
Specification of PWM Driver
AUTOSAR CP Release 4.4.0

1 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2018-10-31 4.4.0 AUTOSAR

Release

Management

 Incporporated concept MCAL

Multicore Distribution (Draft)

 Removal of obsolete elements

 Header File Cleanup

 Fixed document structure for

automated document processing

2017-12-08 4.3.1 AUTOSAR

Release

Management

 Added classification for Runtime

error

 Removed SWS_Pwm_20069,

SWS_Pwm_10120 and

SWS_Pwm_20120

2016-11-30 4.3.0 AUTOSAR

Release

Management

 Updated Pwm_GetOutputState

return value requirement

SWS_Pwm_30051 and its

references

 Updated Configuration Class for

PwmChannelID

 Removed definition of Configuration

variants

 Removed Unresolved References of

BSW requirements

 Updated Header file structure

diagram

2015-07-31 4.2.2 AUTOSAR

Release

Management

 Removed requirements with respect

to NULL_PTR check

 DET has been renamed

2014-10-31 4.2.1 AUTOSAR

Release

Management

 Updated trace reference for code file

structure requirement

Document Title Specification of PWM Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 037

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 4.4.0

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

2 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2014-03-31 4.1.3 AUTOSAR

Release

Management

 Introduction of

McuClockReferencePoint

 Editorial changes

2013-10-31 4.1.2 AUTOSAR

Release

Management

 Updated requirements related to

PwmPowerStateAsynchTransitionM

ode

 Updated Scheduled Functions

chapter

 Editorial changes

 Removed chapter(s) on change

documentation

2013-03-15 4.1.1 AUTOSAR

Administration

 Added ECU degradation concept

 Adapted to new SWS BSW General

 Split memory map header

2011-12-22 4.0.3 AUTOSAR

Administration

 Re-formulated SWS_Pwm_00045

2010-09-30 3.1.5 AUTOSAR

Administration

 New Error symbol:

PWM_E_PARAM_POINTER, shall

be reported if API

Pwm_GetVersionInfo service is

called with a NULL parameter

 Updated the chapter Version Check

 Maintenance in phrasing and

explaining

2010-02-02 3.1.4 AUTOSAR

Administration

 The behavior of the function

Pwm_SetPeriodAndDuty is

explained in case of an input value

of zero period.

 Added the chapter Debug Support

 Splitted some requirements so each

ID is unique.

 Legal disclaimer revised

2008-08-13 3.1.1 AUTOSAR

Administration

 Legal disclaimer revised

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

3 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Document Change History
Date Release Changed by Change Description

2007-12-21 3.0.1 AUTOSAR

Administration

 Tables generated from UML-models

and UML-diagrams linked to UML-

model

 General improvements of

requirements in preparation of CT-

development

 Reactivation concept for IDLE PWM

channels adapted

 Development error in case of

already initialized module added

 Document meta information

extended

 Small layout adaptations made

2007-01-24 2.1.15 AUTOSAR

Administration

 Updated file include structure

 Added configuration macros

ON/OFF for PWM APIs

 Renamed configuration parameter

PWM_PERIOD_UPDATED_ENDPE

RIOD to

PwmPeriodUpdatedEndperiod

 Updated PWM signal description

figure

 Legal disclaimer revised

 “Advice for users” revised

 “Revision Information” added

2006-05-16 2.0 AUTOSAR

Administration

 Document structure adapted to

common Release 2.0 SWS

Template.

 Modify abstraction level of PWM

channel

 Notifications are configurable

 Update the configuration of the

module

2005-05-31 1.0 AUTOSAR

Administration

 Initial Release

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

4 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

5 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents .. 9
3.2 Related specification ... 9

4 Constraints and assumptions .. 10

4.1 Limitations ... 10

4.2 Applicability to car domains ... 10

5 Dependencies to other modules .. 11

5.1 File structure .. 11
5.1.1 Code file structure ... 11

5.1.2 Header file structure .. 11

6 Requirements traceability .. 12

7 Functional specification ... 19

7.1 General behavior ... 19

7.2 Time Unit Ticks .. 19
7.2.1 Background & Rationale ... 19

7.2.2 Requirements.. 19
7.3 Support and management of HW low power states..................................... 19

7.3.1 Background ... 19
7.3.2 Requirements.. 20

7.4 Error classification ... 21
7.4.1. Development Errors ... 22

7.4.2 Runtime Errors .. 23
7.4.3 Transient Faults .. 23
7.4.4 Production Errors .. 23

7.5 Error Detection .. 23
7.6 Error Notification .. 23

7.7 Duty Cycle Resolution and scaling .. 23
7.8 Version check .. 24

8 API specification .. 25

8.1 Imported types ... 25
8.2 Type definitions ... 25

8.2.1 Pwm_ChannelType ... 25
8.2.2 Pwm_PeriodType .. 25

8.2.3 Pwm_OutputStateType ... 25
8.2.4 Pwm_EdgeNotificationType .. 25
8.2.5 Pwm_ChannelClassType .. 26
8.2.6 Pwm_ConfigType .. 26
8.2.7 Pwm_PowerStateRequestResultType .. 26
8.2.8 Pwm_PowerStateType ... 27

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

6 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

8.3 Function definitions.. 27

8.3.1 Pwm_Init ... 27
8.3.2 Pwm_DeInit... 28
8.3.3 Pwm_SetDutyCycle .. 29
8.3.4 Pwm_SetPeriodAndDuty .. 31
8.3.5 Pwm_SetOutputToIdle .. 33

8.3.6 Pwm_GetOutputState ... 34
8.3.7 Pwm_DisableNotification .. 35
8.3.8 Pwm_EnableNotification ... 36
8.3.9 Pwm_SetPowerState .. 38
8.3.10 Pwm_GetCurrentPowerState .. 39

8.3.11 Pwm_GetTargetPowerState .. 40

8.3.12 Pwm_PreparePowerState ... 41

8.3.13 Pwm_GetVersionInfo ... 42
8.4 Callback notifications ... 43
8.5 Scheduled functions .. 43

8.5.1 Pwm_Main_PowerTransitionManager .. 43

8.6 Expected Interfaces ... 44
8.6.1 Mandatory Interfaces .. 44

8.6.2 Optional Interfaces .. 44
8.6.3 Configurable interfaces ... 44

8.7 API parameter checking .. 46

9 Sequence diagrams .. 47

9.1 Initialization .. 47

9.2 De-initialization .. 48

9.3 Setting the duty cycle .. 49
9.4 Setting the period and the duty .. 50
9.5 Setting the PWM output to idle .. 51
9.6 Getting the PWM Output state ... 52

9.7 Using the PWM notifications .. 53

10 Configuration specification ... 54

10.1 How to read this chapter .. 54
10.2 Containers and configuration parameters .. 54

10.2.1 Pwm ... 54

10.2.2 PwmGeneral .. 54
10.2.3 PwmPowerStateConfig .. 58

10.2.4 PwmChannel ... 59

10.2.5 PwmChannelConfigSet .. 62

10.2.6 PwmConfigurationOfOptApiServices ... 62
10.3 Published Information... 64

11 Not applicable requirements .. 65

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

7 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module PWM driver.

Each PWM channel is linked to a hardware PWM which belongs to the
microcontroller. The type of the PWM signal (for example center Align, left Align, Etc..
) is not defined within this specification and is left up to the implementation.

The driver provides functions for initialization and control of the microcontroller
internal PWM stage (pulse width modulation). The PWM module generates pulses
with variable pulse width. It allows the selection of the duty cycle and the signal
period time.

Figure 1: PWM signal description

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

8 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations that have a local scope are not contained in the
AUTOSAR glossary. These must appear in a local glossary.

Acronym: Description:

PWM Channel Numeric identifier linked to a hardware PWM.

PWM Output
State

Defines the output state for a PWM signal. It could be:
 High.
 Low.

PWM Idle State The idle state represents the output state of the PWM channel after the call of
Pwm_SetOutputToIdle or Pwm_DeInit

PWM Polarity Defines the starting output state of each PWM channel

PWM Duty cycle Defines a percentage of the starting level (could be high or low) related to the
period.

PWM period Defines the period of the PWM signal.

Abbreviation: Description:

PWM Pulse Width Modulation.

DEM Diagnostic Event Manager.

DET Default Error Tracer.

MCU Microcontroller Unit.

PLL Phase Locked Loop.

ISR Interrupt Service Routine.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

9 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of Default Error Tracer
AUTOSAR_SWS_DefaultErrorTracer.pdf

[5] Specification of MCU Driver
AUTOSAR_SWS_MCUDriver.pdf

[6] Specification of ECU Configuration,
AUTOSAR_TPS_ECUConfiguration.pdf

[7] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[8] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList

[9] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [9] (SWS
BSW General), which is also valid for PWM Driver.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for PWM Driver.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

10 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

[SWS_Pwm_00001] ⌈The Pwm SWS does not cover PWM emulation on general

purpose I/O.⌋ (SRS_Pwm_12386)

 Power State Control APIs are implementable only if the MCAL driver owns the
complete underlying HW peripheral i.e. the HW peripheral is not accessed by
other MCAL modules.

4.2 Applicability to car domains

No restrictions.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

11 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

5 Dependencies to other modules

The PWM depends on the system clock. Thus, changes of the system clock (e.g.
PLL on  PLL off) also affect the clock settings of the PWM hardware.

The PWM Driver depends on the following modules:

 PORT Driver: To set the port pin functionality. PWM141
 MCU Driver: To set prescaler, system clock and PLL. PWM142
 DET: Default Error Tracer in Development mode. PWM143

The document 087_AUTOSAR_ECU_Configuration contains a chapter 4.6 -
Clock Tree Configuration, which details the mechanism to deliver reference clock
signals to peripherals.

5.1 File structure

5.1.1 Code file structure

[SWS_Pwm_00065] ⌈The Pwm SWS shall not define the code file structure.⌋

(SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00314)

5.1.2 Header file structure

 [SWS_Pwm_50075] ⌈Pwm.c shall include Pwm.h, Det.h and .⌋ ()

 [SWS_Pwm_70075] ⌈Pwm_Irq.c shall include Pwm.h.⌋ ()

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

12 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

SRS_BSW_00003 All software modules shall provide
version and identification
information

SWS_Pwm_00153

SRS_BSW_00005 Modules of the µC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_Pwm_00153

SRS_BSW_00006 The source code of software
modules above the µC Abstraction
Layer (MCAL) shall not be
processor and compiler dependent.

