* problem_low_pressure */
25

26 /* [SWS_Rte_03810] CompuScale with point range "0b00100000", symbol
attribute "problem_unbalanced"*/

27 #ifndef problem_unbalanced
28 #define problem_unbalanced 32U
29 #endif /* problem_unbalanced */
30

31 /* [SWS_Rte_03810] CompuScale with point range "0b00110000", symbol
attribute "problem_unknown"*/

32 #ifndef problem_unknown
33 #define problem_unknown 48U
34 #endif /* problem_unknown */
35

1226 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

36 /* [SWS_Rte_03810] CompuScale with point range "0b11110000", symbol
attribute "problem_invalid"*/

37 #ifndef problem_invalid
38 #define problem_invalid 240U
39 #endif /* problem_invalid */
40

41 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 */

42 #ifndef rearRight_BflMask
43 #define rearRight_BflMask 200U
44 #endif /* rearRight_BflMask */
45

46 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 but not a single contiguous bit field*/

47

48 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 bot not a single contiguous bit field*/

49

50 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "rearRight_no"*/

51 #ifndef rearRight_no
52 #define rearRight_no 0U
53 #endif /* rearRight_no */
54

55 /* [SWS_Rte_03810] CompuScale with point range "0b00001000", symbol
attribute "rearRight_yes"*/

56 #ifndef rearRight_yes
57 #define rearRight_yes 8U
58 #endif /* rearRight_yes */
59

60 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 */

61 #ifndef rearLeft_BflMask
62 #define rearLeft_BflMask 200U
63 #endif /* rearLeft_BflMask */
64

65 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 but not a single contiguous bit field*/

66

67 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 bot not a single contiguous bit field*/

68

69 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "rearLeft_no"*/

70 #ifndef rearLeft_no
71 #define rearLeft_no 0U
72 #endif /* rearLeft_no */
73

74 /* [SWS_Rte_03810] CompuScale with point range "0b00000100", symbol
attribute "rearLeft_yes"*/

75 #ifndef rearLeft_yes
76 #define rearLeft_yes 4U
77 #endif /* rearLeft_yes */
78

79 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 */

1227 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

80 #ifndef frontRight_BflMask
81 #define frontRight_BflMask 194U
82 #endif /* frontRight_BflMask */
83

84 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 but not a single contiguous bit field*/

85

86 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 bot not a single contiguous bit field*/

87

88 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "frontRight_no"*/

89 #ifndef frontRight_no
90 #define frontRight_no 0U
91 #endif /* frontRight_no */
92

93 /* [SWS_Rte_03810] CompuScale with point range "0b00000010", symbol
attribute "frontRight_yes"*/

94 #ifndef frontRight_yes
95 #define frontRight_yes 2U
96 #endif /* frontRight_yes */
97

98 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 */

99 #ifndef frontLeft_BflMask
100 #define frontLeft_BflMask 193U
101 #endif /* frontLeft_BflMask */
102

103 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 but not a single contiguous bit field*/

104

105 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 bot not a single contiguous bit field*/

106

107 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "frontLeft_no"*/

108 #ifndef frontLeft_no
109 #define frontLeft_no 0U
110 #endif /* frontLeft_no */
111

112 /* [SWS_Rte_03810] CompuScale with point range "0b00000001", symbol
attribute "frontLeft_yes"*/

113 #ifndef frontLeft_yes
114 #define frontLeft_yes 1U
115 #endif /* frontLeft_yes */

F.4 Structure type with self-reference

The example Structure type with self-reference in the following ARXML shows a
structure type which contains as an element a pointer witch can point to objects being
of the type of the structure. Those types are usually needed for linked lists.

<?xml version="1.0" encoding="UTF-8"?>

1228 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<AUTOSAR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="
http://autosar.org/schema/r4.0" xsi:schemaLocation="http://autosar.
org/schema/r4.0 AUTOSAR_4-2-1.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Demo</SHORT-NAME>
<DESC>

<L-2 L="EN">Example about structure with a reference to its own
type</L-2>

</DESC>
<CATEGORY>EXAMPLE</CATEGORY>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>ImplementationDataTypes</SHORT-NAME>
<ELEMENTS>

<IMPLEMENTATION-DATA-TYPE>
<SHORT-NAME>DataSet</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>data1</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="
IMPLEMENTATION-DATA-TYPE">/AUTOSAR_Platform
/ImplementationDataTypes/uint32</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>data2</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="
IMPLEMENTATION-DATA-TYPE">/AUTOSAR_Platform
/ImplementationDataTypes/uint8</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>dataSetPtr</SHORT-NAME>
<CATEGORY>DATA_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-POINTER-TARGET-PROPS>
<TARGET-CATEGORY>TYPE_REFERENCE</TARGET-

CATEGORY>

1229 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SW-DATA-DEF-PROPS>
<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>
<IMPLEMENTATION-DATA-TYPE-REF DEST="

IMPLEMENTATION-DATA-TYPE">/Demo/
ImplementationDataTypes/DataSet</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</SW-POINTER-TARGET-PROPS>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>substruct</SHORT-NAME>
<CATEGORY>STRUCTURE</CATEGORY>
<SUB-ELEMENTS>

<IMPLEMENTATION-DATA-TYPE-ELEMENT>
<SHORT-NAME>sub1</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="
IMPLEMENTATION-DATA-TYPE">/
AUTOSAR_Platform/
ImplementationDataTypes/uint8</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>
<IMPLEMENTATION-DATA-TYPE-ELEMENT>

<SHORT-NAME>sub2</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="
IMPLEMENTATION-DATA-TYPE">/
AUTOSAR_Platform/
ImplementationDataTypes/uint8</
IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
</IMPLEMENTATION-DATA-TYPE-ELEMENT>

</SUB-ELEMENTS>
<TYPE-EMITTER>RTE</TYPE-EMITTER>

</IMPLEMENTATION-DATA-TYPE>
</ELEMENTS>

</AR-PACKAGE>

1230 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

</AR-PACKAGES>
</AR-PACKAGE>

</AR-PACKAGES>
</AUTOSAR>

This results according [SWS_Rte_07114] and [SWS_Rte_06812] in following code in
the Rte_Type.h file.

Listing F.3: Structure type with self-reference
1 /* typedef is created as forward declaration according SWS_Rte_06812 */
2 typedef struct Rte_struct_DataSet DataSet;
3

4 /* declaration of the structure according SWS_Rte_07114 */
5 struct Rte_struct_DataSet
6 {
7 uint32 data1;
8 uint8 data2;
9 DataSet * dataSetPtr;

10 struct
11 {
12 uint8 sub1;
13 uint8 sub2;
14 } substruct;
15 };

F.5 Multiple calibration parameters instances

The example Multiple calibration parameters instances in the following ARXML
shows the example of multiple calibration data instances as explained in sec-
tion 4.2.8.3.7.

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns="http://autosar.org/schema/r4.0" xmlns:xsi="http://www.

w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.
org/schema/r4.0 AUTOSAR_4-2-1.xsd">

<ADMIN-DATA>
<LANGUAGE>EN</LANGUAGE>
<DOC-REVISIONS>

<DOC-REVISION>
<REVISION-LABEL>0.1.0</REVISION-LABEL>
<DATE>2014-07-31</DATE>

</DOC-REVISION>
</DOC-REVISIONS>

</ADMIN-DATA>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>Demo</SHORT-NAME>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>

<PARAMETER-INTERFACE>

1231 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<SHORT-NAME>EP</SHORT-NAME>
<PARAMETERS>

<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>Prm1</SHORT-NAME>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">/
AUTOSAR_MemMap/SwAddrMethods/CALIB_QM</SW-
ADDR-METHOD-REF>

<SW-CALIBRATION-ACCESS>READ-WRITE</SW-
CALIBRATION-ACCESS>

<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/

AUTOSAR_AISpecification/ApplicationDataTypes/Flg1
</TYPE-TREF>

</PARAMETER-DATA-PROTOTYPE>
</PARAMETERS>

</PARAMETER-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>SwComponentTypes</SHORT-NAME>
<ELEMENTS>

<PARAMETER-SW-COMPONENT-TYPE>
<SHORT-NAME>PSWC</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>EP</SHORT-NAME>
<PROVIDED-COM-SPECS>

<PARAMETER-PROVIDE-COM-SPEC>
<INIT-VALUE>

<APPLICATION-VALUE-SPECIFICATION>
<SW-VALUE-CONT>

<UNIT-REF DEST="UNIT">/AUTOSAR/
AISpecification/Units/NoUnit</UNIT-REF>

<SW-VALUES-PHYS>
<VT>Rst</VT>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</INIT-VALUE>
<PARAMETER-REF DEST="PARAMETER-DATA-PROTOTYPE">/

Demo/PortInterfaces/EP/Prm1</PARAMETER-REF>
</PARAMETER-PROVIDE-COM-SPEC>

</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF DEST="PARAMETER-INTERFACE">/

Demo/PortInterfaces/EP</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>

</PORTS>
</PARAMETER-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ASWC</SHORT-NAME>

1232 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<PORTS>
<R-PORT-PROTOTYPE>

<SHORT-NAME>EP</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="PARAMETER-INTERFACE">/

Demo/PortInterfaces/EP</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>

</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>ASWC</SHORT-NAME>
<PER-INSTANCE-PARAMETERS>

<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>PIP</SHORT-NAME>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">/
AUTOSAR_MemMap/SwAddrMethods/CALIB_QM</
SW-ADDR-METHOD-REF>

<SW-CALIBRATION-ACCESS>READ-WRITE</SW-
CALIBRATION-ACCESS>

<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE"

>/AUTOSAR_AISpecification/
ApplicationDataTypes/Flg1</TYPE-TREF>

<INIT-VALUE>
<APPLICATION-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<UNIT-REF DEST="UNIT">/AUTOSAR/

AISpecification/Units/NoUnit</UNIT-REF>
<SW-VALUES-PHYS>
<VT>Rst</VT>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</INIT-VALUE>

</PARAMETER-DATA-PROTOTYPE>
</PER-INSTANCE-PARAMETERS>
<SHARED-PARAMETERS>

<PARAMETER-DATA-PROTOTYPE>
<SHORT-NAME>SP</SHORT-NAME>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<SW-ADDR-METHOD-REF DEST="SW-ADDR-METHOD">/
AUTOSAR_MemMap/SwAddrMethods/CALIB_QM</
SW-ADDR-METHOD-REF>

<SW-CALIBRATION-ACCESS>READ-WRITE</SW-
CALIBRATION-ACCESS>

<SW-IMPL-POLICY>STANDARD</SW-IMPL-POLICY>
</SW-DATA-DEF-PROPS-CONDITIONAL>

</SW-DATA-DEF-PROPS-VARIANTS>
</SW-DATA-DEF-PROPS>

1233 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE"
>/AUTOSAR_AISpecification/
ApplicationDataTypes/Flg1</TYPE-TREF>

<INIT-VALUE>
<APPLICATION-VALUE-SPECIFICATION>

<SW-VALUE-CONT>
<UNIT-REF DEST="UNIT">/AUTOSAR/

AISpecification/Units/NoUnit</UNIT-REF>
<SW-VALUES-PHYS>
<VT>Set</VT>

</SW-VALUES-PHYS>
</SW-VALUE-CONT>

</APPLICATION-VALUE-SPECIFICATION>
</INIT-VALUE>

</PARAMETER-DATA-PROTOTYPE>
</SHARED-PARAMETERS>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>

<SHORT-NAME>RootComp</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>SWC_A</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ASWC</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>SWC_B</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/ASWC</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>SWC_PA</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/PSWC</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>SWC_PB</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo

/SwComponentTypes/PSWC</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
<CONNECTORS>

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>SWC_PA_EP_SWC_A_EP</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE
">/Demo/SwComponentTypes/RootComp/SWC_PA</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/PSWC/EP</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

1234 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE
">/Demo/SwComponentTypes/RootComp/SWC_A</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/EP</TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>
<ASSEMBLY-SW-CONNECTOR>

<SHORT-NAME>SWC_PB_EP_SWC_B_EP</SHORT-NAME>
<PROVIDER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE
">/Demo/SwComponentTypes/RootComp/SWC_PB</
CONTEXT-COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/PSWC/EP</TARGET-P-PORT-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE
">/Demo/SwComponentTypes/RootComp/SWC_B</
CONTEXT-COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/EP</TARGET-R-PORT-REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

</CONNECTORS>
</COMPOSITION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>Systems</SHORT-NAME>
<ELEMENTS>

<SYSTEM>
<SHORT-NAME>Sys</SHORT-NAME>
<CATEGORY>ECU_EXTRACT</CATEGORY>
<ROOT-SOFTWARE-COMPOSITIONS>

<ROOT-SW-COMPOSITION-PROTOTYPE>
<SHORT-NAME>RootSwComp</SHORT-NAME>
<FLAT-MAP-REF DEST="FLAT-MAP">/Demo/FlatMaps/

SysFlatMap</FLAT-MAP-REF>
<SOFTWARE-COMPOSITION-TREF DEST="COMPOSITION-SW-

COMPONENT-TYPE">/Demo/SwComponentTypes/RootComp</
SOFTWARE-COMPOSITION-TREF>

</ROOT-SW-COMPOSITION-PROTOTYPE>
</ROOT-SOFTWARE-COMPOSITIONS>

</SYSTEM>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>FlatMaps</SHORT-NAME>
<ELEMENTS>

<FLAT-MAP>
<SHORT-NAME>SysFlatMap</SHORT-NAME>
<INSTANCES>

<FLAT-INSTANCE-DESCRIPTOR>
<SHORT-NAME>SWC_A_PIP_Z0</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

1235 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_A</CONTEXT-
ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/ASWC/PIP</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>0</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_A_PIP_Z1</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_A</CONTEXT-
ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/ASWC/PIP</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>1</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_B_PIP</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_B</CONTEXT-
ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/ASWC/PIP</TARGET-REF>

1236 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_A_SWC_B_SP_Z0</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<!-- points to SWC_A but applies also for SWC_B due
to sharedParameter behavior -->

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_A</CONTEXT-
ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/ASWC/SP</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>0</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_A_SWC_B_SP_Z1</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<!-- points to SWC_A but applies also for SWC_B due
to sharedParameter behavior -->

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_A</CONTEXT-
ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
SwComponentTypes/ASWC/ASWC/SP</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>1</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_PA_EP_Prm1_Z0</SHORT-NAME>

1237 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<ECU-EXTRACT-REFERENCE-IREF>
<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-

PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_PA</CONTEXT
-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/PSWC/EP</CONTEXT-ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
PortInterfaces/EP/Prm1</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>0</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_PA_EP_Prm1_Z1</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_PA</CONTEXT
-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/PSWC/EP</CONTEXT-ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
PortInterfaces/EP/Prm1</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
<VARIATION-POINT>

<POST-BUILD-VARIANT-CONDITIONS>
<POST-BUILD-VARIANT-CONDITION>

<MATCHING-CRITERION-REF DEST="POST-BUILD-
VARIANT-CRITERION">/Demo/
PostBuildVariantCriterions/Z</MATCHING-
CRITERION-REF>

<VALUE>1</VALUE>
</POST-BUILD-VARIANT-CONDITION>

</POST-BUILD-VARIANT-CONDITIONS>
</VARIATION-POINT>

</FLAT-INSTANCE-DESCRIPTOR>
<FLAT-INSTANCE-DESCRIPTOR>

<SHORT-NAME>SWC_PB_EP_Prm1</SHORT-NAME>
<ECU-EXTRACT-REFERENCE-IREF>

<CONTEXT-ELEMENT-REF DEST="ROOT-SW-COMPOSITION-
PROTOTYPE">/Demo/Systems/Sys/RootSwComp</
CONTEXT-ELEMENT-REF>

1238 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

<CONTEXT-ELEMENT-REF DEST="SW-COMPONENT-PROTOTYPE">
/Demo/SwComponentTypes/RootComp/SWC_PB</CONTEXT
-ELEMENT-REF>

<CONTEXT-ELEMENT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/PSWC/EP</CONTEXT-ELEMENT-REF>

<TARGET-REF DEST="PARAMETER-DATA-PROTOTYPE">/Demo/
PortInterfaces/EP/Prm1</TARGET-REF>

</ECU-EXTRACT-REFERENCE-IREF>
</FLAT-INSTANCE-DESCRIPTOR>

</INSTANCES>
</FLAT-MAP>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>PostBuildVariantCriterions</SHORT-NAME>
<ELEMENTS>

<POST-BUILD-VARIANT-CRITERION>
<SHORT-NAME>Z</SHORT-NAME>
<COMPU-METHOD-REF DEST="COMPU-METHOD">/

AUTOSAR_AISpecification/CompuMethods/TrsmTyp1</COMPU-
METHOD-REF>

</POST-BUILD-VARIANT-CRITERION>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

1239 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

G Changes History

G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1

G.1.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 2: rte_sws_1254,
rte_sws_3552, rte_sws_3557, rte_sws_3559, rte_sws_3563, rte_sws_3564,
rte_sws_3568, rte_sws_3588, rte_sws_3593, rte_sws_3743, rte_sws_5512.

G.1.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 2: [SWS_Rte_01086],
[SWS_Rte_01111], [SWS_Rte_01113], [SWS_Rte_01114], [SWS_Rte_01118],
[SWS_Rte_01156], [SWS_Rte_01355], [SWS_Rte_02517], [SWS_Rte_02527],
[SWS_Rte_02528], [SWS_Rte_02613], [SWS_Rte_02615], [SWS_Rte_02679],
[SWS_Rte_02728], [SWS_Rte_02730], [SWS_Rte_02747], [SWS_Rte_02752],
[SWS_Rte_02753], [SWS_Rte_03001], [SWS_Rte_03560], [SWS_Rte_03562],
[SWS_Rte_03567], [SWS_Rte_03598], [SWS_Rte_03599], [SWS_Rte_03774],
[SWS_Rte_03827], [SWS_Rte_03837], [SWS_Rte_03930], [SWS_Rte_03953],
[SWS_Rte_03954], [SWS_Rte_03955], [SWS_Rte_03956], [SWS_Rte_03957],
[SWS_Rte_05021], [SWS_Rte_05156], SWS_Rte_05506, [SWS_Rte_05509],
[SWS_Rte_06010], [SWS_Rte_06633], [SWS_Rte_07020], [SWS_Rte_07021],
[SWS_Rte_07041], [SWS_Rte_07184], [SWS_Rte_07187], [SWS_Rte_07195],
[SWS_Rte_07262], [SWS_Rte_07280], [SWS_Rte_07282], [SWS_Rte_07293],
[SWS_Rte_07294], [SWS_Rte_07375], [SWS_Rte_07376], [SWS_Rte_07409],
[SWS_Rte_07586], [SWS_Rte_07589], [SWS_Rte_07632], [SWS_Rte_07636],
[SWS_Rte_07637], [SWS_Rte_07667], [SWS_Rte_07680], [SWS_Rte_07683],
rte_sws_ext_3811.

G.1.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 2: [SWS_Rte_02761],
rte_sws_3850, rte_sws_3851, [SWS_Rte_03852], [SWS_Rte_03853],
[SWS_Rte_07045], [SWS_Rte_07046], [SWS_Rte_07047], [SWS_Rte_07048],
[SWS_Rte_07049], [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052],
[SWS_Rte_07053], [SWS_Rte_07054], [SWS_Rte_07055], [SWS_Rte_07056],
[SWS_Rte_07057], [SWS_Rte_07058], [SWS_Rte_07059], [SWS_Rte_07060],
[SWS_Rte_07061], [SWS_Rte_07062], [SWS_Rte_07063], [SWS_Rte_07064],
[SWS_Rte_07065], [SWS_Rte_07066], [SWS_Rte_07067], [SWS_Rte_07068],
[SWS_Rte_07069], [SWS_Rte_07070], [SWS_Rte_07071], [SWS_Rte_07072],
[SWS_Rte_07073], [SWS_Rte_07074], [SWS_Rte_07075], [SWS_Rte_07076],
[SWS_Rte_07077], [SWS_Rte_07078], [SWS_Rte_07079], [SWS_Rte_07080],

1240 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07081], [SWS_Rte_08000], [SWS_Rte_08001], [SWS_Rte_08002],
[SWS_Rte_08300], [SWS_Rte_08301], [SWS_Rte_08302].

