AUTOSAR

Document Title | Specification of Bus Mirroring

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 873
Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 44.0

Document Change History

Date Release | Changed by Description
AUTOSAR
2018-10-31 | 4.4.0 Release e Initial release

Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

—

Introduction and Functional Overview 8
Acronyms and Abbreviations 9
Related Documentation 10
3.1 Input Documents & Related Standards and Norms 10
3.2 Related Specification L 10
Constraints and Assumptions 11
41 Limitations 11
4.2 Applicabilityto CarDomains 12
Dependencies to Other Modules 13
5.1 File Structure e 13
511 Code File Structure 13
51.2 Header File Structure 13
Requirements Tracing 14
Functional Specification 19
7.1 OVerview e e 19
7.2 ModuleHandling 20
7.2.1 Initialization 20
7.2.2 Timing Related Functionality 21
7.2.3 Selection of Active SourceBuses 21
7.2.4 Switching the DestinationBus 21
7.2.5 Controlling Frame Filters 22

7.3 AccesstoSourceBuses o 22
7.3.1 Accessto CAN 23
7.3.1.1 Source Bus Activation 23

7.3.1.2 Frame Acquisition 23

7.3.1.3 FrameFilters 24

7.3.1.4 Status Acquisition Lo 24

7.3.2 AccesstoLIN 25
7.3.2.1 Source Bus Activation 25

7.3.2.2 Frame Acquisition 25

7.3.2.3 FrameFilters 26

7.3.24 Status Acquisition L 26

7.3.3 AccesstoFlexRay 26
7.3.3.1 Source Bus Activation 27

7.3.3.2 Frame Acquisition 27

7.3.3.3 FrameFilters 28

7.3.3.4 Status Acquisition oL 28

7.4 Mirroring to FlexRay, IPb,andCDD 29

7.4.1 Handling of Destination Frames 29

AUTO SAR

7411 Creation 29
7.4.1.2 Queueing 31
7.4.1.3 Transmission 32
7.4.2 Mirroring Protocol L. 33
7.4.21 HeaderLayout 33
7.4.2.1.1 ProtocolVersion 34

7.421.2 SequenceNumber 34

7.4.2.1.3 HeaderTimestamp 35

74214 Datalength. 35

7422 Data ltemLayout 35
74221 Timestamp 36

7.4.2.2.2 NetworkStateAvailable 37

7.4.2.2.3 FramelDAvailable 37

7.4.2.2.4 PayloadAvailable. 37

74225 NetworkType 37

74226 NetworklD 38

7.4.2.2.7 NetworkState 38

742271 CAN. 39

742272 LIN 39

742273 FlexRay 40

74228 FramelD 42

742281 CAN. 42

742282 LIN 42

742283 FlexRay 43

74229 PayloadLength 44

742210 Payload 44

7.5 Mirroringto CAN 44
7.5.1 Handling of Source Frames 45
7.51.1 IDMapping 45
75111 CAN. 45

75112 LIN ... 45

7.5.1.2 Queuing 46
7.5.1.3 Transmission 0. 46
7.5.2 Creation of Status Frames 47
7.5.3 Status Protocol L 48
7.5.3.1 Status Header Layout 48
7.5.3.1.1 ProtocolVersion 49

7.5.3.2 Status Item Layout 49
7.5.3.2.1 NetworkStateAvailable 49

7.5.3.2.2 FramelDAvailable 50

7.5.3.2.3 NetworkType 50

75324 NetworklD 50

7.5.3.25 NetworkState 50

75326 FramelD, 50

7.6 ErrorClassification, 50

7.6.1 Development Errors 51

AUTO SAR

7.6.2 Runtime Errorso 51
7.6.3 TransientFaults 51
7.6.4 ProductionErrors oo 51
7.6.5 Extended ProductionErrors 52

7.7 ApiParameterChecking 52
8 API Specification 53
8.1 ImportedTypes e 53
8.2 Type Definitions 53
8.2.1 Mirror_ConfigTypeo 53
8.2.2 MIRROR_INVALID NETWORK 54

8.3 Function Definitions 54
8.3.1 GenericFunctions L L L oL 54
8.3.1.1 Mirror Init 54

8.3.1.2 Mirror Delnit 55

8.3.1.3 Mirror_GetVersioninfo 55

8.3.2 FiterHandling 56
8.3.2.1 Mirror_GetStaticFilterState 56

8.3.2.2 Mirror_SetStaticFilterState 56

8.3.2.3 Mirror_AddCanRangeFilter 57

8.3.24 Mirror_ AddCanMaskFilter 57

8.3.2.5 Mirror_AddLinRangeFilter 58

8.3.2.6 Mirror AddLinMaskFilter 59

8.3.2.7 Mirror_AddFlexRayFilter 59

8.3.2.8 Mirror RemoveFilter 60

8.3.3 StateHandling oL 61
8.3.3.1 Mirror_IsMirrorActive 61

8.3.3.2 Mirror Offline 61

8.3.3.3 Mirror_GetDestNetwork 62

8.3.34 Mirror_SwitchDestNetwork 62

8.3.3.5 Mirror_IsSourceNetworkStarted 63

8.3.3.6 Mirror_StartSourceNetwork 63

8.3.3.7 Mirror_StopSourceNetwork 64

8.3.4 Support Functions o oL 64
8.3.4.1 Mirror_GetNetworkType 64

8.3.4.2 Mirror_ GetNetworkld 65

8.3.4.3 Mirror GetNetworkHandle 65

8.4 Callback Notifications 66
8.4.1 Mirror_ReportCanFrame 66
8.4.2 Mirror_ReportLinFrame 67
8.4.3 Mirror_ReportFlexRayFrame 67
8.4.4 Mirror_ReportFlexRayChannelStatus 68
8.4.5 Mirror_TxConfirmation. 69
8.4.6 Mirror_TriggerTransmit 69

8.5 Scheduled Functions 70

8.5.1 Mirror MainFunction., 70

AUTO SAR

8.6 Expectedinterfaces 71
8.6.1 Mandatory Interfaces Lo 71
8.6.2 Optional Interfaces 71

8.7 Servicelnterfaces. 72
8.7.1 Implementation Data Types 72

8.7.1.1 Mirror_NetworkType 72

8.7.1.2 Mirror_FlexRayChannelType 73

8.7.1.3 Mirror_CanldType 73

8.7.2 Client-Server Interfaces 73

8.7.2.1 MirrorControl 73

8.7.3 ProvidedPorts 81

8.7.3.1 MirrorControl 81

9 Sequence Diagrams 82
10 Configuration Specification 83

10.1 Containers and Configuration Parameters 83
10.1.1 Mirror e 83
10.1.2 MirrorGeneral 83
10.1.3 MirrorConfigSet 85
10.1.4 MirrorSourceNetwork 86
10.1.5 MirrorSourceNetworkCan 86
10.1.6 MirrorSourceCanFilter 87
10.1.7 MirrorSourceCanFilterRange 88
10.1.8 MirrorSourceCanFilterMask 89
10.1.9 MirrorSourceCanSingleldMapping 91
10.1.10 MirrorSourceCanMaskBasedldMapping 91
10.1.11 MirrorSourceNetworkLin 93
10.1.12 MirrorSourceLinFilter 95
10.1.13 MirrorSourceLinFilterRange 95
10.1.14 MirrorSourceLinFilterMask 96
10.1.15 MirrorSourceLinToCanldMapping 98
10.1.16 MirrorSourceNetworkFlexRay 99
10.1.17 MirrorSourceFlexRayFilter 100
10.1.18 MirrorDestNetwork L. 103
10.1.19 MirrorDestNetworkCan 103
10.1.20 MirrorDestNetworkFlexRay 105
10.1.21 MirrorDestNetworklp oL 107
10.1.22 MirrorDestNetworkCdd 109
10.1.23 MirrorDestPdu 111

10.2 Configuration Constraints, 112
10.2.1 CAN DestinationBus 113
10.2.2 FlexRay DestinationBus 113
10.2.3 Mirroring of Serialized Frames 113

10.3 Published Information 114

AUTOSAR

Known Limitations of the Current Document

Sequence diagrams and other diagrams have not yet been modeled in the BSW UML
model, wherefore chapter 9 is still empty.

AUTOSAR

1 Introduction and Functional Overview

This specification describes the functionality, the API, and the configuration for the
AUTOSAR Basic Software module Bus Mirroring.

The purpose of the Bus Mirroring module is the replication of the traffic and the state
of internal buses to an external bus, such that a tester connected to that external bus
can monitor internal buses for debugging purposes.

The monitored traffic can be configured by the tester using diagnostic commands to
the intermediate ECUs (gateways, controllers of sub-buses). Using the diagnostics
protocol ensures that mirroring cannot be enabled without passing security checks.

The terms Bus and Network are used as synonyms within this specification. In most
AUTOSAR specifications, the term Network is preferred, and therefore it is used when
referring to API parameters, to the configuration, or to the protocol layout. On the other
hand, the module is called Bus Mirroring, and because of this the term Bus is used
when the mirroring direction is considered, like in “source bus” or “destination bus”.

AUTOSAR

2 Acronyms and Abbreviations

Currently, the Bus Mirroring module does not define any acronyms, abbreviations, or
terms that are not defined in the [1, AUTOSAR glossary].

AUTOSAR

3 Related Documentation

3.1 Input Documents & Related Standards and Norms
[1] Glossary
AUTOSAR_TR_Glossary

[2] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[3] Requirements on Bus Mirroring
AUTOSAR_SRS_BusMirroring

[4] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

3.2 Related Specification

AUTOSAR provides a General Specification on Basic Software modules [2, SWS BSW
General], which is also valid for the Bus Mirroring module.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for the Bus Mirroring module.

AUTOSAR

4 Constraints and Assumptions

4.1 Limitations

The Bus Mirroring module cannot be used to influence the traffic on one of the buses
configured as a source bus. To ensure this and to avoid loop-back of messages leading
to bus overload, the generation tool shall ensure that no bus is connected to the Bus
Mirroring module both as source and destination bus (see [SWS_Mirror_00001]).

The Bus Mirroring module is controlled by a diagnostic control application through the
dedicated (service) API listed in chapter 8. The control functionality is made acces-
sible to a diagnostic tester by special diagnostic services, which are handled by the
DCM and implemented by the diagnostic control application. The DCM provides the
necessary security to exclude inadvertent activation of the Bus Mirroring. The Bus
Mirroring module does not provide another control interface, and it does not receive
control messages on the destination bus.

In general, the Bus Mirroring module does not support source buses that have a larger
frame size or more additional information than the destination bus can carry, e.g. CAN-
FD to CAN, CAN to LIN, FlexRay to CAN, Ethernet to CAN, or Ethernet to FlexRay.
The Bus Mirroring module does not fragment mirrored frames.

The Bus Mirroring module will only mirror traffic that is actually received or transmitted
by the bus interface modules. For CAN this means that besides the transmitted frames
only those data frames that pass the hardware filter will be mirrored, and that remote
frames and error frames will not be mirrored. For LIN, slave-to-slave communication
will not be mirrored by a LIN master. And for FlexRay, only transmitted frames and
those received frames for which reception buffers are assigned (possibly as a FIFO)
will be mirrored.

Another limitation of the mirroring from a FlexRay source bus concerns the reported
time stamps and cycles. The Timestamp reported for a FlexRay frame contains the
time when the corresponding job list entry was executed. The actual transmission time
has to be calculated from the slot ID contained in the reported FrameID. The cycle
contained in the reported FrameID is accurate only for received frames and frames
transmitted in the static segment. For frames transmitted in the dynamic segment,
the reported cycle can be inaccurate because it can happen that a frame cannot be
transmitted in the expected cycle, it is then deferred to the next suitable cycle.

A re-serialization of received serialized frames shall not be done by the Bus Mirroring
module, because that would require too much resources. Instead, the serialized PDUs
shall be routed directly to the destination bus.

The Bus Mirroring module will also not support the forwarding from Ethernet to Ether-
net. This use case is already covered by the Port Mirroring feature of the AUTOSAR
Ethernet Switch Driver.

AUTOSAR

4.2 Applicability to Car Domains

The Bus Mirroring module can be used in all kinds of vehicles that feature external
CAN and/or Ethernet connectors, e.g. a Diagnostic connector.

AUTOSAR

5 Dependencies to Other Modules

The Bus Mirroring module has interfaces towards the CAN Interface (Canlf), the LIN
Interface (Linlf), the FlexRay Interface (Frlf), the PDU Router (PduR), the Default Error
Tracer (DET), and the diagnostic application, which accesses either the service port
API via the AUTOSAR Runtime Environment (RTE) or the Complex Drivers (CDD) API
of the Bus Mirroring module.

The Bus Mirroring module includes header files of Canlf, Linlf, Frlf, PAuR, DET, StbM,
and the RTE.

5.1 File Structure

This section explains the file structure of the Bus Mirroring module.

5.1.1 Code File Structure

For details, refer to the section 5.1.6 “Code file structure” in [2, SWS BSW General].

5.1.2 Header File Structure

Besides the files defined in section 5.1.7 “Header file structure” in [2, SWS BSW Gen-
eral], the Bus Mirroring module needs to include the files defined below.

[SWS_Mirror_00142] | The Bus Mirroring module shall include the header
fle canif.h if at least one MirrorSourceNetworkCan is configured. |
(SRS_Mirror_00001)

[SWS_Mirror_00143] | The Bus Mirroring module shall include the header
fle Lintf.nh if at least one MirrorSourceNetworkLin is configured. |
(SRS_Mirror_00001)

[SWS_Mirror_00144] | The Bus Mirroring module shall include the header file Fr1f.h
if at least one MirrorSourceNetworkFlexRay is configured. | (SRS_Mirror_00001)

[SWS_Mirror_00147] [The Bus Mirroring module shall include the header file stbM.h
if at least one MirrorDestNetworkFlexRay, MirrorDestNetworkIp, OFf Mir—
rorDestNetworkCdd is configured. |(SRS_Mirror_00001)

AUTOSAR

6 Requirements Tracing

The following table references the requirements specified in [3, SRS Bus Mirroring]
and [4, SRS BSW General] and links to the fulfillment of these. Please note that if col-
umn “Satisfied by” is empty for a specific requirement this means that this requirement

is not fulfilled by this document.

Requirement

Description

Satisfied by

[SRS_BSW_00350]

All AUTOSAR Basic Software
Modules shall allow the
enabling/disabling of detection
and reporting of development
errors.

[SWS_Mirror_00004]
[SWS_Mirror_00005]

[SRS_BSW_00385]

List possible error notifications

[SWS_Mirror_00007]
[SWS_Mirror_00008]

[SRS_BSW_00406]

A static status variable denoting
if a BSW module is initialized
shall be initialized with value 0
before any APls of the BSW
module is called

[SWS_Mirror_00002]

[SRS_BSW_00450]

A Main function of a
un-initialized module shall return
immediately

[SWS_Mirror_00004]

[SRS_BSW_00478]

Timing limits of main functions

[SWS_Mirror_00008]

[SRS_Mirror_00001]

The source and destination
buses shall be configurable

[SWS_Mirror_00001]
[SWS_Mirror_00142]
[SWS_Mirror_00143]
[SWS_Mirror_00144]
[SWS_Mirror_00147]
[SWS_Mirror CONSTR_00001]
[SWS_Mirror_ CONSTR_00002]
[SWS_Mirror_CONSTR_00003]
[SWS_Mirror_CONSTR_00004]

[SRS_Mirror_00005]

The
shall provide an interface for
module initialization

[SWS_Mirror_00002]
[SWS_Mirror_00009]
[SWS_Mirror_00013]
[SWS_Mirror_00016]

[SRS_Mirror_00006]

The
shall collect incoming frames

[SWS_Mirror_00021]
[SWS_Mirror_00029]
[SWS_Mirror_00038]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Mirror_00007]

The
shall filter incoming frames

[SWS_Mirror_00017]
[SWS_Mirror_00018]
[SWS_Mirror_00021]
[SWS_Mirror_00022]
[SWS_Mirror_00023]
[SWS_Mirror_00024]
[SWS_Mirror_00025]
[SWS_Mirror_00029]
[SWS_Mirror_00030]
[SWS_Mirror_00031]
[SWS_Mirror_00032]
[SWS_Mirror_00033]
[SWS_Mirror_00038]
[SWS_Mirror_00039]
[SWS_Mirror_00040]

[SRS_Mirror_00008]