SWS_Pwm_00153

SRS_BSW_00007 All Basic SW Modules written in C
language shall conform to the
MISRA C 2012 Standard.

SWS_Pwm_00153

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a
common standard.

SWS_Pwm_00153

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_Pwm_00153

SRS_BSW_00101 The Basic Software Module shall
be able to initialize variables and
hardware in a separate initialization
function

SWS_Pwm_00007

SRS_BSW_00158 - SWS_Pwm_00065

SRS_BSW_00159 All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

SWS_Pwm_00153

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

SWS_Pwm_00153

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_Pwm_00153

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_Pwm_00153

SRS_BSW_00164 The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_Pwm_00153

SRS_BSW_00167 All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

SWS_Pwm_00153

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

13 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

SRS_BSW_00168 SW components shall be tested by
a function defined in a common API
in the Basis-SW

SWS_Pwm_00153

SRS_BSW_00170 The AUTOSAR SW Components
shall provide information about their
dependency from faults, signal
qualities, driver demands

SWS_Pwm_00153

SRS_BSW_00171 Optional functionality of a Basic-
SW component that is not required
in the ECU shall be configurable at
pre-compile-time

SWS_Pwm_10080, SWS_Pwm_10082,
SWS_Pwm_10083, SWS_Pwm_10084,
SWS_Pwm_10085, SWS_Pwm_20080,
SWS_Pwm_20082, SWS_Pwm_20083,
SWS_Pwm_20084, SWS_Pwm_20085

SRS_BSW_00172 The scheduling strategy that is built
inside the Basic Software Modules
shall be compatible with the
strategy used in the system

SWS_Pwm_00153

SRS_BSW_00300 All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

SWS_Pwm_00153

SRS_BSW_00301 All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_Pwm_00153

SRS_BSW_00302 All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

SWS_Pwm_00153

SRS_BSW_00304 All AUTOSAR Basic Software
Modules shall use the following
data types instead of native C data
types

SWS_Pwm_00153

SRS_BSW_00305 Data types naming convention SWS_Pwm_00153

SRS_BSW_00306 AUTOSAR Basic Software Modules
shall be compiler and platform
independent

SWS_Pwm_00153

SRS_BSW_00307 Global variables naming convention SWS_Pwm_00153

SRS_BSW_00308 AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

SWS_Pwm_00153

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

SWS_Pwm_00153

SRS_BSW_00310 API naming convention SWS_Pwm_00153

SRS_BSW_00312 Shared code shall be reentrant SWS_Pwm_00153

SRS_BSW_00314 All internal driver modules shall
separate the interrupt frame
definition from the service routine

SWS_Pwm_00065

SRS_BSW_00323 All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_Pwm_00045, SWS_Pwm_00047,
SWS_Pwm_00117, SWS_Pwm_10051,
SWS_Pwm_20051, SWS_Pwm_30051

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

14 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

SWS_Pwm_00153

SRS_BSW_00327 Error values naming convention SWS_Pwm_00153

SRS_BSW_00328 All AUTOSAR Basic Software
Modules shall avoid the duplication
of code

SWS_Pwm_00153

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_Pwm_00153

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_Pwm_00153

SRS_BSW_00333 For each callback function it shall
be specified if it is called from
interrupt context or not

SWS_Pwm_00153

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_Pwm_00153

SRS_BSW_00335 Status values naming convention SWS_Pwm_00153

SRS_BSW_00336 Basic SW module shall be able to
shutdown

SWS_Pwm_00010

SRS_BSW_00337 Classification of development
errors

SWS_Pwm_20002, SWS_Pwm_30002,
SWS_Pwm_40002, SWS_Pwm_50002

SRS_BSW_00341 Module documentation shall
contains all needed informations

SWS_Pwm_00153

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_Pwm_00153

SRS_BSW_00343 The unit of time for specification
and configuration of Basic SW
modules shall be preferably in
physical time unit

SWS_Pwm_00070

SRS_BSW_00346 All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

SWS_Pwm_00065

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be
in place

SWS_Pwm_00153

SRS_BSW_00348 All AUTOSAR standard types and
constants shall be placed and
organized in a standard type
header file

SWS_Pwm_00153

SRS_BSW_00350 All AUTOSAR Basic Software
Modules shall allow the
enabling/disabling of detection and
reporting of development errors.

SWS_Pwm_00153

SRS_BSW_00353 All integer type definitions of target SWS_Pwm_00153

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

15 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

and compiler specific scope shall
be placed and organized in a single
type header

SRS_BSW_00357 For success/failure of an API call a
standard return type shall be
defined

SWS_Pwm_00153

SRS_BSW_00358 The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

SWS_Pwm_00153

SRS_BSW_00359 All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void if
possible

SWS_Pwm_00153

SRS_BSW_00360 AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

SWS_Pwm_00153

SRS_BSW_00361 All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

SWS_Pwm_00153

SRS_BSW_00371 The passing of function pointers as
API parameter is forbidden for all
AUTOSAR Basic Software Modules

SWS_Pwm_00153

SRS_BSW_00373 The main processing function of
each AUTOSAR Basic Software
Module shall be named according
the defined convention

SWS_Pwm_00153

SRS_BSW_00375 Basic Software Modules shall
report wake-up reasons

SWS_Pwm_00153

SRS_BSW_00377 A Basic Software Module can
return a module specific types

SWS_Pwm_00153

SRS_BSW_00378 AUTOSAR shall provide a boolean
type

SWS_Pwm_00153

SRS_BSW_00383 The Basic Software Module
specifications shall specify which
other configuration files from other
modules they use at least in the
description

SWS_Pwm_00153

SRS_BSW_00385 List possible error notifications SWS_Pwm_20002, SWS_Pwm_30002,
SWS_Pwm_40002, SWS_Pwm_50002

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an error

SWS_Pwm_00045, SWS_Pwm_00047,
SWS_Pwm_00117, SWS_Pwm_10051,
SWS_Pwm_20002, SWS_Pwm_20051,
SWS_Pwm_30002, SWS_Pwm_30051,
SWS_Pwm_40002, SWS_Pwm_50002

SRS_BSW_00401 Documentation of multiple
instances of configuration
parameters shall be available

SWS_Pwm_00153

SRS_BSW_00406 A static status variable denoting if a
BSW module is initialized shall be
initialized with value 0 before any

SWS_Pwm_00117

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

16 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

APIs of the BSW module is called

SRS_BSW_00408 All AUTOSAR Basic Software
Modules configuration parameters
shall be named according to a
specific naming rule

SWS_Pwm_00153

SRS_BSW_00410 Compiler switches shall have
defined values

SWS_Pwm_00153

SRS_BSW_00413 An index-based accessing of the
instances of BSW modules shall be
done

SWS_Pwm_00153

SRS_BSW_00414 Init functions shall have a pointer to
a configuration structure as single
parameter

SWS_Pwm_00153

SRS_BSW_00415 Interfaces which are provided
exclusively for one module shall be
separated into a dedicated header
file

SWS_Pwm_00153

SRS_BSW_00416 The sequence of modules to be
initialized shall be configurable

SWS_Pwm_00153

SRS_BSW_00417 Software which is not part of the
SW-C shall report error events only
after the DEM is fully operational.

SWS_Pwm_00153

SRS_BSW_00419 If a pre-compile time configuration
parameter is implemented as
"const" it should be placed into a
separate c-file

SWS_Pwm_00153

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable with
the means of the SW-C Template

SWS_Pwm_00153

SRS_BSW_00424 BSW module main processing
functions shall not be allowed to
enter a wait state

SWS_Pwm_00153

SRS_BSW_00425 The BSW module description
template shall provide means to
model the defined trigger conditions
of schedulable objects

SWS_Pwm_00153

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

SWS_Pwm_00153

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_Pwm_00153

SRS_BSW_00428 A BSW module shall state if its
main processing function(s) has to
be executed in a specific order or
sequence

SWS_Pwm_00153

SRS_BSW_00429 Access to OS is restricted SWS_Pwm_00153

SRS_BSW_00432 Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_Pwm_00153

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

17 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

SRS_BSW_00433 Main processing functions are only
allowed to be called from task
bodies provided by the BSW
Scheduler

SWS_Pwm_00153

SRS_Pwm_12293 The PWM driver shall allow the
static configuration of PWM
channel properties

SWS_Pwm_00197

SRS_Pwm_12295 The PWM driver shall provide a
service for setting the duty cycle of
a selected channel

SWS_Pwm_00013

SRS_Pwm_12297 The PWM driver shall provide a
service for setting the period of a
selected channel

SWS_Pwm_00019

SRS_Pwm_12299 The PWM driver shall allow to
enable/disable the PWM edges
notification during runtime

SWS_Pwm_00023, SWS_Pwm_00024

SRS_Pwm_12358 The PWM driver shall be capable to
set the output of selected channel
to a given state immediately

SWS_Pwm_00021

SRS_Pwm_12378 The PWM driver shall be able to
assign notification to each edges of
the PWM-signal

SWS_Pwm_00023, SWS_Pwm_00024,
SWS_Pwm_00197

SRS_Pwm_12379 All PWM Channels which work with
the same MCU Timer shall have
either the same frequency or
independent frequencies

SWS_Pwm_00153

SRS_Pwm_12381 By de-initializing the PWM driver,
all PWM-channels shall be stop

SWS_Pwm_00010

SRS_Pwm_12382 The PWM Driver shall wait to the
end of the signal period to update
the duty cycle of a PWM signal

SWS_Pwm_00017

SRS_Pwm_12383 The PWM driver shall provide a 16
bit interface to set the duty cycle

SWS_Pwm_00058

SRS_Pwm_12385 The PWM driver shall provide a
service to get the state of a PWM
channel output

SWS_Pwm_00022

SRS_Pwm_12386 The PWM driver shall not cover a
PWM emulation on general
purpose I/O

SWS_Pwm_00001

SRS_Pwm_12389 The PWM driver shall allow only
static configuration of the frequency
for some PWM channels

SWS_Pwm_00041

SRS_Pwm_12459 The PWM Driver shall provide a
scaling scheme for duty cycle

SWS_Pwm_00059

SRS_SPAL_00157 All drivers and handlers of the
AUTOSAR Basic Software shall
implement notification mechanisms
of drivers and handlers

SWS_Pwm_00025

SRS_SPAL_12057 All driver modules shall implement
an interface for initialization

SWS_Pwm_00007, SWS_Pwm_00052,
SWS_Pwm_00062, SWS_Pwm_10009,
SWS_Pwm_20009, SWS_Pwm_30009