G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2

G.2.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 3: rte_sws_3838,
rte_sws_3844, rte_sws_3850, rte_sws_5171, rte_sws_7106, rte_sws_7108,
rte_sws_7164, rte_sws_7165, rte_sws_7168, rte_sws_7176, rte_sws_7674.

G.2.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 3: [SWS_Rte_01018],
[SWS_Rte_01019], [SWS_Rte_01020], [SWS_Rte_01156], [SWS_Rte_01171],
[SWS_Rte_01238], [SWS_Rte_01239], [SWS_Rte_01248], [SWS_Rte_01249],
[SWS_Rte_01300], [SWS_Rte_02500], [SWS_Rte_02568], [SWS_Rte_02576],
[SWS_Rte_02627], [SWS_Rte_02628], [SWS_Rte_02629], [SWS_Rte_02631],
[SWS_Rte_02648], [SWS_Rte_02659], [SWS_Rte_02662], [SWS_Rte_02664],
[SWS_Rte_02675], [SWS_Rte_02732], [SWS_Rte_03526], [SWS_Rte_03714],
[SWS_Rte_03731], [SWS_Rte_03782], [SWS_Rte_03793], [SWS_Rte_03809],
[SWS_Rte_03810], [SWS_Rte_03813], [SWS_Rte_03827], [SWS_Rte_03828],
[SWS_Rte_03829], [SWS_Rte_03831], [SWS_Rte_03832], [SWS_Rte_03833],
[SWS_Rte_03837], [SWS_Rte_03839], [SWS_Rte_03840], [SWS_Rte_03841],
[SWS_Rte_03842], [SWS_Rte_03843], [SWS_Rte_03845], [SWS_Rte_03846],
[SWS_Rte_03847], [SWS_Rte_03848], [SWS_Rte_03849], [SWS_Rte_03851],
[SWS_Rte_03907], [SWS_Rte_03949], [SWS_Rte_04526], [SWS_Rte_05051],
[SWS_Rte_05052], SWS_Rte_05059, [SWS_Rte_05062], [SWS_Rte_05078],
[SWS_Rte_05127], [SWS_Rte_05128], [SWS_Rte_06513], [SWS_Rte_06515],
[SWS_Rte_06518], [SWS_Rte_06519], [SWS_Rte_06520], [SWS_Rte_06530],
[SWS_Rte_06532], [SWS_Rte_06535], [SWS_Rte_06536], [SWS_Rte_07022],
[SWS_Rte_07030], [SWS_Rte_07036], [SWS_Rte_07037], [SWS_Rte_07038],
[SWS_Rte_07047], [SWS_Rte_07048], [SWS_Rte_07069], [SWS_Rte_07104],
[SWS_Rte_07109], [SWS_Rte_07110], [SWS_Rte_07111], [SWS_Rte_07113],
[SWS_Rte_07114], [SWS_Rte_07116], [SWS_Rte_07133], [SWS_Rte_07136],
[SWS_Rte_07144], [SWS_Rte_07148], [SWS_Rte_07149], [SWS_Rte_07157],
[SWS_Rte_07162], [SWS_Rte_07163], [SWS_Rte_07166], [SWS_Rte_07175],
[SWS_Rte_07182], [SWS_Rte_07185], [SWS_Rte_07190], [SWS_Rte_07194],
[SWS_Rte_07195], [SWS_Rte_07200], [SWS_Rte_07203], [SWS_Rte_07214],
[SWS_Rte_07224], [SWS_Rte_07250], [SWS_Rte_07253], [SWS_Rte_07255],
[SWS_Rte_07260], [SWS_Rte_07261], [SWS_Rte_07263], [SWS_Rte_07266],
[SWS_Rte_07282], [SWS_Rte_07292], [SWS_Rte_07293], [SWS_Rte_07294],
[SWS_Rte_07295], [SWS_Rte_07310], [SWS_Rte_07315], [SWS_Rte_07381],

1241 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07382], [SWS_Rte_07383], [SWS_Rte_07501], [SWS_Rte_07503],
[SWS_Rte_07504], [SWS_Rte_07543], [SWS_Rte_07544], [SWS_Rte_07552],
[SWS_Rte_07554], [SWS_Rte_07555], [SWS_Rte_07556], [SWS_Rte_07670],
[SWS_Rte_07682], [SWS_Rte_08300].

G.2.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 3: [SWS_Rte_03854],
[SWS_Rte_03855], [SWS_Rte_03856], [SWS_Rte_03857], [SWS_Rte_03858],
[SWS_Rte_03859], [SWS_Rte_03860], [SWS_Rte_03861], [SWS_Rte_06700],
[SWS_Rte_06701], [SWS_Rte_06702], [SWS_Rte_06703], [SWS_Rte_06704],
[SWS_Rte_06705], [SWS_Rte_06706], [SWS_Rte_06707], [SWS_Rte_06708],
[SWS_Rte_06709], [SWS_Rte_06710], [SWS_Rte_06711], [SWS_Rte_06712],
[SWS_Rte_06713], [SWS_Rte_06714], [SWS_Rte_06715], [SWS_Rte_06716],
[SWS_Rte_06717], [SWS_Rte_06718], [SWS_Rte_06719], [SWS_Rte_06720],
[SWS_Rte_06721], [SWS_Rte_06722], [SWS_Rte_06723], [SWS_Rte_06724],
[SWS_Rte_06725], [SWS_Rte_06726], [SWS_Rte_07082], [SWS_Rte_07083],
[SWS_Rte_07084], [SWS_Rte_07085], [SWS_Rte_07086], [SWS_Rte_07087],
[SWS_Rte_07088], [SWS_Rte_07089], [SWS_Rte_07090], [SWS_Rte_07091],
[SWS_Rte_07092], [SWS_Rte_07093], [SWS_Rte_07094], [SWS_Rte_07095],
[SWS_Rte_07096], [SWS_Rte_07097], [SWS_Rte_07099], [SWS_Rte_07593],
[SWS_Rte_07594], [SWS_Rte_07595], [SWS_Rte_07596], [SWS_Rte_07692],
[SWS_Rte_07693], [SWS_Rte_07694], [SWS_Rte_07920], [SWS_Rte_07921],
[SWS_Rte_07922], [SWS_Rte_07923], [SWS_Rte_07924], [SWS_Rte_08004],
[SWS_Rte_08005], [SWS_Rte_08007], [SWS_Rte_08008], [SWS_Rte_08009],
[SWS_Rte_08016], [SWS_Rte_08017], [SWS_Rte_08018], [SWS_Rte_08020],
[SWS_Rte_08021], [SWS_Rte_08022], [SWS_Rte_08023], [SWS_Rte_08024],
[SWS_Rte_08025], [SWS_Rte_08026], [SWS_Rte_08027], [SWS_Rte_08028],
[SWS_Rte_08029], [SWS_Rte_08030], [SWS_Rte_08031], [SWS_Rte_08032],
[SWS_Rte_08033], [SWS_Rte_08034], [SWS_Rte_08035], [SWS_Rte_08036],
[SWS_Rte_08037], [SWS_Rte_08038], [SWS_Rte_08039], [SWS_Rte_08040],
[SWS_Rte_08041], [SWS_Rte_08042], [SWS_Rte_08043], [SWS_Rte_08044],
[SWS_Rte_08045], [SWS_Rte_08303], [SWS_Rte_08304], [SWS_Rte_08305],
[SWS_Rte_08306], [SWS_Rte_08307], [SWS_Rte_08308], [SWS_Rte_08400],
[SWS_Rte_08401], [SWS_Rte_08402], [SWS_Rte_08403], [SWS_Rte_08404],
[SWS_Rte_08500], [SWS_Rte_08501], SWS_Rte_08503, [SWS_Rte_08504],
[SWS_Rte_08505], [SWS_Rte_08506], [SWS_Rte_08507], [SWS_Rte_08509],
[SWS_Rte_08510], rte_sws_ext_7597, rte_sws_ext_7598, rte_sws_ext_8502,
rte_sws_ext_8508.

1242 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3

G.3.1 Renamed SWS Items

The external requirements are redefined as AUTOSAR constraints.

rte_sws_ext_3811 [constr_9004] Usage of WaitPoints is restricted depending
on ExclusiveAreaImplMechanism

rte_sws_ext_7598 [
SWS_Rte_CONSTR_09005]

The references RteSwcTriggerSourceRef
has to be consistent with the RteSoftware-
ComponentInstanceRef

rte_sws_ext_7597 [SWS_Rte_CONSTR_09006] The references RteBswTriggerSourceRef
has to be consistent with the RteBswImple-
mentationRef

rte_sws_ext_7547 [SWS_Rte_CONSTR_09007] issuedTrigger and BswTriggerDirectImplementa-
tion are mutually exclusive

rte_sws_ext_7040 [SWS_Rte_CONSTR_09008] The same Trigger in a Trigger Sink must not
be connected to multiple Trigger Sources

rte_sws_ext_7550 [SWS_Rte_CONSTR_09009] Synchronized Trigger shall not be referenced
by more than one type of access method

rte_sws_ext_7521 [SWS_Rte_CONSTR_09010] Worst case execution time shall be less than the
GCD

rte_sws_ext_7351 [SWS_Rte_CONSTR_09011] NvMBlockDescriptor related to a RAM
Block of a NvBlockSwComponentType shall
use NvMBlockUseSyncMechanism

rte_sws_ext_7816 [SWS_Rte_CONSTR_09012] Category 1 interrupts shall not access the RTE
rte_sws_ext_2542 [SWS_Rte_CONSTR_09013] Exactly one mode or one mode transition shall

be active
rte_sws_ext_7565 [SWS_Rte_CONSTR_09014] ModeSwitchPoint(s) and managedMode-

Group(s) are mutually exclusive for synchronized
ModeDeclarationGroupPrototypes

rte_sws_ext_7818 [SWS_Rte_CONSTR_09015] Rte_Write API may only be used by the runn-
able that describe its usage

rte_sws_ext_7819 [SWS_Rte_CONSTR_09016] Rte_Send API may only be used by the runn-
able that describes its usage

rte_sws_ext_2681 [SWS_Rte_CONSTR_09017] Rte_Switch API may only be used by the runn-
able that describes its usage

rte_sws_ext_2682 [SWS_Rte_CONSTR_09018] Rte_Invalidate API may only be used by the
runnable that describe its usage

rte_sws_ext_2687 [SWS_Rte_CONSTR_09019] Rte_Feedback API may only be used by the
runnable that describe its usage

rte_sws_ext_2726 [SWS_Rte_CONSTR_09020] Rte_SwitchAck API may only be used by the
runnable that describe its usage

rte_sws_ext_2683 [SWS_Rte_CONSTR_09021] Rte_Read API may only be used by the runn-
able that describe its usage

rte_sws_ext_7397 [SWS_Rte_CONSTR_09022] Rte_DRead API may only be used by the runn-
able that describe its usage

rte_sws_ext_2684 [SWS_Rte_CONSTR_09023] Rte_Receive API may only be used by the
runnable that describe its usage

rte_sws_ext_2685 [SWS_Rte_CONSTR_09024] Rte_Call API may only be used by the runn-
able that describe its usage

rte_sws_ext_2686 [SWS_Rte_CONSTR_09025] Blocking Rte_Result API may only be used by
the runnable that describe the WaitPoint

rte_sws_ext_7679 [SWS_Rte_CONSTR_09026] Rte_IWriteRef may not return values written
in previous executions

1243 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

rte_sws_ext_2601 [SWS_Rte_CONSTR_09027] Rte_IStatus API shall only be used by a
RunnableEntity describing an access to the
data or which is triggered by an error event re-
lated to this data

rte_sws_ext_7171 [SWS_Rte_CONSTR_09028] Rte_Enter and Rte_Exit API may only be
used by runnables describing its usage

rte_sws_ext_7172 [SWS_Rte_CONSTR_09029] Nested call of Rte_Enter and Rte_Exit is re-
stricted

rte_sws_ext_7568 [SWS_Rte_CONSTR_09030] Rte_Mode API may only be used by the runn-
able that describe its usage

rte_sws_ext_8502 [SWS_Rte_CONSTR_09031] Rte_Mode API may only be used by the runn-
able that describe its usage

rte_sws_ext_7202 [SWS_Rte_CONSTR_09032] Rte_Trigger API may only be used by the
runnable that describe its usage

rte_sws_ext_7205 [SWS_Rte_CONSTR_09033] Rte_IrTrigger API may only be used by the
runnable that describe its usage

rte_sws_ext_7603 [SWS_Rte_CONSTR_09034] Rte_IsUpdated API may only be used by the
runnable that describe the access to the corre-
sponding data

rte_sws_ext_2582 [SWS_Rte_CONSTR_09035] Rte_Start shall be called only once
rte_sws_ext_7577 [SWS_Rte_CONSTR_09036] Rte_Start API may only be used after call of

SchM_Init
rte_sws_ext_2714 [SWS_Rte_CONSTR_09037] Rte_Start API shall be called on every core
rte_sws_ext_2583 [SWS_Rte_CONSTR_09038] Rte_Stop shall be called before BSW shutdown
rte_sws_ext_7332 [SWS_Rte_CONSTR_09039] Rte_PartitionTerminated shall be called

only once
rte_sws_ext_7618 [SWS_Rte_CONSTR_09040] Rte_PartitionRestarting shall be called

only once
rte_sws_ext_7337 [SWS_Rte_CONSTR_09041] Rte_RestartPartition shall be called from

RestartTask
rte_sws_ext_1190 [SWS_Rte_CONSTR_09042] Array Implementation Data Types

needs at least one element
rte_sws_ext_1192 [SWS_Rte_CONSTR_09043] Structure Implementation Data Types

needs at least one element
rte_sws_ext_7147 [constr_9044] Union Implementation Data Type shall include at

least two elements
rte_sws_ext_2704 [SWS_Rte_CONSTR_09045] The upper two bits of the of the server return

value are reserved
rte_sws_ext_7285 [SWS_Rte_CONSTR_09046] SchM_Enter and SchM_Exit API may only be

used by BswModuleEntitys describing its us-
age

rte_sws_ext_7529 [SWS_Rte_CONSTR_09047] Nested call of SchM_Enter and SchM_Exit
API is restricted

rte_sws_ext_7189 [SWS_Rte_CONSTR_09048] SchM_Exit API may only be used by BswMod-
uleEntitys that describe its usage

rte_sws_ext_7257 [SWS_Rte_CONSTR_09049] SchM_Switch API may only be used by
BswModuleEntitys that describe its usage

rte_sws_ext_7587 [SWS_Rte_CONSTR_09050] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

rte_sws_ext_8508 [SWS_Rte_CONSTR_09051] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

rte_sws_ext_7567 [SWS_Rte_CONSTR_09052] SchM_SwitchAck API may only be used by
BswModuleEntitys that describe its usage

rte_sws_ext_7265 [SWS_Rte_CONSTR_09053] SchM_Trigger API may only be used by the
BswModuleEntitys that describe its usage

1244 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

rte_sws_ext_7268 [SWS_Rte_CONSTR_09054] SchM_ActMainFunction API may only be
used by the BswModuleEntitys that describe
its usage

rte_sws_ext_7272 [SWS_Rte_CONSTR_09055] SchM_Init shall be called only once
rte_sws_ext_7576 [SWS_Rte_CONSTR_09056] SchM_Deinit API may only be used after the

was RTE finalized
rte_sws_ext_7276 [SWS_Rte_CONSTR_09057] SchM_Deinit shall be called before shut down

of BSW
rte_sws_ext_7287 [SWS_Rte_CONSTR_09058] BswSchedulableEntity is not allowed to

have service arguments or return value
rte_sws_ext_7512 [SWS_Rte_CONSTR_09059] Usage of Basic Software Scheduler API prereq-

uisites the include of the Module Interlink Header
File

Table G.1: external requirements converted to constraints

rte_sws_7649 [SWS_Rte_CONSTR_09000] Rte_IFeedback API may only be used by the
RunnableEntitys that describe its usage

Table G.2: requirements converted to constraints

G.3.2 Added constraints

The following constraints were added in Rel. 4.1 Rev.
1: [SWS_Rte_CONSTR_03510], [SWS_Rte_CONSTR_09060],
[SWS_Rte_CONSTR_09061], [SWS_Rte_CONSTR_09062],
[SWS_Rte_CONSTR_09063], [SWS_Rte_CONSTR_09064]

G.3.3 Deleted SWS Items

The following SWS items were removed in Rel. 4.1 Rev. 1: SWS_Rte_02652,
SWS_Rte_02731, SWS_Rte_03555, SWS_Rte_03569, SWS_Rte_03581,
SWS_Rte_03747, SWS_Rte_03803, SWS_Rte_05020, SWS_Rte_05033,
SWS_Rte_05054, SWS_Rte_05055, SWS_Rte_05056, SWS_Rte_05057,
SWS_Rte_05058, SWS_Rte_05059, SWS_Rte_05066, SWS_Rte_05067,
SWS_Rte_05110, SWS_Rte_05163, SWS_Rte_06028, SWS_Rte_07296,
SWS_Rte_07649, SWS_Rte_07656, SWS_Rte_07657, SWS_Rte_07658,
SWS_Rte_07665, SWS_Rte_07687, SWS_Rte_07688, SWS_Rte_07690,
SWS_Rte_07691, SWS_Rte_08503.