The
shall serialize incoming frames
and bus states

[SWS_Mirror_00026]
[SWS_Mirror_00034]
[SWS_Mirror_00035]
[SWS_Mirror_00041]
[SWS_Mirror_00042]
[SWS_Mirror_00043]
[SWS_Mirror_00044]
[SWS_Mirror_00045]
[SWS_Mirror_00046]
[SWS_Mirror_00047]
[SWS_Mirror_00048]
[SWS_Mirror_00049]
[SWS_Mirror_00050]
[SWS_Mirror_00055]
[SWS_Mirror_00056]
[SWS_Mirror_00057]
[SWS_Mirror_00058]
[SWS_Mirror_00059]
[SWS_Mirror_00060]
[SWS_Mirror_00061]
[SWS_Mirror_00062]
[SWS_Mirror_00063]
[SWS_Mirror_00064]
[SWS_Mirror_00065]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_Mirror_00066]
[SWS_Mirror_00067]
[SWS_Mirror_00068]
[SWS_Mirror_00069]
[SWS_Mirror_00070]
[SWS_Mirror_00071]
[SWS_Mirror_00072]
[SWS_Mirror_00073]
[SWS_Mirror_00074]
[SWS_Mirror_00075]
[SWS_Mirror_00076]
[SWS_Mirror_00077]
[SWS_Mirror_00078]
[SWS_Mirror_00079]
[SWS_Mirror_00080]
[SWS_Mirror_00081]
[SWS_Mirror_00082]
[SWS_Mirror_00083]
[SWS_Mirror_00084]
[SWS_Mirror_00085]
[SWS_Mirror_00086]
[SWS_Mirror_00087]
[SWS_Mirror_00088]
[SWS_Mirror_00089]
[SWS_Mirror_00090]
[SWS_Mirror_00091]
[SWS_Mirror_00092]
[SWS_Mirror_00093]
[SWS_Mirror_00094]
[SWS_Mirror_00095]
[SWS_Mirror_00096]
[SWS_Mirror_00097]
[SWS_Mirror_00098]
[SWS_Mirror_00099]
[SWS_Mirror_00100]
[SWS_Mirror_00101]
[SWS_Mirror_00102]
[SWS_Mirror_00103]
[SWS_Mirror_00104]
[SWS_Mirror_00105]
[SWS_Mirror_00106]
[SWS_Mirror_00107]
[SWS_Mirror_00108]
[SWS_Mirror_00109]
[SWS_Mirror_00110]
[SWS_Mirror_00111]
[SWS_Mirror_00112]
[SWS_Mirror_00146]
[SWS_Mirror_00159]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Mirror_00009]

The
shall create a status frame

[SWS_Mirror_00026]
[SWS_Mirror_00034]
[SWS_Mirror_00035]
[SWS_Mirror_00041]
[SWS_Mirror_00042]
[SWS_Mirror_00123]
[SWS_Mirror_00124]
[SWS_Mirror_00125]
[SWS_Mirror_00126]
[SWS_Mirror_00127]
[SWS_Mirror_00128]
[SWS_Mirror_00129]
[SWS_Mirror_00131]
[SWS_Mirror_00132]
[SWS_Mirror_00133]
[SWS_Mirror_00134]
[SWS_Mirror_00135]
[SWS_Mirror_00136]
[SWS_Mirror_00146]
[SWS_Mirror_00149]

[SRS_Mirror_00010]

The
shall provide an interface to
control the mirroring state

[SWS_Mirror_00012]
[SWS_Mirror_00014]
[SWS_Mirror_00015]
[SWS_Mirror_00019]
[SWS_Mirror_00020]
[SWS_Mirror_00027]
[SWS_Mirror_00028]
[SWS_Mirror_00036]
[SWS_Mirror_00037]
[SWS_Mirror_00138]

[SRS_Mirror_00011]

The
shall provide an interface to
control the active filters

[SWS_Mirror_00138]

[SRS_Mirror_00012]

The
shall provide an interface for
module shutdown

[SWS_Mirror_00003]

AUTO SAR

Requirement

Description

Satisfied by

[SRS_Mirror_00013]

The
shall queue output frames

[SWS_Mirror_00011]
[SWS_Mirror_00048]
[SWS_Mirror_00049]
[SWS_Mirror_00050]
[SWS_Mirror_00051]
[SWS_Mirror_00052]
[SWS_Mirror_00053]
[SWS_Mirror_00054]
[SWS_Mirror_00113]
[SWS_Mirror_00119]
[SWS_Mirror_00120]
[SWS_Mirror_00121]
[SWS_Mirror_00122]
[SWS_Mirror_00125]
[SWS_Mirror_00126]
[SWS_Mirror_00137]
[SWS_Mirror_00150]
[SWS_Mirror_00151]
[SWS_Mirror_00152]
[SWS_Mirror_00153]
[SWS_Mirror_00154]
[SWS_Mirror_00155]
[SWS_Mirror_00156]
[SWS_Mirror_00157]
[SWS_Mirror_00158]
[SWS_Mirror_00160]
[SWS_Mirror_00161]

[SRS_Mirror_00015]

No description

[SWS_Mirror_00114]
[SWS_Mirror_00115]
[SWS_Mirror_00116]
[SWS_Mirror_00117]
[SWS_Mirror_00118]

AUT O SAR Specification of Bus Mirroring
) AUTOSAR CP Release 4.4.0

7 Functional Specification

This chapter defines the behavior of the Bus Mirroring module. The API of the module
is defined in chapter 8, while the configuration is defined in chapter 10.

7.1 Overview

The Bus Mirroring module’s task is the collection of frames from several source buses,
which are then forwarded to a destination bus. The forwarding is strictly unidirectional
to avoid message loops and to prevent intrusion scenarios.

[SWS_Mirror_00001] [The generation tool shall ensure that no ComMChannel is
referenced both from a MirrorSourceNetwork and a MirrorDestNetwork. |
(SRS _Mirror_00001)

The following figure shows how the Bus Mirroring is integrated in the AUTOSAR BSW
communication stack:

Communication
Manager
Eth State HSta!e TTCAN State CAN State LIN State Generic
Manager Mai Manager Manager Manager NM interface

NM Coordinator

Figure 7.1: AUTOSAR BSW architecture showing the Bus Mirroring module

The following mirroring scenarios are supported by the Bus Mirroring module:
e CAN and LIN = CAN
e CAN, CAN-FD, and LIN = CAN-FD
e CAN, CAN-FD, LIN, and FlexRay = FlexRay
e CAN, CAN-FD, LIN, and FlexRay = IP
e CAN, CAN-FD, LIN, and FlexRay = Proprietary (CDD)

To avoid overloading the destination bus, the messages received on each source bus
are filtered. The filters are configured separately for each bus, either by configu-

19 of 114 Document ID 873: AUTOSAR_SWS_BusMirroring
— AUTOSAR CONFIDENTIAL —

AUTOSAR

ration (see MirrorSourceCanFilter, MirrorSourceLinFilter, and Mirror—
SourceFlexRayFilter) or at runtime (see chapter 8).

LIN and CAN(-FD) frames mirrored to a CAN(-FD) bus are sent directly with identical
data. In case of CAN(-FD), the CAN ID is preserved, but can be remapped to avoid
ID conflicts on the destination bus. LIN PIDs, on the other hand, always need to be
mapped to appropriate CAN IDs. To avoid ID conflicts, mirrored frames could use
ranges of extended CAN IDs.

When frames are mirrored to a FlexRay bus, an IP bus (Ethernet), or a proprietary bus
connected as CDD, the source frames are packed into a larger frame using the protocol
specified in section 7.4.2. When routing to a FlexRay bus, only those FlexRay frames
can be routed that are small enough to fit into the destination FlexRay frame reduced
by the protocol overhead.

7.2 Module Handling

This section contains description of auxiliary functionality of the Bus Mirroring module.

7.2.1 Initialization

The Bus Mirroring module is initialized via Mirror_Init, and de-initialized via Mir-
ror_DeInit. Except for Mirror_GetVersionInfo and Mirror_Init, the API
functions of the Bus Mirroring module may only be called after the module has been
properly initialized.

[SWS_Mirror_00002] | A call to Mirror_Init initializes all internal variables
and sets the Bus Mirroring module to the initialized state. |(SRS_Mirror_00005,
SRS_BSW _00406)

[SWS_Mirror_00003] [Acallto Mirror_DeInit setsthe Bus Mirroring module back
to the uninitialized state. |(SRS_Mirror_00012)

[SWS_Mirror_00004] | If development error reporting is enabled via MirrorDe-
vErrorDetect, the Bus Mirroring module shall call Det_ReportError with
the error code MIRROR_E_UNINIT when any APl other than Mirror_Init or
Mirror_GetVersionInfo is called in uninitialized state. |(SRS_BSW_00350,
SRS_BSW _00450)

[SWS_Mirror_00005] | When Mirror_Init is called in initialized state, the Bus
Mirroring module shall not re-initialize its internal variables. It shall instead call
Det_ReportError with the error code MIRROR_E_REINIT if development error re-
porting is enabled (see MirrorDevErrorDetect). |(SRS_BSW_00350)

AUTOSAR

7.2.2 Timing Related Functionality

To be able to measure times, the Bus Mirroring module is triggered cyclically via the
Mirror MainFunction.

[SWS_Mirror_00006] | The Bus Mirroring module shall use the Mir-
ror_MainFunction for timing related purposes. | (SRS _BSW _00478)

7.2.3 Selection of Active Source Buses

[SWS_Mirror_00013] [Upon initialization, the Bus Mirroring module shall be inactive.
No source bus is enabled. | (SRS_Mirror_00005)

To start the Bus Mirroring module, one of the configured source buses (see Mirror-
SourceNetwork) has to be activated. This will start collection of frames and status
information from this source bus.

[SWS_Mirror_00014] | When a source bus is enabled using Mir-
ror_StartSourceNetwork, frame and status acquisition from that bus shall
be started, and the state of the source bus shall be reset such that it is reported
directly after it has been updated for the first time. | (SRS_Mirror_00010)

[SWS_Mirror_00015] | When a source bus is disabled using Mir-
ror_StopSourceNetwork, frame and status acquisition from that bus shall be
stopped. Already collected frames shall still be transmitted to the destination bus. |
(SRS _Mirror_00010)

To stop the mirroring, the application may call Mirror_Offline atany time.

[SWS_Mirror_00012] | When Mirror_Offline is called, all sources buses shall
be deactivated, the destination bus shall be reset to the MirrorInitialDestNet-
workRef, all statically configured filters shall be disabled, and all other filters shall
be removed. Any mirrored frames still waiting for transmission shall be discarded. |
(SRS_Mirror_00010)

Source buses are also disabled when the destination network is changed (see
[SWS_Mirror_00011]).

7.2.4 Switching the Destination Bus

[SWS_Mirror_00009] | Upon initialization, the destination bus (MirrorDest-—
Network) referenced by MirrorInitialDestNetworkRef is selected. |
(SRS_Mirror_00005)

Destination frames and status information will not be sent before the mirroring is started
(see [SWS_Mirror_00014]).

AUTOSAR

[SWS_Mirror_00011] | When the destination bus is changed using Mir-
ror_SwitchDestNetwork, all source buses shall be disabled, all statically config-
ured filters shall be disabled, and all other filters shall be removed. Mirrored frames
that are still waiting for transmission shall be discarded. |(SRS_Mirror_00013)

This ensures that the selection of information sent to a destination bus has to be chosen
specifically for that bus type. Otherwise, switching to a different destination bus could
easily overload that bus, especially if it is another internal bus.

The destination bus is reset when the mirroring is stopped (see [SWS_Mirror_00012]).

7.2.5 Controlling Frame Filters

Frame filters can be configured statically (see MirrorSourceCanFilter, Mirror-
SourceLinFilter, and MirrorSourceFlexRayFilter) or added dynamically at
run-time separately for each source bus.

[SWS_Mirror_00016] | Upon initialization, all statically configured filters of the Bus Mir-
roring module are disabled, and no dynamic filters are available. |(SRS_Mirror_00005)

Statically configured filters can be explicitly activated and deactivated using Mir-
ror_SetStaticFilterstate. Dynamic filters can be added at run-time, us-
ing one of the bus specific Mirror Add...Filter services (e.g. Mir-
ror_AddCanMaskFilter), and removed again by calling Mirror_RemoveFilter
with the filter ID returned by the Mirror_Add...Filter service. Filters are also de-
activated/removed when mirroring is stopped (see [SWS_Mirror_00012]) or when the
destination network is changed (see [SWS_Mirror_00011]).

[SWS_Mirror_00017] [While a filter is active (statically configured and activated by
Mirror_SetStaticFilterState or dynamically added using one of the bus spe-
cificMirror_Add...Filter services), all frames from the corresponding source bus
that match the filter shall be mirrored. | (SRS_Mirror_00007)

This means that no frames from a source bus are mirrored as long as no filters are
active.

[SWS_Mirror_00018] | When a statically configured filter is deactivated by Mir-
ror_SetStaticFilterState or a dynamically added filter is removed by Mir-
ror_RemoveFilter, frames that have been accepted before the deactivation/re-
moval shall still be mirrored to the destination bus. |(SRS_Mirror_00007)

7.3 Access to Source Buses

The Bus Mirroring module supports CAN, LIN, and FlexRay as source buses. To ac-
quire frames and state information of these buses, the Bus Mirroring module interacts
with the corresponding bus interface modules. Reported frames are then filtered before
they are mirrored to the destination bus.

AUTOSAR

7.3.1 Access to CAN

The Bus Mirroring module accesses the CAN bus through the CAN Interface module
(Canlf). After the Bus Mirroring module starts the mirroring of a CAN bus, the CAN
Interface module reports received and transmitted CAN frames to the Bus Mirroring
module. The CAN bus state is polled cyclically from the Mirror_MainFunction.

7.3.1.1 Source Bus Activation

After initialization, the CAN Interface module does not report any frames to the Bus
Mirroring module.

[SWS_Mirror_00019] | When Mirror_StartSourceNetwork is called to start a
CAN source bus, the Bus Mirroring module shall call CanIf_EnableBusMirroring
with MirroringActive set to TRUE to start reporting of received and transmitted
CAN frames from the corresponding CAN controller. | (SRS_Mirror_00010)

Mirror_StartSourceNetwork receives a ComMChannelId as network, while
CanIf_EnableBusMirroring expects a CanIfCtrlId as ControllerId. The
translation of the one to the other can be determined at generation time by follow-
ing the references from the ComMChannel1d to the CanIfCctrl1d through the ECU
configuration.

[SWS_Mirror_00020] | When Mirror_StopSourceNetwork is called to stop a CAN
source bus, the Bus Mirroring module shall call CanTf_EnableBusMirroring with
MirroringActive set to FALSE to stop reporting of received and transmitted CAN
frames from the corresponding CAN controller. |(SRS_Mirror_00010)

7.3.1.2 Frame Acquisition

The CAN Interface module reports both received and transmitted CAN frames with a
callto Mirror_ReportCanFrame. Received frames are reported from the reception
interrupt or task, while transmitted frames are reported from the transmission confir-
mation interrupt or task.

For each reported CAN frame, the CAN Interface module provides information about
the receiving CAN controller, about the CAN ID, the CAN ID type (extended or stan-
dard), and the CAN frame type (CAN-FD or CAN 2.0), and the length and the actual
payload of the frame.

[SWS_Mirror_00021] [When Mirror_ReportCanFrame is called to report a re-
ceived or transmitted CAN frame, the Bus Mirroring module shall match the canId
containing the actual CAN ID, the ID type, and the frame type against all active stati-
cally configured and dynamically added filters of the corresponding source bus. If the
CAN frame matches at least one filter, it is accepted by the Bus Mirroring module. |
(SRS_Mirror_00006, SRS _Mirror_00007)

AUTOSAR

When mirroring to a FlexRay, an IP, or a proprietary destination bus, the source bus
is identified by a network ID, but Mirror_ReportCanFrame reports the control-
lerId. The translation of the one to the other can be determined at generation time
by following the references from the CanIfCctr1Idtothe MirrorNetworkId through
the ECU configuration via MirrorComMNetworkHandleRef.

7.3.1.3 Frame Filters

[SWS_Mirror_00022] | A CAN mask filter statically configured as MirrorSource-
CanFilterMask matches the reported canId, if this canId masked by the Mir-
rorSourceCanFilterCanIdMask equalsthe MirrorSourceCanFilterCanId. |
(SRS _Mirror_00007)

[SWS_Mirror_00023] [A CAN mask filter dynamically added by a call to Mir-
ror_AddCanMaskFilter matches the reported can1d, if this canTd masked by the
mask equals the id. | (SRS_Mirror_00007)

[SWS_Mirror_00024] [A CAN range filter statically configured as MirrorSource-
CanFilterRange matches the reported can1d, if the value of this can1d is greater
than or equal to the MirrorSourceCanFilterLower and smaller than or equal to
the MirrorSourceCanFilterUpper. |(SRS_Mirror_00007)

[SWS_Mirror_00025] | A CAN range filter dynamically added by a call to Mir-
ror_AddCanRangeFilter matches the reported canid, if the value of this can1d
is greater than or equal to the 1owerId and smaller than or equal to the upperId. |
(SRS_Mirror_00007)

7.3.1.4 Status Acquisition

[SWS_Mirror_00026] | The Bus Mirroring module shall poll the status of each
active CAN source bus by cyclically calling CanIf_GetControllerMode and
CanIf_GetTrcvMode from the Mirror_MainFunction. [f the returned Con-
trollerModePtr IS CAN_CS_STARTED and the returned TransceiverModePtr
iS CANTRCV_TRCVMODE_NORMAL, the reported CAN source bus state shall be
set to online, otherwise to offline. If the bus is online, the Bus Mirroring
module shall call canIf_GetControllerErrorState, and if the returned Er-
rorStatePtr iS CAN_ERRORSTATE_PASSIVE or CAN_ERRORSTATE_BUSOFF, the
reported CAN source bus state shall be set to error passive or bus-off, re-
spectively. Additionally, if the bus is online, the Bus Mirroring module shall
also call canIf_GetControllerTxErrorCounter, and add the returned TxEr-
rorCounterPtr to the reported CAN source bus state. |(SRS_Mirror_00008,
SRS_Mirror_00009)

The APIs CanIf GetControllerMode and CanIf GetControllerErrorState
expect a ControllerId, and CanIf_GetTrcvMode expects a TransceiverId,
but a network ID is required to report the status to the output bus. The translation of the

AUTOSAR

ones to the other can be determined at generation time by following the references from
the CanIfCtrlIdand CanTrcvChannelId, respectively, tothe MirrorNetworkId
through the ECU configuration via MirrorComMNetworkHandleRef.