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

18 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

SRS_SPAL_12064 All driver modules shall raise an
error if the change of the operation
mode leads to degradation of
running operations

SWS_Pwm_00153

SRS_SPAL_12067 All driver modules shall set their
wake-up conditions depending on
the selected operation mode

SWS_Pwm_00153

SRS_SPAL_12068 The modules of the MCAL shall be
initialized in a defined sequence

SWS_Pwm_00153

SRS_SPAL_12069 All drivers of the SPAL that wake
up from a wake-up interrupt shall
report the wake-up reason

SWS_Pwm_00153

SRS_SPAL_12075 All drivers with random streaming
capabilities shall use application
buffers

SWS_Pwm_00153

SRS_SPAL_12077 All drivers shall provide a non
blocking implementation

SWS_Pwm_00153

SRS_SPAL_12078 The drivers shall be coded in a way
that is most efficient in terms of
memory and runtime resources

SWS_Pwm_00153

SRS_SPAL_12092 The driver's API shall be accessed
by its handler or manager

SWS_Pwm_00153

SRS_SPAL_12125 All driver modules shall only
initialize the configured resources

SWS_Pwm_00062

SRS_SPAL_12129 The ISRs shall be responsible for
resetting the interrupt flags and
calling the according notification
function

SWS_Pwm_00026

SRS_SPAL_12163 All driver modules shall implement
an interface for de-initialization

SWS_Pwm_00010, SWS_Pwm_00011,
SWS_Pwm_00012

SRS_SPAL_12169 All driver modules that provide
different operation modes shall
provide a service for mode
selection

SWS_Pwm_00153

SRS_SPAL_12265 Configuration data shall be kept
constant

SWS_Pwm_00153

SRS_SPAL_12267 Wakeup sources shall be initialized
by MCAL drivers and/or the MCU
driver

SWS_Pwm_00153

SRS_SPAL_12461 Specific rules regarding
initialization of controller registers
shall apply to all driver
implementations

SWS_Pwm_00153

SRS_SPAL_12462 The register initialization settings
shall be published

SWS_Pwm_00153

SRS_SPAL_12463 The register initialization settings
shall be combined and forwarded

SWS_Pwm_00153

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

19 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

7 Functional specification

7.1 General behavior

[SWS_Pwm_00088] ⌈All functions from the PWM module except Pwm_Init,

Pwm_DeInit and Pwm_GetVersionInfo shall be re-entrant for different PWM

channel numbers.

In order to keep a simple module implementation, no check of SWS_Pwm_00088

must be performed by the module. ⌋ ()

[SWS_Pwm_00089] ⌈ The Pwm module’s user shall ensure the integrity if several

function calls are made during run time in different tasks or ISRs for the same PWM

channel.⌋ ()

7.2 Time Unit Ticks

7.2.1 Background & Rationale

To get times out of register values it is necessary to know the oscillator frequency,
prescalers and so on. Since these settings are made in MCU and/or in other modules
it is not possible to calculate such times.
Hence the conversions between time and ticks shall be part of an upper layer.

7.2.2 Requirements

[SWS_Pwm_00070] ⌈ All time units used within the API services of the PWM

module shall be of the unit ticks. ⌋ (SRS_BSW_00343)

7.3 Support and management of HW low power states

Some PWM HW Module allow to be set in some operation modes which reduce the
power consumption, eventually at the cost of a slower reaction time, a lower
performance or eventually complete unavailability. Each PWM module could support
one or more low power operation modes, considering the Full Power Mode as always
present and set per default at startup.

7.3.1 Background

The PWM Driver offers power state control APIs and a background elaboration
mechanism to handle asynchronous power state change processes (i.e. power state
changes which are not immediately complete as the they are requested, but need
some longer operations).

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

20 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

It is assumed that all constraints deriving from ECU and SW architecture are
already satisfied by the upper layers (Application, Mode Management in the service
layer, IoHwAbstraction components dealing with peripheral control), thus the scope
of control is limited to the PWM HW peripheral.

A check on the operation sequence is executed by the PWM Driver in order to
avoid requesting a different power state before the previous request is still being
processed or activating a power state when no preparation for the same has been
requested.

The PWM module shall support power control capabilities as an optional
function. This module neither mandates to use only power control enabled MCUs nor
to configure the same. Rather it proposes a way to handle power states if this is
supported by the suppliers.

7.3.2 Requirements

[SWS_Pwm_00154] ⌈ The PwmDriver shall support power state changes and its

APIs when the corresponding configuration parameter

PwmLowPowerStatesSupport is set to TRUE.⌋ ()

[SWS_Pwm_00155] ⌈ If the parameter PwmLowPowerStatesSupport is enabled

then the APIs Pwm_PreparePowerState, Pwm_SetPowerState,

Pwm_GetCurrentPowerState, Pwm_GetTargetPowerState shall be

generated and shall be used to manage and get informations on power state

transitions.⌋ ()

[SWS_Pwm_00156] ⌈ The APIs Pwm_GetTargetPowerState and

Pwm_GetCurrentPowerState shall be respectively used to gather information on

the requested and the target Pwm power states.⌋ ()

[SWS_Pwm_00157] ⌈ The API Pwm_PreparePowerState shall be used to start

a power state transition. ⌋ ()

[SWS_Pwm_00158] ⌈ After preparation for a power state is achieved by

([SWS_Pwm_00157]) then the API Pwm_SetPowerState shall be used to achieve

the requested power state of the Pwm module.

In order to avoid incoherent power state conditions, some APIs

(Pwm_SetPowerState, Pwm_PreparePowerState) have to be called in a given

sequence, otherwise an error (if DET tracing is enabled) is stored and the action is

interrupted. The Pwm Driver keeps track of the call sequence.⌋ ()

[SWS_Pwm_00159] ⌈ The Pwm Driver shall keep track of the call order of the APIs

Pwm_SetPowerState and Pwm_PreparePowerState. In case the first

one is called before the second one is called, a DET entry shall be

stored and the action shall not be executed.⌋ ()

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

21 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_00160] ⌈ The Pwm Module shall keep track of the current and of the

target powerstate if the parameter PwmLowPowerStatesSupport is set to

TRUE⌋ ().

[SWS_Pwm_00161] ⌈ After the Initiliazation the power state of the module shall be

always FULL POWER if the PwmLowPowerStatesSupport is set to TRUE.⌋ ()

[SWS_Pwm_00162] ⌈ The Pwm Driver shall support synchronuous and

asynchronous power state transitions, depending on the value of the configuration

parameter PwmPowerStateAsynchTransitionMode. ⌋ ()

[SWS_Pwm_00163] ⌈ In case the configuration parameter

PwmPowerStateAsynchTransitionMode is set to FALSE, the preparation process and
the setting process shall be considered concluded as soon as the respective APIs

return. ⌋ ()

[SWS_Pwm_00164] ⌈ In case the configuration parameter

PwmPowerStateAsynchTransitionMode is set to TRUE, the preparation process shall
continue in background after the relative API returns and its completion shall be

notified by means of the configured callback.⌋ ()

7.4 Error classification

[SWS_Pwm_20002] ⌈The PWM Driver module shall report the development error

"PWM_E_UNINIT (0x11)", when API service is used without module initialization. ⌋

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386)

[SWS_Pwm_30002] ⌈The PWM Driver module shall report the development error
"PWM_E_PARAM_CHANNEL (0x12)", when API service is used with an invalid

channel Identifier. ⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386)

[SWS_Pwm_40002] ⌈The PWM Driver module shall report the development error
"PWM_E_PERIOD_UNCHANGEABLE (0x13)", on usage of unauthorized PWM

service on PWM channel configured a fixed period. ⌋ (SRS_BSW_00337,

SRS_BSW_00385, SRS_BSW_00386)

[SWS_Pwm_50002] ⌈The PWM Driver module shall report the development error
"PWM_E_ALREADY_INITIALIZED(0x14)", when API Pwm_Init service is called while

the PWM driver has already been initialized. ⌋ (SRS_BSW_00337, SRS_BSW_00385,

SRS_BSW_00386)

[SWS_Pwm_00200]

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

22 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

⌈ The API shall report the DET error PWM_E_NOT_DISENGAGED in case this API

is called when one or more HW channels (where applicable) are in a state different
than IDLE (or similar non-operational states) and/or there are still notification

registered for the HW module channels.⌋ ()

[SWS_Pwm_00174]

⌈ The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED

in case this API is called with an unsupported power state or the peripheral does not

support low power states at all.⌋ ()

[SWS_Pwm_00175]

⌈ The API shall report the DET error PWM_E_TRANSITION_NOT_POSSIBLE in

case the requested power state cannot be directly reached from the current power

state.⌋ ()

[SWS_Pwm_00176]

⌈ The API shall report the DET error PWM_E_PERIPHERAL_NOT_PREPARED in

case the HW unit has not been previously prepared for the target power state by use

of the API Pwm_PreparePowerState(). ⌋ ()

To get more details concerning error detection, refer to chapter API parameter
checking.

7.4.1. Development Errors

[SWS_Pwm_00201] Development Error Types

⌈

Type or error Relevance Related error code Value
[hex]

API Pwm_Init service called with
wrong parameter

Development PWM_E_INIT_FAILED

0x10

API service used without module
initialization

Development PWM_E_UNINIT 0x11

API service used with an invalid
channel Identifier

Development PWM_E_PARAM_CHANNEL 0x12

Usage of unauthorized PWM service
on PWM channel configured a fixed
period

Development PWM_E_PERIOD_UNCHANGEABLE 0x13

API Pwm_Init service called while the
PWM driver has already been
initialised

Development PWM_E_ALREADY_INITIALIZED 0x14

API Pwm_GetVersionInfo is
called with a NULL parameter.

Development PWM_E_PARAM_POINTER

0x15

The requested power state is not
supported by the PWM module.

Development PWM_E_POWER_STATE_NOT_SUP

PORTED
0x17

The requested power state is not
reachable from the current one.

Development PWM_E_TRANSITION_NOT_POSS

IBLE
0x18

API Pwm_SetPowerState has been
called without having called the API
Pwm_PreparePowerState before.

Development PWM_E_PERIPHERAL_NOT_PREP

ARED
0x19

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

23 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

-- Production -- Assigned

externall

y

 ⌋ ()

7.4.2 Runtime Errors

[SWS_Pwm_00202] Runtime Error Types

Type or error Relevance Related error code Value
[hex]

API Pwm_SetPowerState is called
while the PWM module is still in use.