G.3.4 Changed SWS Items

The following SWS items were changed in Rel. 4.1 Rev. 1: [SWS_Rte_01003],
[SWS_Rte_01019], [SWS_Rte_01058], [SWS_Rte_01060], [SWS_Rte_01061],

1245 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_01064], [SWS_Rte_01065], [SWS_Rte_01071], [SWS_Rte_01072],
[SWS_Rte_01083], [SWS_Rte_01091], [SWS_Rte_01092], [SWS_Rte_01102],
[SWS_Rte_01111], [SWS_Rte_01118], [SWS_Rte_01120], [SWS_Rte_01123],
[SWS_Rte_01126], [SWS_Rte_01150], [SWS_Rte_01206], [SWS_Rte_01252],
[SWS_Rte_01284], [SWS_Rte_01285], [SWS_Rte_01286], [SWS_Rte_01317],
[SWS_Rte_01354], [SWS_Rte_01358], [SWS_Rte_01360], [SWS_Rte_01368],
[SWS_Rte_02516], [SWS_Rte_02530], [SWS_Rte_02544], [SWS_Rte_02571],
[SWS_Rte_02579], [SWS_Rte_02594], [SWS_Rte_02599], [SWS_Rte_02600],
[SWS_Rte_02610], [SWS_Rte_02611], [SWS_Rte_02612], [SWS_Rte_02613],
[SWS_Rte_02614], [SWS_Rte_02615], [SWS_Rte_02619], [SWS_Rte_02623],
[SWS_Rte_02628], [SWS_Rte_02631], [SWS_Rte_02649], [SWS_Rte_02651],
[SWS_Rte_02679], [SWS_Rte_02702], [SWS_Rte_02707], [SWS_Rte_02709],
[SWS_Rte_02712], [SWS_Rte_02713], [SWS_Rte_02725], [SWS_Rte_02736],
[SWS_Rte_02739], [SWS_Rte_02747], [SWS_Rte_02757], [SWS_Rte_02759],
[SWS_Rte_02760], [SWS_Rte_03001], [SWS_Rte_03002], [SWS_Rte_03004],
[SWS_Rte_03005], [SWS_Rte_03012], [SWS_Rte_03503], [SWS_Rte_03504],
[SWS_Rte_03526], [SWS_Rte_03527], [SWS_Rte_03550], [SWS_Rte_03553],
[SWS_Rte_03560], [SWS_Rte_03565], [SWS_Rte_03589], [SWS_Rte_03595],
[SWS_Rte_03598], [SWS_Rte_03602], [SWS_Rte_03603], [SWS_Rte_03714],
[SWS_Rte_03741], [SWS_Rte_03744], [SWS_Rte_03755], [SWS_Rte_03760],
[SWS_Rte_03764], [SWS_Rte_03770], [SWS_Rte_03775], [SWS_Rte_03776],
[SWS_Rte_03788], [SWS_Rte_03800], [SWS_Rte_03809], [SWS_Rte_03827],
[SWS_Rte_03828], [SWS_Rte_03843], [SWS_Rte_03849], [SWS_Rte_03857],
[SWS_Rte_03927], [SWS_Rte_03928], [SWS_Rte_03952], [SWS_Rte_03955],
[SWS_Rte_03970], [SWS_Rte_04508], [SWS_Rte_04515], [SWS_Rte_04516],
[SWS_Rte_04518], [SWS_Rte_05021], [SWS_Rte_05026], [SWS_Rte_05048],
[SWS_Rte_05052], [SWS_Rte_05065], [SWS_Rte_05084], [SWS_Rte_05085],
[SWS_Rte_05090], [SWS_Rte_05111], [SWS_Rte_05131], [SWS_Rte_05145],
[SWS_Rte_05146], [SWS_Rte_05147], [SWS_Rte_05164], [SWS_Rte_05189],
SWS_Rte_05506, [SWS_Rte_05509], [SWS_Rte_06532], [SWS_Rte_06533],
[SWS_Rte_06713], [SWS_Rte_06714], [SWS_Rte_06715], [SWS_Rte_06718],
[SWS_Rte_07006], [SWS_Rte_07008], [SWS_Rte_07031], [SWS_Rte_07047],
[SWS_Rte_07048], [SWS_Rte_07054], [SWS_Rte_07056], [SWS_Rte_07059],
[SWS_Rte_07075], [SWS_Rte_07092], [SWS_Rte_07093], [SWS_Rte_07099],
[SWS_Rte_07101], [SWS_Rte_07122], [SWS_Rte_07135], [SWS_Rte_07140],
[SWS_Rte_07152], [SWS_Rte_07170], [SWS_Rte_07175], [SWS_Rte_07178],
[SWS_Rte_07187], [SWS_Rte_07194], [SWS_Rte_07195], [SWS_Rte_07200],
[SWS_Rte_07203], [SWS_Rte_07251], [SWS_Rte_07254], [SWS_Rte_07270],
[SWS_Rte_07282], [SWS_Rte_07283], [SWS_Rte_07289], [SWS_Rte_07290],
[SWS_Rte_07293], [SWS_Rte_07294], [SWS_Rte_07346], [SWS_Rte_07367],
[SWS_Rte_07384], [SWS_Rte_07385], [SWS_Rte_07387], [SWS_Rte_07390],
[SWS_Rte_07394], [SWS_Rte_07396], [SWS_Rte_07530], [SWS_Rte_07559],
[SWS_Rte_07562], [SWS_Rte_07563], [SWS_Rte_07575], [SWS_Rte_07586],
[SWS_Rte_07590], [SWS_Rte_07621], [SWS_Rte_07647], [SWS_Rte_07648],
[SWS_Rte_07654], [SWS_Rte_07655], [SWS_Rte_07675], [SWS_Rte_07680],

1246 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08001], [SWS_Rte_08002], [SWS_Rte_08016], [SWS_Rte_08039],
[SWS_Rte_08301], [SWS_Rte_08500], [SWS_Rte_08505].

G.3.5 Added SWS Items

The following SWS items were added in Rel. 4.1 Rev. 1: [SWS_Rte_03862],
[SWS_Rte_06727], [SWS_Rte_06728], [SWS_Rte_06729], [SWS_Rte_06730],
[SWS_Rte_06731], [SWS_Rte_06732], [SWS_Rte_06733], [SWS_Rte_06734],
[SWS_Rte_06735], [SWS_Rte_06736], [SWS_Rte_06737], [SWS_Rte_06738],
[SWS_Rte_06739], [SWS_Rte_06740], [SWS_Rte_06741], [SWS_Rte_06742],
[SWS_Rte_06743], [SWS_Rte_06744], [SWS_Rte_06745], [SWS_Rte_06746],
[SWS_Rte_06747], [SWS_Rte_06748], [SWS_Rte_06749], [SWS_Rte_06750],
[SWS_Rte_06751], [SWS_Rte_06752], [SWS_Rte_06753], [SWS_Rte_06754],
[SWS_Rte_06755], [SWS_Rte_06756], [SWS_Rte_06757], [SWS_Rte_06758],
[SWS_Rte_06759], [SWS_Rte_06760], [SWS_Rte_06761], [SWS_Rte_06762],
[SWS_Rte_06764], [SWS_Rte_06765], [SWS_Rte_06766], [SWS_Rte_06767],
[SWS_Rte_06768], [SWS_Rte_06769], [SWS_Rte_06770], [SWS_Rte_06771],
[SWS_Rte_06772], [SWS_Rte_06773], [SWS_Rte_06774], [SWS_Rte_06775],
[SWS_Rte_06776], [SWS_Rte_06777], [SWS_Rte_06778], [SWS_Rte_06779],
[SWS_Rte_06780], [SWS_Rte_06781], [SWS_Rte_06782], [SWS_Rte_06783],
[SWS_Rte_06784], [SWS_Rte_06785], [SWS_Rte_06786], [SWS_Rte_06787],
[SWS_Rte_06788], [SWS_Rte_06789], [SWS_Rte_06791], [SWS_Rte_06792],
[SWS_Rte_06793], [SWS_Rte_06794], [SWS_Rte_06795], [SWS_Rte_06796],
[SWS_Rte_06797], [SWS_Rte_07828], [SWS_Rte_07829], [SWS_Rte_07830],
[SWS_Rte_07831], [SWS_Rte_07832], [SWS_Rte_07833], [SWS_Rte_07834],
[SWS_Rte_07835], [SWS_Rte_07836], [SWS_Rte_07837], [SWS_Rte_07838],
[SWS_Rte_07839], [SWS_Rte_07840], [SWS_Rte_07841], [SWS_Rte_07925],
[SWS_Rte_07926], [SWS_Rte_07927], [SWS_Rte_08046], [SWS_Rte_08047],
[SWS_Rte_08048], [SWS_Rte_08049], [SWS_Rte_08050], [SWS_Rte_08051],
[SWS_Rte_08052], [SWS_Rte_08053], [SWS_Rte_08054], [SWS_Rte_08055],
[SWS_Rte_08056], [SWS_Rte_08057], [SWS_Rte_08058], [SWS_Rte_08059],
[SWS_Rte_08060], [SWS_Rte_08061], [SWS_Rte_08062], [SWS_Rte_08063],
[SWS_Rte_08064], [SWS_Rte_08065], [SWS_Rte_08066], [SWS_Rte_08067],
[SWS_Rte_08068], [SWS_Rte_08069], [SWS_Rte_08070], [SWS_Rte_08071],
[SWS_Rte_08072], [SWS_Rte_08073], [SWS_Rte_08309], [SWS_Rte_08310],
[SWS_Rte_08311], [SWS_Rte_08405], [SWS_Rte_08406], [SWS_Rte_08407],
[SWS_Rte_08408], [SWS_Rte_08409], [SWS_Rte_08410], [SWS_Rte_08411],
[SWS_Rte_08412], [SWS_Rte_08511], [SWS_Rte_08512], [SWS_Rte_08513],
[SWS_Rte_08514], [SWS_Rte_08600], [SWS_Rte_08601], [SWS_Rte_08700],
[SWS_Rte_08701], [SWS_Rte_08702], [SWS_Rte_08703], [SWS_Rte_08704],
[SWS_Rte_08705], [SWS_Rte_08706], [SWS_Rte_08707], [SWS_Rte_08708],
[SWS_Rte_08709], [SWS_Rte_08710], [SWS_Rte_08711], [SWS_Rte_08712],
[SWS_Rte_08713], [SWS_Rte_08725], [SWS_Rte_08726], [SWS_Rte_08727],
[SWS_Rte_08728], [SWS_Rte_08729], [SWS_Rte_08730], [SWS_Rte_08731],
[SWS_Rte_08732], [SWS_Rte_08733], [SWS_Rte_08734], [SWS_Rte_08735],

1247 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08736], [SWS_Rte_08737], [SWS_Rte_08738], [SWS_Rte_08739],
[SWS_Rte_08740], [SWS_Rte_08741], [SWS_Rte_08742], [SWS_Rte_08743],
[SWS_Rte_08744], [SWS_Rte_08745], [SWS_Rte_08746], [SWS_Rte_08747],
[SWS_Rte_08748], [SWS_Rte_08749], [SWS_Rte_08750], [SWS_Rte_08751],
[SWS_Rte_08752], [SWS_Rte_08753], [SWS_Rte_08754], [SWS_Rte_08755],
[SWS_Rte_08756], [SWS_Rte_08757], [SWS_Rte_08758], [SWS_Rte_08759],
[SWS_Rte_08761], [SWS_Rte_08762], [SWS_Rte_08763], [SWS_Rte_08764],
[SWS_Rte_08765], [SWS_Rte_08766].

G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1

G.4.1 Added Traceables in 4.1.2

[SWS_Rte_01371] [SWS_Rte_01372] [SWS_Rte_07410] [SWS_Rte_07411]
[SWS_Rte_07412] [SWS_Rte_07842] [SWS_Rte_07843] [SWS_Rte_07844]
[SWS_Rte_07928] [SWS_Rte_08074] [SWS_Rte_08075] [SWS_Rte_08076]
[SWS_Rte_08312] [SWS_Rte_08313] [SWS_Rte_08314] [SWS_Rte_08315]
[SWS_Rte_08316] [SWS_Rte_08317] [SWS_Rte_08413] [SWS_Rte_08414]
[SWS_Rte_08415] [SWS_Rte_08416] [SWS_Rte_08767] [SWS_Rte_08768]
[SWS_Rte_08769] [SWS_Rte_08770] [SWS_Rte_08771] [SWS_Rte_08772]
[SWS_Rte_08773] [SWS_Rte_08774] [SWS_Rte_08775] [SWS_Rte_08776]
[SWS_Rte_08800] [SWS_Rte_08801]

G.4.2 Changed Traceables in 4.1.2

[SWS_Rte_01003] [SWS_Rte_01296] [SWS_Rte_01297] [SWS_Rte_01358]
[SWS_Rte_01360] [SWS_Rte_01368] [SWS_Rte_02549] [SWS_Rte_02600]
[SWS_Rte_02678] [SWS_Rte_03012] [SWS_Rte_03526] [SWS_Rte_03527]
[SWS_Rte_03571] [SWS_Rte_03755] [SWS_Rte_03788] [SWS_Rte_03809]
[SWS_Rte_03810] [SWS_Rte_03813] [SWS_Rte_03832] [SWS_Rte_03843]
[SWS_Rte_03849] [SWS_Rte_03851] [SWS_Rte_03862] [SWS_Rte_03970]
[SWS_Rte_04508] [SWS_Rte_05052] [SWS_Rte_05088] [SWS_Rte_05089]
[SWS_Rte_05090] [SWS_Rte_05097] [SWS_Rte_05129] [SWS_Rte_05147]
[SWS_Rte_05177] [SWS_Rte_05184] [SWS_Rte_05191] [SWS_Rte_05503]
[SWS_Rte_06727] [SWS_Rte_06731] [SWS_Rte_06732] [SWS_Rte_06737]
[SWS_Rte_06738] [SWS_Rte_06780] [SWS_Rte_07006] [SWS_Rte_07027]
[SWS_Rte_07085] [SWS_Rte_07101] [SWS_Rte_07135] [SWS_Rte_07170]
[SWS_Rte_07175] [SWS_Rte_07188] [SWS_Rte_07196] [SWS_Rte_07260]
[SWS_Rte_07261] [SWS_Rte_07385] [SWS_Rte_07538] [SWS_Rte_07620]
[SWS_Rte_07621] [SWS_Rte_07654] [SWS_Rte_07662] [SWS_Rte_07694]
[SWS_Rte_07831] [SWS_Rte_07832] [SWS_Rte_07927] [SWS_Rte_08017]
[SWS_Rte_08018] [SWS_Rte_08020] [SWS_Rte_08021] [SWS_Rte_08022]
[SWS_Rte_08023] [SWS_Rte_08043] [SWS_Rte_08044] [SWS_Rte_08045]

1248 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08064] [SWS_Rte_08072] [SWS_Rte_08403] [SWS_Rte_08404]
[SWS_Rte_08407] [SWS_Rte_08501] [SWS_Rte_08507] [SWS_Rte_08513]
[SWS_Rte_08514] [SWS_Rte_08733] [SWS_Rte_08743]

G.4.3 Deleted Traceables in 4.1.2

[SWS_Rte_02673] [SWS_Rte_05001] [SWS_Rte_05506]

G.4.4 Added Constraints in 4.1.2

Id Heading
[constr_9080] The shortNames of PortInterfaces shall be unique within a software component if it

supports multiple instantiation or indirectAPI attribute is set to ’true’
[constr_9081] Mapping to partition vs the value of VariableAccess.scope

Table G.3: Added Constraints in 4.1.2

G.4.5 Changed Constraints in 4.1.2

Id Heading
[constr_9020] The blocking Rte_SwitchAck API may only be used by the runnable that describes

its usage.

Table G.4: Changed Constraints in 4.1.2

G.4.6 Deleted Constraints in 4.1.2

none

G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2

G.5.1 Added Traceables in 4.1.3

[SWS_Rte_01373] [SWS_Rte_01374] [SWS_Rte_01375] [SWS_Rte_06030]
[SWS_Rte_06031] [SWS_Rte_06032] [SWS_Rte_06551] [SWS_Rte_06552]
[SWS_Rte_06553] [SWS_Rte_06790] [SWS_Rte_06798] [SWS_Rte_06799]
[SWS_Rte_06800] [SWS_Rte_06801] [SWS_Rte_06802] [SWS_Rte_06803]
[SWS_Rte_06804] [SWS_Rte_06805] [SWS_Rte_06806] [SWS_Rte_06807]
[SWS_Rte_06808] [SWS_Rte_06809] [SWS_Rte_06810] [SWS_Rte_07845]
[SWS_Rte_07846] [SWS_Rte_07847] [SWS_Rte_07848] [SWS_Rte_07849]
[SWS_Rte_07850] [SWS_Rte_07851] [SWS_Rte_08077] [SWS_Rte_08078]
[SWS_Rte_08079] [SWS_Rte_08318] [SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322] [SWS_Rte_08777] [SWS_Rte_08778]

1249 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08779] [SWS_Rte_08780] [SWS_Rte_08781] [SWS_Rte_08782]
[SWS_Rte_08783] [SWS_Rte_08784] [SWS_Rte_08785] [SWS_Rte_08786]

G.5.2 Changed Traceables in 4.1.3

[SWS_Rte_01071] [SWS_Rte_01072] [SWS_Rte_01083] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01102] [SWS_Rte_01111] [SWS_Rte_01118]
[SWS_Rte_01120] [SWS_Rte_01123] [SWS_Rte_01206] [SWS_Rte_01252]
[SWS_Rte_01354] [SWS_Rte_02568] [SWS_Rte_02599] [SWS_Rte_02614]
[SWS_Rte_02619] [SWS_Rte_02628] [SWS_Rte_02631] [SWS_Rte_02659]
[SWS_Rte_02667] [SWS_Rte_02725] [SWS_Rte_02740] [SWS_Rte_02741]
[SWS_Rte_02743] [SWS_Rte_02744] [SWS_Rte_02745] [SWS_Rte_03527]
[SWS_Rte_03550] [SWS_Rte_03553] [SWS_Rte_03560] [SWS_Rte_03565]
[SWS_Rte_03741] [SWS_Rte_03744] [SWS_Rte_03800] [SWS_Rte_03813]
[SWS_Rte_03832] [SWS_Rte_03858] [SWS_Rte_03859] [SWS_Rte_03928]
[SWS_Rte_05129] [SWS_Rte_05501] [SWS_Rte_05509] [SWS_Rte_06536]
[SWS_Rte_07026] [SWS_Rte_07038] [SWS_Rte_07039] [SWS_Rte_07057]
[SWS_Rte_07195] [SWS_Rte_07200] [SWS_Rte_07203] [SWS_Rte_07214]
[SWS_Rte_07216] [SWS_Rte_07223] [SWS_Rte_07224] [SWS_Rte_07367]
[SWS_Rte_07394] [SWS_Rte_07554] [SWS_Rte_07640] [SWS_Rte_07680]
[SWS_Rte_07928] [SWS_Rte_08066] [SWS_Rte_08314] [SWS_Rte_08315]
[SWS_Rte_08316] [SWS_Rte_08800]

G.5.3 Deleted Traceables in 4.1.3

[SWS_Rte_03012] [SWS_Rte_03790] [SWS_Rte_04525] [SWS_Rte_05116]
[SWS_Rte_05134]

G.5.4 Added Constraints in 4.1.3

Id Heading
[constr_9082] RtePositionInTask and RteBswPositionInTask values shall be unique in a

particular context

Table G.5: Added Constraints in 4.1.3

G.5.5 Changed Constraints in 4.1.3

none

G.5.6 Deleted Constraints in 4.1.3

1250 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

Id Heading
[constr_9004] Usage of WaitPoints is restricted depending on ExclusiveAreaImplMechanism