7.3.2 Access to LIN

The Bus Mirroring module accesses the LIN bus through the LIN Interface module
(Linlf). After the Bus Mirroring module starts the mirroring of a LIN bus, the LIN Inter-
face module reports received and transmitted LIN frames to the Bus Mirroring module.
The LIN bus state is partially reported together with the LIN frames, and partially polled
cyclically from the Mirror_MainFunction.

7.3.2.1 Source Bus Activation

After initialization, the LIN Interface module does not report any frames to the Bus
Mirroring module.

[SWS_Mirror_00027] | When Mirror_StartSourceNetwork is called to start a
LIN source bus, the Bus Mirroring module shall call LinIf EnableBusMirroring
with MirroringActive set to TRUE to start reporting of received and transmitted
LIN frames from that bus. | (SRS_Mirror_00010)

[SWS_Mirror_00028] | When Mirror_ StopSourceNetwork is called to stop a LIN
source bus, the Bus Mirroring module shall call LinIf_EnableBusMirroring with
MirroringActive set to FALSE to stop reporting of received and transmitted LIN
frames from that bus. |(SRS_Mirror_00010)

7.3.2.2 Frame Acquisition

The LIN Interface module reports both received and transmitted LIN frames with a call
to Mirror_ReportLinFrame. Received and transmitted frames are reported from
the LIN schedule processing after the corresponding status check has been executed.

For each reported LIN frame, the LIN Interface module provides information about the
receiving bus, about the protected ID (PID), the length, and the actual payload of the
frame, and about the reception or transmission status.

[SWS_Mirror_00029] [When Mirror_ReportLinFrame is called to report a re-
ceived or transmitted LIN frame, the Bus Mirroring module shall extract the frame ID
from the reported pid and match it against all active statically configured and dy-
namically added filters of the corresponding source bus. If the LIN frame matches
at least one filter, it is accepted by the Bus Mirroring module. |(SRS_Mirror_00006,
SRS_Mirror_00007)

AUTOSAR

The frame ID of a LIN frame is calculated from the PID by removing the two most
significant bits.

7.3.2.3 Frame Filters

[SWS_Mirror_00030] | A LIN mask filter statically configured as MirrorSourceLin-
FilterMask matches the reported frame ID, if this ID masked by the Mirror-
SourcelLinFilterLinIdMask equals the MirrorSourceLinFilterLinId. |
(SRS_Mirror_00007)

[SWS_Mirror_00031] [A LIN mask filter dynamically added by a call to Mir-
ror_AddLinMaskFilter matches the reported frame ID, if this ID masked by the
mask equals the id. | (SRS_Mirror_00007)

[SWS_Mirror_00032] | A LIN range filter statically configured as MirrorSourceLin-
FilterRange matches the reported frame ID, if the value of this ID is greater than or
equal to the MirrorSourcelLinFilterLower and smaller than or equal to the Mir-
rorSourcelLinFilterUpper. |(SRS_Mirror_00007)

[SWS_Mirror_00033] [A LIN range filter dynamically added by a call to Mir-
ror_AddLinRangeFilter matches the reported frame ID, if the value of this ID is
greater than or equal to the 1lowerId and smaller than or equal to the upperid. |
(SRS_Mirror_00007)

7.3.2.4 Status Acquisition

[SWS_Mirror_00034] | The Bus Mirroring module shall evaluate the status reported
by Mirror_ReportLinFrame. If it is LIN_TX_ HEADER_ERROR, LIN_TX_FERROR,
LIN_RX_ERROR, Or LIN_RX_NO_RESPONSE, the reported LIN source bus state shall
be set to header transmission error, transmission error, reception error, or no response.
|(SRS_Mirror_00008, SRS_Mirror_00009)

[SWS_Mirror_00035] | The Bus Mirroring module shall poll the status of
each active LIN source bus by cyclically calling LinIf GetTrcvMode from
the Mirror_MainFunction. If the returned TransceiverModePtr iS LIN-
TRCV_TRCV_MODE_NORMAL, the reported LIN source bus state shall be set to online,
otherwise to offline. | (SRS_Mirror_00008, SRS_Mirror_00009)

7.3.3 Access to FlexRay

The Bus Mirroring module accesses the FlexRay bus through the FlexRay Interface
module (Frlf). After the Bus Mirroring module starts the mirroring of a FlexRay bus,
the FlexRay Interface module reports received and transmitted FlexRay frames to

AUTOSAR

the Bus Mirroring module. The FlexRay bus state is polled cyclically from the Mir-
ror_MainFunction. A FlexRay source bus corresponds to a FlexRay cluster, which
can be connected to several controllers.

7.3.3.1 Source Bus Activation

After initialization, the FlexRay Interface module does not report any frames to the Bus
Mirroring module.

[SWS_Mirror_00036] | When Mirror_StartSourceNetwork is called
to start a FlexRay source bus, the Bus Mirroring module shall call
FrIf_EnableBusMirroring With FrIf MirroringActive set to TRUE to
start reporting of received and transmitted FlexRay frames from the corresponding
FlexRay cluster. |(SRS_Mirror_00010)

Mirror_StartSourceNetwork receives a ComMChannelId as network, while
FrIf_FEnableBusMirroring expects a FrIfClstIdx as FrIf_ClstIdx. The
translation of the one to the other can be determined at generation time by following
the references from the ComMChanne11d to the the related Fr1f£C1stIdx through the
ECU configuration.

[SWS_Mirror_00037] | When Mirror_StopSourceNetwork is called
to stop a FlexRay source bus, the Bus Mirroring module shall call
FrIf_FEnableBusMirroring Wwith FrIf_MirroringActive set to FALSE to
stop reporting of received and transmitted FlexRay frames from the corresponding
FlexRay cluster. |(SRS_Mirror_00010)

7.3.3.2 Frame Acquisition

The FlexRay Interface module reports both received and transmitted FlexRay frames
with a call to Mirror_ReportFlexRayFrame. Received and transmitted frames are
reported from the job list execution function or the transmit function of the FlexRay
Interface.

For each reported FlexRay frame, the FlexRay Interface module provides information
about the receiving FlexRay controller and about the slot ID and cycle, the length and
the actual payload of the frame, and information about transmission conflicts.

[SWS_Mirror_00038] [When Mirror_ ReportFlexRayFrame is called to report a
received or transmitted FlexRay frame (txConflict is reported as FALSE), the Bus
Mirroring module shall match the s1ot1d and cycle against all active statically con-
figured and dynamically added filters of the corresponding source bus. If the FlexRay
frame matches at least one filter, it is accepted by the Bus Mirroring module. |
(SRS_Mirror_00006, SRS _Mirror_00007)

On the destination bus, the source bus is identified by a network ID, but Mir-
ror_ReportFlexRayFrame reports the controller1d. The translation of the one

AUTOSAR

to the other can be determined at generation time by following the references from the
FrIfCtrlIdxtotheMirrorNetworkId throughthe ECU configurationviaMirror-
ComMNetworkHandleRef.

7.3.3.3 Frame Filters

[SWS_Mirror_00039] | A FlexRay filter statically configured as MirrorSource-
FlexRayFilter matches the reported slotId and cycle if the slot1d is greater
than or equal to the MirrorSourceFlexRayFilterLowerSlot and smaller than or
equal to the MirrorSourceFlexRayFilterUpperSlot and if the cycle modulo
MirrorSourceFlexRayFilterCycleRepetition is greater than or equal to the
MirrorSourceFlexRayFilterLowerBaseCycle and smaller than or equal to the
MirrorSourceFlexRayFilterUpperBaseCycle. |(SRS_Mirror_00007)

[SWS_Mirror_00040] | A FlexRay filter dynamically added by a call to Mir-
ror_AddFlexRayFilter matches the reported slot1d and cycle if the slot1d
is greater than or equal to the lowerslotId and smaller than or equal to the up-
perSlotId and if the cycle modulo cycleRepetition is greater than or equal
to the lowerBaseCycle and smaller than or equal to the upperBaseCycle. |
(SRS _Mirror_00007)

7.3.3.4 Status Acquisition

[SWS_Mirror_00041] [When Mirror_ ReportFlexRayFrame is called to report a
transmission conflict (txConflict is reported as TRUE), the Bus Mirroring module
shall match the slotId and cycle against all active statically configured and dy-
namically added filters. If it matches at least one filter, the reported FlexRay source
bus state for that frame shall be set to transmission conflict. |(SRS_Mirror_00008,
SRS _Mirror_00009)

The callback Mirror_ReportFlexRayFrame reports a controllerId and the API
FrIf GetPOCStatus expects a FrIf_CtrlIdx, buta network ID is required to re-
port the status to the output bus. The translation of the one to the other can be de-
termined at generation time by following the references from the FrIfCtr11dx to the
MirrorNetworkId through the ECU configuration via MirrorComMNetworkHan-
dleRef.

[SWS_Mirror_00146] | When Mirror_ReportFlexRayChannelStatus is called
to report the FlexRay channel state, the Bus Mirroring module shall compare the
reported states with the previously reported states. It the states differ in Bit 1
(vSS!SyntaxError), Bit 2 (vSS!ContentError), and/or Bit 4 (vSS!Bviolation), the Bus
Mirroring module shall update the reported FlexRay source bus state accordingly. |
(SRS_Mirror_00008, SRS _Mirror_00009)

The callback Mirror_ReportFlexRayChannelStatus reports a clusterId and
the APl FrIf_GetState expects a FrIf_ClstIdx, buta network ID is required to

AUTOSAR

report the status to the output bus. The translation of the one to the other can be de-
termined at generation time by following the references from the FrI1fClstIdx to the
MirrorNetworkId through the ECU configuration via MirrorComMNetworkHan-
dleRef.

[SWS_Mirror_00042] [The Bus Mirroring module shall poll the status of each
active FlexRay source bus by cyclically calling FrIf_GetState from the Mir-
ror_MainFunction. If the returned FrIf_StatePtr iS FRIF_STATE_ONLINE,
the reported FlexRay source bus state shall be set to online, otherwise to
offline. If the bus is online, the Bus Mirroring module shall also call
FrIf_GetPOCStatus for each controller connected to the FlexRay cluster. If
the returned Fr_POCStateType iS FR_POCSTATE_NORMAL_ACTIVE for all con-
trollers, the reported source bus state shall be synchronous and normal active;
if Fr_POCStateType iS FR_POCSTATE_NORMAL_PASSIVE for at least one con-
troller, the reported source bus state shall be synchronous but not normal active;
if Fr_POCStateType is in any other state for at least one controller, the reported
source bus state shall be neither synchronous nor normal active. |(SRS_Mirror_00008,
SRS_Mirror_00009)

7.4 Mirroring to FlexRay, IP, and CDD

When mirroring to a FlexRay destination bus, an IP destination bus like Ethernet, or a
proprietary network connected as CDD, the Bus Mirroring module applies a protocol to
pack several smaller frames into one large frame of the destination bus.

The first section of this chapter (section 7.4.1) defines how the Bus Mirroring module
places the source frames onto a destination frame using the mirroring protocol, and
how the queueing is applied before transmitting a destination frames.

The second section (section 7.4.2) shows the exact layout of the protocol and the
meaning and usage of the fields in the protocol.

7.4.1 Handling of Destination Frames

This section describes how to handle the mirroring protocol, which is defined in sec-
tion 7.4.2.

7.4.1.1 Creation

[SWS_Mirror_00043] [When the Bus Mirroring module is initialized or when Mir-
ror_SwitchDestNetwork is called to activate a FlexRay (MirrorDestNetwork-
FlexRay), IP (MirrorDestNetworkIp), or proprietary (MirrorDestNetworkCdd)
destination bus, the Bus Mirroring module shall activate a new destination frame buffer
and reset the sequenceNumber to 0. |(SRS_Mirror_00008)

AUTOSAR

[SWS_Mirror_00044] [When the first data item is added to an empty destina-
tion frame buffer (as described in [SWS_Mirror_00045], [SWS_Mirror_00046], or
[SWS_Mirror_00047]) the Bus Mirroring module shall first write the header to the buffer
in the layout defined in section 7.4.2.1.

The ProtocolVersion field shall be set to 1, the SequenceNumber to the incre-
mented SequenceNumber of the last destination frame, the HeaderTimestamp shall
be filled with the information returned by StbM_GetCurrentTime, and the Datal-
ength field shall be set to 0.

If the optional configuration parameter MirrorDestTransmissionDeadline iS con-
figured, the Bus Mirroring module shall start the transmission timeout timer. |
(SRS_Mirror_00008)

[SWS_Mirror_00045] [When a source frame has been received as described in sec-
tions 7.3.1.2, 7.3.2.2, or 7.3.3.2, the Bus Mirroring module shall create a new data item
and place it as at the end of the currently active destination frame buffer in the layout
defined in section 7.4.2.2, and it shall add the size of the new data item to the header
field DataLength.

The Timestamp field of the new data item shall be set to the difference be-
tween the time stamp contained in the header and the current time acquired using
StbM_GetCurrentTime expressed in multiples of 10 us, the FrameIDAvailable
and PayloadAvailable bits shall be set to 1, and the fields NetworkType, Net -
workID, FramelID, PayloadLength, and Payload shall be set according to the re-
ceived source frame.

If the reported source bus state changed since the last transmission of a source frame,
the NetworkStateAvailable bit shall be set to 1 and the NetworkState field to
the reported source bus state. Otherwise, the NetworkStateAvailable bit shall be
set to 0 and the NetworkState field shall be omitted. | (SRS_Mirror_00008)

[SWS_Mirror_00046] | When a new FlexRay transmission conflict was reported as
described in [SWS_Mirror_00041], the Bus Mirroring module shall create a new data
item and place it at the end of the currently active destination frame buffer in the layout
defined in section 7.4.2.2, and it shall add the size of the new data item to the header
field DataLength.

The Timestamp field of the data item shall be set to the difference between
the time stamp contained in the header and the current time acquired using
StbM_GetCurrentTime expressed in multiples of 10 us, the FrameIDAvailable
and NetworkStateAvailable bits shall be set to 1, and the fields NetworkType,
NetworkID, and FrameID shall be set according to the reported transmission conflict.
The NetworkState field shall be set to the reported source bus state.

The PayloadAvailable bit shall be set to 0, and the fields PayloadLength and
Payload shall be omitted. |(SRS_Mirror_00008)

AUTOSAR

Each reported FlexRay transmission conflict invalidates a preceding FlexRay frame.
The invalidated FlexRay frame could be located in another destination frame than the
corresponding transmission conflict.

[SWS_Mirror_00047] [When the reported source bus state has changed and if no
source frame is received from the same source bus within one main function cycle,
the Bus Mirroring module shall create a new data item and place it at the end of the
currently active destination frame buffer in the layout defined in section 7.4.2.2, and it
shall add the size of the new data item to the header field DataLength.

The Timestamp field of the data item shall be set to the difference between
the time stamp contained in the header and the current time acquired us-
iNng StbM_GetCurrentTime expressed in multiples of 10us. The Network-
StateAvailable bit shall be set to 1, the fields Net workType and NetworkID shall
be set according to the reported source bus, and the Networkstate field shall be set
to the reported source bus state.

Depending on the currently reported source bus state, the FrameIDAvailable shall
be set to 1 or 0. In the first case, the FrameID shall be set according to the reported
source bus, and in the latter case the Frame ID shall be omitted. Section 7.4.2.2.7 lists
the error codes and describes the necessity to provide the frame ID.

The PayloadAvailable bit shall be set to 0, and the fields PayloadLength and
Payload shall be omitted. |(SRS_Mirror_00008)

7.4.1.2 Queueing

[SWS_Mirror_00048] | When a data item does not fit in the remaining space of the cur-
rently active destination frame buffer, the Bus Mirroring module shall place this buffer
in the queue and activate a new destination frame buffer. The data item shall then be
placed in the new buffer. | (SRS_Mirror_00008, SRS_Mirror_00013)

[SWS_Mirror_00049] | When the relative time stamp of a data item exceeds 655.35 ms,
the Bus Mirroring module shall place the currently active destination frame buffer in the
gueue and activate a new destination frame buffer. The data item shall then be placed
in the new buffer. |(SRS_Mirror_00008, SRS_Mirror_00013)

[SWS_Mirror_00050] | If the optional configuration parameter MirrorDestTrans—
missionDeadline is configured and the transmission timeout expires, the Bus Mir-
roring module shall place the currently active destination frame buffer in the queue and
active a new destination frame buffer. | (SRS_Mirror_00008, SRS_Mirror_00013)

The size of the queue for the serialized destination frames is determined by the con-
figuration parameter MirrorDestQueueSize, the size of the queue elements by the
PduLength of the Pdu referenced by MirrorDestPduRef.