Runtime PWM_E_NOT_DISENGAGED 0x16

⌋ ()

7.4.3 Transient Faults

There are no transient faults.

7.4.4 Production Errors

There are no transient faults.

7.5 Error Detection

 For details refer to the chapters 7.2 “Error classification” & 7.3 “Error Detection” in
SWS_BSWGeneral.

7.6 Error Notification

 For details refer to the chapters 7.2 “Error classification” & 7.3 “Error Detection” in
SWS_BSWGeneral.

7.7 Duty Cycle Resolution and scaling

[SWS_Pwm_00058] ⌈ The width of the duty cycle parameter is 16 Bits.

⌋ (SRS_Pwm_12383)

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

24 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_00059] ⌈ The Pwm module shall comply with the following scaling

scheme for the duty cycle:

 0x0000 means 0%.

 0x8000 means 100%. 0x8000 gives the highest resolution while allowing 100%
duty cycle to be represented with a 16 bit value.

As an implementation guide, the following source code example is given:
AbsoluteDutyCycle =

((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;

⌋ (SRS_Pwm_12459)

7.8 Version check

 For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

25 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

8 API specification

8.1 Imported types

This chapter lists all types included from other modules.

[SWS_Pwm_00094] ⌈
Module Header File Imported Type

Std_Types StandardTypes.h Std_ReturnType

StandardTypes.h Std_VersionInfoType

⌋ ()

8.2 Type definitions

8.2.1 Pwm_ChannelType

[SWS_Pwm_00106] ⌈
Name: Pwm_ChannelType

Type: uint

Range: 8..32 bit -- This is implementation specific but not all values may be
valid within the type. This type shall be chosen in order to
have the most efficient implementation on a specific
microcontroller platform.

Description: Numeric identifier of a PWM channel.

Available via: Pwm.h

⌋ ()
8.2.2 Pwm_PeriodType

[SWS_Pwm_00107] ⌈
Name: Pwm_PeriodType

Type: uint

Range: 8..32 bit -- Implementation specific. This type shall be chosen in order
to have the most efficient implementation on a specific
microcontroller platform.

Description: Definition of the period of a PWM channel.

Available via: Pwm.h

⌋ ()
8.2.3 Pwm_OutputStateType

[SWS_Pwm_00108] ⌈
Name: Pwm_OutputStateType

Type: Enumeration

Range: PWM_HIGH -- The PWM channel is in high state.

PWM_LOW -- The PWM channel is in low state.

Description: Output state of a PWM channel.

Available via: Pwm.h

⌋ ()
8.2.4 Pwm_EdgeNotificationType

[SWS_Pwm_00109] ⌈
Name: Pwm_EdgeNotificationType

Type: Enumeration

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

26 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Range: PWM_RISING_EDGE -- Notification will be called when a rising edge occurs on the
PWM output signal.

PWM_FALLING_EDGE -- Notification will be called when a falling edge occurs on the
PWM output signal.

PWM_BOTH_EDGES -- Notification will be called when either a rising edge or
falling edge occur on the PWM output signal.

Description: Definition of the type of edge notification of a PWM channel.

Available via: Pwm.h

⌋ ()
8.2.5 Pwm_ChannelClassType

[SWS_Pwm_00110] ⌈
Name: Pwm_ChannelClassType

Type: Enumeration

Range: PWM_VARIABLE_PERIOD -- The PWM channel has a variable period. The duty
cycle and the period can be changed.

PWM_FIXED_PERIOD -- The PWM channel has a fixed period. Only the
duty cycle can be changed.

PWM_FIXED_PERIOD_SHIFTED -- The PWM channel has a fixed shifted period.
Impossible to change it (only if supported by
hardware)

Description: Defines the class of a PWM channel

Available via: Pwm.h

⌋ ()
8.2.6 Pwm_ConfigType

[SWS_Pwm_00111] ⌈
Name: Pwm_ConfigType

Type: Structure

Range: Hardware

dependent

structure.

The contents of the initialization data structure are hardware
specific.

Description: This is the type of data structure containing the initialization data for the PWM
driver.

Available via: Pwm.h

⌋ ()
[SWS_Pwm_00061] ⌈ Pwm_ConfigType is a type of data structure containing the

initialization data for the PWM driver.⌋ ()

8.2.7 Pwm_PowerStateRequestResultType

[SWS_Pwm_00165] ⌈
Name: Pwm_PowerStateRequestResultType

Type: Enumeration

Range: PWM_SERVICE_ACCEPTED 0x00 Power state change executed.

PWM_NOT_INIT 0x01 PWM Module not initialized.

PWM_SEQUENCE_ERROR 0x02 Wrong API call sequence.

PWM_HW_FAILURE 0x03 The HW module has a failure which prevents it
to enter the required power state.

PWM_POWER_STATE_NOT_SUPP 0x04 PWM Module does not support the requested
power state.

PWM_TRANS_NOT_POSSIBLE 0x05 PWM Module cannot transition directly from
the current power state to the requested power

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

27 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

state or the HW peripheral is still busy.

Description: Result of the requests related to power state transitions.

Available via: Pwm.h

⌋ ()
8.2.8 Pwm_PowerStateType

[SWS_Pwm_00197] ⌈
Name: Pwm_PowerStateType

Type: Enumeration

Range: 1..255 -- power modes with decreasing power consumptions.

PWM_FULL_POWER 0x00 Full Power

Description: Power state currently active or set as target power state.

Available via: Pwm.h

⌋ (SRS_Pwm_12293, SRS_Pwm_12378)

Mandatory parameters:

 Assigned HW channel

 Default value for period

 Default value for duty cycle

 Polarity (high or low)

 Idle state high or low

 Channel class:
- Fixed period
- Fixed period, shifted (if supported by hardware)
- Variable period

Optional parameters (if supported by hardware):

 Channel phase shift

 Reference channel for phase shift

 Microcontroller specific channel properties

8.3 Function definitions

8.3.1 Pwm_Init

[SWS_Pwm_00095] ⌈
Service name: Pwm_Init

Syntax: void Pwm_Init(

 const Pwm_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to configuration set

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service for PWM initialization.

Available via: Pwm.h

⌋ ()

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

28 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_00007] ⌈ The function Pwm_Init shall initialize all internals variables

and the used PWM structure of the microcontroller according to the parameters

specified in ConfigPtr.⌋ (SRS_BSW_00101, SRS_SPAL_12057)

[SWS_Pwm_00062] ⌈ The function Pwm_Init shall only initialize the configured

resources and shall not touch resources that are not configured in the configuration

file. ⌋ (SRS_SPAL_12057, SRS_SPAL_12125)

[SWS_Pwm_10009] ⌈The function Pwm_Init shall start all PWM channels with the

configured default values. ⌋ (SRS_SPAL_12057)
If the duty cycle parameter equals:

 [SWS_Pwm_20009] ⌈0% or 100% : Then the PWM output signal shall be in

the state according to the configured polarity parameter⌋ (SRS_SPAL_12057)

 [SWS_Pwm_30009] ⌈>0% and <100%: Then the PWM output signal shall be
modulated according to parameters period, duty cycle and configured polarity.

⌋ (SRS_SPAL_12057)

[SWS_Pwm_00052] ⌈The function Pwm_Init shall disable all notifications. ⌋

(SRS_SPAL_12057)

The reason is that the users of these notifications may not be ready. They can call
Pwm_EnableNotification to start notifications.

[SWS_Pwm_00093] ⌈The users of the Pwm module shall not call the function

Pwm_Init during a running operation. ⌋ ()

[SWS_Pwm_00116] ⌈The Pwm module’s environment shall not call any function of

the Pwm module before having called Pwm_Init. .⌋ ()

[SWS_Pwm_00118] ⌈If development error detection is enabled, calling the routine
Pwm_Init while the PWM driver and hardware are already initialized will cause a
development error PWM_E_ALREADY_INITIALIZED. The desired functionality shall

be left without any action. ⌋ ()

[SWS_Pwm_00121] ⌈A re-initialization of the Pwm driver by executing the

Pwm_Init() function requires a de-initialization before by executing a Pwm_DeInit().⌋

()

Regarding error detection, the requirement SWS_Pwm_10051 and
SWS_Pwm_20051 are applicable to the function Pwm_Init.

8.3.2 Pwm_DeInit

[SWS_Pwm_00096] ⌈
Service name: Pwm_DeInit

Syntax: void Pwm_DeInit(

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

29 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service for PWM De-Initialization.

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00010] ⌈The function Pwm_DeInit shall de-initialize the PWM module. ⌋

(SRS_BSW_00336, SRS_SPAL_12163, SRS_Pwm_12381)

[SWS_Pwm_00011] ⌈The function Pwm_DeInit shall set the state of the PWM output

signals to the idle state. ⌋ (SRS_SPAL_12163)

[SWS_Pwm_00012] ⌈The function Pwm_DeInit shall disable PWM interrupts and

PWM signal edge notifications. ⌋ (SRS_SPAL_12163)

[SWS_Pwm_10080] ⌈The function Pwm_DeInit shall be pre compile time

configurable On/Off by the configuration parameter: PwmDeInitApi. ⌋

(SRS_BSW_00171)

[SWS_Pwm_20080] ⌈The function Pwm_DeInit shall be configurable On/Off by the
configuration parameter PwmDeInitApi {PWM_DE_INIT_API}.

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_10051,

and SWS_Pwm_20051 are applicable to the function Pwm_DeInit. ⌋

(SRS_BSW_00171)

8.3.3 Pwm_SetDutyCycle

[SWS_Pwm_91000] ⌈
Service name: Pwm_SetDutyCycle (draft)

Syntax: void Pwm_SetDutyCycle(

 Pwm_ChannelType ChannelNumber,

 uint16 DutyCycle

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in):
ChannelNumber Numeric identifier of the PWM

DutyCycle Min=0x0000 Max=0x8000

Parameters
(inout):

None

Parameters (out): None

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

30 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Return value: None

Description: Service sets the duty cycle of the PWM channel.
Tags:
atp.Status=draft

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00097] ⌈
Service name: Pwm_SetDutyCycle (obsolete)

Syntax: void Pwm_SetDutyCycle(

 Pwm_ChannelType ChannelNumber,

 uint16 DutyCycle

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in):
ChannelNumber Numeric identifier of the PWM

DutyCycle Min=0x0000 Max=0x8000

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service sets the duty cycle of the PWM channel.
Tags:
atp.Status=obsolete

Available via: Pwm.h

⌋ ()

The synchronized API was set to obsolete with concept MCAL Multicore Distribution.