Table G.6: Deleted Constraints in 4.1.3

G.6 Changes in Rel. 4.2 Rev. 1 compared to Rel. 4.1 Rev. 3

G.6.1 Added Traceables in 4.2.1

[SWS_Rte_01376] [SWS_Rte_01377] [SWS_Rte_01378] [SWS_Rte_01379]
[SWS_Rte_01380] [SWS_Rte_01381] [SWS_Rte_01382] [SWS_Rte_01383]
[SWS_Rte_01384] [SWS_Rte_01385] [SWS_Rte_01386] [SWS_Rte_01387]
[SWS_Rte_01388] [SWS_Rte_01389] [SWS_Rte_01390] [SWS_Rte_01391]
[SWS_Rte_01392] [SWS_Rte_01393] [SWS_Rte_01394] [SWS_Rte_01395]
[SWS_Rte_01396] [SWS_Rte_01397] [SWS_Rte_01398] [SWS_Rte_01399]
[SWS_Rte_01400] [SWS_Rte_01401] [SWS_Rte_01402] [SWS_Rte_01403]
[SWS_Rte_01404] [SWS_Rte_01405] [SWS_Rte_01406] [SWS_Rte_01407]
[SWS_Rte_01408] [SWS_Rte_01409] [SWS_Rte_01410] [SWS_Rte_01411]
[SWS_Rte_01412] [SWS_Rte_01413] [SWS_Rte_02307] [SWS_Rte_02308]
[SWS_Rte_02309] [SWS_Rte_03863] [SWS_Rte_03864] [SWS_Rte_03865]
[SWS_Rte_03983] [SWS_Rte_03984] [SWS_Rte_03985] [SWS_Rte_03986]
[SWS_Rte_03987] [SWS_Rte_03988] [SWS_Rte_03989] [SWS_Rte_03990]
[SWS_Rte_03991] [SWS_Rte_03992] [SWS_Rte_03993] [SWS_Rte_03994]
[SWS_Rte_03995] [SWS_Rte_03996] [SWS_Rte_03997] [SWS_Rte_06811]
[SWS_Rte_06812] [SWS_Rte_06813] [SWS_Rte_06814] [SWS_Rte_06815]
[SWS_Rte_06816] [SWS_Rte_06817] [SWS_Rte_06818] [SWS_Rte_06819]
[SWS_Rte_06820] [SWS_Rte_06821] [SWS_Rte_06822] [SWS_Rte_06823]
[SWS_Rte_06824] [SWS_Rte_06825] [SWS_Rte_06826] [SWS_Rte_06827]
[SWS_Rte_06828] [SWS_Rte_06829] [SWS_Rte_06830] [SWS_Rte_07413]
[SWS_Rte_08080] [SWS_Rte_08081] [SWS_Rte_08082] [SWS_Rte_08083]
[SWS_Rte_08084] [SWS_Rte_08085] [SWS_Rte_08086] [SWS_Rte_08087]
[SWS_Rte_08088] [SWS_Rte_08089] [SWS_Rte_08090] [SWS_Rte_08091]
[SWS_Rte_08092] [SWS_Rte_08093] [SWS_Rte_08094] [SWS_Rte_08095]
[SWS_Rte_08096] [SWS_Rte_08097] [SWS_Rte_08098] [SWS_Rte_08099]
[SWS_Rte_08100] [SWS_Rte_08101] [SWS_Rte_08102] [SWS_Rte_08103]
[SWS_Rte_08515] [SWS_Rte_08516] [SWS_Rte_08517] [SWS_Rte_08518]
[SWS_Rte_08519] [SWS_Rte_08520] [SWS_Rte_08521] [SWS_Rte_08522]
[SWS_Rte_08523] [SWS_Rte_08524] [SWS_Rte_08525] [SWS_Rte_08526]
[SWS_Rte_08527] [SWS_Rte_08528] [SWS_Rte_08529] [SWS_Rte_08530]
[SWS_Rte_08531] [SWS_Rte_08532] [SWS_Rte_08533] [SWS_Rte_08534]
[SWS_Rte_08535] [SWS_Rte_08536] [SWS_Rte_08537] [SWS_Rte_08538]
[SWS_Rte_08539] [SWS_Rte_08540] [SWS_Rte_08541] [SWS_Rte_08542]
[SWS_Rte_08543] [SWS_Rte_08544] [SWS_Rte_08545] [SWS_Rte_08546]
[SWS_Rte_08547] [SWS_Rte_08548] [SWS_Rte_08549] [SWS_Rte_08550]
[SWS_Rte_08551] [SWS_Rte_08552] [SWS_Rte_08553] [SWS_Rte_08554]
[SWS_Rte_08555] [SWS_Rte_08556] [SWS_Rte_08557] [SWS_Rte_08558]

1251 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08559] [SWS_Rte_08560] [SWS_Rte_08561] [SWS_Rte_08562]
[SWS_Rte_08563] [SWS_Rte_08564] [SWS_Rte_08565] [SWS_Rte_08566]
[SWS_Rte_08567] [SWS_Rte_08568] [SWS_Rte_08569] [SWS_Rte_08570]
[SWS_Rte_08571] [SWS_Rte_08572] [SWS_Rte_08573] [SWS_Rte_08574]
[SWS_Rte_08575] [SWS_Rte_08576] [SWS_Rte_08577] [SWS_Rte_08578]
[SWS_Rte_08579] [SWS_Rte_08580] [SWS_Rte_08581] [SWS_Rte_08582]
[SWS_Rte_08583] [SWS_Rte_08584] [SWS_Rte_08585] [SWS_Rte_08586]
[SWS_Rte_08587] [SWS_Rte_08588] [SWS_Rte_08589] [SWS_Rte_08590]
[SWS_Rte_08591] [SWS_Rte_08787] [SWS_Rte_08788] [SWS_Rte_08789]
[SWS_Rte_08790] [SWS_Rte_08791] [SWS_Rte_08792] [SWS_Rte_08793]
[SWS_Rte_08794] [SWS_Rte_08795] [SWS_Rte_08796] [SWS_Rte_08797]
[SWS_Rte_08798] [SWS_Rte_08799]

G.6.2 Changed Traceables in 4.2.1

[SWS_Rte_01071] [SWS_Rte_01072] [SWS_Rte_01091] [SWS_Rte_01092]
[SWS_Rte_01102] [SWS_Rte_01111] [SWS_Rte_01118] [SWS_Rte_01119]
[SWS_Rte_01166] [SWS_Rte_01206] [SWS_Rte_01238] [SWS_Rte_01239]
[SWS_Rte_01252] [SWS_Rte_01282] [SWS_Rte_01299] [SWS_Rte_01300]
[SWS_Rte_02599] [SWS_Rte_02600] [SWS_Rte_02607] [SWS_Rte_02608]
[SWS_Rte_02648] [SWS_Rte_02651] [SWS_Rte_02662] [SWS_Rte_02663]
[SWS_Rte_02665] [SWS_Rte_02710] [SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte_03532] [SWS_Rte_03594] [SWS_Rte_03600] [SWS_Rte_03754]
[SWS_Rte_03758] [SWS_Rte_03759] [SWS_Rte_03770] [SWS_Rte_03795]
[SWS_Rte_03801] [SWS_Rte_03830] [SWS_Rte_03833] [SWS_Rte_03927]
[SWS_Rte_03928] [SWS_Rte_03929] [SWS_Rte_03952] [SWS_Rte_04505]
[SWS_Rte_04526] [SWS_Rte_04527] [SWS_Rte_05021] [SWS_Rte_05024]
[SWS_Rte_05025] [SWS_Rte_05026] [SWS_Rte_05049] [SWS_Rte_05062]
[SWS_Rte_05081] [SWS_Rte_05088] [SWS_Rte_05126] [SWS_Rte_05127]
[SWS_Rte_05128] [SWS_Rte_06002] [SWS_Rte_06023] [SWS_Rte_06613]
[SWS_Rte_06630] [SWS_Rte_06631] [SWS_Rte_06632] [SWS_Rte_06633]
[SWS_Rte_06634] [SWS_Rte_06635] [SWS_Rte_06637] [SWS_Rte_06734]
[SWS_Rte_06735] [SWS_Rte_06772] [SWS_Rte_06773] [SWS_Rte_06774]
[SWS_Rte_06804] [SWS_Rte_06805] [SWS_Rte_06806] [SWS_Rte_06807]
[SWS_Rte_07032] [SWS_Rte_07114] [SWS_Rte_07144] [SWS_Rte_07163]
[SWS_Rte_07173] [SWS_Rte_07195] [SWS_Rte_07214] [SWS_Rte_07282]
[SWS_Rte_07317] [SWS_Rte_07355] [SWS_Rte_07356] [SWS_Rte_07394]
[SWS_Rte_07554] [SWS_Rte_07670] [SWS_Rte_07675] [SWS_Rte_07676]
[SWS_Rte_07682] [SWS_Rte_07683] [SWS_Rte_07684] [SWS_Rte_07685]
[SWS_Rte_07693] [SWS_Rte_07810] [SWS_Rte_07813] [SWS_Rte_07814]
[SWS_Rte_07846] [SWS_Rte_07847] [SWS_Rte_07848] [SWS_Rte_07849]
[SWS_Rte_07920] [SWS_Rte_07927] [SWS_Rte_07928] [SWS_Rte_08016]
[SWS_Rte_08022] [SWS_Rte_08023] [SWS_Rte_08038] [SWS_Rte_08045]
[SWS_Rte_08061] [SWS_Rte_08062] [SWS_Rte_08074] [SWS_Rte_08075]
[SWS_Rte_08076] [SWS_Rte_08301] [SWS_Rte_08310] [SWS_Rte_08414]

1252 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08415] [SWS_Rte_08711] [SWS_Rte_08712] [SWS_Rte_08713]
[SWS_Rte_08725] [SWS_Rte_08726] [SWS_Rte_08727] [SWS_Rte_08728]
[SWS_Rte_08729] [SWS_Rte_08800]

G.6.3 Deleted Traceables in 4.2.1

[SWS_Rte_02724] [SWS_Rte_04506] [SWS_Rte_04507] [SWS_Rte_07136]
[SWS_Rte_08702] [SWS_Rte_08704] [SWS_Rte_08706] [SWS_Rte_08708]
[SWS_Rte_08710] [SWS_Rte_08730] [SWS_Rte_08761] [SWS_Rte_08762]

G.6.4 Added Constraints in 4.2.1

Id Heading
[constr_9083] Rte_IRead API may only be used by the runnable that describe its usage
[constr_9084] Rte_IWrite API may only be used by the runnable that describe its usage
[constr_9085] Rte_IWriteRef API may only be used by the runnable that describe its usage
[constr_9086] Rte_IInvalidate API may only be used by the runnable that is describing an write

access to the data
[constr_9087] Rte_IrvIRead API may only be used by the runnable that describe its usage
[constr_9088] Rte_IrvIWrite API may only be used by the runnable that describe its usage
[constr_9089] Rte_IrvRead API may only be used by the runnable that describe its usage
[constr_9090] Rte_IrvWrite API may only be used by the runnable that describe its usage
[constr_9091] RteSwNvRamMappingRef and RteSwNvBlockDescriptorRef are excluding

each other

Table G.7: Added Constraints in 4.2.1

G.6.5 Changed Constraints in 4.2.1

Id Heading
[constr_9011] NvMBlockDescriptor related to a RAM Block of a NvBlockSwComponentType

shall use NvmBlockUseSyncMechanism
[constr_9027] Rte_IStatus API shall only be used by a RunnableEntity describing an read

access to the related data

Table G.8: Changed Constraints in 4.2.1

G.6.6 Deleted Constraints in 4.2.1

Id Heading
[constr_9044] Union Implementation Data Type shall include at least two elements
[constr_9065] Signature of Serializer
[constr_9066] A BswModuleEntry representing a serializer shall comply to a serializer’s signature
[constr_9068] Return value for successful serialization
[constr_9069] Return value for a serialization error
[constr_9071] Signature of Deserializer

1253 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[constr_9072] A BswModuleEntry representing a deserializer shall comply to a deserializer’s signa-
ture

[constr_9073] Return value for successful deserialization
[constr_9074] Return value for a deserialization error

Table G.9: Deleted Constraints in 4.2.1

G.7 Changes in Rel. 4.2 Rev. 2 compared to Rel. 4.2 Rev. 1

G.7.1 Added Traceables in 4.2.2

[SWS_Rte_03866] [SWS_Rte_03998] [SWS_Rte_05300] [SWS_Rte_05301]
[SWS_Rte_06200] [SWS_Rte_06201] [SWS_Rte_06203] [SWS_Rte_06204]
[SWS_Rte_06205] [SWS_Rte_06206] [SWS_Rte_06207] [SWS_Rte_06208]
[SWS_Rte_06209] [SWS_Rte_06831] [SWS_Rte_07414] [SWS_Rte_07415]
[SWS_Rte_07416] [SWS_Rte_07417] [SWS_Rte_07418] [SWS_Rte_07419]
[SWS_Rte_07420] [SWS_Rte_08104] [SWS_Rte_08105] [SWS_Rte_08106]
[SWS_Rte_08107] [SWS_Rte_08108] [SWS_Rte_08109] [SWS_Rte_08110]
[SWS_Rte_08417] [SWS_Rte_08418] [SWS_Rte_08419] [SWS_Rte_08592]
[SWS_Rte_08593] [SWS_Rte_08594] [SWS_Rte_08595] [SWS_Rte_08596]
[SWS_Rte_08597] [SWS_Rte_08598] [SWS_Rte_08599]

G.7.2 Changed Traceables in 4.2.2

[SWS_Rte_01156] [SWS_Rte_01366] [SWS_Rte_01403] [SWS_Rte_02250]
[SWS_Rte_02254] [SWS_Rte_02572] [SWS_Rte_02604] [SWS_Rte_02703]
[SWS_Rte_03724] [SWS_Rte_03793] [SWS_Rte_03832] [SWS_Rte_05094]
[SWS_Rte_05095] [SWS_Rte_05096] [SWS_Rte_05097] [SWS_Rte_05098]
[SWS_Rte_05105] [SWS_Rte_05500] [SWS_Rte_06545] [SWS_Rte_06611]
[SWS_Rte_06630] [SWS_Rte_06631] [SWS_Rte_06799] [SWS_Rte_06811]
[SWS_Rte_06818] [SWS_Rte_06829] [SWS_Rte_07038] [SWS_Rte_07089]
[SWS_Rte_07200] [SWS_Rte_07207] [SWS_Rte_07310] [SWS_Rte_07315]
[SWS_Rte_07408] [SWS_Rte_07409] [SWS_Rte_07413] [SWS_Rte_07623]
[SWS_Rte_07627] [SWS_Rte_07676] [SWS_Rte_07686] [SWS_Rte_07817]
[SWS_Rte_08064] [SWS_Rte_08409] [SWS_Rte_08411] [SWS_Rte_08412]
[SWS_Rte_08515] [SWS_Rte_08516] [SWS_Rte_08518] [SWS_Rte_08523]
[SWS_Rte_08526] [SWS_Rte_08533] [SWS_Rte_08558] [SWS_Rte_08711]
[SWS_Rte_08712] [SWS_Rte_08732] [SWS_Rte_08794] [SWS_Rte_08795]
[SWS_Rte_08800]

G.7.3 Deleted Traceables in 4.2.2

[SWS_Rte_01231] [SWS_Rte_01276] [SWS_Rte_02251] [SWS_Rte_05022]
[SWS_Rte_05063] [SWS_Rte_08713]

1254 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

G.7.4 Added Constraints in 4.2.2

Id Heading
[constr_9092] Rte_IrvIWriteRef API may only be used by the runnable that describe its usage
[constr_9093] Rte_IrvIWriteRef may not return values written in previous executions

Table G.10: Added Constraints in 4.2.2

G.7.5 Changed Constraints in 4.2.2

none

G.7.6 Deleted Constraints in 4.2.2

none

G.8 Changes in Rel. 4.3 Rev. 0 compared to Rel. 4.2 Rev. 2

G.8.1 Added Traceables in 4.3.0

[SWS_Rte_03867] [SWS_Rte_03868] [SWS_Rte_03999] [SWS_Rte_04528]
[SWS_Rte_04529] [SWS_Rte_04530] [SWS_Rte_04531] [SWS_Rte_04532]
[SWS_Rte_04533] [SWS_Rte_04534] [SWS_Rte_04535] [SWS_Rte_04536]
[SWS_Rte_04537] [SWS_Rte_04538] [SWS_Rte_04539] [SWS_Rte_04540]
[SWS_Rte_04541] [SWS_Rte_04542] [SWS_Rte_04543] [SWS_Rte_04544]
[SWS_Rte_04545] [SWS_Rte_04546] [SWS_Rte_04547] [SWS_Rte_04548]
[SWS_Rte_04549] [SWS_Rte_04550] [SWS_Rte_04551] [SWS_Rte_06033]
[SWS_Rte_06034] [SWS_Rte_06035] [SWS_Rte_06036] [SWS_Rte_06037]
[SWS_Rte_06038] [SWS_Rte_06039] [SWS_Rte_06040] [SWS_Rte_06041]
[SWS_Rte_06042] [SWS_Rte_06043] [SWS_Rte_06044] [SWS_Rte_06045]
[SWS_Rte_06046] [SWS_Rte_06047] [SWS_Rte_06048] [SWS_Rte_06049]
[SWS_Rte_06050] [SWS_Rte_06051] [SWS_Rte_06052] [SWS_Rte_06053]
[SWS_Rte_06054] [SWS_Rte_06055] [SWS_Rte_06056] [SWS_Rte_06057]
[SWS_Rte_06058] [SWS_Rte_06059] [SWS_Rte_06060] [SWS_Rte_06061]
[SWS_Rte_06064] [SWS_Rte_06065] [SWS_Rte_06066] [SWS_Rte_06067]
[SWS_Rte_06068] [SWS_Rte_06069] [SWS_Rte_06073] [SWS_Rte_06074]
[SWS_Rte_06075] [SWS_Rte_06076] [SWS_Rte_06077] [SWS_Rte_06079]
[SWS_Rte_06080] [SWS_Rte_06081] [SWS_Rte_06082] [SWS_Rte_06083]
[SWS_Rte_06084] [SWS_Rte_06085] [SWS_Rte_06086] [SWS_Rte_06087]
[SWS_Rte_06088] [SWS_Rte_06089] [SWS_Rte_06090] [SWS_Rte_06091]
[SWS_Rte_06092] [SWS_Rte_06093] [SWS_Rte_06094] [SWS_Rte_06095]
[SWS_Rte_06096] [SWS_Rte_06097] [SWS_Rte_06098] [SWS_Rte_06099]
[SWS_Rte_06100] [SWS_Rte_06101] [SWS_Rte_06102] [SWS_Rte_06103]
[SWS_Rte_06104] [SWS_Rte_06105] [SWS_Rte_06106] [SWS_Rte_06107]

1255 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06108] [SWS_Rte_06109] [SWS_Rte_06110] [SWS_Rte_06111]
[SWS_Rte_06112] [SWS_Rte_06113] [SWS_Rte_06114] [SWS_Rte_06115]
[SWS_Rte_06120] [SWS_Rte_06210] [SWS_Rte_06211] [SWS_Rte_06212]
[SWS_Rte_08111] [SWS_Rte_08420] [SWS_Rte_08421] [SWS_Rte_08422]
[SWS_Rte_08423] [SWS_Rte_08424] [SWS_Rte_08603] [SWS_Rte_08604]
[SWS_Rte_08605]

G.8.2 Changed Traceables in 4.3.0

[SWS_Rte_01072] [SWS_Rte_01092] [SWS_Rte_01120] [SWS_Rte_01123]
[SWS_Rte_01150] [SWS_Rte_01168] [SWS_Rte_01238] [SWS_Rte_01239]
[SWS_Rte_01240] [SWS_Rte_01241] [SWS_Rte_01319] [SWS_Rte_01342]
[SWS_Rte_01354] [SWS_Rte_01408] [SWS_Rte_01411] [SWS_Rte_02579]
[SWS_Rte_02599] [SWS_Rte_02614] [SWS_Rte_02619] [SWS_Rte_02653]
[SWS_Rte_02679] [SWS_Rte_03602] [SWS_Rte_03603] [SWS_Rte_03712]
[SWS_Rte_03714] [SWS_Rte_03731] [SWS_Rte_03739] [SWS_Rte_03741]
[SWS_Rte_03744] [SWS_Rte_03799] [SWS_Rte_03810] [SWS_Rte_03827]
[SWS_Rte_03828] [SWS_Rte_03832] [SWS_Rte_03984] [SWS_Rte_04504]
[SWS_Rte_05509] [SWS_Rte_06533] [SWS_Rte_06612] [SWS_Rte_06620]
[SWS_Rte_06638] [SWS_Rte_06768] [SWS_Rte_06769] [SWS_Rte_06770]
[SWS_Rte_06813] [SWS_Rte_07053] [SWS_Rte_07100] [SWS_Rte_07138]
[SWS_Rte_07170] [SWS_Rte_07250] [SWS_Rte_07253] [SWS_Rte_07270]
[SWS_Rte_07386] [SWS_Rte_07411] [SWS_Rte_07556] [SWS_Rte_07574]
[SWS_Rte_07675] [SWS_Rte_07683] [SWS_Rte_07810] [SWS_Rte_07811]
[SWS_Rte_07928] [SWS_Rte_08080] [SWS_Rte_08081] [SWS_Rte_08090]
[SWS_Rte_08312] [SWS_Rte_08517] [SWS_Rte_08524] [SWS_Rte_08538]
[SWS_Rte_08541] [SWS_Rte_08700] [SWS_Rte_08733] [SWS_Rte_08736]
[SWS_Rte_08740] [SWS_Rte_08743] [SWS_Rte_08744] [SWS_Rte_08795]
[SWS_Rte_08801]