[SWS_Mirror_00113] [If a destination frame cannot be placed in the queue because
the queue is already full, the Bus Mirroring module shall drop that destination frame,
report the runtime error MIRROR_E_QUEUE_OVERRUN, and shall set (to 1) the Frames

AUTOSAR

Lost bit of the NetworksState of the next data item created in the currently active
destination frame buffer. | (SRS_Mirror_00013)

7.4.1.3 Transmission

[SWS_Mirror_00051] | To initiate the transmission of a queued serialized destina-
tion frame, the Bus Mirroring module shall call PAuR_MirrorTransmit with PduIn-
foPtr—->MetaDataPtr set to the NULL_PTR and PduInfoPtr—->SdulLength set to
the actually written part of the destination frame. If MirrorDestPduUsesTrigger-—
Transmit iS enabled, PduInfoPtr->SduDataPtr shall be set to the NULL_PTR,
otherwise to the used part of the queued destination frame. |(SRS_Mirror_00013)

A nNULL_PTR for PduInfoPtr->SduDataPtr ensures that the destination bus in-
terface module (FrIf, SoAd, or a cDD) fetches the destination frame using Mir-
ror_TriggerTransmit.

[SWS_Mirror_00150] [If the PduR_MirrorTransmit returns E_NOT_OK, the Bus
Mirroring module shall immediately remove the destination frame from the queue,
shall report the runtime error MIRROR_E_TRANSMIT_FATLED, and shall set (to 1) the
Frames Lost bit of the NetworkState of the next data item created in the currently
active destination frame buffer. |(SRS_Mirror_00013)

[SWS_Mirror_00053] [The Bus Mirroring module shall initiate the transmission of
gueued serialized destination frames from the Mirror_MainFunction and from the
Mirror_ TxConfirmation callback. |(SRS_Mirror_00013)

This ensures that queued destination frames are transmitted as fast as possible.

To enable a suitable throughput on a FlexRay destination bus, the MirrorDestNet-
workFlexRay may contain a set of MirrorDestPdus.

[SWS_Mirror_00160] [If a set of Mi rrorDestPdus is configured foraMirrorDest-
NetworkFlexRay, the Bus Mirroring module shall use the PDUs of this set in arbitrary
order. | (SRS_Mirror_00013)

The SsequenceNumber together with the Timestamp of the data items will ensure that
a tester can sort them correctly.

[SWS_Mirror_00052] [In case the active destination channel is MirrorDestNet—
workIp Of MirrorDestNetworkCdd, the Bus Mirroring module shall not transmit
the next serialized destination frame before the previous destination frame has been
confirmed by a callto Mirror_TxConfirmation. |(SRS_Mirror_00013)

[SWS_Mirror_00161] [In case the active destination channel is MirrorDestNet—
workFlexRay, the Bus Mirroring module shall not transmit the next serialized des-
tination frame using the same MirrorDestPdu before the previous transmission of
that MirrorDestPdu has been confirmed by a call to Mirror TxConfirmation. |
(SRS_Mirror_00013)

AUTOSAR

[SWS_Mirror_00054] [When Mirror_TriggerTransmit is called for a serialized
destination frame, the Mirror module shall copy the used part of the queued destina-
tion frame to PduInfoPtr->SduDataPtr and update PduInfoPtr->SdulLength
accordingly. |(SRS_Mirror_00013)

[SWS_Mirror_00151] | If the PduInfoPtr->Sdulength provided by Mir-
ror_TriggerTransmit is too small for the currently transmitted serialized desti-
nation frame, the Bus Mirroring module shall remove the destination frame from the
queue, shall report the runtime error MIRROR_E_TRANSMIT_FAILED, shall set (to 1)
the Frames Lost bit of the NetworkState of the next data item created in the cur-
rently active serialized destination frame buffer, and shall return E_NOT_OK to stop this
transmission. |(SRS_Mirror_00013)

[SWS_Mirror_00152] | When Mirror_TxConfirmation is called to report the suc-
cessful or failed transmission of a serialized destination frame, the Bus Mirroring mod-
ule shall remove the destination frame from the queue. |(SRS_Mirror_00013)

[SWS_Mirror_00153] | If the Mirror_TxConfirmation reports the failed transmis-
sion of a serialized destination frame (result is E_NOT_OK), the Bus Mirroring module
shall report the runtime error MIRROR_E_TRANSMIT_FAILED, and shall set (to 1) the
Frames Lost bit of the NetworksState of the next data item created in the currently
active destination frame buffer. |(SRS_Mirror_00013)

7.4.2 Mirroring Protocol

The protocol that is applied by the Bus Mirroring module for IP, FlexRay, and proprietary
destination buses is shown in Figure 7.2, in this example for an Ethernet destination

bus.

Figure 7.2: Bus Mirroring Serialization Protocol

The protocol consists of a header (see section 7.4.2.1) followed by several data items
(see section 7.4.2.2).

In the tables and descriptions of this section, the byte numbers increase in the same
sequence as the bytes are transmitted on the destination bus, starting from 0. The bit
numbers decrease, the most significant bit of a byte being bit 7 and the least significant
bit 0.

7.4.2.1 Header Layout

Every destination frame starts with a header, which is shown in Figure 7.3.

AUTOSAR

Data Data

N\

1 Byte 1 Byte 10 Byte 2 Byte
ProtocolVersion SequenceNumber HeaderTimestamp Datalength

\)
|

Header size: 14 Bytes
Figure 7.3: Bus Mirroring Protocol Header

[SWS_Mirror_00055] | The header of a Bus Mirroring destination frame shall contain
the following fields in this order:

1. ProtocolVersion (see section 7.4.2.1.1)

2. SequenceNumber (see section 7.4.2.1.2)

3. HeaderTimestamp (see section 7.4.2.1.3)

4. Datalength (see section 7.4.2.1.4)
|(SRS_Mirror_00008)

7.4.2.1.1 ProtocolVersion

[SWS_Mirror_00056] | The ProtocolVersion shallindicate the layout of the header
and the data items. The layout currently defined in this section is identified by Proto-
colversion 1. Therange [2 .. 127] is reserved for future extensions of the AUTOSAR
defined protocol, the range [128 .. 255] is available for customer specific protocols. |
(SRS_Mirror_00008)

The protocol version allows the tester tool to interpret the protocol correctly, and to
enable different layouts of the protocol.

[SWS_Mirror_00057] [The width of the ProtocolVersion field shall be 8 bits. |
(SRS_Mirror_00008)

7.4.2.1.2 SequenceNumber

[SWS_Mirror_00058] [The sequenceNumber shall increase with each transmission
of a destination frame. After initialization or after switching the destination bus with
Mirror_SwitchDestNetwork, it shall start from 0. | (SRS_Mirror_00008)

The sequence number allows the tester tool to identify lost destination frames.

AUTOSAR

[SWS_Mirror_00059] | The width of the SequenceNumber field shall be 8 bits. |
(SRS_Mirror_00008)

This means that the sequenceNumber will wrap around to 0 after it reached 255. A
tester has to cope with this behavior and still sort the frames correctly.

7.4.2.1.3 HeaderTimestamp

[SWS_Mirror_00060] [The HeaderTimestamp shall reflect the time when collection
of data items into the destination frame started. This time shall be given as the absolute
number of seconds and nanoseconds since January 1%t of 1970. |(SRS_Mirror_00008)

[SWS_Mirror_00061] [The width of the HeaderTimestamp field shall be 10 bytes,
the layout is shown in Table 7.1. The elements of the the HeaderTimestamp field
shall be encoded in network byte order (MSB first). | (SRS_Mirror_00008)

HeaderTimestamp

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5 6 7 8 9
Seconds (48 bits, MSB first) Nanoseconds (32 bits, MSB first)

Table 7.1: Layout of HeaderTimestamp

7.4.2.1.4 DatalLength

[SWS_Mirror_00062] [The DataLength shall give the number of bytes following
the header. It is the sum of the length of all data items in the destination frame. |
(SRS_Mirror_00008)

[SWS_Mirror_00063] | The width of the DatalLength field shall be 16 bits. It shall be
encoded in network byte order (MSB first). |(SRS_Mirror_00008)

7.4.2.2 Data Item Layout

Every source frame is placed in a data item, which is shown in Figure 7.4.

AUTOSAR

o

S

2 Byte 5 Bits 1 Byte 1 Byte 1-4 Byte 1 Byte var
Timestamp Netw.Type Netw.ID Netw.State FramelID Pay.Length Payload

\ J
|

Data header size: 4-10 Bytes
Figure 7.4: Bus Mirroring Protocol Data Item

Netw.State Header
FramelD
Payload

[SWS_Mirror_00064] | Data items of a Bus Mirroring destination frame shall contain
the following fields in this order:

1. Timestamp (See section 7.4.2.2.1)
NetworkStateAvailable (See section 7.4.2.2.2)
FrameIDAvailable (see section 7.4.2.2.3)
PayloadAvailable (see section 7.4.2.2.4)
NetworkType (see section 7.4.2.2.5)

NetworkID (see section 7.4.2.2.6)

NetworkState (optional, see section 7.4.2.2.7)

© N o o b~ w D

FrameID (optional, see section 7.4.2.2.8)
9. PpayloadLength (optional, see section 7.4.2.2.9)
10. Payload (optional, see section 7.4.2.2.10)
| (SRS_Mirror_00008)

7.4.2.2.1 Timestamp

[SWS_Mirror_00065] | The Timestamp shall reflect the temporal offset of the source
frame reception from the HeaderTimestamp, i.e. the time that passed since collection
of data items into the destination frame started. It shall be given in multiples of 10 us. |
(SRS_Mirror_00008)

[SWS_Mirror_00066] | The width of the Timestamp field shall be 16 bits. It shall be
encoded in network byte order (MSB first). |(SRS_Mirror_00008)

AUTOSAR

7.4.2.2.2 NetworkStateAvailable

[SWS_Mirror_00067] | The NetworkStateAvailable shall indicate whether the
field NetworkState is present in the data item. If NetworkStateAvailable is 1,
that field shall be present. If it is 0, that field shall be omitted. |(SRS_Mirror_00008)

[SWS_Mirror_00068] | The width of the NetworkStateAvailable field shall be 1
bit. |(SRS_Mirror_00008)

7.4.2.2.3 FramelDAvailable

[SWS_Mirror_00069] | The FrameIDAvailable shall indicate whether the field
FrameID is present in the data item. If FrameIDAvailable is 1, that field shall
be present. If it is 0, that field shall be omitted. | (SRS _Mirror_00008)

[SWS_Mirror_00070] [The width of the FrameIDAvailable field shall be 1 bit. |
(SRS_Mirror_00008)

7.4.2.2.4 PayloadAvailable

[SWS_Mirror_00071] [The PayloadAvailable shall indicate whether the fields
PayloadLength and Payload are present in the data item. If PayloadAvail-
able is 1, these fields shall be present. If it is 0, these fields shall be omitted. |
(SRS_Mirror_00008)

[SWS_Mirror_00072] [The width of the Payloadavailable field shall be 1 bit. |
(SRS_Mirror_00008)

7.4.2.2.5 NetworkType

[SWS_Mirror_00073] [The NetworkType shall indicate the type of the source bus. |
(SRS_Mirror_00008)

[SWS_Mirror_00074] [The width of the NetworkType field shall be 5 bits, the possi-
ble values are shown in Table 7.2. The range [5 .. 15] is reserved for future extensions
of the AUTOSAR defined protocol, the range [16 .. 31] is available for customer specific
bus types. | (SRS_Mirror_00008)

AUTOSAR

Invalid 0
Network Type Numerical
CAN 1
LIN 2
FlexRay 3
Ethernet 4

Table 7.2: Values of NetworkType

7.4.2.2.6 NetworkiD

[SWS_Mirror_00075] [The NetworkID shall identify a bus of a certain Network—
Type uniquely, i.e. the same NetworkID can appear on different NetworkTypes,
but not on the same NetworkType. |(SRS_Mirror_00008)

[SWS_Mirror_00076] | The width of the NetworkID field shall be 8 bits. |
(SRS_Mirror_00008)

7.4.2.2.7 NetworkState

[SWS_Mirror_00077] | The NetworksState shall provide information about the
source bus state. It shall only be present when the source bus state has changed
since the last time it was reported, the presence shall be indicated by Network-
StateAvailable. |(SRS_Mirror_00008)

[SWS_Mirror_00078] | The width of the Networkstate field shall be 8 bits, the layout
is bus specific and is defined in the sections 7.4.2.2.7.1,7.4.2.2.7.2, and 7.4.2.2.7.3. |
(SRS _Mirror _00008)

[SWS_Mirror_00079] | Bit 7 (the most significant bit) of the Networkstate shall al-
ways contain the Frames Lost state. This is a sporadic error that is not related to
the source frame that is reported in the same data item, but shall not be reported
in a separate data item. The Frames Lost state shall be set once to 1 after one or
more source frames that passed the filters were lost because the queue of the desti-
nation bus was full or the transmission failed. Afterwards it shall be set to 0 again. |
(SRS_Mirror_00008)

[SWS_Mirror_00080] | Bit 6 of the NetworkState shall always contain the Bus On-
line state. This is a continuous state that is not related to the source frame that is
reported in the same data item, and may also be reported in a data item where the
FrameIDAvailable and PayloadAvailable fields are set to 0. The Bus On-
line state shall be set to 1 when the source bus is online, i.e. when both the con-
troller and the transceiver are able to communicate. Otherwise it shall be set to 0. |
(SRS_Mirror_00008)

AUTOSAR

7.4.2.2.71 CAN
The layout of the Networkstate for a CAN bus is shown in Table 7.3.
NetworkState
Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit2 | Bit1 | Bit0
Frames Bus Error- Bus-Off Tx error counter, divided by 8
Lost Online Passive

Table 7.3: Layout of CAN NetworkState

[SWS_Mirror_00081] | Bit 5 of the NetworkState for a CAN bus shall contain the
Error-Passive state. This is a continuous state that is not related to the source frame
that is reported in the same data item, and may also be reported in a data item where
the FrameIDAvailable and PayloadAvailable fields are set to 0.

The Error-Passive state shall be set to 1 when the CAN controller is in the Error-Passive
state, and to 0 when it is in the Error-Active or Bus-Off state. | (SRS_Mirror_00008)

[SWS_Mirror_00082] [Bit 4 of the NetworkState for a CAN bus shall contain the
Bus-Off state. This is a continuous state that is not related to the source frame that
is reported in the same data item, and may also be reported in a data item where the
FrameIDAvailable and PayloadAvailable fields are set to 0.

The Bus-Off state shall be set to 1 when the CAN controller is in the Bus-Off state, and
to 0 when it is in the Error-Active or Error-Passive state. |(SRS_Mirror_00008)

[SWS_Mirror_00083] | Bits 3 — 0 of the Networkstate for a CAN bus shall contain
the Tx error counter of the can controller divided by 8. This is a continuous state that
is not related to the source frame that is reported in the same data item, and may also
be reported in a data item where the FrameIDAvailable and PayloadAvailable
fields are setto 0. |(SRS_Mirror_00008)

7.4.2.2.7.2 LIN

The layout of the NetworksState for a LIN bus is shown in Table 7.4.

NetworkState
Bit 7 Bit 6 Bit 5 | Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Frames Bus reserved Header Tx Error Rx Error Rx No
Lost Online Tx Error Response

Table 7.4: Layout of LIN NetworkState

[SWS_Mirror_00084] [Bits 5 and 4 of the NetworksState for a LIN bus are currently
reserved. They shall always be set to 0. |(SRS_Mirror_00008)

AUTOSAR

[SWS_Mirror_00085] | Bit 3 of the NetworksState for a LIN bus shall contain the
Header Tx Error state. This is an error that is related to the source frame that is
reported in the same data item.

The Header Tx Error state shall be set to 1 when the LIN controller detected an
error during transmission of a LIN header. Otherwise it shall be set to 0. |
(SRS_Mirror_00008)

[SWS_Mirror_00086] | Bit 2 of the NetworkState for a LIN bus shall contain the Tx
Error state. This is an error that is related to the source frame that is reported in the
same data item.

The Tx Error state shall be set to 1 when the LIN controller detected an error during
transmission of a LIN frame. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

[SWS_Mirror_00087] [Bit 1 of the Networkstate for a LIN bus shall contain the Rx
Error state. This is an error that is related to the source frame that is reported in the
same data item.

The Rx Error state shall be set to 1 when the LIN controller detected an error during
reception of a LIN frame. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

[SWS_Mirror_00088] | Bit O of the NetworksState for a LIN bus shall contain the
Header Rx No Response state. This is an error that is related to the source frame that
is reported in the same data item.

The Rx No Response state shall be set to 1 when the LIN controller did not receive the
expected LIN frame after transmission of a LIN header. Otherwise it shall be set to 0. |
(SRS_Mirror_00008)

7.4.2.2.7.3 FlexRay

The layout of the NetworksState for a FlexRay bus is shown in Table 7.5.

NetworkState
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Frames Bus Bus Syn- [Normal Syntax Content | Boundary Tx
Lost Online | chronous | Active Error Error Violation | Conflict

Table 7.5: Layout of FlexRay NetworkState

[SWS_Mirror_00089] | Bit 5 of the Networkstate for a FlexRay bus shall contain
the Bus Synchronous state. This is a continuous state that is not related to the source
frame that is reported in the same data item, and may also be reported in a data item
where the FrameIDAvailable and PayloadAvailable fields are set to 0.

The Bus Synchronous state shall be set to 1 when all FlexRay controllers connected
to that bus are synchronous to the network time. Otherwise it shall be set to 0. |
(SRS_Mirror_00008)

AUTOSAR

[SWS_Mirror_00090] | Bit 4 of the NetworkState for a FlexRay bus shall contain the
Normal Active state. This is a continuous state that is not related to the source frame
that is reported in the same data item, and may also be reported in a data item where
the FrameIDAvailable and PayloadAvailable fields are set to 0.