[SWS_Pwm_00013] ⌈The function Pwm_SetDutyCycle shall set the duty cycle of the

PWM channel. ⌋ (SRS_Pwm_12295)

[SWS_Pwm_00014] ⌈When the requested duty cycle is either 0% or 100%, the
function
Pwm_SetDutyCycle shall set the PWM output state to either PWM_HIGH or
PWM_LOW, with regard to both the configured polarity parameter and the requested
duty cycle.
Thus for 0% requested Duty Cycle the output will be the inverse of the configured
polarity parameter, and for 100% Duty Cycle the output will be equal to the

configured polarity parameter. ⌋ ()

[SWS_Pwm_00016] ⌈The function Pwm_SetDutyCycle shall modulate the PWM
output signal according to parameters period, duty cycle and configured polarity,

when the duty cycle > 0 % and < 100%.⌋ ()

[SWS_Pwm_00017] ⌈The function Pwm_SetDutyCycle shall update the duty cycle
always at the end of the period if supported by the implementation and configured

with PwmDutycycleUpdatedEndperiod. ⌋ (SRS_Pwm_12382)

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

31 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Regarding format definition of duty cycle parameter, the requirement
SWS_Pwm_00058 is applicable to the function Pwm_SetDutyCycle.

Regarding scaling definition of duty cycle parameter, the requirement
SWS_Pwm_00059 is applicable to the function Pwm_SetDutyCycle.

[SWS_Pwm_00018] ⌈The driver shall forbid the spike on the PWM output signal. ⌋ ()

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047,
SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the function
Pwm_SetDutyCycle.

[SWS_Pwm_10082] ⌈The function Pwm_SetDutyCycle shall be pre compile time

configurable On/Off by the configuration parameter: PwmSetDutyCycle. .⌋

(SRS_BSW_00171)

[SWS_Pwm_20082] ⌈The function Pwm_SetDutyCycle shall be configurable On/Off
by the configuration parameter: PwmSetDutyCycle

{PWM_SET_DUTY_CYCLE_API}.⌋ (SRS_BSW_00171)

8.3.4 Pwm_SetPeriodAndDuty

[SWS_Pwm_91001] ⌈
Service name: Pwm_SetPeriodAndDuty (draft)

Syntax: void Pwm_SetPeriodAndDuty(

 Pwm_ChannelType ChannelNumber,

 Pwm_PeriodType Period,

 uint16 DutyCycle

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in):

ChannelNumber Numeric identifier of the PWM

Period Period of the PWM signal

DutyCycle Min=0x0000 Max=0x8000

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service sets the period and the duty cycle of a PWM channel
Tags:
atp.Status=draft

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00098] ⌈
Service name: Pwm_SetPeriodAndDuty (obsolete)

Syntax: void Pwm_SetPeriodAndDuty(

 Pwm_ChannelType ChannelNumber,

 Pwm_PeriodType Period,

 uint16 DutyCycle

)

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

32 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in):

ChannelNumber Numeric identifier of the PWM

Period Period of the PWM signal

DutyCycle Min=0x0000 Max=0x8000

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service sets the period and the duty cycle of a PWM channel
Tags:
atp.Status=obsolete

Available via: Pwm.h

⌋ ()

The synchronized API was set to obsolete with concept MCAL Multicore Distribution.

[SWS_Pwm_00019] ⌈The function Pwm_SetPeriodAndDuty shall set the period and

the duty cycle of a PWM channel. ⌋ (SRS_Pwm_12297)

[SWS_Pwm_00076] ⌈The function Pwm_SetPeriodAndDuty shall update the period
always at the end of the current period if supported by the implementation and

configured with PwmPeriodUpdatedEndperiod. ⌋ ()

[SWS_Pwm_00020] ⌈When updating the PWM period and duty, the driver shall

repress any spikes on the PWM output signal. ⌋ ()

The PWM duty cycle parameter is necessary to maintain the consistency between
frequency and duty cycle. Refer to SWS_Pwm_00058 and SWS_Pwm_00059 to
know the scaling and format definition of duty cycle parameter

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00045,
SWS_Pwm_00047, SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the
function Pwm_SetPeriodAndDuty.

[SWS_Pwm_00041] ⌈The function Pwm_SetPeriodAndDuty shall allow changing the

period only for the PWM channel declared as variable period type. ⌋

(SRS_Pwm_12389)

[SWS_Pwm_10083] ⌈The function Pwm_SetPeriodAndDuty shall be pre compile

time configurable On/Off by the configuration parameter: PwmSetPeriodAndDuty. ⌋

(SRS_BSW_00171)

[SWS_Pwm_20083] ⌈The function Pwm_SetPeriodAndDuty shall be configurable
On/Off by the configuration parameter: PwmSetPeriodAndDuty

{PWM_SET_PERIOD_AND_DUTY_API}.⌋ (SRS_BSW_00171)

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

33 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_00150] ⌈If the period is set to zero the setting of the duty-cycle is not

relevant. In this case the output shall be zero (zero percent duty-cycle). ⌋ ()

8.3.5 Pwm_SetOutputToIdle

[SWS_Pwm_91002] ⌈
Service name: Pwm_SetOutputToIdle (draft)

Syntax: void Pwm_SetOutputToIdle(

 Pwm_ChannelType ChannelNumber

)

Service ID[hex]: 0x04

Sync/Async: Asynchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service sets the PWM output to the configured Idle state.
Tags:
atp.Status=draft

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00099] ⌈
Service name: Pwm_SetOutputToIdle (obsolete)

Syntax: void Pwm_SetOutputToIdle(

 Pwm_ChannelType ChannelNumber

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service sets the PWM output to the configured Idle state.
Tags:
atp.Status=obsolete

Available via: Pwm.h

⌋ ()

The synchronized API was set to obsolete with concept MCAL Multicore Distribution.

[SWS_Pwm_00021] ⌈The function Pwm_SetOutputToIdle shall set immediately the

PWM output to the configured Idle state. ⌋ (SRS_Pwm_12358)

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047,
SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the function
Pwm_SetOutputToIdle.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

34 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_10084] ⌈The function Pwm_SetOutputToIdle shall be pre compile time

configurable On/Off by the configuration parameter: PwmSetOutputToIdle. ⌋

(SRS_BSW_00171)

[SWS_Pwm_20084] ⌈The function Pwm_SetOutputToIdle shall be configurable
On/Off by the configuration parameter: PwmSetOutputToIdle

{PWM_SET_OUTPUT_TO_IDLE_API}.⌋ (SRS_BSW_00171)

[SWS_Pwm_10086] ⌈After the call of the function Pwm_SetOutputToIdle, variable
period type channels shall be reactivated using the Api Pwm_SetPeriodAndDuty() to

activate the PWM channel with the new passed period. ⌋ ()

[SWS_Pwm_20086] ⌈ After the call of the function Pwm_SetOutputToIdle, channels

shall be reactivated using the Api Pwm_SetDutyCycle() to activate the PWM channel

with the old period.⌋ ()

[SWS_Pwm_00119] ⌈ After the call of the function Pwm_SetOutputToIdle, fixed

period type channels shall be reactivated using only the API Pwm_SetDutyCycle() to

activate the PWM channel with the old period. ⌋ ()

8.3.6 Pwm_GetOutputState

[SWS_Pwm_00100] ⌈
Service name: Pwm_GetOutputState

Syntax: Pwm_OutputStateType Pwm_GetOutputState(

 Pwm_ChannelType ChannelNumber

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Parameters
(inout):

None

Parameters (out): None

Return value:
Pwm_OutputStateType PWM_HIGH The PWM output state is high

PWM_LOW The PWM output state is low

Description: Service to read the internal state of the PWM output signal.

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00022] ⌈The function Pwm_GetOutputState shall read the internal state
of the PWM output signal and return it as defined in the diagram below

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

35 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Microcontroller

PWM Unit Port Logic

Value to read PWM Port pin

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047,
SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the function

Pwm_GetOutputState. ⌋ (SRS_Pwm_12385)

[SWS_Pwm_10085] ⌈The function Pwm_GetOutputState shall be pre compile time

configurable On/Off using the configuration parameter: PwmGetOutputState. ⌋

(SRS_BSW_00171)

[SWS_Pwm_20085] ⌈The function Pwm_GetOutputState shall be configurable
On/Off by the configuration parameter: PwmGetOutputState
{PWM_GET_OUTPUT_STATE_API}.

Due to real time constraint and setting of the PWM channel (project dependant), the

output state can be modified just after the call of the service Pwm_GetOutputState. ⌋

(SRS_BSW_00171)

[SWS_Pwm_30051] ⌈If Pwm_GetOutputState is called before module initialization,

or with an invalid channel, it shall return PWM_LOW.⌋ (SRS_BSW_00323,

SRS_BSW_00386)

8.3.7 Pwm_DisableNotification

[SWS_Pwm_91003] ⌈
Service name: Pwm_DisableNotification (draft)

Syntax: void Pwm_DisableNotification(

 Pwm_ChannelType ChannelNumber

)

Service ID[hex]: 0x06

Sync/Async: Asynchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to disable the PWM signal edge notification.
Tags:
atp.Status=draft

Available via: Pwm.h

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

36 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

⌋ ()

[SWS_Pwm_00101] ⌈
Service name: Pwm_DisableNotification (obsolete)

Syntax: void Pwm_DisableNotification(

 Pwm_ChannelType ChannelNumber

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to disable the PWM signal edge notification.
Tags:
atp.Status=obsolete

Available via: Pwm.h

⌋ ()

The synchronized API was set to obsolete with concept MCAL Multicore Distribution.

[SWS_Pwm_00023] ⌈The function Pwm_DisableNotification shall disable the PWM

signal edge notification. ⌋ (SRS_Pwm_12378, SRS_Pwm_12299)

[SWS_Pwm_10112] ⌈The function Pwm_DisableNotification shall be pre compile
time configurable On/Off using the configuration parameter:

PwmNotificationSupported. ⌋ ()

[SWS_Pwm_20112] ⌈The function Pwm_DisableNotification shall be configurable
On/Off by the configuration parameter: PwmNotificationSupported
{PWM_NOTIFICATION_SUPPORTED}.