G.8.3 Deleted Traceables in 4.3.0

[SWS_Rte_02627] [SWS_Rte_03503] [SWS_Rte_03773] [SWS_Rte_05094]
[SWS_Rte_05095] [SWS_Rte_05096] [SWS_Rte_05097] [SWS_Rte_05098]
[SWS_Rte_05103] [SWS_Rte_05104] [SWS_Rte_05105] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06630] [SWS_Rte_07283] [SWS_Rte_07292]
[SWS_Rte_07357] [SWS_Rte_07813] [SWS_Rte_07814] [SWS_Rte_08106]
[SWS_Rte_08701] [SWS_Rte_08759] [SWS_Rte_08781]

G.8.4 Renamed Constraints in 4.3.0

constr_9081 [SWS_Rte_CONSTR_09081] Mapping to partition vs the value of VariableAc-
cess.scope

1256 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

constr_9010 [SWS_Rte_CONSTR_09010] Worst case execution time shall be less than the
GCD

constr_9012 [SWS_Rte_CONSTR_09012] Category 1 interrupts shall not access the RTE.
constr_9011 [SWS_Rte_CONSTR_09011] NvMBlockDescriptor related to a RAM Block of

a NvBlockSwComponentType shall use NvM-
BlockDescriptor.NvmBlockUseSyncMechanism

constr_9001 [SWS_Rte_CONSTR_09001] Whole DataPrototypeGroup in role Consisten-
cyNeeds.dpgRequiresCoherency shall be prop-
agated coherently

constr_9002 [SWS_Rte_CONSTR_09002] The whole DataPrototypeGroup shall be read
stable for the whole RunnableEntityGroup in the
role ConsistencyNeeds.regRequiresStability

constr_9013 [SWS_Rte_CONSTR_09013] Exactly one mode or one mode transition shall
be active

constr_9014 [SWS_Rte_CONSTR_09014] ModeSwitchPoint(s) and managedMode-
Group(s) are mutually exclusive for synchronized
ModeDeclarationGroupPrototypes

constr_9007 [SWS_Rte_CONSTR_09007] issuedTrigger and BswTriggerDirectImplementa-
tion are mutually exclusive

constr_9008 [SWS_Rte_CONSTR_09008] The same Trigger in a trigger sink must not be
connected to multiple trigger sources

constr_9009 [SWS_Rte_CONSTR_09009] Synchronized Trigger shall not be referenced by
more than one type of access method

constr_9042 [SWS_Rte_CONSTR_09042] Array Implementation Data Type needs at least
one element

constr_9043 [SWS_Rte_CONSTR_09043] Structure Implementation Data Type needs at
least one element

constr_9080 [SWS_Rte_CONSTR_09080] The shortNames of PortInterfaces shall be
unique within a software component if it
supports multiple instantiation or PortAPIOp-
tion.indirectAPI attribute is set to ’true’

constr_9015 [SWS_Rte_CONSTR_09015] Rte_Write API may only be used by the runnable
that describe its usage

constr_9016 [SWS_Rte_CONSTR_09016] Rte_Send API may only be used by the runnable
that describes its usage

constr_9017 [SWS_Rte_CONSTR_09017] Rte_Switch API may only be used by the runn-
able that describes its usage

constr_9018 [SWS_Rte_CONSTR_09018] Rte_Invalidate API may only be used by the
runnable that describe its usage

constr_9019 [SWS_Rte_CONSTR_09019] Rte_Feedback API may only be used by the
runnable that describe its usage

constr_9020 [SWS_Rte_CONSTR_09020] The blocking Rte_SwitchAck API may only be
used by the runnable that describes its usage.

constr_9021 [SWS_Rte_CONSTR_09021] Rte_Read API may only be used by the runnable
that describe its usage

constr_9022 [SWS_Rte_CONSTR_09022] Rte_DRead API may only be used by the runn-
able that describe its usage

constr_9023 [SWS_Rte_CONSTR_09023] Rte_Receive API may only be used by the runn-
able that describe its usage

constr_9024 [SWS_Rte_CONSTR_09024] Rte_Call API may only be used by the runnable
that describe its usage

constr_9025 [SWS_Rte_CONSTR_09025] Blocking Rte_Result API may only be used by
the runnable that describe the WaitPoint

constr_9083 [SWS_Rte_CONSTR_09083] Rte_IRead API may only be used by the runn-
able that describe its usage

1257 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

constr_9084 [SWS_Rte_CONSTR_09084] Rte_IWrite API may only be used by the runnable
that describe its usage

constr_9085 [SWS_Rte_CONSTR_09085] Rte_IWriteRef API may only be used by the
runnable that describe its usage

constr_9026 [SWS_Rte_CONSTR_09026] Rte_IWriteRef may not return values written in
previous executions

constr_9086 [SWS_Rte_CONSTR_09086] Rte_IInvalidate API may only be used by the
runnable that is describing an write access to the
data

constr_9027 [SWS_Rte_CONSTR_09027] Rte_IStatus API shall only be used by a
RunnableEntity describing an read access to the
related data

constr_9087 [SWS_Rte_CONSTR_09087] Rte_IrvIRead API may only be used by the runn-
able that describe its usage

constr_9088 [SWS_Rte_CONSTR_09088] Rte_IrvIWrite API may only be used by the runn-
able that describe its usage

constr_9092 [SWS_Rte_CONSTR_09092] Rte_IrvIWriteRef API may only be used by the
runnable that describe its usage

constr_9093 [SWS_Rte_CONSTR_09093] Rte_IrvIWriteRef may not return values written in
previous executions

constr_9089 [SWS_Rte_CONSTR_09089] Rte_IrvRead API may only be used by the runn-
able that describe its usage

constr_9090 [SWS_Rte_CONSTR_09090] Rte_IrvWrite API may only be used by the runn-
able that describe its usage

constr_9028 [SWS_Rte_CONSTR_09028] Rte_Enter and Rte_Exit API may only be used
by runnables describing its usage

constr_9029 [SWS_Rte_CONSTR_09029] Nested call of Rte_Enter and Rte_Exit is re-
stricted

constr_9030 [SWS_Rte_CONSTR_09030] Rte_Mode API may only be used by the runnable
that describe its usage

constr_9031 [SWS_Rte_CONSTR_09031] Rte_Mode API may only be used by the runnable
that describe its usage

constr_9032 [SWS_Rte_CONSTR_09032] Rte_Trigger API may only be used by the runn-
able that describe its usage

constr_9033 [SWS_Rte_CONSTR_09033] Rte_IrTrigger API may only be used by the runn-
able that describe its usage

constr_9000 [SWS_Rte_CONSTR_09000] Rte_IFeedback API may only be used by the
RunnableEntitys that describe its usage

constr_9034 [SWS_Rte_CONSTR_09034] Rte_IsUpdated API may only be used by the
runnable that describe the access to the corre-
sponding data

constr_9045 [SWS_Rte_CONSTR_09045] The upper two bits of the of the server return
value are reserved

constr_9035 [SWS_Rte_CONSTR_09035] Rte_Start shall be called only once
constr_9036 [SWS_Rte_CONSTR_09036] Rte_Start API may only be used after call of

SchM_Init
constr_9037 [SWS_Rte_CONSTR_09037] Rte_Start API shall be called on every core
constr_9038 [SWS_Rte_CONSTR_09038] Rte_Stop shall be called before BSW shutdown
constr_9039 [SWS_Rte_CONSTR_09039] Rte_PartitionTerminated shall be called only

once
constr_9040 [SWS_Rte_CONSTR_09040] Rte_PartitionRestarting shall be called only onc
constr_9041 [SWS_Rte_CONSTR_09041] Rte_RestartPartition shall be called from

RestartTask
constr_9060 [SWS_Rte_CONSTR_09060] Rte_Init API may only be used after call of

Rte_Start

1258 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

constr_9061 [SWS_Rte_CONSTR_09061] Rte_StartTiming API may only be used after call
of Rte_Start

constr_9059 [SWS_Rte_CONSTR_09059] Usage of Basic Software Scheduler API prereq-
uisites the include of the Module Interlink Header
File

constr_9046 [SWS_Rte_CONSTR_09046] SchM_Enter and SchM_Exit API may only be
used by BswModuleEntitys describing its usage

constr_9047 [SWS_Rte_CONSTR_09047] Nested call of SchM_Enter and SchM_Exit API
is restricted

constr_9048 [SWS_Rte_CONSTR_09048] SchM_Exit API may only be used by BswMod-
uleEntitys that describe its usage

constr_9079 [SWS_Rte_CONSTR_09079] SchM_Call API may only be used by the
BswModuleEntity that describe its usage

constr_9076 [SWS_Rte_CONSTR_09076] SchM_Result API may only be used by the
BswModuleEntity that describe its usage

constr_9077 [SWS_Rte_CONSTR_09077] SchM_Send API may only be used by the
BswModuleEntity that describes its usage

constr_9078 [SWS_Rte_CONSTR_09078] SchM_Receive API may only be used by the
BswModuleEntity that describes its usage

constr_9049 [SWS_Rte_CONSTR_09049] SchM_Switch API may only be used by BswMod-
uleEntitys that describe its usage

constr_9050 [SWS_Rte_CONSTR_09050] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

constr_9051 [SWS_Rte_CONSTR_09051] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

constr_9052 [SWS_Rte_CONSTR_09052] SchM_SwitchAck API may only be used by
BswModuleEntitys that describe its usage

constr_9053 [SWS_Rte_CONSTR_09053] SchM_Trigger API may only be used by the
BswModuleEntitys that describe its usage

constr_9054 [SWS_Rte_CONSTR_09054] SchM_ActMainFunction API may only be used
by the BswModuleEntitys that describe its usage

constr_9058 [SWS_Rte_CONSTR_09058] BswSchedulableEntity is not allowed to have ser-
vice arguments or return value

constr_9055 [SWS_Rte_CONSTR_09055] SchM_Init, SchM_Start, SchM_StartTiming shall
be called only once

constr_9057 [SWS_Rte_CONSTR_09057] SchM_Deinit shall be called before shut down of
BSW

constr_9056 [SWS_Rte_CONSTR_09056] SchM_Deinit API may only be used after the was
RTE finalized

constr_9082 [SWS_Rte_CONSTR_09082] RteEventToTaskMapping.RtePositionInTask
and RteBswEventToTaskMap-
ping.RteBswPositionInTask values shall be
unique in a particular context

constr_3510 [SWS_Rte_CONSTR_03510] Exclude usage of RteExclusiveAreaImplMecha-
nism.OS_SPINLOCK in RteExclusiveAreaImple-
mentation

constr_9091 [SWS_Rte_CONSTR_09091] RteNvRamAllocation.RteSwNvRamMappingRef
and RteNvRamAlloca-
tion.RteSwNvBlockDescriptorRef are excluding
each other

constr_9005 [SWS_Rte_CONSTR_09005] The references RteInternalTriggerCon-
fig.RteSwcTriggerSourceRef has to be
consistent with the RteSwComponentIn-
stance.RteSoftwareComponentInstanceRef

1259 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

constr_9006 [SWS_Rte_CONSTR_09006] The references RteBswInternalTrigger-
Config.RteBswTriggerSourceRef has to
be consistent with the RteBswModuleIn-
stance.RteBswImplementationRef

constr_9063 [SWS_Rte_CONSTR_09063] Restricted kinds of RTEEvents which may
mapped to RteInitializationRunnableBatch con-
tainers

constr_9064 [SWS_Rte_CONSTR_09064] A single RteInitializationRunnableBatch con-
tainer may not handle RTEEvents of different
partitions

constr_9062 [SWS_Rte_CONSTR_09062] Entire mapping of on-entry Runnable Entities for
ModeDeclarationGroup.initialMode to RteInitial-
izationRunnableBatch containers

Table G.11: Renamed Constraints in 4.3.0

G.8.5 Added Constraints in 4.3.0

none

G.8.6 Changed Constraints in 4.3.0

none

G.8.7 Deleted Constraints in 4.3.0

none

G.9 Changes in Rel. 4.3 Rev. 1 compared to Rel. 4.3 Rev. 0

G.9.1 Added Traceables in 4.3.1

[SWS_Rte_02310] [SWS_Rte_02311] [SWS_Rte_03608] [SWS_Rte_03609]
[SWS_Rte_03610] [SWS_Rte_03869] [SWS_Rte_04552] [SWS_Rte_04553]
[SWS_Rte_04554] [SWS_Rte_04555] [SWS_Rte_04556] [SWS_Rte_04557]
[SWS_Rte_08802] [SWS_Rte_08803]

G.9.2 Changed Traceables in 4.3.1

[SWS_Rte_01058] [SWS_Rte_01060] [SWS_Rte_01061] [SWS_Rte_01064]
[SWS_Rte_01065] [SWS_Rte_01106] [SWS_Rte_01238] [SWS_Rte_01239]
[SWS_Rte_01248] [SWS_Rte_01317] [SWS_Rte_01339] [SWS_Rte_01379]
[SWS_Rte_01389] [SWS_Rte_02568] [SWS_Rte_02571] [SWS_Rte_02594]

1260 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02702] [SWS_Rte_02706] [SWS_Rte_02739] [SWS_Rte_02747]
[SWS_Rte_02757] [SWS_Rte_03809] [SWS_Rte_03810] [SWS_Rte_03812]
[SWS_Rte_03853] [SWS_Rte_03983] [SWS_Rte_04526] [SWS_Rte_05173]
[SWS_Rte_06061] [SWS_Rte_06113] [SWS_Rte_06114] [SWS_Rte_06611]
[SWS_Rte_06631] [SWS_Rte_06706] [SWS_Rte_06707] [SWS_Rte_06711]
[SWS_Rte_06828] [SWS_Rte_07054] [SWS_Rte_07055] [SWS_Rte_07072]
[SWS_Rte_07087] [SWS_Rte_07175] [SWS_Rte_07228] [SWS_Rte_07289]
[SWS_Rte_07290] [SWS_Rte_07384] [SWS_Rte_07410] [SWS_Rte_07411]
[SWS_Rte_07412] [SWS_Rte_07562] [SWS_Rte_07563] [SWS_Rte_07655]
[SWS_Rte_07822] [SWS_Rte_07823] [SWS_Rte_08001] [SWS_Rte_08002]
[SWS_Rte_08065] [SWS_Rte_08082] [SWS_Rte_08083] [SWS_Rte_08084]
[SWS_Rte_08085] [SWS_Rte_08400] [SWS_Rte_08531] [SWS_Rte_08532]
[SWS_Rte_08551] [SWS_Rte_08725] [SWS_Rte_08726]

G.9.3 Deleted Traceables in 4.3.1

[SWS_Rte_02579] [SWS_Rte_03714] [SWS_Rte_05111] [SWS_Rte_07132]
[SWS_Rte_07676] [SWS_Rte_08533]

G.9.4 Added Constraints in 4.3.1

[SWS_Rte_CONSTR_03870]

G.9.5 Changed Constraints in 4.3.1

none

G.9.6 Deleted Constraints in 4.3.1

none

G.10 Changes in Rel. 4.4 Rev. 0 compared to Rel. 4.3 Rev. 1

G.10.1 Added Traceables in 4.4.0

[SWS_Rte_02312] [SWS_Rte_02313] [SWS_Rte_02314] [SWS_Rte_02315]
[SWS_Rte_03611] [SWS_Rte_03612] [SWS_Rte_03613] [SWS_Rte_03614]
[SWS_Rte_03615] [SWS_Rte_03616] [SWS_Rte_03617] [SWS_Rte_03618]
[SWS_Rte_03871] [SWS_Rte_03872] [SWS_Rte_04558] [SWS_Rte_04559]
[SWS_Rte_06832] [SWS_Rte_06833] [SWS_Rte_06834] [SWS_Rte_06835]

1261 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06836] [SWS_Rte_06837] [SWS_Rte_06838] [SWS_Rte_06839]
[SWS_Rte_06840] [SWS_Rte_07421] [SWS_Rte_07422] [SWS_Rte_07423]
[SWS_Rte_07424] [SWS_Rte_07425] [SWS_Rte_07426] [SWS_Rte_07427]
[SWS_Rte_70000] [SWS_Rte_70001] [SWS_Rte_70002] [SWS_Rte_70003]
[SWS_Rte_70004] [SWS_Rte_70005] [SWS_Rte_70006] [SWS_Rte_70007]
[SWS_Rte_70008] [SWS_Rte_70009] [SWS_Rte_70010] [SWS_Rte_70011]
[SWS_Rte_70012] [SWS_Rte_70013] [SWS_Rte_70015] [SWS_Rte_70016]
[SWS_Rte_70017] [SWS_Rte_70018] [SWS_Rte_70019] [SWS_Rte_70020]
[SWS_Rte_70021] [SWS_Rte_70022] [SWS_Rte_70023] [SWS_Rte_70024]
[SWS_Rte_70025] [SWS_Rte_70026] [SWS_Rte_70027] [SWS_Rte_70028]
[SWS_Rte_70029] [SWS_Rte_70030] [SWS_Rte_70031] [SWS_Rte_70032]
[SWS_Rte_70033] [SWS_Rte_70034] [SWS_Rte_70035] [SWS_Rte_70036]
[SWS_Rte_70037] [SWS_Rte_70038] [SWS_Rte_70039] [SWS_Rte_70040]
[SWS_Rte_70042] [SWS_Rte_70043] [SWS_Rte_70044] [SWS_Rte_70045]
[SWS_Rte_70046] [SWS_Rte_70047] [SWS_Rte_70048] [SWS_Rte_70049]
[SWS_Rte_70050] [SWS_Rte_70051] [SWS_Rte_70052] [SWS_Rte_70053]
[SWS_Rte_70054] [SWS_Rte_70055] [SWS_Rte_70056] [SWS_Rte_70057]
[SWS_Rte_70058] [SWS_Rte_70059] [SWS_Rte_70060] [SWS_Rte_70061]
[SWS_Rte_70062] [SWS_Rte_70063] [SWS_Rte_70064] [SWS_Rte_70065]
[SWS_Rte_70066] [SWS_Rte_70067] [SWS_Rte_70068] [SWS_Rte_70069]
[SWS_Rte_70070] [SWS_Rte_70071] [SWS_Rte_70072] [SWS_Rte_70073]
[SWS_Rte_70074] [SWS_Rte_70075] [SWS_Rte_70076] [SWS_Rte_70077]
[SWS_Rte_70078] [SWS_Rte_70079] [SWS_Rte_70080] [SWS_Rte_70081]
[SWS_Rte_70082] [SWS_Rte_70083] [SWS_Rte_70084] [SWS_Rte_70085]
[SWS_Rte_70086] [SWS_Rte_70087] [SWS_Rte_70088] [SWS_Rte_70089]
[SWS_Rte_70090] [SWS_Rte_70091] [SWS_Rte_70092] [SWS_Rte_70093]
[SWS_Rte_70094] [SWS_Rte_70095] [SWS_Rte_70096] [SWS_Rte_70097]
[SWS_Rte_70098] [SWS_Rte_70099] [SWS_Rte_70100] [SWS_Rte_70101]
[SWS_Rte_70102] [SWS_Rte_70103] [SWS_Rte_70104] [SWS_Rte_70105]
[SWS_Rte_70106] [SWS_Rte_70107] [SWS_Rte_70108] [SWS_Rte_70109]
[SWS_Rte_70110] [SWS_Rte_70111] [SWS_Rte_70112] [SWS_Rte_70113]
[SWS_Rte_70114] [SWS_Rte_70115] [SWS_Rte_80000] [SWS_Rte_80001]
[SWS_Rte_80002] [SWS_Rte_80003] [SWS_Rte_80005] [SWS_Rte_80006]
[SWS_Rte_80007] [SWS_Rte_80008] [SWS_Rte_80009] [SWS_Rte_80010]
[SWS_Rte_80011] [SWS_Rte_80012] [SWS_Rte_80013] [SWS_Rte_80014]
[SWS_Rte_80015] [SWS_Rte_80016] [SWS_Rte_80017] [SWS_Rte_80018]
[SWS_Rte_80019] [SWS_Rte_80020] [SWS_Rte_80021] [SWS_Rte_80022]
[SWS_Rte_80023] [SWS_Rte_80024] [SWS_Rte_80025] [SWS_Rte_80026]
[SWS_Rte_80027] [SWS_Rte_80028] [SWS_Rte_80029] [SWS_Rte_80030]
[SWS_Rte_80031] [SWS_Rte_80032] [SWS_Rte_80033] [SWS_Rte_80034]
[SWS_Rte_80035] [SWS_Rte_80036] [SWS_Rte_80037] [SWS_Rte_80038]
[SWS_Rte_80039] [SWS_Rte_80040] [SWS_Rte_80041] [SWS_Rte_80043]
[SWS_Rte_80044] [SWS_Rte_80045] [SWS_Rte_80046] [SWS_Rte_80047]
[SWS_Rte_80048] [SWS_Rte_80049] [SWS_Rte_80050] [SWS_Rte_80051]
[SWS_Rte_80052] [SWS_Rte_80053] [SWS_Rte_80054] [SWS_Rte_80055]
[SWS_Rte_80056] [SWS_Rte_80057] [SWS_Rte_80058] [SWS_Rte_80059]