The Normal Active state shall be set to 1 when all FlexRay controllers connected to
that bus are synchronous and in the normal active state. Otherwise it shall be set to 0.
|(SRS_Mirror_00008)

[SWS_Mirror_00091] [Bit 3 of the Networkstate for a FlexRay bus shall contain
the Syntax Error state. This is an aggregated error flag of the FlexRay channels that is
related to the channel assignment of the Frame 1D, but not to a source frame and its
FrameID thatis reported in the same data item. It may also be reported in a data item
where the PayloadAvailable field is set to 0 and the FrameIDAvailable is setto
1 with the slot valid flag of the FrameID set to 0.

The Syntax Error state shall be set to 1 once after a FlexRay controller detected a
syntax error. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

[SWS_Mirror_00092] | Bit 2 of the Networkstate for a FlexRay bus shall contain
the Content Error state. This is an aggregated error flag of the FlexRay channels that
is related to the channel assignment of the FrameID, but not to a source frame and its
FrameID thatis reported in the same data item. It may also be reported in a data item
where the PayloadAvailable field is set to 0 and the FrameIDAvailable is setto
1 with the slot valid flag of the FrameID set to 0.

The Content Error state shall be set to 1 once after a FlexRay controller detected a
content error. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

[SWS_Mirror_00093] | Bit 1 of the NetworkState for a FlexRay bus shall contain the
Boundary Violation state. This is an aggregated error flag of the FlexRay channels that
is related to the channel assignment of the FrameID, but not to a source frame and its
FrameID thatis reported in the same data item. It may also be reported in a data item
where the PayloadAvailable field is setto 0 and the FrameIDAvailable is setto
1 with the slot valid flag of the FrameID set to 0.

The Boundary Violation state shall be set to 1 once after a FlexRay controller detected
a boundary violation. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

[SWS_Mirror_00094] | Bit 0 of the Networkstate for a FlexRay bus shall contain
the Tx Conflict state. This is an error that is related to the previous source frame that
was reported with the same FrameID and is always reported in a data item where the
FrameIDAvailable field is setto 1 and the PayloadAvailable field is set to 0.

The Tx Conflict state shall be set to 1 when a FlexRay controller detected a transmis-
sion conflict. Otherwise it shall be set to 0. |(SRS_Mirror_00008)

AUTOSAR

7.4.2.2.8 FramelD

[SWS_Mirror_00095] | The FrameID shall provide the identification of the source
frame. This identification shall be unique for one source bus identified by Net-
workType and NetworkID. The FrameID may be omitted when reporting a source
bus state change, the presence shall be indicated by FrameIDAvailable. |
(SRS_Mirror_00008)

[SWS_Mirror_00096] | The width and layout of the Frame ID field is bus specific and is
defined in the sections 7.4.2.2.8.1, 7.4.2.2.8.2, and 7.4.2.2.8.3. |(SRS_Mirror_00008)

7.4.2.2.8.1 CAN

The layout of the Frame1D for a CAN bus is shown in Table 7.6.

FramelD
Byte 0 Byte 1 Byte 2 Byte 3
Bit 7 Bit 6 Bit 5 Bits 4..0
Ext.ID/ FD/ res. CAN ID CAN ID CAN ID CAN ID
Std.ID 2.0 (Bits 28..24) | (Bits 23..16) | (Bits 15..8) (Bits 7..0)

Table 7.6: Layout of CAN FrameID

This layout of the FrameID corresponds to the Can_IdType provided by Mir-
ror_ReportCanFrame.

[SWS_Mirror_00097] [The width of the FrameID field for a CAN bus shall be 4 bytes.
|(SRS_Mirror_00008)

[SWS_Mirror_00098] | Bit 7 of Byte 0 of the Frame 1D for a CAN bus shall be set to 1
for an Extended CAN ID and to 0 for a Standard CAN ID. | (SRS_Mirror_00008)

[SWS_Mirror_00099] | Bit 6 of Byte 0 of the FrameID for a CAN bus shall be set to 1
for a CAN-FD frame and to 0 for a CAN 2.0 frame. | (SRS_Mirror_00008)

[SWS_Mirror_00100] | Bit 5 of Byte 0 of the Frame1D for a CAN bus is currently
reserved. It shall always be set 0. |(SRS_Mirror_00008)

[SWS_Mirror_00101] [Bits 4 — 0 of Byte 0 and Bytes 1 — 3 of the Frame 1D for a CAN
bus shall contain the CAN ID of the reported CAN frame in network byte order (MSB
first). |(SRS_Mirror_00008)

7.4.2.2.8.2 LIN

The layout of the Frame 1D for a LIN bus is shown in Table 7.7.

AUTOSAR

FramelD
Byte 0
LIN PID

Table 7.7: Layout of LIN FrameID

[SWS_Mirror_00102] [The width of the FrameID field for a LIN bus shall be 1 byte. |
(SRS_Mirror_00008)

[SWS_Mirror_00103] [Byte 0 of the FrameID for a LIN bus shall contain the LIN PID
of the reported LIN frame. | (SRS_Mirror_00008)

7.4.2.2.8.3 FlexRay

The layout of the FrameID for a FlexRay bus is shown in Table 7.8.

FramelD
Byte 0 Byte 1 Byte 2
Bit 7 Bit 6 Bit5..4 Bit 3 Bits 2..0
Channel | Channel reserved Slot Slot ID Slot ID Cycle
B A Valid (Bits 10..8) | (Bits 7..0)

Table 7.8: Layout of FlexRay FrameID

[SWS_Mirror_00104] [The width of the FrameID field for a FlexRay bus shall be 3
bytes. |(SRS_Mirror_00008)

[SWS_Mirror_00105] | Bits 7 — 6 of Byte 0 of the Frame 1D for a FlexRay bus shall
contain the channel assignment of the reported FlexRay frame. Bit 7 shall be set to
1 if the reported FlexRay frame is available on channel B of the FlexRay controller,
otherwise it shall be set to 0. Bit 6 shall be set to 1 if the reported FlexRay frame
is available on channel A of the FlexRay controller, otherwise it shall be set to 0. A
reported FlexRay frame is either assigned exclusively to channel A or B or to both
channels. |(SRS_Mirror_00008)

This layout of the channel assignment corresponds to the Fr_Channel Type reported
by Mirror_ ReportFlexRayFrame.

[SWS_Mirror_00106] | Bits 5 — 4 of Byte 0 of the FrameID for a FlexRay bus are
currently reserved. They shall always be set 0. | (SRS_Mirror_00008)

[SWS_Mirror_00159] [Bit 3 of Byte 0 of the Frame ID for a FlexRay bus shall contain
a flag indicating whether the reported slot ID and cycle are valid (flag is 1) or unused
(flag is 0). It shall only be set to 0 when an aggregated error of the FlexRay channels
is reported independently of a source frame or transmission conflict. Otherwise it shall
always be setto 1. |(SRS_Mirror_00008)

AUTOSAR

[SWS_Mirror_00107] [Bits 2 — 0 of Byte 0 and Byte 1 of the FrameID for a FlexRay
bus shall contain the slot ID of the reported FlexRay frame in network byte order (MSB
first). | (SRS_Mirror_00008)

[SWS_Mirror_00108] | Byte 2 of the FrameID for a FlexRay bus shall contain the
cycle in which the reported FlexRay frame was sent or received. |(SRS_Mirror_00008)

Please note: For received frames and for frames sent in the static segment, the cycle
is always reliable. For frames sent in the dynamic segment, the actual cycle cannot be
known in advance, because the frame might not be transmitted in the planned cycle.

7.4.2.2.9 PayloadLength

[SWS_Mirror_00109] | The PayloadLength shall provide the length of the payload
of the source frame. It may be omitted when reporting a source bus state change, the
presence shall be indicated by PayloadAvailable. |(SRS_Mirror_00008)

[SWS_Mirror_00110] | The width of the PayloadLength field shall be 8 bits. |
(SRS_Mirror_00008)

7.4.2.2.10 Payload

[SWS_Mirror_00111] [The Payload shall provide the actual payload of the source
frame. It may be omitted when reporting a source bus state change, the presence shall
be indicated by PayloadAvailable. |(SRS_Mirror_00008)

[SWS_Mirror_00112] | The width of the Payload field shall correspond to the re-
ported source frame. The maximum values are 8 bytes for LIN and CAN 2.0, 64 bytes
for CAN-FD, and 254 for FlexRay. |(SRS_Mirror_00008)

7.5 Mirroring to CAN

When mirroring to a CAN destination bus, the Bus Mirroring module sends received
CAN and LIN frames directly to the destination bus, though possibly with a changed
CAN ID to avoid conflicts with regular messages on the destination bus.

This chapter defines how the Bus Mirroring module translates CAN IDs and queues the
source frames and how it creates and queues status frames before transmitting them
on the destination bus.

AUTOSAR

7.5.1 Handling of Source Frames

This section describes how to process and transmit the source frames that were re-
ceived from the CAN and LIN bus as described in sections 7.3.1.2 and 7.3.2.2, respec-
tively.

7.5.1.1 ID Mapping

Usually, CAN source frames can be transmitted unchanged on the destination bus,
while the PIDs of LIN source frames have to be mapped to a range of CAN ID.

But sometimes, it is hard to find a consecutive sequence of unused CAN IDs for map-
ping of the LIN PIDs, or the same CAN ID is also used by frames that are usually
transmitted on the destination CAN bus.

In these cases, certain CAN IDs and LIN PIDs have to be remapped to special CAN
IDs.

7.5.1.1.1 CAN

[SWS_Mirror_00114] [If the canId of a CAN source frame matches the Mirror-
SourceCanIdMappingSourceCanIdofaMirrorSourceCanIdMapping, the des-
tination frame shall be transmitted with the MirrorSourceCanIdMappingDest-—
CanId of that mapping. |(SRS_Mirror_00015)

[SWS_Mirror_00115] | If the canId of a CAN source frame masked by the
MirrorSourceCanIdRangeMappingSourceCanIdMask oOf a MirrorSource-
CanIdRangeMapping matches the MirrorSourceCanIdRangeMappingSource—
CanIdCode of that mapping, the CAN destination frame shall be transmitted with
the masked canId added to the MirrorSourceCanldRangeMappingDestBaseld. |
(SRS_Mirror_00015)

[SWS_Mirror_00116] | If the can1d of a CAN source frame matches neither a Mir-
rorSourceCanIdMapping NOr a MirrorSourceCanIdRangeMapping, the CAN
destination frame shall be transmitted with the original canId, i.e. identical CAN
ID, ID type (Extended or Standard), and frame type (CAN-FD or CAN 2.0). |
(SRS_Mirror_00015)

7.5.1.1.2 LIN

[SWS_Mirror_00117] | If the frame ID extracted from the pid of a LIN source frame
matches the MirrorSourceLinToCanIdMappingLinId of aMirrorSourceLin-
ToCanIdMapping, the CAN destination frame shall be transmitted with the Mirror-
SourceLinToCanIdMappingCanId of that mapping. | (SRS_Mirror_00015)

AUTOSAR

[SWS_Mirror_00118] | If the frame ID extracted from the pid of a LIN source frame
matches no MirrorSourceLinToCanIdMapping, the CAN destination frame shall
be transmitted with the LIN frame ID added to the MirrorSourceLinToCanRange—
BaseId. |(SRS_Mirror_00015)

7.5.1.2 Queuing

[SWS_Mirror_00119] [The Bus Mirroring module shall place all CAN destination
frames in the queue. |(SRS_Mirror_00013)

The size of the queue for the CAN destination frames is determined by the config-
uration parameter MirrorDestQueueSize, the size of the queue elements by the
PduLength of the Pdu referenced by MirrorDestPduRef.

[SWS_Mirror_00120] | If a destination frame cannot be placed in the queue because
the queue is already full, the Bus Mirroring module shall drop that destination frame,
report the runtime error MIRROR_E_ QUEUE_OVERRUN, and set (to 1) the Frames Lost
bit of the NetworkState in the next status frame. |(SRS_Mirror_00013)

The handling of status frames is defined in section 7.5.2.

7.5.1.3 Transmission

To be able to transmit arbitrary CAN IDs with arbitrary type (Extended / Stan-
dard) in CAN frames of arbitrary type (CAN 2.0 / CAN-FD), the Bus Mir-
roring module uses a MirrorDestPdu with MetaData and open CanldMask
(see [SWS_Mirror_ CONSTR_00001]).

[SWS_Mirror_00121] | To initiate the transmission of a queued CAN destination
frame, the Bus Mirroring module shall call PduR_MirrorTransmit with PduIn-
foPtr->MetaDataPtr set to MetaData containing the CAN ID of the destination
frame and PduInfoPtr->SdulLength set to the length of the destination frame. If
MirrorDestPduUsesTriggerTransmit iS enabled, PduInfoPtr->SduDataPtr
shall be set to the nuLL_PTR, otherwise to the payload of the source frame. |
(SRS _Mirror_00013)

A nNULL_PTR for PduInfoPtr->SduDataPtr ensures that the destination
bus interface module (canif) fetches the destination frame using Mir-
ror_TriggerTransmit.

[SWS_Mirror_00154] [If the PduR_MirrorTransmit returns E_NOT_OK, the Bus
Mirroring module shall immediately remove the destination frame from the queue,
shall report the runtime error MTRROR_E_TRANSMIT_FATILED, and shall set (to 1) the
Frames Lost bit of the Networkstate of the next status frame. |(SRS_Mirror_00013)

AUTOSAR

[SWS_Mirror_00155] [The Bus Mirroring module shall initiate the transmission of
gueued CAN destination frames from the Mirror_MainFunction and from the Mir-
ror_TxConfirmation callback. | (SRS_Mirror_00013)

This ensures that queued destination frames are transmitted as fast as possible.

[SWS_Mirror_00156] | The Bus Mirroring module shall not transmit the next CAN
destination frame before the previous destination frame has been confirmed by a call
to Mirror_TxConfirmation. |(SRS_Mirror_00013)

[SWS_Mirror_00122] | When Mirror_TriggerTransmit is called for a CAN des-
tination frame, the Mirror module shall copy the payload of the source frame to
PduInfoPtr->SduDataPtr and update PduInfoPtr->SduLength accordingly. |
(SRS _Mirror_00013)

On the CAN bus, it is not possible that Mirror_TriggerTransmit provides a
PduInfoPtr->SduLength that is too small for the destination frame, because the
destination frame has by configuration a size of 8 bytes for CAN 2.0 or 64 bytes for
CAN-FD, and the canIf will always provide the hardware buffer size, which is also 8
bytes for CAN 2.0 and 64 bytes for CAN-FD.

[SWS_Mirror_00157] | When Mirror_TxConfirmation is called to report the suc-
cessful or failed transmission of a CAN destination frame, the Bus Mirroring module
shall remove the destination frame from the queue. |(SRS_Mirror_00013)

[SWS_Mirror_00158] [If the Mirror_TxConfirmation reports the failed transmis-
sion of a CAN destination frame (result is E_NOT_OK), the Bus Mirroring module
shall report the runtime error MTRROR_E_TRANSMIT_FATILED, and shall set (to 1) the
Frames Lost bit of the Networkstate of the next status frame. |(SRS_Mirror_00013)

7.5.2 Creation of Status Frames

[SWS_Mirror_00123] [If MirrorStatusCanId is configured and when one or more
source bus states have changed, the Bus Mirroring module shall allocate a new status
frame buffer and write the header in the layout defined in section 7.5.3.1.

The ProtocolVersion field shall be setto 1. |(SRS_Mirror_00009)

[SWS_Mirror_00124] | If MirrorStatusCanId is configured, the Bus Mirroring mod-
ule shall create a new status item for each source bus where the reported state has
changed and place it at the end of the currently active status frame buffer in the layout
defined in section 7.5.3.2.

The fields NetworkType and NetworkID shall be set according to the reported
source bus, the NetworksState field shall be set to the reported source bus state.

Depending on the currently reported source bus state, the FrameIDAvailable shall
be set to 1 or 0. In the first case, the FrameID shall be set according to the

AUTOSAR

reported source bus, and in the latter case the FrameID shall be omitted. Sec-
tion 7.4.2.2.7 lists the error codes and describes the necessity to provide the frame
ID. | (SRS_Mirror_00009)

[SWS_Mirror_00125] [When a status item does not fit in the remaining space of the
currently active status frame buffer, the Bus Mirroring module shall place this buffer in
the queue with the CAN ID configured in MirrorStatusCanId and activate a new
status frame buffer. | (SRS_Mirror_00009, SRS_Mirror_00013)

[SWS_Mirror_00126] | When status items have been written for all source buses
where the reported state has changed, the Bus Mirroring module shall place the cur-
rently active status frame buffer in the queue with the CAN ID configured in Mir-
rorStatusCanlId. |(SRS_Mirror_00009, SRS_Mirror_00013)

7.5.3 Status Protocol

The protocol that is applied by the Bus Mirroring module for transmission of status
frames on CAN consists of a header (see section 7.5.3.1) followed by several data
items (see section 7.5.3.2).

In the tables and descriptions of this section, the byte numbers increase in the same
sequence as the bytes are transmitted on the destination bus, starting from 0. The bit
numbers decrease, the most significant bit of a byte being bit 7 and the least significant
bit 0.