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047,
SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the function

Pwm_DisableNotification. ⌋ ()

8.3.8 Pwm_EnableNotification

[SWS_Pwm_91004] ⌈
Service name: Pwm_EnableNotification (draft)

Syntax: void Pwm_EnableNotification(

 Pwm_ChannelType ChannelNumber,

 Pwm_EdgeNotificationType Notification

)

Service ID[hex]: 0x07

Sync/Async: Asynchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in): ChannelNumber Numeric identifier of the PWM

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

37 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Notification Type of notification
PWM_RISING_EDGE or
PWM_FALLING_EDGE or
PWM_BOTH_EDGES

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to enable the PWM signal edge notification according to notification
parameter.
Tags:
atp.Status=draft

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00102] ⌈
Service name: Pwm_EnableNotification (obsolete)

Syntax: void Pwm_EnableNotification(

 Pwm_ChannelType ChannelNumber,

 Pwm_EdgeNotificationType Notification

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant for different channel numbers

Parameters (in):

ChannelNumber Numeric identifier of the PWM

Notification Type of notification
PWM_RISING_EDGE or
PWM_FALLING_EDGE or
PWM_BOTH_EDGES

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to enable the PWM signal edge notification according to notification
parameter.
Tags:
atp.Status=obsolete

Available via: Pwm.h

⌋ ()

The synchronized API was set to obsolete with concept MCAL Multicore Distribution.

[SWS_Pwm_00024] ⌈The function Pwm_EnableNotification shall enable the PWM

signal edge notification according to notification parameter. ⌋ (SRS_Pwm_12378,

SRS_Pwm_12299)

[SWS_Pwm_00081] ⌈The function Pwm_EnableNotification shall cancel pending

interrupts. ⌋ ()

[SWS_Pwm_10113] ⌈The function Pwm_EnableNotification shall be pre compile
time configurable On/Off using the configuration parameter:

PwmNotificationSupported. ⌋ ()

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

38 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

[SWS_Pwm_20113] ⌈The function Pwm_EnableNotification shall be configurable
On/Off by the configuration parameter: PwmNotificationSupported
{PWM_NOTIFICATION_SUPPORTED}.

Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047,
SWS_Pwm_10051 and SWS_Pwm_20051 are applicable to the function

Pwm_EnableNotification. ⌋ ()

8.3.9 Pwm_SetPowerState

[SWS_Pwm_00166] ⌈
Service name: Pwm_SetPowerState

Syntax: Std_ReturnType Pwm_SetPowerState(

 Pwm_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

Result If the API returns E_OK:
PWM_SERVICE_ACCEPTED:Power state change executed.

If the API returns E_NOT_OK:
PWM_NOT_INIT: PWM Module not initialized.
PWM_SEQUENCE_ERROR: wrong API call sequence.
PWM_HW_FAILURE: the HW module has a failure which
prevents it to enter the required power state.

Return value:
Std_ReturnType E_OK: Power Mode changed

E_NOT_OK: request rejected

Description: This API configures the Pwm module so that it enters the already prepared power
state, chosen between a predefined set of configured ones.

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00167]

⌈ The API configures the HW in order to enter the given Power State. All preliminary

actions to enable this transition (e.g. setting all channels in IDLE status, de-
registering of all notifications and so on) must already have been taken by the
responsible SWCs (e.g. IoHwAbs).

The API shall not execute preliminary, implicit power state changes (i.e. if a
requested power state is not reachable starting from the current one, no intermediate

power state change shall be executed and the request shall be rejected)⌋ ()

[SWS_Pwm_00168]

⌈ In case the target power state is the same as the current one, no action is

executed and the API returns immediately with an E_OK result.⌋ ()

[SWS_Pwm_00169]

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

39 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

⌈ In case the normal Power State is requested, the API shall refer to the necessary

parameters contained in the same containers used by Pwm_Init.

No separate container or hard coded data shall be used for the normal (i.e. full)
power mode, in order to avoid misalignments between initialization parameters used

during the init phase and during a power state change.⌋ ()

[SWS_Pwm_00170]

⌈ For the other power states, only power state transition specific reconfigurations

shall be executed in the context of this API (i.e. the API cannot be used to apply a
completely new configuration to the Pwm module). Any other re-configuration not

strictly related to the power state transition shall not take place.⌋ ()

[SWS_Pwm_00171]

⌈ The API shall refer to the configuration container related to the required Power

State in order to derive some specific features of the state (e.g support of Power

States).⌋ ()

In case development error reporting is activated:

[SWS_Pwm_00172]

⌈ The API shall report the DET error PWM_E_UNINIT in case this API is called

before having initialized the HW unit.⌋ ()

[SWS_Pwm_00173]

⌈ The API shall report the DET error PWM_E_NOT_DISENGAGED in case this API

is called when one or more HW channels (where applicable) are in a state different
than IDLE (or similar non-operational states) and/or there are still notification

registered for the HW module channels.⌋ ()

[SWS_Pwm_00194]

⌈ The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED

in case this API is called with an unsupported power state or the peripheral does not
support low power states at all.

⌋ ()

[SWS_Pwm_00195]

⌈ The API shall report the DET error PWM_E_TRANSITION_NOT_POSSIBLE in

case the requested power state cannot be directly reached from the current power

state.⌋ ()

[SWS_Pwm_00196]

⌈ The API shall report the DET error PWM_E_PERIPHERAL_NOT_PREPARED in

case the HW unit has not been previously prepared for the target power state by use

of the API Pwm_PreparePowerState(). ⌋ ()

8.3.10 Pwm_GetCurrentPowerState

[SWS_Pwm_00177] ⌈

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

40 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Service name: Pwm_GetCurrentPowerState

Syntax: Std_ReturnType Pwm_GetCurrentPowerState(

 Pwm_PowerStateType* CurrentPowerState,

 Pwm_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

CurrentPowerState The current power mode of the PWM HW Unit is returned in
this parameter

Result If the API returns E_OK:
PWM_SERVICE_ACCEPTED: Current power mode was
returned.

If the API returns E_NOT_OK:
PWM_NOT_INIT: PWM Module not initialized.

Return value:
Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description: This API returns the current power state of the PWM HW unit.

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00178]

⌈ The API returns the power state of the HW unit.

In case development error reporting is activated:⌋ ()

[SWS_Pwm_00179]

⌈ The API shall report the DET error PWM_E_UNINIT in case this API is called

before having initialized the HW unit.⌋ ()

8.3.11 Pwm_GetTargetPowerState

[SWS_Pwm_00180] ⌈
Service name: Pwm_GetTargetPowerState

Syntax: Std_ReturnType Pwm_GetTargetPowerState(

 Pwm_PowerStateType* TargetPowerState,

 Pwm_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

TargetPowerState The Target power mode of the PWM HW Unit is returned in this
parameter

Result If the API returns E_OK:
PWM_SERVICE_ACCEPTED:Target power mode was
returned.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

41 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

If the API returns E_NOT_OK:
PWM_NOT_INIT: PWM Module not initialized.

Return value:
Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description: This API returns the Target power state of the PWM HW unit.

Available via: Pwm.h

⌋ ()

[SWS_Pwm_00181]

⌈ The API returns the requested power state of the HW unit. This shall coincide with

the current power state if no transition is ongoing.

The API is considered to always succeed except in case of HW failures.

In case development error reporting is activated:⌋ ()

[SWS_Pwm_00182]

⌈ The API shall report the DET error PWM_E_UNINIT in case this API is called

before having initialized the HW unit.⌋ ()

8.3.12 Pwm_PreparePowerState

[

[SWS_Pwm_00183] ⌈
Service name: Pwm_PreparePowerState

Syntax: Std_ReturnType Pwm_PreparePowerState(

 Pwm_PowerStateType PowerState,

 Pwm_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): PowerState The target power state intended to be attained

Parameters
(inout):

None

Parameters (out):

Result If the API returns E_OK:
PWM_SERVICE_ACCEPTED: PWM Module power state
preparation was started.

If the API returns E_NOT_OK:
PWM_NOT_INIT: PWM Module not initialized.
PWM_SEQUENCE_ERROR: wrong API call sequence (Current
Power State = Target Power State).
PWM_POWER_STATE_NOT_SUPP: PWM Module does not
support the requested power state.
PWM_TRANS_NOT_POSSIBLE: PWM Module cannot transition
directly from the current power state to the requested power state
or the HW peripheral is still busy.

Return value:
Std_ReturnType E_OK: Preparation process started

E_NOT_OK: Service is rejected

Description: This API starts the needed process to allow the PWM HW module to enter the
requested power state.

Available via: Pwm.h

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

42 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

⌋ ()

[SWS_Pwm_00184]

⌈ This API initiates all actions needed to enable a HW module to enter the target

power state.

The possibility to operate the periphery depends on the power state and the HW
features. These properties should be known to the integrator and the decision

whether to use the periphery or not is in his responsibility.⌋ ()

[SWS_Pwm_00185]

⌈ In case the target power state is the same as the current one, no action is

executed and the API returns immediately with an E_OK result.

The responsibility of the preconditions is left to the environment.

In case development error reporting is activated.⌋ ()

[SWS_Pwm_00186]

⌈ The API shall report the DET error PWM_E_UNINIT in case this API is called

before having initialized the HW unit.⌋ ()

[SWS_Pwm_00187]

⌈ The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED

in case this API is called with an unsupported power state is requested or the

peripheral does not support low power states at all.⌋ ()

[SWS_Pwm_00188]

⌈ The API shall report the DET error PWM_E_TRANSITION_NOT_POSSIBLE in

case the requested power state cannot be directly reached from the current power
state.

All asynchronous operation needed to reach the target power state can be executed

in background in the context of Pwm_Main_PowerTransitionManager.⌋ ()

8.3.13 Pwm_GetVersionInfo

[SWS_Pwm_00103] ⌈
Service name: Pwm_GetVersionInfo

Syntax: void Pwm_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

43 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Description: Service returns the version information of this module.

Available via: Pwm.h

⌋ ()

8.4 Callback notifications

Since the PWM Driver is a module on the lowest architectural layer it doesn’t provide
any call-back functions for lower layer modules.

8.5 Scheduled functions

All services offered by the PWM Driver are of synchronous nature, with the exception
of the asynchronous power transition management, if so configured.
In case the synchronous power transition management is configured, no scheduled
API is generated.

8.5.1 Pwm_Main_PowerTransitionManager

[SWS_Pwm_00189] ⌈
Service name: Pwm_Main_PowerTransitionManager

Syntax: void Pwm_Main_PowerTransitionManager(

 void

)

Service ID[hex]: 0x0d

Description: This API is cyclically called and supervises the power state transitions, checking
for the readiness of the module and issuing the callbacks
IoHwAb_Pwm_NotifyReadyForPowerState<Mode> (see
PwmPowerStateReadyCbkRef configuration parameter).