1262 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_80060] [SWS_Rte_80061] [SWS_Rte_80063] [SWS_Rte_80064]
[SWS_Rte_80065] [SWS_Rte_80066] [SWS_Rte_80067] [SWS_Rte_80068]
[SWS_Rte_80069] [SWS_Rte_80070] [SWS_Rte_80071] [SWS_Rte_80072]
[SWS_Rte_80073] [SWS_Rte_80074] [SWS_Rte_80075] [SWS_Rte_80076]
[SWS_Rte_80077] [SWS_Rte_80078] [SWS_Rte_80079] [SWS_Rte_80080]
[SWS_Rte_80081] [SWS_Rte_80082] [SWS_Rte_80083] [SWS_Rte_80084]
[SWS_Rte_80085] [SWS_Rte_80100] [SWS_Rte_80101] [SWS_Rte_80102]
[SWS_Rte_80103] [SWS_Rte_80104] [SWS_Rte_80105] [SWS_Rte_80106]
[SWS_Rte_80107] [SWS_Rte_80108] [SWS_Rte_80109] [SWS_Rte_80110]
[SWS_Rte_80111] [SWS_Rte_80112] [SWS_Rte_80113] [SWS_Rte_80114]
[SWS_Rte_80115] [SWS_Rte_80116] [SWS_Rte_80117] [SWS_Rte_80118]
[SWS_Rte_80119] [SWS_Rte_80120] [SWS_Rte_80121] [SWS_Rte_80122]
[SWS_Rte_80123] [SWS_Rte_80124] [SWS_Rte_80125] [SWS_Rte_91102]

G.10.2 Changed Traceables in 4.4.0

[SWS_Rte_01003] [SWS_Rte_01016] [SWS_Rte_01055] [SWS_Rte_01058]
[SWS_Rte_01060] [SWS_Rte_01061] [SWS_Rte_01064] [SWS_Rte_01065]
[SWS_Rte_01071] [SWS_Rte_01072] [SWS_Rte_01083] [SWS_Rte_01084]
[SWS_Rte_01086] [SWS_Rte_01091] [SWS_Rte_01092] [SWS_Rte_01093]
[SWS_Rte_01094] [SWS_Rte_01095] [SWS_Rte_01102] [SWS_Rte_01104]
[SWS_Rte_01105] [SWS_Rte_01106] [SWS_Rte_01107] [SWS_Rte_01111]
[SWS_Rte_01112] [SWS_Rte_01113] [SWS_Rte_01114] [SWS_Rte_01118]
[SWS_Rte_01120] [SWS_Rte_01123] [SWS_Rte_01126] [SWS_Rte_01130]
[SWS_Rte_01132] [SWS_Rte_01150] [SWS_Rte_01157] [SWS_Rte_01158]
[SWS_Rte_01161] [SWS_Rte_01162] [SWS_Rte_01164] [SWS_Rte_01166]
[SWS_Rte_01169] [SWS_Rte_01171] [SWS_Rte_01206] [SWS_Rte_01207]
[SWS_Rte_01236] [SWS_Rte_01238] [SWS_Rte_01239] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242] [SWS_Rte_01243] [SWS_Rte_01244]
[SWS_Rte_01245] [SWS_Rte_01246] [SWS_Rte_01247] [SWS_Rte_01248]
[SWS_Rte_01249] [SWS_Rte_01250] [SWS_Rte_01252] [SWS_Rte_01257]
[SWS_Rte_01259] [SWS_Rte_01260] [SWS_Rte_01261] [SWS_Rte_01262]
[SWS_Rte_01269] [SWS_Rte_01279] [SWS_Rte_01317] [SWS_Rte_01318]
[SWS_Rte_01321] [SWS_Rte_01322] [SWS_Rte_01323] [SWS_Rte_01324]
[SWS_Rte_01325] [SWS_Rte_01330] [SWS_Rte_01331] [SWS_Rte_01332]
[SWS_Rte_01333] [SWS_Rte_01334] [SWS_Rte_01339] [SWS_Rte_01342]
[SWS_Rte_01343] [SWS_Rte_01344] [SWS_Rte_01350] [SWS_Rte_01354]
[SWS_Rte_01363] [SWS_Rte_01364] [SWS_Rte_01365] [SWS_Rte_01371]
[SWS_Rte_01372] [SWS_Rte_01376] [SWS_Rte_01379] [SWS_Rte_01388]
[SWS_Rte_01389] [SWS_Rte_01390] [SWS_Rte_01391] [SWS_Rte_01392]
[SWS_Rte_01393] [SWS_Rte_01395] [SWS_Rte_01396] [SWS_Rte_01397]
[SWS_Rte_01398] [SWS_Rte_01399] [SWS_Rte_01400] [SWS_Rte_01401]
[SWS_Rte_01402] [SWS_Rte_01403] [SWS_Rte_01404] [SWS_Rte_01405]
[SWS_Rte_01406] [SWS_Rte_01407] [SWS_Rte_01408] [SWS_Rte_01409]
[SWS_Rte_01410] [SWS_Rte_01411] [SWS_Rte_01412] [SWS_Rte_02301]

1263 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_02310] [SWS_Rte_02311] [SWS_Rte_02568] [SWS_Rte_02571]
[SWS_Rte_02572] [SWS_Rte_02573] [SWS_Rte_02575] [SWS_Rte_02576]
[SWS_Rte_02577] [SWS_Rte_02590] [SWS_Rte_02594] [SWS_Rte_02598]
[SWS_Rte_02599] [SWS_Rte_02602] [SWS_Rte_02603] [SWS_Rte_02604]
[SWS_Rte_02607] [SWS_Rte_02610] [SWS_Rte_02611] [SWS_Rte_02612]
[SWS_Rte_02614] [SWS_Rte_02617] [SWS_Rte_02619] [SWS_Rte_02623]
[SWS_Rte_02626] [SWS_Rte_02628] [SWS_Rte_02631] [SWS_Rte_02634]
[SWS_Rte_02641] [SWS_Rte_02642] [SWS_Rte_02659] [SWS_Rte_02660]
[SWS_Rte_02674] [SWS_Rte_02675] [SWS_Rte_02702] [SWS_Rte_02703]
[SWS_Rte_02711] [SWS_Rte_02712] [SWS_Rte_02713] [SWS_Rte_02725]
[SWS_Rte_02727] [SWS_Rte_02728] [SWS_Rte_02729] [SWS_Rte_02739]
[SWS_Rte_02740] [SWS_Rte_02741] [SWS_Rte_02743] [SWS_Rte_02744]
[SWS_Rte_02745] [SWS_Rte_02746] [SWS_Rte_02747] [SWS_Rte_02751]
[SWS_Rte_02754] [SWS_Rte_02755] [SWS_Rte_02756] [SWS_Rte_02757]
[SWS_Rte_03001] [SWS_Rte_03002] [SWS_Rte_03004] [SWS_Rte_03005]
[SWS_Rte_03517] [SWS_Rte_03519] [SWS_Rte_03550] [SWS_Rte_03553]
[SWS_Rte_03560] [SWS_Rte_03565] [SWS_Rte_03567] [SWS_Rte_03580]
[SWS_Rte_03583] [SWS_Rte_03584] [SWS_Rte_03602] [SWS_Rte_03606]
[SWS_Rte_03607] [SWS_Rte_03608] [SWS_Rte_03609] [SWS_Rte_03610]
[SWS_Rte_03712] [SWS_Rte_03724] [SWS_Rte_03725] [SWS_Rte_03731]
[SWS_Rte_03733] [SWS_Rte_03739] [SWS_Rte_03741] [SWS_Rte_03744]
[SWS_Rte_03746] [SWS_Rte_03770] [SWS_Rte_03775] [SWS_Rte_03776]
[SWS_Rte_03782] [SWS_Rte_03783] [SWS_Rte_03785] [SWS_Rte_03788]
[SWS_Rte_03793] [SWS_Rte_03794] [SWS_Rte_03796] [SWS_Rte_03799]
[SWS_Rte_03800] [SWS_Rte_03810] [SWS_Rte_03813] [SWS_Rte_03814]
[SWS_Rte_03835] [SWS_Rte_03837] [SWS_Rte_03845] [SWS_Rte_03846]
[SWS_Rte_03847] [SWS_Rte_03848] [SWS_Rte_03851] [SWS_Rte_03853]
[SWS_Rte_03854] [SWS_Rte_03858] [SWS_Rte_03859] [SWS_Rte_03867]
[SWS_Rte_03902] [SWS_Rte_03928] [SWS_Rte_03930] [SWS_Rte_03943]
[SWS_Rte_03947] [SWS_Rte_03948] [SWS_Rte_03968] [SWS_Rte_03979]
[SWS_Rte_03984] [SWS_Rte_03986] [SWS_Rte_03987] [SWS_Rte_03990]
[SWS_Rte_03991] [SWS_Rte_03992] [SWS_Rte_03993] [SWS_Rte_03995]
[SWS_Rte_03996] [SWS_Rte_03997] [SWS_Rte_04528] [SWS_Rte_04529]
[SWS_Rte_04531] [SWS_Rte_04532] [SWS_Rte_04533] [SWS_Rte_04534]
[SWS_Rte_04535] [SWS_Rte_04545] [SWS_Rte_04553] [SWS_Rte_04554]
[SWS_Rte_04555] [SWS_Rte_04556] [SWS_Rte_04557] [SWS_Rte_05051]
[SWS_Rte_05052] [SWS_Rte_05065] [SWS_Rte_05078] [SWS_Rte_05081]
[SWS_Rte_05084] [SWS_Rte_05085] [SWS_Rte_05088] [SWS_Rte_05093]
[SWS_Rte_05099] [SWS_Rte_05148] [SWS_Rte_05150] [SWS_Rte_05300]
[SWS_Rte_05301] [SWS_Rte_05509] [SWS_Rte_06009] [SWS_Rte_06032]
[SWS_Rte_06033] [SWS_Rte_06034] [SWS_Rte_06035] [SWS_Rte_06038]
[SWS_Rte_06039] [SWS_Rte_06041] [SWS_Rte_06042] [SWS_Rte_06043]
[SWS_Rte_06044] [SWS_Rte_06045] [SWS_Rte_06046] [SWS_Rte_06047]
[SWS_Rte_06048] [SWS_Rte_06049] [SWS_Rte_06050] [SWS_Rte_06079]
[SWS_Rte_06092] [SWS_Rte_06093] [SWS_Rte_06094] [SWS_Rte_06095]
[SWS_Rte_06096] [SWS_Rte_06097] [SWS_Rte_06098] [SWS_Rte_06099]

1264 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_06100] [SWS_Rte_06101] [SWS_Rte_06102] [SWS_Rte_06103]
[SWS_Rte_06104] [SWS_Rte_06105] [SWS_Rte_06106] [SWS_Rte_06113]
[SWS_Rte_06114] [SWS_Rte_06120] [SWS_Rte_06203] [SWS_Rte_06206]
[SWS_Rte_06207] [SWS_Rte_06210] [SWS_Rte_06211] [SWS_Rte_06212]
[SWS_Rte_06513] [SWS_Rte_06514] [SWS_Rte_06515] [SWS_Rte_06516]
[SWS_Rte_06518] [SWS_Rte_06519] [SWS_Rte_06520] [SWS_Rte_06521]
[SWS_Rte_06522] [SWS_Rte_06523] [SWS_Rte_06524] [SWS_Rte_06525]
[SWS_Rte_06526] [SWS_Rte_06527] [SWS_Rte_06528] [SWS_Rte_06529]
[SWS_Rte_06530] [SWS_Rte_06532] [SWS_Rte_06533] [SWS_Rte_06534]
[SWS_Rte_06535] [SWS_Rte_06536] [SWS_Rte_06539] [SWS_Rte_06540]
[SWS_Rte_06541] [SWS_Rte_06542] [SWS_Rte_06551] [SWS_Rte_06552]
[SWS_Rte_06620] [SWS_Rte_06633] [SWS_Rte_06706] [SWS_Rte_06707]
[SWS_Rte_06708] [SWS_Rte_06710] [SWS_Rte_06711] [SWS_Rte_06712]
[SWS_Rte_06713] [SWS_Rte_06720] [SWS_Rte_06721] [SWS_Rte_06722]
[SWS_Rte_06723] [SWS_Rte_06734] [SWS_Rte_06739] [SWS_Rte_06740]
[SWS_Rte_06742] [SWS_Rte_06745] [SWS_Rte_06749] [SWS_Rte_06761]
[SWS_Rte_06762] [SWS_Rte_06781] [SWS_Rte_06782] [SWS_Rte_06783]
[SWS_Rte_06784] [SWS_Rte_06808] [SWS_Rte_06809] [SWS_Rte_06811]
[SWS_Rte_06812] [SWS_Rte_06813] [SWS_Rte_06817] [SWS_Rte_06822]
[SWS_Rte_06824] [SWS_Rte_06828] [SWS_Rte_06829] [SWS_Rte_06830]
[SWS_Rte_07020] [SWS_Rte_07021] [SWS_Rte_07023] [SWS_Rte_07024]
[SWS_Rte_07027] [SWS_Rte_07036] [SWS_Rte_07037] [SWS_Rte_07041]
[SWS_Rte_07047] [SWS_Rte_07048] [SWS_Rte_07054] [SWS_Rte_07055]
[SWS_Rte_07069] [SWS_Rte_07072] [SWS_Rte_07076] [SWS_Rte_07092]
[SWS_Rte_07093] [SWS_Rte_07099] [SWS_Rte_07104] [SWS_Rte_07109]
[SWS_Rte_07110] [SWS_Rte_07111] [SWS_Rte_07114] [SWS_Rte_07115]
[SWS_Rte_07116] [SWS_Rte_07117] [SWS_Rte_07118] [SWS_Rte_07119]
[SWS_Rte_07122] [SWS_Rte_07133] [SWS_Rte_07138] [SWS_Rte_07139]
[SWS_Rte_07140] [SWS_Rte_07143] [SWS_Rte_07144] [SWS_Rte_07145]
[SWS_Rte_07146] [SWS_Rte_07148] [SWS_Rte_07149] [SWS_Rte_07160]
[SWS_Rte_07162] [SWS_Rte_07163] [SWS_Rte_07166] [SWS_Rte_07174]
[SWS_Rte_07188] [SWS_Rte_07194] [SWS_Rte_07195] [SWS_Rte_07200]
[SWS_Rte_07201] [SWS_Rte_07203] [SWS_Rte_07204] [SWS_Rte_07207]
[SWS_Rte_07226] [SWS_Rte_07250] [SWS_Rte_07253] [SWS_Rte_07255]
[SWS_Rte_07258] [SWS_Rte_07259] [SWS_Rte_07260] [SWS_Rte_07262]
[SWS_Rte_07263] [SWS_Rte_07266] [SWS_Rte_07281] [SWS_Rte_07284]
[SWS_Rte_07288] [SWS_Rte_07289] [SWS_Rte_07290] [SWS_Rte_07293]
[SWS_Rte_07294] [SWS_Rte_07295] [SWS_Rte_07310] [SWS_Rte_07315]
[SWS_Rte_07341] [SWS_Rte_07342] [SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376] [SWS_Rte_07378] [SWS_Rte_07382]
[SWS_Rte_07383] [SWS_Rte_07384] [SWS_Rte_07390] [SWS_Rte_07392]
[SWS_Rte_07393] [SWS_Rte_07394] [SWS_Rte_07410] [SWS_Rte_07411]
[SWS_Rte_07412] [SWS_Rte_07413] [SWS_Rte_07416] [SWS_Rte_07420]
[SWS_Rte_07504] [SWS_Rte_07525] [SWS_Rte_07528] [SWS_Rte_07556]
[SWS_Rte_07560] [SWS_Rte_07561] [SWS_Rte_07562] [SWS_Rte_07563]
[SWS_Rte_07588] [SWS_Rte_07589] [SWS_Rte_07592] [SWS_Rte_07601]