7.5.3.1 Status Header Layout

Every status frame starts with a header, which is shown in Figure 7.5.

Data Data

[N

1 Byte
ProtocolVersion

|

Header size: 1 Byte
Figure 7.5: Status Frame Header

[SWS_Mirror_00127] | The header of a Bus Mirroring status frame shall contain the
ProtocolVersion (see section 7.5.3.1.1). |(SRS_Mirror_00009)

AUTOSAR

7.5.3.1.1 ProtocolVersion

[SWS_Mirror_00128] | The ProtocolVersion of the status header shall be identical
to the ProtocolVersion of a serialized destination frame. See section 7.4.2.1.1 for
details. |(SRS_Mirror_00009)

7.5.3.2 Status ltem Layout

Every source bus state is placed in a status item, which is shown in Figure 7.6.

Netw.State Header
FramelID

5 Bits 1 Byte 1 Byte 1-4 Byte
Netw.Type Netw.ID Netw.State FramelD

\ J
|
Item size: 3-7 Bytes

Figure 7.6: Status Frame Item

[SWS_Mirror_00129] [Status items of a Bus Mirroring status frame shall contain the
following fields in this order:

1. NetworkStateAvailable (see section 7.5.3.2.1)
FrameIDAvailable (see section 7.5.3.2.2)
reserved

NetworkType (see section 7.5.3.2.3)

NetworkID (see section 7.5.3.2.4)

o g k&~ W D

NetworkState (see section 7.5.3.2.5)
7. FrameID (optional, see section 7.5.3.2.6)
|(SRS_Mirror_00009)
[SWS_Mirror_00132] | Bit 5 of Byte 0 of the status item is currently reserved and shall

always be set to 0. | (SRS_Mirror_00009)
7.5.3.2.1 NetworkStateAvailable

[SWS_Mirror_00149] | The NetworkStateAvailable of the status item shall al-
ways be set to 1. |(SRS_Mirror_00009)

AUTOSAR

The receiver of a Bus Mirroring status frame can use the NetworkStateAvailable
to check for a valid status item: If this bit is 0, the remainder of the frame can be
ignored, it is probably just padding (see also [SWS_Mirror CONSTR_00002]).

7.5.3.2.2 FramelDAvailable
[SWS_Mirror_00131] | The layout and semantics of the FrameIDAvailable of the

status item shall be identical to the Frame IDAvailable used in a serialized data item.
See section 7.4.2.2.3 for details. |(SRS_Mirror_00009)

7.5.3.2.3 NetworkType
[SWS_Mirror_00133] | The layout and semantics of the NetworkType of the sta-

tus item shall be identical to the NetworkType used in a serialized data item. See
section 7.4.2.2.5 for details. |(SRS_Mirror_00009)

7.5.3.2.4 NetworkID
[SWS_Mirror_00134] | The layout and semantics of the NetworkID of the status

item shall be identical to the NetworkID used in a serialized data item. See sec-
tion 7.4.2.2.6 for details. | (SRS_Mirror_00009)

7.5.3.2.5 NetworkState
[SWS_Mirror_00135] | The layout and semantics of the NetworkState of the status

item shall be identical to the NetworkState used in a serialized data item. See
section 7.4.2.2.7 for details. |(SRS_Mirror_00009)

7.5.3.2.6 FramelD
[SWS_Mirror_00136] | The layout and semantics of the FrameID of the status item

shall be identical to the FrameID used in a serialized data item. See section 7.4.2.2.8
for details. |(SRS_Mirror_00009)

7.6 Error Classification

The Bus Mirroring module supports reporting of development and runtime errors.

AUTOSAR

7.6.1 Development Errors

[SWS_Mirror_00007] Development Error Types |

Type of error Related error code Value [hex]
An API| was called while the module | MIRROR_E_UNINIT 0x01
was uninitialized
The init API was called twice MIRROR_E_REINIT 0x02
Mirror_Init was called with an MIRROR_E_INIT_FAILED 0x03
invalid configuration pointer
An API service was called with a MIRROR_E_PARAM_POINTER 0x10
NULL pointer
An API service was called with a MIRROR_E_INVALID_PDU_SDU_ID | 0x11
wrong ID
An API service was called with MIRROR_E_INVALID NETWORK_ID| 0x12
wrong network handle
|(SRS_BSW _00385)
7.6.2 Runtime Errors
[SWS_Mirror_00008] Runtime Error Types |
Type of error Related error code Value [hex]
A message could not be stored in MIRROR_E_QUEUE_OVERRUN 0x40
the queue
A message could not be transmitted | MIRROR_E_TRANSMIT_FAILED 0x41

|(SRS_BSW_00385)

7.6.3 Transient Faults

The Bus Mirroring module does not define transient faults.

7.6.4 Production Errors

The Bus Mirroring module does not define production errors.

AUTOSAR

7.6.5 Extended Production Errors

The Bus Mirroring module does not define extended production errors.

7.7 Api Parameter Checking

The Bus Mirroring module reports the development error MIRROR_E_PARAM_POINTER
when a NULL_PTR is not accepted as an argument to a service or callback function. The
exact behavior is specified in [SWS_BSW _00050] and [SWS_BSW_00212].

[SWS_Mirror_00137] | If development error detection is enabled by MirrorDe-
vErrorDetect, the Bus Mirroring module shall check the TxPduId of the
callback functions Mirror_TxConfirmation and Mirror_TriggerTransmit
against MirrorDestPduld, and shall report the development error MIR-
ROR_E_INVALID_PDU_SDU_ID when an unknown ID is provided by the call. |
(SRS_Mirror_00013)

[SWS_Mirror_00138] | If development error detection is enabled by MirrorDe-
vErrorDetect, the Bus Mirroring module shall check the NetworkHandleType
parameters of its service functions against the ComMChannel1d referenced via
MirrorComMNetworkHandleRef, and shall report the development error MIR-
ROR_E_INVALID_NETWORK_ID when an unknown network handle is provided by the
call. |(SRS_Mirror_00010, SRS_Mirror_00011)

AUTOSAR

8 API Specification

8.1

In this chapter, all types used by the Bus Mirroring module are listed together with the

defining module:

Imported Types

[SWS_Mirror_01100] |

Module

Header File

Imported Type

Can_GeneralTypes

Can_GeneralTypes.h
Can_GeneralTypes.h
Can_GeneralTypes.h

CanTrev_TrcvModeType
Can_ControllerState Type
Can_ErrorStateType

Can_GeneralTypes.h | Can_IdType
ComStack_Types ComStackTypes.h NetworkHandleType
ComStackTypes.h PduldType

ComStackTypes.h PdulnfoType

Fr Fr_GeneralTypes.h Fr_ChannelType
Fr_GeneralTypes.h Fr_POCStatusType

Frif Frif.h Frif_StateType

LinTrcv LinTrcv.h LinTrcv_TrcvModeType

Lin_GeneralTypes Lin_GeneralTypes.h

Lin_GeneralTypes.h

Lin_FramePidType
Lin_StatusType

StbM Rte_StbM_Type.h StbM_SynchronizedTimeBaseType
Rte_StoM_Type.h StbM_TimeStampType
Rte_StoM_Type.h StbM_UserDataType
Std_Types StandardTypes.h Std_ReturnType
StandardTypes.h Std_VersionInfoType
Table 8.1: Mirror_ImportedTypes
10

8.2 Type Definitions
8.2.1 Mirror_ConfigType

[SWS_Mirror_01002] |

Name: Mirror_ConfigType

Type: Structure

Element: Implementation -
specific.

Description: | This is the base type for the configuration of the Bus Mirroring module.

A pointer to an instance of this structure will be used in the initialization of the
Bus Mirroring module.

The content of this structure is defined in chapter 10 Configuration
specification.

AUTOSAR

Available
via:

Mirror.h

10

Table 8.2: Mirror_ConfigType

8.2.2 MIRROR_INVALID_NETWORK

[SWS_Mirror_00165] [

Name: MIRROR_INVALID_NETWORK

Type: Definition

Range: MIRROR_INVALID_NETWORK | OxFF | Invalid network ID.

Description: This type represents a special value of NetworkHandleType, representing an
invalid network handle.

Available via: | Mirror.h

10

Table 8.3: MIRROR_INVALID_NETWORK

8.3 Function Definitions

This is a list of functions provided for upper layer modules.

8.3.1

8.3.1.1

Mirror_lInit

Generic Functions

[SWS_Mirror_01003] [

Service name:

Mirror_Init

Syntax: void Mirror_ Init (
const Mirror_ConfigTypex configPtr
)
Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): configPtr | Pointer to selected configuration structure
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This function initializes the Bus Mirroring module.
Available via: Mirror.h

Table 8.4: Mirror_Init

AUTO SAR

10

8.3.1.2 Mirror_Delnit

[SWS_Mirror_01004] |

Service name: Mirror_Delnit
Syntax: void Mirror_DelInit (
void
)
Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters (inout): | None
Parameters (out): None
Return value: None

Description:

This function resets the Bus Mirroring module to the uninitialized state.

Available via:

Mirror.h

10

Table 8.5: Mirror_Delnit

8.3.1.3 Mirror_GetVersioninfo

[SWS_Mirror_01005] |

Service name:

Mirror_GetVersionInfo

Synwut void Mirror_GetVersionInfo (
Std_VersionInfoTypex versionInfo
)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (inout): | None

Parameters (out): versioninfo Pointer to where to store the version information of

this module.

Return value: None

Description: Returns the version information of this module.

Available via: Mirror.h

10

Table 8.6: Mirror_GetVersioninfo

AUTOSAR

8.3.2 Filter Handling

8.3.2.1

Mirror_GetStaticFilterState

[SWS_Mirror_01006] [

Service name:

Mirror_GetStaticFilterState

Syntax: Std_ReturnType Mirror_ GetStaticFilterState (
NetworkHandleType network,
uint8 filterId,
boolean* isActive
)
Service ID[hex]: 0x23
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): network ComM channel that corresponds to the source bus
to which the filter is attached.
filterld ID of the filter.
Parameters (inout): | None
Parameters (out): isActive Pointer to where to store the current filter state.

Return value:

Std_ReturnType E_OK: Filter state copied to isActive.
E_NOT_OK: Function was called with invalid pa-

rameters.

Description:

Returns the state of a pre-configured filter.

Available via:

Mirror.h

10

Table 8.7: Mirror_GetStaticFilterState

8.3.2.2 Mirror_SetStaticFilterState

[SWS_Mirror_01007] |

Service name:

Mirror_SetStaticFilterState

Syntax: Std_ReturnType Mirror_SetStaticFilterState (
NetworkHandleType network,
uint8 filterId,
boolean isActive
)
Service ID[hex]: 0x14
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.
Parameters (in): network ComM channel that corresponds to the source bus
to which the filter is attached.
filterld ID of the filter.
isActive TRUE: Activate filter
FALSE: Deactivate filter
Parameters (inout): | None
Parameters (out): None

AUTOSAR

Return value:

Std_ReturnType E_OK: Filter state updated from isActive.
E_NOT_OK: Function was called with invalid pa-

rameters.

Description:

Sets the state of a pre-configured filter.

Available via:

Mirror.h

10

Table 8.8: Mirror_SetStaticFilterState

8.3.2.3 Mirror_AddCanRangeFilter

[SWS_Mirror_01008] [

Service name:

Mirror_AddCanRangeFilter

Syntax: Std_ReturnType Mirror_AddCanRangeFilter (
NetworkHandleType network,
uint8x filterId,
Can_IdType lowerlId,
Can_IdType upperld
)
Service ID[hex]: 0x15
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.

Parameters (in): network ComM channel that corresponds to the CAN bus to
which the filter shall be attached.
lowerld Lower CAN ID of the range.
upperld Upper CAN ID of the range.
Parameters (inout): | None
Parameters (out): filterld ID of the newly created filter.

Return value:

Std_ReturnType E_OK: New filter created.
E_NOT_OK: Creation of filter failed because of in-
valid parameters or because no filter on the given

network was free.

Description:

Creates a CAN ID range filter.

Available via:

Mirror.h

10

Table 8.9: Mirror_AddCanRangeFilter

8.3.2.4 Mirror_AddCanMaskFilter

[SWS_Mirror_01009] |

| Service name:

| Mirror_AddCanMaskFilter

AUTOSAR

Eﬂﬂﬂax: Std_ReturnType Mirror_AddCanMaskFilter (
NetworkHandleType network,
uint8* filterId,
Can_IdType id,
Can_IdType mask
)
Service ID[hex]: 0x16
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.
Parameters (in): network ComM channel that corresponds to the CAN bus to
which the filter shall be attached.
id CAN ID used to match a received or transmitted
CAN ID.
mask Mask that defines the bits of ’id’ that are relevant for
comparison with the actual CAN ID.
Parameters (inout): | None
Parameters (out): filterld ID of the newly created filter.
Return value: Std_ReturnType E_OK: New filter created.
E_NOT_OK: Creation of filter failed because of in-
valid parameters or because no filter on the given
network was free.

Description:

Creates a CAN ID mask filter.

Available via:

Mirror.h

10

Table 8.10: Mirror_AddCanMaskFilter

8.3.2.5 Mirror_AddLinRangeFilter

[SWS_Mirror_01010] |

Service name:

Mirror_AddLinRangeFilter

Eﬂﬂﬂax: Std_ReturnType Mirror_AddLinRangeFilter (
NetworkHandleType network,
uint8+ filterId,
uint8 lowerId,
uint8 upperId
)
Service ID[hex]: 0x17
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.
Parameters (in): network ComM channel that corresponds to the LIN bus to
which the filter shall be attached.
lowerld Lower frame ID of the range.
upperld Upper frame ID of the range.
Parameters (inout): | None
Parameters (out): filterld ID of the newly created filter.

Return value:

Std_ReturnType E_OK: New filter created.
E_NOT_OK: Creation of filter failed because of in-
valid parameters or because no filter on the given

network was free.

AUTOSAR

Description:

Creates a LIN frame ID range filter.

Available via:

Mirror.h

10

Table 8.11: Mirror_AddLinRangeFilter

8.3.2.6 Mirror_AddLinMaskFilter

[SWS_Mirror_01011] |

Service name:

Mirror AddLinMaskFilter

Syntax: Std_ReturnType Mirror_AddLinMaskFilter (
NetworkHandleType network,
uint8x filterId,
uint8 id,
uint8 mask
)
Service ID[hex]: 0x18
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.

Parameters (in): network ComM channel that corresponds to the LIN bus to
which the filter shall be attached.
id Frame ID used to match a received or transmitted
frame ID.
mask Mask that defines the bits of ’id’ that are relevant for
comparison with the actual frame ID.
Parameters (inout): | None
Parameters (out): filterld ID of the newly created filter.

Return value:

Std_ReturnType E_OK: New filter created.
E_NOT_OK: Creation of filter failed because of in-
valid parameters or because no filter on the given

network was free.

Description:

Creates a LIN frame ID mask filter.

Available via:

Mirror.h

10

Table 8.12: Mirror_AddLinMaskFilter

8.3.2.7 Mirror_AddFlexRayFilter

[SWS_Mirror_01012] |

| Service name:

| Mirror_AddFlexRayFilter

AUTOSAR

Syntax:

Std_ReturnType Mirror_AddFlexRayFilter (
NetworkHandleType network,

uint8* filterId,

uintl6 lowerSlotId,

uintl6 upperSlotlId,

uint8 lowerBaseCycle,

uint8 upperBaseCycle,

uint8 cycleRepetition,

Mirror_ FlexRayChannelType frChannel

)

Service ID[hex]:

0x19

Sync/Async:

Synchronous

Reentrancy:

Reentrant for different networks. Non reentrant for the same network.

Parameters (in): network ComM channel that corresponds to the FlexRay bus
to which the filter shall be attached.
lowerSlotld Lower slot ID of a range of slot IDs.
upperSlotld Upper slot ID of a range of slot IDs.
lowerBaseCycle Lower base cycle of a range of cycles.
upperBaseCycle Upper base cycle of a range of cycles.
cycleRepetition Repetition pattern of selected cycles (2" n).
frChannel FlexRay channel assignment.
Parameters (inout): | None
Parameters (out): filterld ID of the newly created filter.
Return value: Std_ReturnType E_OK: New filter created.
E_NOT_OK: Creation of filter failed because of in-
valid parameters or because no filter on the given
network was free.

Description:

Creates a FlexRay filter.

Available via:

Mirror.h

10

Table 8.13: Mirror_AddFlexRayFilter

8.3.2.8 Mirror_RemoveFilter

[SWS_Mirror_01013] |

Service name:

Mirror_RemoveFilter

Syntax: Std_ReturnType Mirror_RemoveFilter (
NetworkHandleType network,
uint8 filterId
)
Service ID[hex]: Ox1a
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.
Parameters (in): network ComM channel that corresponds to the source bus
to which the filter is attached.
filterld ID of the filter.
Parameters (inout): | None
Parameters (out): None

AUTOSAR

Return value:

E_OK: Filter was removed.
E_NOT_OK: Function was called with invalid pa-
rameters.

Std_ReturnType

Description:

Removes a CAN, LIN, or FlexRay filter that was added at runtime.

Available via:

Mirror.h

10

Table 8.14: Mirror_RemoveFilter

8.3.3 State Handling

8.3.3.1

Mirror_IsMirrorActive

[SWS_Mirror_01014] |

Service name:

Mirror_lsMirrorActive

Synkuf boolean Mirror_IsMirrorActive (
void
)
Service ID[hex]: 0x20
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): | None
Parameters (out): None
Return value: boolean TRUE: Bus Mirroring module is active

FALSE: Bus Mirroring module is inactive

Description:

Returns the global mirroring state.