Available via: SchM_Pwm.h

⌋ ()

[SWS_Pwm_00190]

⌈ This API executes any non-immediate action needed to finalize a power state

transition requested by Pwm_PreparePowerState().⌋ ()

[SWS_Pwm_00191]

⌈ The rate of scheduling shall be defined by Pwm MainSchedulePeriod and shall be

variable, as the function only needs to be called if a transition has been

requested.⌋ ()

[SWS_Pwm_00192]

⌈ This API shall also issue callback notifications to the eventually registered users

(IoHwAbs) as configured, only in case the asynch mode is chosen.⌋ ()

[SWS_Pwm_00193]

⌈ In case the PWM module is not initialized, this function shall simply return without

any further elaboration. This is needed to avoid to elaborate uninitialized variables.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

44 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

No DET error shall be entered, because this condition can easily be verified during
the startup phase (tasks started before the initialization is complete).

Rationale: during the startup phase it can happen that the OS already schedules
tasks, which call main functions, while some modules are not initialised yet. This is
no real error condition, although need handling, i.e. returning without execution.

Although the transition state monitoring functionality is mandatory, the
implementation of this API is optional, meaning that if the HW allows for other ways
to deliver notification and watch the transition state the implementation of this

function can be skipped.⌋ ()

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

As this module is part of the MCAL layer, it access directly to the microcontroller
registers and therefore doesn’t need any lower interfaces.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Pwm_00104] ⌈
API function Header File Description

Det_ReportError Det.h Service to report development errors.

⌋ ()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kinds of
interfaces are not fixed because they are configurable.

[SWS_Pwm_00105] ⌈
Service name: Pwm_Notification_<#Channel>

Syntax: void Pwm_Notification_<#Channel>(

 void

)

Sync/Async: Synchronous

Reentrancy: PWM user implementation dependant

Parameters (in): None

Parameters None

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

45 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

(inout):

Parameters (out): None

Return value: None

Description: The Pwm module shall call the function Pwm_Notification_<#Channel>
accordingly to the last call of Pwm_EnableNotification for channel <#Channel>.

Available via: Pwm_Externals.h

⌋ ()

[SWS_Pwm_00025] ⌈The Pwm module shall call the function
Pwm_Notification_<#Channel> accordingly to the last call of Pwm_EnableNotification

and Pwm_DisableNotification for channel <#Channel>.⌋ (SRS_SPAL_00157)

[SWS_Pwm_00026] ⌈The Pwm module shall reset the interrupt flag associated to

the notification Pwm_Notification_<#Channel>⌋ (SRS_SPAL_12129)

[SWS_Pwm_10115] ⌈The Pwm module shall provide the functionality of
Pwm_EnableNotification only when the configuration parameter

PwmNotificationSupported is ON. ⌋ ()

[SWS_Pwm_20115] ⌈The Pwm module shall provide the functionality of
Pwm_DisableNotification only when the configuration parameter

PwmNotificationSupported is ON. ⌋ ()

[SWS_Pwm_30115] ⌈The Pwm module shall reset the interrupt flag associated to
the notification only when the configuration parameter PwmNotificationSupported is

ON. ⌋ ()

[SWS_Pwm_00198] ⌈
Service name: IoHwAb_Pwm_NotifyReadyForPowerState<#Mode>

Syntax: void IoHwAb_Pwm_NotifyReadyForPowerState<#Mode>(

 void

)

Service ID[hex]: 0x60

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the PWM Driver when the requested power state
preparation for mode <#Mode> is completed.

Available via: IoHwAb_Pwm.h

⌋ ()

[SWS_Pwm_00199]

⌈ In case the PWM Driver is configured to support power state management with

asynchronous transitions, this API shall be called to signal completion of the power
transition preparation phase to the IoHwAbs module.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

46 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

This is a callback, this API is to be implemented in the IoHwAbs component.⌋ ()

8.7 API parameter checking

[SWS_Pwm_10051] ⌈If development error detection for the Pwm module is enabled,
and a development error occurs, then the corresponding PWM function shall report

the error to the Default Error Tracer. ⌋ (SRS_BSW_00323, SRS_BSW_00386)

[SWS_Pwm_20051] ⌈If development error detection for the Pwm module is enabled,
and a development error occurs, then the corresponding PWM function shall skip the
desired functionality in order to avoid any corruptions of data or hardware registers

leaving the function without any actions. ⌋ (SRS_BSW_00323, SRS_BSW_00386)

[SWS_Pwm_00117] ⌈If development error detection for the Pwm module is enabled:
if any function (except Pwm_Init) is called before Pwm_Init has been called, the

called function shall raise development error PWM_E_UNINIT. ⌋ (SRS_BSW_00406,

SRS_BSW_00323, SRS_BSW_00386)

[SWS_Pwm_00045] ⌈If development error detection for the Pwm module is

enabled: The API Pwm_SetPeriodAndDuty() shall check if the given PWM

channel is of the channel class type PWM_VARIABLE_PERIOD. If this is not the case

the development error PWM_E_PERIOD_UNCHANGEABLE shall be called. ⌋

(SRS_BSW_00323, SRS_BSW_00386)

[SWS_Pwm_00047] ⌈If development error detection for the Pwm module is enabled:

the PWM functions shall check the parameter ChannelNumber and raise

development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is

invalid. ⌋ (SRS_BSW_00323, SRS_BSW_00386)

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

47 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver Initialization

The PWM output signals are either in low state, in high state or in modulation state depending on the

configuration parameters.

If configured, no notification occurs until the first call of Pwm_EnableNotification

Comments:

«module»

Pwm

Pwm User

Pwm_Init()

Pwm_Init(const

Pwm_ConfigType*)

Figure 2: Pwm initialization

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

48 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.2 De-initialization

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver De-Initialization

The PWM output channels are in the state defined by configuration.

Comments:

«module»

Pwm

Pwm User

Pwm_DeInit()

Pwm_DeInit()

Figure 3: Pwm de-initialization

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

49 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.3 Setting the duty cycle

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM Driver Set Duty Cycle

The PWM duty cycle will be changed either at the end of the current period if supported

or directly if not supported by the implementation.

Comments:

«module»

Pwm

Pwm User

Pwm_SetDutyCycle(Pwm_ChannelType, uint16)

Pwm_SetDutyCycle()

Figure 4: Setting the duty cycle

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

50 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.4 Setting the period and the duty

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM signal period

The PWM period is changed at the end of the current period if configured.

Comments:

«module»

Pwm

Pwm User

Pwm_SetPeriodAndDuty()

Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)

Figure 5: Setting period and duty cycle

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

51 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.5 Setting the PWM output to idle

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM signal

Comments:

«module»

Pwm

Description:

The PWM output signal state

is settled according to the

given parameter

Description:

If the PWM signal needs to be

activated again, then the user of the

PWM Driver can call

Pwm_SetPeriodAndDuty if necessary to

have a defined period

Pwm User

Pwm_SetOutputToIdle()

Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)

Pwm_SetOutputToIdle(Pwm_ChannelType)

Pwm_SetPeriodAndDuty()

Figure 6: Setting Pwm output to idle

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

52 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.6 Getting the PWM Output state

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Getting the PWM Output State

The PWM channel state is read.

Comments:

«module»

Pwm

Pwm User

Pwm_GetOutputState(Pwm_OutputStateType,

Pwm_ChannelType): Pwm_OutputStateType

Pwm_GetOutputState=PWM_HIGH or PWM_LOW()

Figure 7: Getting Pwm output state

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

53 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

9.7 Using the PWM notifications

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Using PWM Enable/Disable notification

The PWM channel is autostarted (Modulation starts during the call of Pwm_Init()).

No notifications occur until the first call of Pwm_EnableNotification(...). Pwm_Notification<#Channel> represents the

configured callback function for a channel.

Comments:

«module»

Pwm

Pwm User

Falling Edge notification

Rising Edge notification

No notifications will occur

Pwm_Notification_<#Channel>()

Pwm_Init(const

Pwm_ConfigType*)

Pwm_Notification_<#Channel>()

Pwm_DisableNotification()

Pwm_DisableNotification(Pwm_ChannelType)

Pwm_Init()

Pwm_EnableNotification(Pwm_ChannelType, Pwm_EdgeNotificationType)

Pwm_EnableNotification()

Figure 8: Using Pwm notifications

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

54 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
PWM Driver.

Chapter 10.3 specifies published information of the module PWM Driver.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters Functional specification and Chapter
API specification.

[SWS_Pwm_00203] DRAFT ⌈The PWM module shall reject configurations with
partition mappings which are not supported by the implementation.⌋()

10.2.1 Pwm
SWS Item ECUC_Pwm_00148 :

Module Name Pwm

Module Description Configuration of Pwm (Pulse Width Modulation) module.

Post-Build Variant Support true

Supported Config Variants VARIANT-POST-BUILD, VARIANT-PRE-COMPILE

Included Containers

Container Name Multiplicity Scope / Dependency

PwmChannelConfigSet 1
This container contains the configuration parameters
and sub containers of the AUTOSAR Pwm module.

PwmConfigurationOfOptApiService
s

1 --

PwmGeneral 1 --

10.2.2 PwmGeneral
SWS Item ECUC_Pwm_00004 :

Container Name PwmGeneral

Description --

Configuration Parameters

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

55 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

SWS Item ECUC_Pwm_00131 :

Name

PwmDevErrorDetect

Parent Container PwmGeneral

Description Switches the development error detection and notification on or off.

 true: detection and notification is enabled.

 false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00132 :

Name

PwmDutycycleUpdatedEndperiod

Parent Container PwmGeneral

Description Switch for enabling the update of the duty cycle parameter at the end of
the current period.
TRUE: update of duty cycle is done at the end of period of currently
generated waveform (current waveform is finished).
FALSE: update of duty cycle is done immediately (just after service call,
current waveform is cut).

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00139 :

Name

PwmIndex

Parent Container PwmGeneral

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00142 :

Name

PwmLowPowerStatesSupport

Parent Container PwmGeneral

Description Adds / removes all power state management related APIs
(PWM_SetPowerState, PWM_GetCurrentPowerState,
PWM_GetTargetPowerState, PWM_PreparePowerState,

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

56 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

PWM_Main_PowerTransitionManager), indicating if the HW offers low
power state management.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00133 :

Name

PwmNotificationSupported

Parent Container PwmGeneral

Description Switch to indicate that the notifications are supported

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00134 :

Name

PwmPeriodUpdatedEndperiod

Parent Container PwmGeneral

Description Switch for enabling the update of the period parameter at the end of the
current period.
TRUE: update of period/duty cycle is done at the end of period of currently
generated waveform (current waveform is finished).
FALSE: update of period/duty cycle is done immediately (just after service
call, current waveform is cut).