1265 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_07602] [SWS_Rte_07613] [SWS_Rte_07614] [SWS_Rte_07620]
[SWS_Rte_07623] [SWS_Rte_07625] [SWS_Rte_07626] [SWS_Rte_07627]
[SWS_Rte_07631] [SWS_Rte_07636] [SWS_Rte_07637] [SWS_Rte_07639]
[SWS_Rte_07641] [SWS_Rte_07642] [SWS_Rte_07643] [SWS_Rte_07644]
[SWS_Rte_07645] [SWS_Rte_07650] [SWS_Rte_07651] [SWS_Rte_07652]
[SWS_Rte_07655] [SWS_Rte_07659] [SWS_Rte_07660] [SWS_Rte_07661]
[SWS_Rte_07662] [SWS_Rte_07666] [SWS_Rte_07667] [SWS_Rte_07673]
[SWS_Rte_07678] [SWS_Rte_07680] [SWS_Rte_07682] [SWS_Rte_07683]
[SWS_Rte_07684] [SWS_Rte_07692] [SWS_Rte_07694] [SWS_Rte_07820]
[SWS_Rte_07821] [SWS_Rte_07822] [SWS_Rte_07823] [SWS_Rte_07830]
[SWS_Rte_07831] [SWS_Rte_07832] [SWS_Rte_07834] [SWS_Rte_07835]
[SWS_Rte_07848] [SWS_Rte_07849] [SWS_Rte_07922] [SWS_Rte_07926]
[SWS_Rte_08005] [SWS_Rte_08008] [SWS_Rte_08009] [SWS_Rte_08016]
[SWS_Rte_08017] [SWS_Rte_08018] [SWS_Rte_08020] [SWS_Rte_08021]
[SWS_Rte_08022] [SWS_Rte_08023] [SWS_Rte_08043] [SWS_Rte_08044]
[SWS_Rte_08045] [SWS_Rte_08046] [SWS_Rte_08047] [SWS_Rte_08048]
[SWS_Rte_08052] [SWS_Rte_08053] [SWS_Rte_08057] [SWS_Rte_08058]
[SWS_Rte_08061] [SWS_Rte_08063] [SWS_Rte_08065] [SWS_Rte_08066]
[SWS_Rte_08068] [SWS_Rte_08069] [SWS_Rte_08070] [SWS_Rte_08074]
[SWS_Rte_08075] [SWS_Rte_08080] [SWS_Rte_08081] [SWS_Rte_08082]
[SWS_Rte_08083] [SWS_Rte_08084] [SWS_Rte_08085] [SWS_Rte_08086]
[SWS_Rte_08092] [SWS_Rte_08093] [SWS_Rte_08094] [SWS_Rte_08095]
[SWS_Rte_08096] [SWS_Rte_08097] [SWS_Rte_08098] [SWS_Rte_08301]
[SWS_Rte_08302] [SWS_Rte_08310] [SWS_Rte_08311] [SWS_Rte_08402]
[SWS_Rte_08403] [SWS_Rte_08413] [SWS_Rte_08414] [SWS_Rte_08415]
[SWS_Rte_08420] [SWS_Rte_08422] [SWS_Rte_08500] [SWS_Rte_08504]
[SWS_Rte_08505] [SWS_Rte_08506] [SWS_Rte_08509] [SWS_Rte_08510]
[SWS_Rte_08543] [SWS_Rte_08544] [SWS_Rte_08545] [SWS_Rte_08546]
[SWS_Rte_08547] [SWS_Rte_08548] [SWS_Rte_08549] [SWS_Rte_08550]
[SWS_Rte_08551] [SWS_Rte_08552] [SWS_Rte_08553] [SWS_Rte_08554]
[SWS_Rte_08555] [SWS_Rte_08556] [SWS_Rte_08557] [SWS_Rte_08560]
[SWS_Rte_08561] [SWS_Rte_08562] [SWS_Rte_08563] [SWS_Rte_08564]
[SWS_Rte_08565] [SWS_Rte_08566] [SWS_Rte_08567] [SWS_Rte_08568]
[SWS_Rte_08569] [SWS_Rte_08572] [SWS_Rte_08573] [SWS_Rte_08574]
[SWS_Rte_08575] [SWS_Rte_08576] [SWS_Rte_08577] [SWS_Rte_08578]
[SWS_Rte_08579] [SWS_Rte_08580] [SWS_Rte_08581] [SWS_Rte_08582]
[SWS_Rte_08583] [SWS_Rte_08591] [SWS_Rte_08592] [SWS_Rte_08593]
[SWS_Rte_08594] [SWS_Rte_08595] [SWS_Rte_08600] [SWS_Rte_08601]
[SWS_Rte_08711] [SWS_Rte_08712] [SWS_Rte_08725] [SWS_Rte_08726]
[SWS_Rte_08727] [SWS_Rte_08728] [SWS_Rte_08729] [SWS_Rte_08731]
[SWS_Rte_08733] [SWS_Rte_08736] [SWS_Rte_08738] [SWS_Rte_08739]
[SWS_Rte_08741] [SWS_Rte_08742] [SWS_Rte_08743] [SWS_Rte_08745]
[SWS_Rte_08746] [SWS_Rte_08747] [SWS_Rte_08749] [SWS_Rte_08750]
[SWS_Rte_08754] [SWS_Rte_08756] [SWS_Rte_08757] [SWS_Rte_08758]
[SWS_Rte_08766] [SWS_Rte_08777] [SWS_Rte_08778] [SWS_Rte_08779]
[SWS_Rte_08780] [SWS_Rte_08782] [SWS_Rte_08784] [SWS_Rte_08786]

1266 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE Software
AUTOSAR CP Release 4.4.0

[SWS_Rte_08787] [SWS_Rte_08789] [SWS_Rte_08790] [SWS_Rte_08795]
[SWS_Rte_08802] [SWS_Rte_08803]

G.10.3 Deleted Traceables in 4.4.0

[SWS_Rte_05193] [SWS_Rte_07025] [SWS_Rte_08306] [SWS_Rte_08307]
[SWS_Rte_08308]

G.10.4 Added Constraints in 4.4.0

[SWS_Rte_CONSTR_03873] [SWS_Rte_CONSTR_03874]
[SWS_Rte_CONSTR_04558] [SWS_Rte_CONSTR_04559]
[SWS_Rte_CONSTR_09100] [SWS_Rte_CONSTR_09101]
[SWS_Rte_CONSTR_09102] [SWS_Rte_CONSTR_80000]
[SWS_Rte_CONSTR_80001] [SWS_Rte_CONSTR_80002]
[SWS_Rte_CONSTR_80003] [SWS_Rte_CONSTR_80004]
[SWS_Rte_CONSTR_80005] [SWS_Rte_CONSTR_80006]
[SWS_Rte_CONSTR_80007] [SWS_Rte_CONSTR_80009]
[SWS_Rte_CONSTR_80010] [SWS_Rte_CONSTR_80011]
[SWS_Rte_CONSTR_80012] [SWS_Rte_CONSTR_80013]
[SWS_Rte_CONSTR_80014] [SWS_Rte_CONSTR_80015]
[SWS_Rte_CONSTR_80016] [SWS_Rte_CONSTR_80017]

G.10.5 Changed Constraints in 4.4.0

[SWS_Rte_CONSTR_09058] [SWS_Rte_CONSTR_09082]

G.10.6 Deleted Constraints in 4.4.0

none

1267 of 1267
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

	1 Introduction
	1.1 Scope
	1.2 Dependency to other AUTOSAR specifications
	1.3 Acronyms and Abbreviations
	1.4 Technical Terms
	1.5 Document Conventions
	1.6 Requirements Tracing

	2 RTE Overview
	2.1 The RTE in the Context of AUTOSAR
	2.2 AUTOSAR Concepts
	2.2.1 AUTOSAR Software-components
	2.2.2 Basic Software Modules
	2.2.3 Communication
	2.2.3.1 Communication Paradigms
	2.2.3.2 Communication Modes
	2.2.3.3 Static Communication
	2.2.3.4 Multiplicity

	2.2.4 Concurrency

	2.3 The RTE Generator
	2.4 Design Decisions

	3 RTE Generation Process
	3.1 Contract Phase
	3.1.1 RTE Contract Phase
	3.1.2 Basic Software Scheduler Contract Phase

	3.2 PreBuild Data Set Contract Phase
	3.3 Edit ECU Configuration of the RTE
	3.4 Generation Phase
	3.4.1 Basic Software Scheduler Generation Phase
	3.4.2 RTE Generation Phase
	3.4.3 Basic Software Module Description generation
	3.4.3.1 Bsw Module Description
	3.4.3.2 Bsw Internal Behavior
	3.4.3.3 Bsw Implementation

	3.5 PreBuild Data Set Generation Phase
	3.6 PostBuild Data Set Generation Phase
	3.7 RTE Configuration interaction with other BSW Modules

	4 RTE Functional Specification
	4.1 Architectural concepts
	4.1.1 Scope
	4.1.2 RTE and Data Types
	4.1.3 RTE and AUTOSAR Software-Components
	4.1.3.1 Hierarchical Structure of Software-Components
	4.1.3.2 Ports, Interfaces and Connections
	4.1.3.3 Internal Behavior
	4.1.3.4 Implementation

	4.1.4 Instantiation
	4.1.4.1 Scope and background
	4.1.4.2 Concepts of instantiation
	4.1.4.3 Single instantiation
	4.1.4.4 Multiple instantiation

	4.1.5 RTE and AUTOSAR Services
	4.1.6 RTE and ECU Abstraction
	4.1.7 RTE and Complex Device Driver
	4.1.8 Basic Software Scheduler and Basic Software Modules
	4.1.8.1 Description of a Basic Software Module
	4.1.8.2 Basic Software Interfaces
	4.1.8.3 Basic Software Internal Behavior
	4.1.8.4 Basic Software Implementation
	4.1.8.5 Multiple Instances of Basic Software Modules
	4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

	4.2 RTE and Basic Software Scheduler Implementation Aspects
	4.2.1 Scope
	4.2.2 OS
	4.2.2.1 OS Objects
	4.2.2.2 Basic Software Schedulable Entities
	4.2.2.3 Runnable Entities
	4.2.2.4 RTE Events
	4.2.2.5 BswEvents
	4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities to tasks (informative)
	4.2.2.7 Monitoring of runnable execution time
	4.2.2.8 TimingEvent activated runnables
	4.2.2.9 Synchronization of TimingEvent activated runnables
	4.2.2.10 BackgroundEvent activated Runnable Entities and BasicSoftware Scheduleable Entities
	4.2.2.11 InitEvent activated Runnable Entities

	4.2.3 Activation and Start of ExecutableEntitys
	4.2.3.1 Activation by direct function call
	4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys
	4.2.3.3 Provide activating RTE event

	4.2.4 Interrupt decoupling and notifications
	4.2.4.1 Basic notification principles
	4.2.4.2 Interrupts
	4.2.4.3 Decoupling interrupts on RTE level
	4.2.4.4 RTE and interrupt categories
	4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

	4.2.5 Data Consistency
	4.2.5.1 General
	4.2.5.2 Communication Patterns
	4.2.5.3 Concepts
	4.2.5.4 Mechanisms to guarantee data consistency
	4.2.5.5 Exclusive Areas
	4.2.5.6 InterRunnableVariables

	4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable Entities
	4.2.7 Implementation of Parameter and Data Elements
	4.2.7.1 General
	4.2.7.2 Compatibility rules
	4.2.7.3 Implementation of an interface element
	4.2.7.4 Initialization of VariableDataPrototypes
	4.2.7.5 Initial value calculation

	4.2.8 Measurement and Calibration
	4.2.8.1 General
	4.2.8.2 Measurement
	4.2.8.3 Calibration
	4.2.8.4 Generation of McSupportData

	4.2.9 Access to NVRAM data
	4.2.9.1 General
	4.2.9.2 Usage of the NvBlockSwComponentType
	4.2.9.3 Interface of the NvBlockSwComponentType
	4.2.9.4 Data Consistency

	4.3 Communication Paradigms
	4.3.1 Sender-Receiver
	4.3.1.1 Introduction
	4.3.1.2 Receive Modes
	4.3.1.3 Multiple Data Elements
	4.3.1.4 Multiple Receivers and Senders
	4.3.1.5 Implicit and Explicit Data Reception and Transmission
	4.3.1.6 Transmission Acknowledgement
	4.3.1.7 Communication Time-out
	4.3.1.8 Data Element Invalidation
	4.3.1.9 Filters
	4.3.1.10 Buffering
	4.3.1.11 Operation
	4.3.1.12 ``Never received status'' for Data Element
	4.3.1.13 ``Update flag'' for Data Element
	4.3.1.14 Dynamic data type
	4.3.1.15 Inter-ECU communication through TP
	4.3.1.16 Inter-ECU communication of arrays of bytes
	4.3.1.17 Handling of acknowledgment events

	4.3.2 Client-Server
	4.3.2.1 Introduction
	4.3.2.2 Multiplicity
	4.3.2.3 Communication Time-out
	4.3.2.4 Port-Defined argument values
	4.3.2.5 Buffering
	4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping
	4.3.2.7 Parameter Serialization
	4.3.2.8 Operation

	4.3.3 SWC internal communication
	4.3.3.1 Inter Runnable Variables

	4.3.4 Inter-Partition communication
	4.3.4.1 Inter partition data communication using IOC
	4.3.4.2 Inter partition data communication using Basic Software Scheduler
	4.3.4.3 Accessing Ld(Com) and Det in multicore/multipartition configuration
	4.3.4.4 Signaling and control flow support for inter partition communication
	4.3.4.5 Trusted Functions
	4.3.4.6 Memory Protection and Pointer Type Parameters in RTE API

	4.3.5 PortInterface Element Mapping and Data Conversion
	4.3.5.1 PortInterface Element Mapping

	4.3.6 Network Representation
	4.3.6.1 Network Representation with no data transformation
	4.3.6.2 Network Representation with data transformation

	4.3.7 Data Conversion
	4.3.8 Range Checks during Runtime

	4.4 Modes
	4.4.1 Mode User
	4.4.2 Mode Manager
	4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclarationGroups
	4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon interception of a mode switch notification
	4.4.5 Assignment of mode machine instances to RTE and Basic Software Scheduler
	4.4.6 Initialization of mode machine instances
	4.4.7 Notification of mode switches
	4.4.8 Mode switch acknowledgment
	4.4.9 Mode switch error handling
	4.4.9.1 Mode User gets terminated
	4.4.9.2 Mode Manager gets terminated

	4.4.10 Mapping of ModeDeclarations
	4.4.11 Distributed Shared Mode Queues

	4.5 External and Internal Trigger
	4.5.1 External Trigger Event Communication
	4.5.1.1 Introduction
	4.5.1.2 Trigger Sink
	4.5.1.3 Trigger Source
	4.5.1.4 Multiplicity
	4.5.1.5 Synchronized Trigger

	4.5.2 Inter Runnable Triggering
	4.5.2.1 Multiplicity

	4.5.3 Inter Basic Software Module Entity Triggering
	4.5.4 Inter ECU Trigger Communication
	4.5.5 Queuing of Triggers
	4.5.6 Activation of triggered ExecutableEntities

	4.6 Initialization and Finalization
	4.6.1 Initialization and Finalization of the RTE
	4.6.1.1 Initialization of the Basic Software Scheduler
	4.6.1.2 Initialization of the RTE
	4.6.1.3 Stop and restart of the RTE
	4.6.1.4 Finalization of the RTE
	4.6.1.5 Finalization of the Basic Software Scheduler

	4.6.2 Initialization and Finalization of AUTOSAR Software-Components

	4.7 Variant Handling Support
	4.7.1 Overview
	4.7.2 Choosing a Variant and Binding Variability
	4.7.2.1 General impact of Binding Times on RTE generation
	4.7.2.2 Choosing a particular variant
	4.7.2.3 SystemDesignTime
	4.7.2.4 CodeGenerationTime
	4.7.2.5 PreCompileTime
	4.7.2.6 LinkTime
	4.7.2.7 PostBuild

	4.7.3 Variability affecting the RTE generation
	4.7.3.1 Software Composition
	4.7.3.2 Atomic Software Component and its Internal Behavior
	4.7.3.3 NvBlockComponent and its Internal Behavior
	4.7.3.4 Parameter Component
	4.7.3.5 Data Type
	4.7.3.6 Constants
	4.7.3.7 Basic Software Modules and its Internal Behavior
	4.7.3.8 Flat Instance descriptor

	4.7.4 Variability affecting the Basic Software Scheduler generation
	4.7.4.1 Basic Software Scheduler API which is subject to variability
	4.7.4.2 Basic Software Entities
	4.7.4.3 API behavior

	4.7.5 Variability affecting SWC implementation

	4.8 Development error
	4.8.1 DET Report Identifiers
	4.8.2 DET Error Identifiers
	4.8.3 DET Error Classification

	4.9 Bypass Support
	4.9.1 Bypass description
	4.9.2 Component wrapper method
	4.9.3 Direct buffer access method
	4.9.4 Extended buffer access method
	4.9.4.1 Global Enable
	4.9.4.2 RPT Preparation
	4.9.4.3 Level 1 - Post-Build Hooking
	4.9.4.4 Level 2 - Non Post-Build Hooking
	4.9.4.5 Level 3 - Extended Non Post-Build Hooking
	4.9.4.6 Level 2 and 3 - Non Post-Build Hooking and Implicit Communication
	4.9.4.7 Export

	4.9.5 Service Based Prototyping
	4.9.5.1 Rapid Prototyping Scenarios
	4.9.5.2 Service Functions
	4.9.5.3 Integration
	4.9.5.4 Service Point IDs
	4.9.5.5 Conditional RunnableEntity Invocation
	4.9.5.6 Interaction with RTE-Managed buffers
	4.9.5.7 Export

	4.10 Data Transformation
	4.10.1 Execution of Transformer
	4.10.1.1 Transformer for inter-ECU communication
	4.10.1.2 Transformer for intra-ECU communication

	4.10.2 Transformer Chains
	4.10.3 Buffer Handling
	4.10.4 Interfaces to Transformer
	4.10.5 Error Handling
	4.10.6 COM Based Transformer

	5 RTE Reference
	5.1 Scope
	5.1.1 Programming Languages
	5.1.2 Generator Principles
	5.1.2.1 Operating Modes
	5.1.2.2 Optimization Modes
	5.1.2.3 Build support
	5.1.2.4 Software Component Namespace

	5.1.3 Generator external configuration switches

	5.2 API Principles
	5.2.1 RTE Namespace
	5.2.2 Direct API
	5.2.3 Indirect API
	5.2.3.1 Accessing Port Handles

	5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles
	5.2.5 Per Instance Memory
	5.2.6 API Mapping
	5.2.6.1 ``RTE Contract'' Phase
	5.2.6.2 ``RTE Generation'' Phase
	5.2.6.3 Function Elision
	5.2.6.4 API Naming Conventions
	5.2.6.5 API Parameters
	5.2.6.6 Return Values
	5.2.6.7 Return References
	5.2.6.8 Error Handling
	5.2.6.9 Success Feedback

	5.2.7 Unconnected Ports
	5.2.7.1 Data Elements
	5.2.7.2 Mode Switch Ports
	5.2.7.3 Client-Server
	5.2.7.4 External Triggers

	5.2.8 Non-identical port interfaces

	5.3 RTE Modules
	5.3.1 RTE Header File
	5.3.2 Lifecycle Header File
	5.3.3 Application Header File
	5.3.3.1 File Name
	5.3.3.2 Scope
	5.3.3.3 File Contents

	5.3.4 RTE Types Header File
	5.3.4.1 File Contents
	5.3.4.2 Classification of Implementation Data Types
	5.3.4.3 Primitive Implementation Data Type
	5.3.4.4 Array Implementation Data Type
	5.3.4.5 Structure Implementation Data Type
	5.3.4.6 Union Implementation Data Type
	5.3.4.7 Implementation Data Type redefinition
	5.3.4.8 Pointer Implementation Data Type
	5.3.4.9 ImplementationDataTypes with VariationPoints
	5.3.4.10 Naming of data types
	5.3.4.11 C/C++

	5.3.5 RTE Data Handle Types Header File
	5.3.5.1 File Name
	5.3.5.2 File Contents

	5.3.6 Application Types Header File
	5.3.6.1 File Name
	5.3.6.2 Scope
	5.3.6.3 File Contents
	5.3.6.4 RTE Modes
	5.3.6.5 Enumeration Data Types
	5.3.6.6 Range Data Types
	5.3.6.7 Implementation Data Type symbols
	5.3.6.8 Macros for accessing Availability Information in Structs for optional Members

	5.3.7 VFB Tracing Header File
	5.3.7.1 C/C++
	5.3.7.2 File Contents

	5.3.8 RTE Configuration Header File
	5.3.8.1 C/C++
	5.3.8.2 File Contents

	5.3.9 Generated RTE
	5.3.9.1 Header File Usage
	5.3.9.2 C/C++
	5.3.9.3 File Contents
	5.3.9.4 Reentrancy

	5.3.10 RTE Post Build Variant Sets
	5.3.10.1 Example 1: File Contents Rte_PBcfg.h
	5.3.10.2 Example 2: File Contents Rte_PBcfg.h
	5.3.10.3 Examples: File Contents Rte_PBcfg.c

	5.4 RTE Data Structures
	5.4.1 Instance Handle
	5.4.2 Component Data Structure
	5.4.2.1 Data Handles Section
	5.4.2.2 Per-instance Memory Handles Section
	5.4.2.3 Inter Runnable Variable Handles Section
	5.4.2.4 Exclusive-area API Section
	5.4.2.5 Port API Section
	5.4.2.6 Calibration Parameter Handles Section
	5.4.2.7 Inter Runnable Variable API Section
	5.4.2.8 Inter Runnable Triggering API Section
	5.4.2.9 Instance Id Section
	5.4.2.10 RAM Block Data Updated Handles Section
	5.4.2.11 Vendor Specific Section

	5.5 API Data Types
	5.5.1 Std_ReturnType
	5.5.1.1 Infrastructure Errors
	5.5.1.2 Application Errors
	5.5.1.3 Predefined Error Codes

	5.5.2 Rte_Instance
	5.5.3 Rte_TransformerError
	5.5.4 RTE Modes
	5.5.5 Enumeration Data Types
	5.5.6 Range Data Types
	5.5.7 Data Types with bitfield conversions