Available via:

Mirror.h

10

Table 8.15: Mirror_IsMirrorActive

8.3.3.2 Mirror_Offline

[SWS_Mirror_01015] |

Service name: Mirror_Offline

Syntax: void Mirror_ Offline (
void
)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (inout): | None

AUTOSAR

Parameters (out):

None

Return value:

None

Description:

Completely disables any mirroring activities. Source buses are reset to
disabled, queued messages are purged, and the destination bus is reset
to the default destination. Pre-configured filters are disabled, and filters
added at runtime are removed.

Available via:

Mirror.h

10

Table 8.16: Mirror_Offline

8.3.3.3 Mirror_GetDestNetwork

[SWS_Mirror_01016] |

Service name:

Mirror_GetDestNetwork

Synkmv NetworkHandleType Mirror_GetDestNetwork (
void
)
Service ID[hex]: 0x21
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): | None
Parameters (out): None
Return value: NetworkHandleType | ComM channel that corresponds to the currently ac-

tive destination network.

Description:

Returns the currently selected destination bus.

Available via:

Mirror.h

10

Table 8.17: Mirror_GetDestNetwork

8.3.3.4 Mirror_SwitchDestNetwork

[SWS_Mirror_01017] |

Service name:

Mirror SwitchDestNetwork

Syntax: Std_ReturnType Mirror_SwitchDestNetwork (
NetworkHandleType network
)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): network ComM channel corresponding to the destination bus

that shall be enabled.
Parameters (inout): | None

AUTOSAR

Parameters (out):

None

Return value:

Std_ReturnType E_OK: Destination bus was changed.
E_NOT_OK: Function was called with invalid pa-

rameters.

Description:

Changes the destination bus to the given ComM channel. The previously
active destination bus and all source buses are disabled.

Available via:

Mirror.h

10

Table 8.18: Mirror_SwitchDestNetwork

8.3.3.5 Mirror_IsSourceNetworkStarted

[SWS_Mirror_01018] |

Service name:

Mirror_IsSourceNetworkStarted

Synkmv boolean Mirror_IsSourceNetworkStarted/(
NetworkHandleType network
)
Service ID[hex]: 0x22
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): network ComM channel corresponding to the source bus that
shall be checked.
Parameters (inout): | None
Parameters (out): None
Return value: boolean TRUE: Source bus is active.
FALSE: Source bus is inactive.

Description:

Returns the state of a source bus.

Available via:

Mirror.h

10

Table 8.19: Mirror_IsSourceNetworkStarted

8.3.3.6 Mirror_StartSourceNetwork

[SWS_Mirror_01019] |

Service name: Mirror_StartSourceNetwork

Syntax: Std_ReturnType Mirror_StartSourceNetwork (
NetworkHandleType network
)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Reentrant for different networks. Non reentrant for the same network.

Parameters (in): network ComM channel corresponding to the source bus that

shall be started.

AUTOSAR

Parameters (inout):

None

Parameters (out):

None

Return value:

E_OK: Source bus was activated.
E_NOT_OK: Function was called with invalid pa-
rameters.

Std_ReturnType

Description:

Activates a source bus.

Available via:

Mirror.h

10

Table 8.20: Mirror_StartSourceNetwork

8.3.3.7 Mirror_StopSourceNetwork

[SWS_Mirror_01020] |

Service name:

Mirror_StopSourceNetwork

Syntax: Std_ReturnType Mirror_StopSourceNetwork (
NetworkHandleType network
)

Service ID[hex]: 0x11

Sync/Async: Synchronous

Reentrancy: Reentrant for different networks. Non reentrant for the same network.

Parameters (in): network ComM channel corresponding to the source bus that

shall be stopped.
Parameters (inout): | None
Parameters (out): None

Return value:

E_OK: Source bus was deactivated.
E_NOT_OK: Function was called with invalid pa-
rameters.

Std_ReturnType

Description:

Deactivates a source bus.

Available via:

Mirror.h

10

Table 8.21: Mirror_StopSourceNetwork

8.3.4 Support Functions

8.3.4.1

Mirror_GetNetworkType

[SWS_Mirror_01021] |

Service name:

Mirror_GetNetworkType

Syntax:

Mirror_ NetworkType Mirror_ GetNetworkType (
NetworkHandleType network
)

Service ID[hex]:

0x24

AUTOSAR

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): network ComM channel corresponding to one of the buses
configured as source or destination bus.

Parameters (inout): | None

Parameters (out): None

Return value:

Mirror_NetworkType | Network type of the bus identified by 'network’, or
MIRROR_NT_INVALID if the bus is not configured

for Mirror.

Description:

Returns the network type of the given network.

Available via:

Mirror.h

10

Table 8.22: Mirror_GetNetworkType

8.3.4.2 Mirror_GetNetworkld

[SWS_Mirror_01022] |

Service name:

Mirror_GetNetworkld

Syntax: uint8 Mirror_GetNetworkId(
NetworkHandleType network
)
Service ID[hex]: 0x25
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): network ComM channel corresponding to one of the buses
configured as source or destination bus.
Parameters (inout): | None
Parameters (out): None
Return value: uint8 Network ID of the bus identified by ’network’, or
OxFF if the bus is not configured for Mirror.

Description:

Returns the network ID of the given network.

Available via:

Mirror.h

10

Table 8.23: Mirror_GetNetworkld

8.3.4.3 Mirror_GetNetworkHandle

[SWS_Mirror_01023] |

Service name:

Mirror_GetNetworkHandle

Syntax:

NetworkHandleType Mirror_GetNetworkHandle (
Mirror_ NetworkType networkType,
uint8 networkId

)

AUTOSAR

Service ID[hex]: 0x26
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): networkType Network type of the bus to be identified.
networkld Network ID of the bus to be identified.
Parameters (inout): | None
Parameters (out): None
Return value: NetworkHandleType | ComM channel that corresponds to the bus identi-

fied by the given network type and network ID. MIR-
ROR_INVALID_NETWORIK, if no configured net-
work corresponds to the given combination of net-
workType and networkld.

Description:

Returns the network handle (ComMChannel) of the bus identified by the
given network type and network ID, or MIRROR_INVALID_NETWORK.

Available via:

Mirror.h

10

Table 8.24: Mirror_GetNetworkHandle

8.4 Callback Notifications

This is a list of functions provided for other modules.

8.4.1

Mirror_ReportCanFrame

[SWS_Mirror_01024] |

Service name:

Mirror_ReportCanFrame

Syntax: void Mirror_ReportCanFrame (
uint8 controllerId,
Can_IdType canld,
uint8 length,
const uint8x payload
)
Service ID[hex]: 0x50
Sync/Async: Synchronous
Reentrancy: Reentrant for different controllerlds. Non reentrant for the same controller
Id.
Parameters (in): controllerld ID of the CAN controller that received or transmitted
the frame.
canld CAN ID of the CAN frame.
length Length of the CAN frame.
payload Content of the CAN frame.
Parameters (inout): | None
Parameters (out): None
Return value: None

AUTOSAR

Description:

Reports a received or transmitted CAN frame. All received CAN frames
that pass the hardware acceptance filter are reported, independent of the
software filter configuration. Transmitted CAN frames are reported when
the transmission is confirmed.

Available via:

Mirror.h

10

Table 8.25: Mirror_ReportCanFrame

8.4.2 Mirror_ReportLinFrame

[SWS_Mirror_01027] |

Service name:

Mirror_ReportLinFrame

Synkuf void Mirror_ReportLinFrame (
NetworkHandleType network,
Lin_FramePidType pid,
const PdulnfoTypex* pdu,
Lin_StatusType status
)
Service ID[hex]: 0x51
Sync/Async: Synchronous
Reentrancy: Reentrant for different networks. Non reentrant for the same network.
Parameters (in): network ComM channel associated with the LIN channel on
which the frame was received or transmitted.
pid Protected ID of the LIN frame.
pdu Content of the LIN frame.
status Rx/Tx status of the frame access through the LIN
driver.
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: Reports a received or transmitted LIN frame.
Available via: Mirror.h

10

Table 8.26: Mirror_ReportLinFrame

8.4.3 Mirror_ReportFlexRayFrame

[SWS_Mirror_01026] |

| Service name:

| Mirror_ReportFlexRayFrame

AUTOSAR

SynMMT void Mirror_ReportFlexRayFrame (
uint8 controllerId,
uintl6é slotId,
uint8 cycle,
Fr_ChannelType frChannel,
const PdulnfoTypex frame,
boolean txConflict
)
Service ID[hex]: 0x52
Sync/Async: Synchronous
Reentrancy: Reentrant for different controllerlds. Non reentrant for the same controller
Id.
Parameters (in): controllerld FlexRay controller that received/transmitted the
frame.
slotld ID of the slot in which the received/transmitted frame
is located.
cycle Cycle in which the reception/transmission takes
place.
frChannel FlexRay channel(s) on which the reception/trans-
mission takes place.
frame Content of the FlexRay frame, or NULL when a tx-
Conflict is reported.
txConflict TRUE in case a txConflict has been detected,
FALSE otherwise.
Parameters (inout): | None
Parameters (out): None
Return value: None

Description:

Reports a received or transmitted FlexRay frame or a Tx conflict.

Available via:

Mirror.h

10

Table 8.27: Mirror_ReportFlexRayFrame

8.4.4 Mirror_ReportFlexRayChannelStatus

[SWS_Mirror_01025] |

Service name:

Mirror_ReportFlexRayChannelStatus

Syntax: void Mirror_ReportFlexRayChannelStatus (
uint8 clusterId,
uintl6 channelAStatus,
uintl6 channelBStatus
)
Service ID[hex]: 0x53
Sync/Async: Synchronous
Reentrancy: Reentrant for different clusterlds. Non reentrant for the same clusterld.
Parameters (in): clusterld FlexRay cluster for which the status is reported.
channelAStatus Status of FlexRay channel A.
channelBStatus Status of FlexRay channel B.
Parameters (inout): | None
Parameters (out): None

AUTOSAR

Return value:

None

Description:

Reports the aggregated channel status for FlexRay channels A and B of
a cluster. The status is encoded as specified in SWS_Fr_00558.

Available via:

Mirror.h

10

Table 8.28: Mirror_ReportFlexRayChannelStatus

8.4.5 Mirror_TxConfirmation

[SWS_Mirror_01028] |

Service name:

Mirror_TxConfirmation

Syn&mt void Mirror_TxConfirmation (
PduldType TxPduld,
Std_ReturnType result
)
Service ID[hex]: 0x40
Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in): TxPduld ID of the PDU that has been transmitted.
result E_OK: The PDU was transmitted.
E_NOT_OK: Transmission of the PDU failed.
Parameters (inout): | None
Parameters (out): None
Return value: None

Description:

The lower layer communication interface module confirms the transmis-
sion of a PDU, or the failure to transmit a PDU.

Available via:

Mirror.h

10

Table 8.29: Mirror_TxConfirmation

8.4.6 Mirror_TriggerTransmit

[SWS_Mirror_01029] |

Service name: Mirror_TriggerTransmit
Syntax: Std_ReturnType Mirror_ TriggerTransmit (
PduldType TxPduld,
PduInfoType* PdulnfoPtr
)
Service ID[hex]: 0x41
Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in): TxPduld \ ID of the SDU that is requested to be transmitted.

AUTOSAR

Parameters (inout):

PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where
the SDU data shall be copied, and the available
buffer size in SduLengh.

On return, the service will indicate the length of the
copied SDU data in SduLength.

Parameters (out):

None

Return value:

Std_ReturnType E_OK: SDU has been copied and SdulLength indi-
cates the number of copied bytes.

E_NOT_OK: No SDU data has been copied. Pduln-
foPtr must not be used since it may contain a NULL
pointer or point to invalid data.

Description:

Within this API, the upper layer module (called module) shall check
whether the available data fits into the buffer size reported by PdulnfoPtr-
>SdulLength. If it fits, it shall copy its data into the buffer provided by
PdulnfoPtr->SduDataPtr and update the length of the actual copied data
in PdulnfoPtr->SduLength. If not, it returns E_NOT_OK without changing
PdulnfoPtr.

Available via:

Mirror.h

10

Table 8.30: Mirror_TriggerTransmit

8.5 Scheduled Functions

This function is directly called by Basic Software Scheduler (SchM).

8.5.1 Mirror_MainFunction

[SWS_Mirror_01030] |

Service name:

Mirror_MainFunction

Syntax: void Mirror MainFunction (
void
)
Service ID[hex]: 0x04
Description: Main function of the Bus Mirroring module. Used for scheduling purposes

and timeout supervision.

Available via:

SchM_Mirror.h

10

Table 8.31: Mirror_MainFunction

AUTOSAR

8.6 Expected Interfaces

In this section, all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This section defines all interfaces that are required to fulfill the core functionality of the
module.

[SWS_Mirror_01101] |

API function Header File Description
PduR_MirrorTransmit PduR_Mirror.h Requests transmission of a PDU.

Table 8.32: Mirror Mandatory Interfaces

10

8.6.2 Optional Interfaces

This section defines all interfaces that are required to fulfill an optional functionality of
the module.

[SWS_Mirror_01102] |

API function Header File Description

Canlf_EnableBusMirroring Canlf.h Enables or disables mirroring for a
CAN controller.

Canlf_GetControllerErrorState Canlf.h This service calls the corresponding

CAN Driver service for obtaining the
error state of the CAN controller.
Canlf_GetControllerMode Canlf.h This service calls the corresponding
CAN Driver service for obtaining the
current status of the CAN controller.
Canlf_GetControllerTxErrorCounter | Canlf.h This service calls the corresponding
CAN Driver service for obtaining the
Tx error counter of the CAN con-
troller.

Canlf_GetTrcvMode Canli.h This function invokes CanTrcv_
GetOpMode and updates the pa-
rameter TransceiverModePtr with
the value OpMode provided by

CanTrcv.

Det_ReportError Det.h Service to report development er-
rors.

Frlf_EnableBusMirroring Frif.h Enables or disables mirroring for all

FlexRay controllers connected to the
addressed FlexRay cluster.
Frif_GetPOCStatus Frif.h Wraps the FlexRay Driver API func-
tion Fr_GetPOCStatus().

AUTOSAR

Frif_GetState Frif.h Get current Frif state.

Linlf_EnableBusMirroring Linlf.h Enables or disables mirroring for a
LIN channel.

Linlf_GetTrcvMode Linlf.h Returns the actual state of a LIN
Transceiver Driver.

StbM_GetCurrentTime StbM.h Returns a time value (Local Time

Base derived from Global Time
Base) in standard format.

Note: This API shall be called
with locked interrupts / within an Ex-
clusive Area to prevent interruption
(i.e., the risk that the time stamp is
outdated on return of the function
call).

10

Table 8.33: Mirror Optional Interfaces

8.7 Service Interfaces

8.7.1

8.7.1.1

Implementation Data Types

Mirror_NetworkType

[SWS_Mirror_01000] |

Name Mirror_NetworkType

Kind Enumeration

Range MIRROR_NT_INVALID 0x00 Invalid network
MIRROR_NT_CAN 0x01 CAN network
MIRROR_NT_LIN 0x02 LIN network
MIRROR_NT_FLEXRAY 0x03 FlexRay network
MIRROR_NT_ETHERNET 0x04 Ethernet network
MIRROR_NT_PROPRIETARY | 0x05 Proprietary network

Description This type represents the bus types that are supported as source or
destination buses for the Bus Mirroring module. The invalid type is
used as a return value if a function cannot return a valid type.

Variation --

Available via Rte_Mirror_Type.h

10

Table 8.34: Implementation Data Type Mirror_NetworkType

AUTOSAR

8.7.1.2 Mirror_FlexRayChannelType

[SWS_Mirror_01001] |

Name Mirror_FlexRayChannelType

Kind Enumeration

Range MIRROR_FR_CHANNEL_A 0x01 Frame assigned to channel A
MIRROR_FR_CHANNEL B 0x02 Frame assigned to channel B
MIRROR_FR_CHANNEL AB | 0x03 Frame assigned to channel A

and B

Description This type represents the assignment of a FlexRay frame to the
channels A and B of a FlexRay network.

Variation -

Available via Rte_Mirror_Type.h

Table 8.35: Implementation Data Type Mirror_FlexRayChannelType

10

8.7.1.3 Mirror_CanldType

[SWS_Mirror_01032] |

Name Mirror_CanldType

Kind Type

Description Local representation for Can_ldType

Range Standard32Bit 0..0x400007FF
Extended32Bit 0..0xDFFFRFFF

Variation --

Available via Mirror.h

Table 8.36: Implementation Data Type Mirror_CanldType

10

8.7.2 Client-Server Interfaces

8.7.2.1

MirrorControl

[SWS_Mirror_01033] [

Name MirrorControl

Comment Provides access to the control functions of the Bus Mirroring module.
IsService true

Variation -

Possible Errors

0 E_OK

1 E_NOT_OK

Table 8.37: Service Interface MirrorControl

AUTOSAR

Operations

AddCanMaskFilter

Comments Creates a CAN ID mask filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the CAN bus to which the filter shall
be attached.