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00143 :

Name

PwmPowerStateAsynchTransitionMode

Parent Container PwmGeneral

Description Enables / disables support of the PWM Driver to the asynchronous power
state transition.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant false

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

57 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Multiplicity

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
PwmLowPowerStatesSupport is set to true.

SWS Item ECUC_Pwm_00149 :

Name

PwmEcucPartitionRef

Parent Container PwmGeneral

Description Maps the PWM driver to zero or multiple ECUC partitions to make the
driver API available in the according partition.
Tags:
atp.Status=draft

Multiplicity 0..*

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Pwm_00150 :

Name

PwmKernelEcucPartitionRef

Parent Container PwmGeneral

Description Maps the PWM kernel to zero or one ECUC partitions to assign the driver
kernel to a certain core. The ECUC partition referenced is a subset of the
ECUC partitions where the PWM driver is mapped to.
Tags:
atp.Status=draft

Multiplicity 0..1

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

PwmPowerStateConfig 0..* Each instance of this parameter defines a power state and the

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

58 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

callback to be called when this power state is reached.

[SWS_Pwm_CONSTR_00001] DRAFT ⌈ The ECUC partitions referenced by

PwmKernelEcucPartitionRef shall be a subset of the ECUC partitions referenced by

PwmEcucPartitionRef.⌋ ()

10.2.3 PwmPowerStateConfig
SWS Item ECUC_Pwm_00144 :

Container Name PwmPowerStateConfig

Description
Each instance of this parameter defines a power state and the callback to
be called when this power state is reached.

Configuration Parameters

SWS Item ECUC_Pwm_00146 :

Name

PwmPowerState

Parent Container PwmPowerStateConfig

Description Each instance of this parameter describes a different power state
supported by the PWM HW. It should be defined by the HW supplier and
used by the PWMDriver to reference specific HW configurations which set
the PWM HW module in the referenced power state.
At least the power mode corresponding to full power state shall be always
configured.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..
18446744073709551615

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
PwmLowPowerStatesSupport is set to true.

SWS Item ECUC_Pwm_00145 :

Name

PwmPowerStateReadyCbkRef

Parent Container PwmPowerStateConfig

Description Each instance of this parameter contains a reference to a power mode
callback defined in a CDD or IoHwAbs component.

Multiplicity 1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
PwmLowPowerStatesSupport is set to true.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

59 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

No Included Containers

10.2.4 PwmChannel
SWS Item ECUC_Pwm_00027 :

Container Name PwmChannel

Description Configuration of an individual PWM channel.

Configuration Parameters

SWS Item ECUC_Pwm_00136 :

Name

PwmChannelClass

Parent Container PwmChannel

Description Class of PWM Channel.
ImplementationType: Pwm_ChannelClassType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range PWM_FIXED_PERIOD Only the duty cycle can be
changed.

PWM_FIXED_PERIOD_SHIFTED Only the duty cycle can be
changed. The period is shifted
(only if supported by hardware)

PWM_VARIABLE_PERIOD Duty Cycle and period can be
changed.

Post-Build Variant
Multiplicity

true

Post-Build Variant
Value

true

Multiplicity
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_Pwm_00137 :

Name

PwmChannelId

Parent Container PwmChannel

Description Channel Id of the PWM channel. This value will be assigned to the
symbolic name derived of the PwmChannel container short name.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 4294967295

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00138 :

Name

PwmDutycycleDefault

Parent Container PwmChannel

Description Value of duty cycle used for Initialization

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

60 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

0, represents 0%
0x8000 represents 100%

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 32768

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00122 :

Name

PwmIdleState

Parent Container PwmChannel

Description The parameter PWM_IDLE_STATE represents the output state of the PWM after
the signal is stopped (e.g. call of Pwm_SetOutputToIdle).

Multiplicity 1

Type EcucEnumerationParamDef

Range PWM_HIGH The PWM channel output will be set to
high (3 or 5 V) in idle state.

PWM_LOW The PWM channel output will be set to
low (0 V) in idle state.

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_Pwm_00123 :

Name

PwmNotification

Parent Container PwmChannel

Description Definition of the Callback function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value "NULL"

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00124 :

Name

PwmPeriodDefault

Parent Container PwmChannel

Description Value of period used for Initialization.(in seconds).

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

61 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Multiplicity 1

Type EcucFloatParamDef

Range [0 .. INF]

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00125 :

Name

PwmPolarity

Parent Container PwmChannel

Description Defines the starting polarity of each PWM channel.

Multiplicity 1

Type EcucEnumerationParamDef

Range PWM_HIGH The PWM channel output is high at the
beginning of the cycle and then goes low
when the duty count is reached.

PWM_LOW The PWM channel output is low at the
beginning of the cycle and then goes
high when the duty count is reached.

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_Pwm_00151 :

Name

PwmChannelEcucPartitionRef

Parent Container PwmChannel

Description Maps a PWM channel to zero or multiple ECUC partitions to limit the
access to this channe. The ECUC partitions referenced are a subset of the
ECUC partitions where the PWM driver is mapped to.
Tags:
atp.Status=draft

Multiplicity 0..*

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Pwm_00147 :

Name

PwmMcuClockReferencePoint

Parent Container PwmChannel

Description This parameter contains reference to the McuClockReferencePoint

Multiplicity 1

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

62 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Type Reference to [McuClockReferencePoint]

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

10.2.5 PwmChannelConfigSet
SWS Item ECUC_Pwm_00140 :

Container Name PwmChannelConfigSet

Description
This container contains the configuration parameters and sub containers of
the AUTOSAR Pwm module.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

PwmChannel 1..* Configuration of an individual PWM channel.

10.2.6 PwmConfigurationOfOptApiServices
SWS Item ECUC_Pwm_00126 :

Container Name PwmConfigurationOfOptApiServices

Description --

Configuration Parameters

SWS Item ECUC_Pwm_00141 :

Name

PwmDeInitApi

Parent Container PwmConfigurationOfOptApiServices

Description Adds / removes the service Pwm_DeInit() from the code.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00127 :

Name

PwmGetOutputState

Parent Container PwmConfigurationOfOptApiServices

Description --

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00128 :

Name

PwmSetDutyCycle

Parent Container PwmConfigurationOfOptApiServices

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

63 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

Description --

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00129 :

Name

PwmSetOutputToIdle

Parent Container PwmConfigurationOfOptApiServices

Description --

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00130 :

Name

PwmSetPeriodAndDuty

Parent Container PwmConfigurationOfOptApiServices

Description --

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Pwm_00135 :

Name

PwmVersionInfoApi

Parent Container PwmConfigurationOfOptApiServices

Description Switch to indicate that the Pwm_ GetVersionInfo is supported

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

64 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

Specification of PWM Driver
AUTOSAR CP Release 4.4.0

65 of 65 Document ID 037: AUTOSAR_SWS_PWMDriver

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_Pwm_00153] ⌈These requirements are not applicable to this specification.⌋

(SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW_00419, SRS_BSW_00383,

SRS_BSW_00375, SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424,
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429,
SRS_BSW_00432, SRS_BSW_00433, SRS_BSW_00417, SRS_BSW_00161, SRS_BSW_00162,
SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00164, SRS_BSW_00325, SRS_BSW_00342,
SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_00300, SRS_BSW_00413, SRS_BSW_00347,
SRS_BSW_00305, SRS_BSW_00307, SRS_BSW_00310, SRS_BSW_00373, SRS_BSW_00327,
SRS_BSW_00335, SRS_BSW_00350, SRS_BSW_00408, SRS_BSW_00410, SRS_BSW_00348,
SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00328,
SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00357, SRS_BSW_00377, SRS_BSW_00304,
SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00371,
SRS_BSW_00358, SRS_BSW_00414, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00330,
SRS_BSW_00331, SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172, SRS_BSW_00010,
SRS_BSW_00333, SRS_BSW_00003, SRS_BSW_00341, SRS_BSW_00334, SRS_SPAL_12267,
SRS_SPAL_12461, SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_12068, SRS_SPAL_12069,
SRS_SPAL_12169, SRS_SPAL_12075, SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_12077,

SRS_SPAL_12078, SRS_SPAL_12092, SRS_SPAL_12265, SRS_Pwm_12379)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.2 Time Unit Ticks
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 Support and management of HW low power states
	7.3.1 Background
	7.3.2 Requirements

	7.4 Error classification
	7.4.1. Development Errors
	7.4.2 Runtime Errors
	7.4.3 Transient Faults
	7.4.4 Production Errors

	7.5 Error Detection
	7.6 Error Notification
	7.7 Duty Cycle Resolution and scaling
	7.8 Version check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Pwm_ChannelType
	8.2.2 Pwm_PeriodType
	8.2.3 Pwm_OutputStateType
	8.2.4 Pwm_EdgeNotificationType
	8.2.5 Pwm_ChannelClassType
	8.2.6 Pwm_ConfigType
	8.2.7 Pwm_PowerStateRequestResultType
	8.2.8 Pwm_PowerStateType

	8.3 Function definitions
	8.3.1 Pwm_Init
	8.3.2 Pwm_DeInit
	8.3.3 Pwm_SetDutyCycle
	8.3.4 Pwm_SetPeriodAndDuty
	8.3.5 Pwm_SetOutputToIdle
	8.3.6 Pwm_GetOutputState
	8.3.7 Pwm_DisableNotification
	8.3.8 Pwm_EnableNotification
	8.3.9 Pwm_SetPowerState
	8.3.10 Pwm_GetCurrentPowerState
	8.3.11 Pwm_GetTargetPowerState
	8.3.12 Pwm_PreparePowerState
	8.3.13 Pwm_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Pwm_Main_PowerTransitionManager

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	8.7 API parameter checking

	9 Sequence diagrams
	9.1 Initialization
	9.2 De-initialization
	9.3 Setting the duty cycle
	9.4 Setting the period and the duty
	9.5 Setting the PWM output to idle
	9.6 Getting the PWM Output state
	9.7 Using the PWM notifications

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Pwm
	10.2.2 PwmGeneral
	10.2.3 PwmPowerStateConfig
	10.2.4 PwmChannel
	10.2.5 PwmChannelConfigSet
	10.2.6 PwmConfigurationOfOptApiServices

	10.3 Published Information

	11 Not applicable requirements