	5.6 API Reference
	5.6.1 Rte_Ports
	5.6.2 Rte_NPorts
	5.6.3 Rte_Port
	5.6.4 Rte_Write
	5.6.5 Rte_Send
	5.6.6 Rte_Switch
	5.6.7 Rte_Invalidate
	5.6.8 Rte_Feedback
	5.6.9 Rte_SwitchAck
	5.6.10 Rte_Read
	5.6.11 Rte_DRead
	5.6.12 Rte_Receive
	5.6.13 Rte_Call
	5.6.14 Rte_Result
	5.6.15 Rte_Pim
	5.6.16 Rte_CData
	5.6.17 Rte_Prm
	5.6.18 Rte_IRead
	5.6.19 Rte_IWrite
	5.6.20 Rte_IWriteRef
	5.6.21 Rte_IInvalidate
	5.6.22 Rte_IStatus
	5.6.23 Rte_IrvIRead
	5.6.24 Rte_IrvIWrite
	5.6.25 Rte_IrvIWriteRef
	5.6.26 Rte_IrvRead
	5.6.27 Rte_IrvWrite
	5.6.28 Rte_Enter
	5.6.29 Rte_Exit
	5.6.30 Rte_Mode
	5.6.31 Enhanced Rte_Mode
	5.6.32 Rte_Trigger
	5.6.33 Rte_IrTrigger
	5.6.34 Rte_IFeedback
	5.6.35 Rte_IsUpdated
	5.6.36 Rte_PBCon
	5.6.37 Rte_IsAvailable
	5.6.38 Rte_SetAvailable

	5.7 Runnable Entity Reference
	5.7.1 Signature
	5.7.2 Entry Point Prototype
	5.7.3 Role Parameters
	5.7.4 Return Value
	5.7.5 Triggering Events
	5.7.5.1 TimingEvent
	5.7.5.2 BackgroundEvent
	5.7.5.3 SwcModeSwitchEvent
	5.7.5.4 AsynchronousServerCallReturnsEvent
	5.7.5.5 DataReceiveErrorEvent
	5.7.5.6 OperationInvokedEvent
	5.7.5.7 DataReceivedEvent
	5.7.5.8 DataSendCompletedEvent
	5.7.5.9 ModeSwitchedAckEvent
	5.7.5.10 SwcModeManagerErrorEvent
	5.7.5.11 ExternalTriggerOccurredEvent
	5.7.5.12 InternalTriggerOccurredEvent
	5.7.5.13 DataWriteCompletedEvent
	5.7.5.14 InitEvent
	5.7.5.15 TransformerErrorEvent

	5.7.6 Reentrancy

	5.8 RTE Lifecycle API Reference
	5.8.1 Rte_Start
	5.8.1.1 Signature
	5.8.1.2 Existence
	5.8.1.3 Description
	5.8.1.4 Return Value
	5.8.1.5 Notes

	5.8.2 Rte_Stop
	5.8.2.1 Signature
	5.8.2.2 Existence
	5.8.2.3 Description
	5.8.2.4 Return Value
	5.8.2.5 Notes

	5.8.3 Rte_PartitionTerminated
	5.8.3.1 Signature
	5.8.3.2 Existence
	5.8.3.3 Description
	5.8.3.4 Return Value
	5.8.3.5 Notes

	5.8.4 Rte_PartitionRestarting
	5.8.4.1 Signature
	5.8.4.2 Existence
	5.8.4.3 Description
	5.8.4.4 Return Value
	5.8.4.5 Notes

	5.8.5 Rte_RestartPartition
	5.8.5.1 Signature
	5.8.5.2 Existence
	5.8.5.3 Description
	5.8.5.4 Return Value
	5.8.5.5 Notes

	5.8.6 Rte_Init
	5.8.6.1 Signature
	5.8.6.2 Existence
	5.8.6.3 Description
	5.8.6.4 Return Value
	5.8.6.5 Notes

	5.8.7 Rte_StartTiming
	5.8.7.1 Signature
	5.8.7.2 Existence
	5.8.7.3 Description
	5.8.7.4 Return Value
	5.8.7.5 Notes

	5.9 RTE Call-backs Reference
	5.9.1 RTE-COM Message Naming Conventions
	5.9.2 Communication Service Call-backs
	5.9.2.1 Call-backs for communication over AUTOSAR COM
	5.9.2.2 Call-backs for communication over AUTOSAR LdCom

	5.9.3 NVM Service Call-backs
	5.9.3.1 Rte_SetMirror
	5.9.3.2 Rte_GetMirror
	5.9.3.3 Rte_NvMNotifyJobFinished
	5.9.3.4 Rte_NvMNotifyInitBlock

	5.10 Expected interfaces
	5.10.1 Expected Interfaces from Com
	5.10.2 Expected Interfaces from LdCom
	5.10.3 Expected Interfaces from Os
	5.10.4 Expected Interfaces for Data Transformation
	5.10.5 Expected Interfaces from NvM

	5.11 VFB Tracing Reference
	5.11.1 Principle of Operation
	5.11.2 Support for multiple clients
	5.11.3 Support for Multiple Instantiation
	5.11.4 Contribution to the Basic Software Module Description
	5.11.5 Trace Events
	5.11.5.1 RTE API Trace Events
	5.11.5.2 BSW Scheduler API Trace Events
	5.11.5.3 COM Trace Events
	5.11.5.4 OS Trace Events
	5.11.5.5 Runnable Entity Trace Events
	5.11.5.6 BSW Schedulable Entities Trace Events
	5.11.5.7 RPT Trace Events

	5.11.6 Configuration
	5.11.7 Interaction with Object-code Software-Components

	6 Basic Software Scheduler Reference
	6.1 Scope
	6.2 API Principles
	6.2.1 Basic Software Scheduler Namespace
	6.2.2 BSW Scheduler Name Prefix and Section Name Prefix
	6.2.3 BSW Scheduler API options

	6.3 Basic Software Scheduler modules
	6.3.1 Module Interlink Types Header
	6.3.1.1 File Name
	6.3.1.2 Scope
	6.3.1.3 File Contents
	6.3.1.4 Basic Software Scheduler Modes

	6.3.2 Module Interlink Header
	6.3.2.1 File Name
	6.3.2.2 Scope
	6.3.2.3 File Contents

	6.4 API Data Types
	6.4.1 Predefined Error Codes for Std_ReturnType
	6.4.1.1 SCHM_E_OK
	6.4.1.2 SCHM_E_LIMIT
	6.4.1.3 SCHM_E_NO_DATA
	6.4.1.4 SCHM_E_TRANSMIT_ACK
	6.4.1.5 SCHM_E_IN_EXCLUSIVE_AREA
	6.4.1.6 SCHM_E_TIMEOUT
	6.4.1.7 SCHM_E_LOST_DATA

	6.4.2 Basic Software Modes
	6.4.3 Enumeration Data Types
	6.4.4 Range Data Types
	6.4.5 Data Types with bitfield conversions

	6.5 API Reference
	6.5.1 SchM_Enter
	6.5.2 SchM_Exit
	6.5.3 SchM_Call
	6.5.4 SchM_Result
	6.5.5 SchM_Send
	6.5.6 SchM_Receive
	6.5.7 SchM_Switch
	6.5.8 SchM_Mode
	6.5.9 Enhanced SchM_Mode
	6.5.10 SchM_SwitchAck
	6.5.11 SchM_Trigger
	6.5.12 SchM_ActMainFunction
	6.5.13 SchM_CData
	6.5.14 SchM_Pim

	6.6 Bsw Module Entity Reference
	6.6.1 Signature
	6.6.2 Entry Point Prototype
	6.6.3 Reentrancy
	6.6.4 Provide activating Bsw event

	6.7 Basic Software Scheduler Lifecycle API Reference
	6.7.1 SchM_Init
	6.7.2 SchM_Start
	6.7.3 SchM_StartTiming
	6.7.4 SchM_Deinit
	6.7.5 SchM_GetVersionInfo

	7 RTE Implementation Plug-Ins Reference
	7.1 Introduction
	7.1.1 RTE Implementation Plug-Ins in the AUTOSAR Architecture

	7.2 Interface between RTE Implementation Plug-Ins and RTE
	7.2.1 File Structure
	7.2.1.1 RTE Global Buffer Declaration File
	7.2.1.2 RIPS Buffer Declaration Files
	7.2.1.3 RTE Implementation Plug-In Header File
	7.2.1.4 RIPS SWC-BSW-Instance Header File
	7.2.1.5 RTE Implementation Plug-In Implementation File
	7.2.1.6 RTE Header File
	7.2.1.7 Application Header File
	7.2.1.8 Module Interlink Header
	7.2.1.9 RTE Data Handle Types Header File

	7.2.2 API principles
	7.2.2.1 API name pattern
	7.2.2.2 Basic requirements on RTE Implementation Plug-In Service
	7.2.2.3 Basic requirements on RTE Implementation

	7.2.3 API Data Types
	7.2.4 API Reference
	7.2.4.1 Implicit buffer value access
	7.2.4.2 Implicit buffer address access
	7.2.4.3 Implict communication buffer Fill Flush Routines
	7.2.4.4 Explicit access protection
	7.2.4.5 Explicit data access services
	7.2.4.6 ExclusiveArea protection
	7.2.4.7 Mode queue protection functions
	7.2.4.8 Distributed Shared Mode Queue schedule synchronization functions
	7.2.4.9 Invocation functions for Transformers
	7.2.4.10 Signal notifications for transformer
	7.2.4.11 RTE Implementation Plug-In Lifecycle API

	7.3 RTE Implementation Plug-Ins Functional Specification
	7.3.1 Specializations of AtomicSwComponentTypes
	7.3.2 Interaction with VFB Tracing
	7.3.3 Validation Strategy for RTE Implementation Plug-Ins
	7.3.3.1 Graduated Validation Strategy
	7.3.3.2 Validation Implication w.r.t. Exclusive Areas
	7.3.3.3 Validation Implication w.r.t. Event To Task Mapping

	7.3.4 Data Communication
	7.3.4.1 Enable RTE Implementation Plug-In support for communication graphs
	7.3.4.2 Details on RIPS FlatInstanceDescriptors for Data Communication Graphs
	7.3.4.3 Data Communication Graphs involving NvBlockSwComponents
	7.3.4.4 Handling of Communication Status and Conversion with RTE Implementation Plug-Ins
	7.3.4.5 Instantiation of global copy
	7.3.4.6 Explicit Communication and RTE Implementation Plug-Ins
	7.3.4.7 Implicit Communication and RTE Implementation Plug-Ins
	7.3.4.8 Inter Runnable Variables and RTE Implementation Plug-Ins
	7.3.4.9 RTE Implementation Plug-Ins and NvBlockSwComponents

	7.3.5 Exclusive Areas
	7.3.5.1 Exclusive Areas and RTE Implementation Plug-Ins
	7.3.5.2 Enable RTE Implementation Plug-In support for ExclusiveAreas
	7.3.5.3 Exclusive Areas in Role canEnterExclusiveArea
	7.3.5.4 Exclusive Areas in Role runsInsideExclusiveArea

	7.3.6 Modes
	7.3.6.1 Modes and RTE Implementation Plug-Ins
	7.3.6.2 Enable RTE Implementation Plug-In support for mode machine instances
	7.3.6.3 Enable RTE Implementation Plug-In support for distributed shared mode queues
	7.3.6.4 RTE Implementation Plug-In support for distributed shared mode queues

	7.3.7 Compatibility Mode
	7.3.7.1 Detection of source code vs. object code software components
	7.3.7.2 Compatibility Mode and RTE Implementation Plug-Ins

	7.3.8 Transformers
	7.3.8.1 Enable RTE Implementation Plug-In support for client server transformers
	7.3.8.2 Enable RTE Implementation Plug-In support for trigger transformers
	7.3.8.3 Handling of Data Communication Graphs
	7.3.8.4 Handling of Client Server Communication Graphs and Trigger Communication Graphs

	7.3.9 Measurement
	7.3.10 Inter-Partition communication
	7.3.11 Bypass Support
	7.3.11.1 Component wrapper method
	7.3.11.2 Direct buffer access method
	7.3.11.3 Extended buffer access method

	7.3.12 Activation of RTEEvents and BswEvents

	8 RTE ECU Configuration
	8.1 RTE Module Configuration
	8.1.1 RTE Configuration Version Information

	8.2 RTE Generation Parameters
	8.3 RTE PreBuild configuration
	8.4 RTE PostBuild configuration
	8.5 Handling of Software Component instances
	8.5.1 RTE Event to task mapping
	8.5.1.1 Evaluation and execution order
	8.5.1.2 Direct function call
	8.5.1.3 Schedule Points
	8.5.1.4 Timeprotection support
	8.5.1.5 Os Interaction
	8.5.1.6 Background activation
	8.5.1.7 Constraints

	8.5.2 Rte Os Interaction
	8.5.2.1 Activation using Os features
	8.5.2.2 Modes and Schedule Tables

	8.5.3 Exclusive Area implementation
	8.5.4 NVRam Allocation
	8.5.5 SWC Trigger queuing
	8.5.6 SWC Mode Machine Instance configuration

	8.6 Handling of Software Component types
	8.6.1 Selection of Software-Component Implementation
	8.6.2 Component Type Calibration

	8.7 Implicit communication configuration
	8.8 Communication infrastructure
	8.9 Configuration of the BSW Scheduler
	8.9.1 BSW Scheduler General configuration
	8.9.2 BSW Module Instance configuration
	8.9.2.1 BSW ExclusiveArea configuration
	8.9.2.2 BswEvent to task mapping
	8.9.2.3 BSW Trigger configuration
	8.9.2.4 BSW ModeDeclarationGroup configuration
	8.9.2.5 BSW Client Server configuration
	8.9.2.6 BSW Sender Receiver configuration
	8.9.2.7 BSW Mode Machine Instance configuration

	8.10 Configuration of Synchronization Points
	8.11 Configuration of Initialization
	8.12 Configuration of Task Chains
	8.13 Configuration of distributed shared mode queues
	8.14 Configuration of RTE Implementation Plug-Ins
	8.14.1 General configuration definitions for Uri References
	8.14.2 General configuration of RTE Implementation Plug-Ins utilization
	8.14.3 Configuration of Fill-Flush-Routines of RTE Implementation Plug-Ins
	8.14.4 Configuration of invocation handlers of RTE Implementation Plug-Ins

	A Metamodel Restrictions
	A.1 Restrictions concerning WaitPoint
	A.2 Restrictions concerning RTEEvent
	A.3 Restrictions concerning queued implementation policy
	A.4 Restrictions concerning ServerCallPoint
	A.5 Restriction concerning multiple instantiation of software components
	A.6 Restrictions concerning runnable entity
	A.7 Restrictions concerning runnables with dependencies on modes
	A.8 Restriction concerning SwcInternalBehavior
	A.9 Restrictions concerning Initial Value
	A.10 Restriction concerning PerInstanceMemory
	A.11 Restrictions concerning unconnected r-port
	A.12 Restrictions regarding communication of mode switch notifications
	A.13 Restrictions regarding Measurement and Calibration
	A.14 Restriction concerning ExclusiveAreaImplMechanism
	A.15 Restrictions concerning AtomicSwComponentTypes
	A.16 Restriction concerning the enableUpdate attribute of NonqueuedReceiverComSpecs
	A.17 Restrictions concerning the large and dynamic data type
	A.18 Restriction concerning REFERENCE types
	A.19 Restriction concerning ModeDeclarationGroup categories and value attributes
	A.20 Restrictions concerning C/S Interfaces

	B External Requirements
	C MISRA C Compliance
	D Referenced Meta Classes
	E Referenced ECUC Configuration Parameters
	E.1 Com
	E.1.1 ComGroupSignal
	E.1.2 ComIPdu
	E.1.3 ComSignal
	E.1.4 ComSignalGroup

	E.2 LdCom
	E.2.1 LdComConfig
	E.2.2 LdComIPdu

	E.3 EcuC
	E.3.1 EcucPartition

	E.4 NvM
	E.4.1 NvMBlockDescriptor

	E.5 Os
	E.5.1 OsAlarm
	E.5.2 OsApplication
	E.5.3 OsCounter
	E.5.4 OsEvent
	E.5.5 OsScheduleTable
	E.5.6 OsScheduleTableExpiryPoint
	E.5.7 OsTask

	F Examples
	F.1 ModeDeclarationGroupMapping
	F.2 Stability need for received data
	F.3 CompuMethod with bitfield texttable conversion
	F.4 Structure type with self-reference
	F.5 Multiple calibration parameters instances

	G Changes History
	G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1
	G.1.1 Deleted SWS Items
	G.1.2 Changed SWS Items
	G.1.3 Added SWS Items

	G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2
	G.2.1 Deleted SWS Items
	G.2.2 Changed SWS Items
	G.2.3 Added SWS Items

	G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3
	G.3.1 Renamed SWS Items
	G.3.2 Added constraints
	G.3.3 Deleted SWS Items
	G.3.4 Changed SWS Items
	G.3.5 Added SWS Items

	G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1
	G.4.1 Added Traceables in 4.1.2
	G.4.2 Changed Traceables in 4.1.2
	G.4.3 Deleted Traceables in 4.1.2
	G.4.4 Added Constraints in 4.1.2
	G.4.5 Changed Constraints in 4.1.2
	G.4.6 Deleted Constraints in 4.1.2

	G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2
	G.5.1 Added Traceables in 4.1.3
	G.5.2 Changed Traceables in 4.1.3
	G.5.3 Deleted Traceables in 4.1.3
	G.5.4 Added Constraints in 4.1.3
	G.5.5 Changed Constraints in 4.1.3
	G.5.6 Deleted Constraints in 4.1.3

	G.6 Changes in Rel. 4.2 Rev. 1 compared to Rel. 4.1 Rev. 3
	G.6.1 Added Traceables in 4.2.1
	G.6.2 Changed Traceables in 4.2.1
	G.6.3 Deleted Traceables in 4.2.1
	G.6.4 Added Constraints in 4.2.1
	G.6.5 Changed Constraints in 4.2.1
	G.6.6 Deleted Constraints in 4.2.1

	G.7 Changes in Rel. 4.2 Rev. 2 compared to Rel. 4.2 Rev. 1
	G.7.1 Added Traceables in 4.2.2
	G.7.2 Changed Traceables in 4.2.2
	G.7.3 Deleted Traceables in 4.2.2
	G.7.4 Added Constraints in 4.2.2
	G.7.5 Changed Constraints in 4.2.2
	G.7.6 Deleted Constraints in 4.2.2

	G.8 Changes in Rel. 4.3 Rev. 0 compared to Rel. 4.2 Rev. 2
	G.8.1 Added Traceables in 4.3.0
	G.8.2 Changed Traceables in 4.3.0
	G.8.3 Deleted Traceables in 4.3.0
	G.8.4 Renamed Constraints in 4.3.0
	G.8.5 Added Constraints in 4.3.0
	G.8.6 Changed Constraints in 4.3.0
	G.8.7 Deleted Constraints in 4.3.0

	G.9 Changes in Rel. 4.3 Rev. 1 compared to Rel. 4.3 Rev. 0
	G.9.1 Added Traceables in 4.3.1
	G.9.2 Changed Traceables in 4.3.1
	G.9.3 Deleted Traceables in 4.3.1
	G.9.4 Added Constraints in 4.3.1
	G.9.5 Changed Constraints in 4.3.1
	G.9.6 Deleted Constraints in 4.3.1

	G.10 Changes in Rel. 4.4 Rev. 0 compared to Rel. 4.3 Rev. 1
	G.10.1 Added Traceables in 4.4.0
	G.10.2 Changed Traceables in 4.4.0
	G.10.3 Deleted Traceables in 4.4.0
	G.10.4 Added Constraints in 4.4.0
	G.10.5 Changed Constraints in 4.4.0
	G.10.6 Deleted Constraints in 4.4.0