Type NetworkHandleType
Variation --
Direction IN
filterld Comment | ID of the newly created filter.
Type uint8*
Variation -
Direction ouT
id Comment | CAN ID used to match a received or
transmitted CAN ID.
Type Mirror_CanldType
Variation -
Direction IN
mask Comment | Mask that defines the bits of 'id’ that
are relevant for comparison with the
actual CAN ID.
Type Mirror_CanldType
Variation --
Direction IN
Possible Errors E _OK Operation successful
E_NOT_OK Operation failed

Table 8.38: Operation AddCanMaskFilter

AddCanRangeFilter

Comments Creates a CAN ID range filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the CAN bus to which the filter shall
be attached.

Type NetworkHandle Type
Variation --
Direction IN

filterld Comment | ID of the newly created filter.
Type uint8*
Variation -
Direction ouT

lowerld Comment | Lower CAN ID of the range.
Type Mirror_CanldType
Variation --
Direction IN

upperld Comment | Upper CAN ID of the range.
Type Mirror_CanldType
Variation --
Direction IN

Possible Errors E _OK Operation successful
E_NOT_OK Operation failed

Table 8.39: Operation AddCanRangeFilter

AUTOSAR

AddFlexRayFilter

Comments Creates a FlexRay filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the FlexRay bus to which the filter
shall be attached.

Type NetworkHandleType
Variation --
Direction IN
filterld Comment | ID of the newly created filter.
Type uint8*
Variation --
Direction ouT
lowerSlotld Comment | Lower slot ID of a range of slot IDs.
Type uint16
Variation -
Direction IN
upperSlotld Comment | Upper slot ID of a range of slot IDs.
Type uint16
Variation --
Direction IN
lowerBaseCycle Comment | Lower base cycle of a range of
cycles.
Type uint8
Variation --
Direction IN
upperBaseCycle Comment | Upper base cycle of a range of
cycles.
Type uint8
Variation --
Direction IN
cycleRepetition Comment | Repetition pattern of selected
cycles (2" n).
Type uint8
Variation --
Direction IN
frChannel Comment | FlexRay channel assignment.
Type Mirror_FlexRayChannelType
Variation --
Direction IN
Possible Errors E_OK Operation successful
E_NOT_OK Operation failed

Table 8.40: Operation AddFlexRayFilter

AddLinMaskFilter

Comments Creates a LIN frame ID mask filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the LIN bus to which the filter shall
be attached.

Type NetworkHandle Type
Variation -
Direction IN

AUTOSAR

filterld Comment | ID of the newly created filter.
Type uint8*
Variation -
Direction ouT
id Comment | Frame ID used to match a received
or transmitted frame ID.
Type uint8
Variation --
Direction IN
mask Comment | Mask that defines the bits of id’ that
are relevant for comparison with the
actual frame ID.
Type uint8
Variation --
Direction IN
Possible Errors E OK Operation successful
E_NOT_OK Operation failed

Table 8.41: Operation AddLinMaskFilter

AddLinRangeFilter

Comments Creates a LIN frame ID range filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the LIN bus to which the filter shall
be attached.

Type NetworkHandle Type
Variation --
Direction IN

filterld Comment | ID of the newly created filter.
Type uint8*
Variation -
Direction ouT

lowerld Comment | Lower frame ID of the range.
Type uint8
Variation --
Direction IN

upperld Comment | Upper frame ID of the range.
Type uint8
Variation --
Direction IN

Possible Errors E OK Operation successful
E_NOT _OK Operation failed

Table 8.42: Operation AddLinRangeFilter

GetDestNetwork

Comments Returns the currently selected destination bus.

Variation --

Parameters network Comment | ComM channel that corresponds to
the currently active destination
network.

Type NetworkHandleType
Variation --

AUTOSAR

Direction [OUT

Possible Errors E OK Operation successful

Table 8.43: Operation GetDestNetwork

GetNetworkHandle
Comments Returns the network handle (ComMChannel) of the bus identified by
the given network type and network ID.

Variation --

Parameters networkType Comment | Network type of the bus to be
identified.

Type Mirror_NetworkType
Variation --
Direction IN
networkld Comment | Network ID of the bus to be
identified.
Type uint8
Variation --
Direction IN
network Comment | ComM channel that corresponds to
the bus identified by the given
network type and network ID.
Type NetworkHandleType
Variation --
Direction ouT
Possible Errors E OK Operation successful
E_NOT_OK Operation failed
Table 8.44: Operation GetNetworkHandle

GetNetworkld

Comments Returns the network ID of the given network.

Variation --

Parameters network Comment | ComM channel corresponding to
one of the buses configured as
source or destination bus.

Type NetworkHandle Type
Variation -
Direction IN
networkld Comment | Network ID of the bus identified by
‘network’.
Type uint8
Variation -
Direction ouT
Possible Errors E_OK Operation successful
E_NOT _OK Operation failed
Table 8.45: Operation GetNetworkid
GetNetworkType
Comments Returns the network type of the given network.

Variation --

AUTOSAR

Parameters network Comment | ComM channel corresponding to
one of the buses configured as
source or destination bus.

Type NetworkHandleType
Variation -
Direction IN

networkType Comment | Network type of the bus identified

by ’network’.
Type Mirror_NetworkType
Variation -
Direction ouT
Possible Errors E_OK Operation successful
E_NOT_OK Operation failed

Table 8.46: Operation GetNetworkType

GetStaticFilterState

Comments Returns the state of a pre-configured filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the source bus to which the filter is
attached.

Type NetworkHandleType
Variation --
Direction IN
filterld Comment | ID of the filter.
Type uint8
Variation --
Direction IN
isActive Comment | Pointer to where to store the current
filter state.
Type boolean®
Variation -
Direction ouT
Possible Errors E_OK Operation successful
E_NOT_OK Operation failed

Table 8.47: Operation GetStaticFilterState

IsMirrorActive

Comments Returns the global mirroring state.

Variation --

Parameters mirrorActive Comment | Global mirroring state.
Type boolean
Variation --
Direction ouT

Possible Errors E_OK Operation successful

Table 8.48: Operation IsMirrorActive

IsSourceNetworkStarted

Comments \ Returns the state of a source bus.

AUTOSAR

Variation --

Parameters network Comment | ComM channel corresponding to
the source bus that shall be
checked.

Type NetworkHandleType
Variation --
Direction IN
sourceNetworkStarted Comment | State of a source bus. TRUE:
Source bus is active. FALSE:
Source bus is inactive.
Type boolean
Variation --
Direction ouT
Possible Errors E OK Operation successful
Table 8.49: Operation IsSourceNetworkStarted
Offline
Comments Completely disables any mirroring activities. Source buses are reset
to disabled, queued messages are purged, and the destination bus
is reset to the default destination. Pre-configured filters are disabled,
and filters added at runtime are removed.
Variation --
Possible Errors E OK \ Operation successful

Table 8.50: Operation Offline

RemoverFilter

Comments Removes a CAN, LIN, or FlexRay filter that was added at runtime.

Variation --

Parameters network Comment | ComM channel that corresponds to
the source bus to which the filter is
attached.

Type NetworkHandleType
Variation --
Direction IN
filterld Comment | ID of the filter.
Type uint8
Variation --
Direction IN
Possible Errors E OK Operation successful
E_NOT_OK Operation failed

Table 8.51: Operation RemoveFilter

SetStaticFilterState

Comments Sets the state of a pre-configured filter.

Variation --

Parameters network Comment | ComM channel that corresponds to
the source bus to which the filter is
attached.

Type NetworkHandleType

AUTOSAR

Variation --
Direction IN
filderld Comment | ID of the filter.
Type uint8
Variation --
Direction IN
isActive Comment | TRUE: Activate filter
FALSE: Deactivate filter
Type boolean
Variation --
Direction IN
Possible Errors E_OK Operation successful
E_NOT_OK Operation failed

Table 8.52: Operation SetStaticFilterState

StartSourceNetwork

Comments Activates a source bus.

Variation --

Parameters network Comment | ComM channel corresponding to
the source bus that shall be started.

Type NetworkHandleType
Variation --
Direction IN
Possible Errors E_OK Operation successful
E_NOT_OK Operation failed
Table 8.53: Operation StartSourceNetwork

StopSourceNetwork

Comments Deactivates a source bus.

Variation --

Parameters network Comment | ComM channel corresponding to
the source bus that shall be
stopped.

Type NetworkHandle Type
Variation --
Direction IN
Possible Errors E_OK Operation successful
E_NOT _OK Operation failed
Table 8.54: Operation StopSourceNetwork

SwitchDestNetwork

Comments Changes the destination bus to the given ComM channel. The

previously active destination bus and all source buses are disabled.

Variation --

Parameters network Comment | ComM channel corresponding to
the destination bus that shall be
enabled.

Type NetworkHandleType

Variation -

Direction IN

AUTOSAR

Possible Errors E OK Operation successful

E_NOT_OK Operation failed

Table 8.55: Operation SwitchDestNetwork

10

8.7.3 Provided Ports
8.7.3.1 MirrorControl

[SWS_Mirror_01031] |

Name MirrorControl

Kind ProvidedPort | Interface | MirrorControl
Description Provided port for the interface MirrorControl.

Variation -

Table 8.56: Port MirrorControl

10

AUTOSAR

9 Sequence Diagrams

Currently, no sequence diagrams are available.

AUTOSAR

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. For general information about the definition of containers and parameters,
refer to the section 10.1 “Introduction to configuration specification” in [2, SWS BSW
General].

Section 10.1 specifies the structure (containers) and the parameters of the Bus Mirror-
ing module.

Section 10.2 lists constraints on the configuration of the Bus Mirroring module.

Section 10.3 specifies published information of the Bus Mirroring module.

10.1 Containers and Configuration Parameters

The following sections summarize all configuration parameters of the Bus Mirroring
module. The detailed meaning of the parameters is described in chapters 7 and 8.

10.1.1 Mirror
Module SWS Item ECUC_Mirror_00001
Module Name Mirror
Module Description Configuration of the Bus Mirroring module.
Post-Build Variant true
Support
Supported Config VARIANT-LINK-TIME, VARIANT-POST-BUILD, = VARIANT-PRE-
Variants COMPILE
Included Containers
Container Name Multiplicity | Scope / Dependency
MirrorConfigSet 1 Contains the configuration parameters and sub
containers of the Bus Mirroring module.
MirrorGeneral 1 Contains the general configuration parameters of the
module.
10.1.2 MirrorGeneral
SWS ltem [ECUC_Mirror_00002]
Container Name MirrorGeneral
Description Contains the general configuration parameters of the module.
Configuration Parameters

AUTOSAR

Value

Name MirrorDevErrorDetect [ECUC_Mirror_00003]

Parent Container MirrorGeneral

Description Switches the development error detection and notification on or off.
e true: detection and notification is enabled.
o false: detection and notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: local

Value

Name MirrorMainFunctionPeriod [ECUC_Mirror_00004]
Parent Container MirrorGeneral

Description Execution cycle of Mirror_MainFunction() in seconds.
Multiplicity 1

Type EcucFloatParamDef

Range 10 .. INF[

Default Value 0.05

Post-Build Variant false

Value Configuration
Class

Pre-compile time
Link time

Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: local

Default Value

Name MirrorVersionInfoApi [ECUC_Mirror_00005]

Parent Container MirrorGeneral

Description Pre-processor switch for enabling version info API support.
Multiplicity 1

Type EcucBooleanParamDef

false

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: local

AUTOSAR

Name MirrorStbRef [ECUC_Mirror_00065]
Parent Container MirrorGeneral
Description Reference to the StbM time base to use for acquiring the time stamps
used in the mirroring protocol.
This reference is not required if all destination buses are CAN.
Multiplicity 0..1
Type Symbolic name reference to StbMSynchronizedTimeBase

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time All Variants

Link time

Post-build time

Scope / Dependency

scope: local

| No Included Containers

10.1.3 MirrorConfigSet

SWS Item [ECUC_Mirror_00008]

Container Name MirrorConfigSet

Description Contains the configuration parameters and sub containers of the Bus
Mirroring module.

Configuration Parameters

Name MirrorlnitialDestNetworkRef [ECUC_Mirror_00007]

Parent Container MirrorConfigSet

Description Reference to the destination bus that is selected after initialization of
the Bus Mirroring module.

Multiplicity 1

Type Reference to MirrorDestNetwork

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity | Scope / Dependency

MirrorDestNetwork 1.* Destination bus to which frames are sent by the Bus

Mirroring module.

AUTOSAR

MirrorSourceNetwork 1.7 Source bus from which frames are received by the Bus
Mirroring module.

10.1.4 MirrorSourceNetwork

SWS ltem [ECUC_Mirror_00009]

Container Name MirrorSourceNetwork

Description Source bus from which frames are received by the Bus Mirroring
module.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Container Choices

Container Name Multiplicity | Scope / Dependency

MirrorSourceNetworkCan 0..1 Source bus representing a CAN network.

MirrorSourceNetworkFlex 0..1 Source bus representing a FlexRay network.

Ray

MirrorSourceNetworkLin 0..1 Source bus representing a LIN network.

10.1.5 MirrorSourceNetworkCan

SWS Item [ECUC_Mirror_00010]

Container Name MirrorSourceNetworkCan

Description Source bus representing a CAN network.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorNetworkld [ECUC_Mirror_00012]

Parent Container MirrorSourceNetworkCan

Description Network ID of the bus.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255 |

Default Value

Post-Build Variant true

Value

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name MirrorSourceMaxDynamicFilters [ECUC_Mirror_00013]

Parent Container MirrorSourceNetworkCan

Description Maximum number of filters that can be dynamically added using
Mirror_AddXxxFilter().

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 255 |

Default Value 5

Post-Build Variant false

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorSourceNetworkCan
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity | Scope / Dependency
MirrorSourceCanFilter 0..255 Pre-configured filter for CAN frames.
MirrorSourceCanMask 0.x Rule for remapping a set of CAN IDs.
BasedldMapping
MirrorSourceCanSingleld 0.x Rule for remapping a single CAN ID.
Mapping

10.1.6 MirrorSourceCanFilter

\ SWS Item

[[ECUC_Mirror_00014]

AUTOSAR

Container Name

MirrorSourceCanFilter

Description Pre-configured filter for CAN frames.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Container Choices

Container Name

Multiplicity | Scope / Dependency

Range

MirrorSourceCanFilter 0..1 Pre-configured mask based filter for CAN frames.
Mask
MirrorSourceCanFilter 0..1 Pre-configured range filter for CAN frames.

10.1.7 MirrorSourceCanFilterRange

SWS ltem [ECUC_Mirror_00015]

Container Name MirrorSourceCanFilterRange

Description Pre-configured range filter for CAN frames.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorSourceCanFilterld [ECUC_Mirror_00018]

Parent Container MirrorSourceCanFilterRange

Description Unique identifier of the pre-configured CAN filter.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |

Default Value

Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name MirrorSourceCanFilterLower [ECUC_Mirror_00016]
Parent Container MirrorSourceCanFilterRange

Description Lowest CAN ID that is accepted by the filter.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceCanFilterUpper [ECUC_Mirror_00017]
Parent Container MirrorSourceCanFilterRange

Description Highest CAN ID that is accepted by the filter.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

No Included Containers

10.1.8 MirrorSourceCanFilterMask

SWS Item [ECUC_Mirror_00019]
Container Name MirrorSourceCanFilterMask
Description Pre-configured mask based filter for CAN frames.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

AUTOSAR

Name MirrorSourceCanFilterCanldCode [ECUC_Mirror_00020]
Parent Container MirrorSourceCanFilterMask
Description Value to match masked CAN IDs.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceCanFilterCanldMask [ECUC_Mirror_00021]
Parent Container MirrorSourceCanFilterMask
Description Mask applied to CAN IDs before comparison.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceCanFilterld [ECUC_Mirror_00018]
Parent Container MirrorSourceCanFilterMask
Description Unique identifier of the pre-configured CAN filter.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

| No Included Containers

AUTOSAR

10.1.9 MirrorSourceCanSingleldMapping

SWS ltem [ECUC_Mirror_00022]

Container Name MirrorSourceCanSingleldMapping

Description Rule for remapping a single CAN ID.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorSourceCanSingleldMappingDestCanld [ECUC_Mirror_00024]
Parent Container MirrorSourceCanSingleldMapping

Description Mapped CAN ID.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceCanSingleldMappingSourceCanld [ECUC_Mirror_00023]
Parent Container MirrorSourceCanSingleldMapping

Description Original CAN ID.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

10.1.10 MirrorSourceCanMaskBasedldMapping

AUTOSAR

SWS ltem [ECUC_Mirror_00025]

Container Name MirrorSourceCanMaskBasedldMapping

Description Rule for remapping a set of CAN IDs.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name

MirrorSourceCanMaskBasedldMappingDestBaseld
[ECUC_Mirror_00028]

Parent Container

MirrorSourceCanMaskBasedldMapping

Description Base ID merged with the masked parts of the original CAN ID to form
the mapped CAN ID.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Default Value

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name

MirrorSourceCanMaskBasedldMappingSourceCanldCode
[ECUC_Mirror_00026]

Parent Container

MirrorSourceCanMaskBasedldMapping

Description Value to match masked original CAN IDs.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

AUTOSAR

Name

MirrorSourceCanMaskBasedldMappingSourceCanldMask
[ECUC_Mirror_00027]

Parent Container

MirrorSourceCanMaskBasedldMapping

Description Mask applied to original CAN IDs before comparison.
Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

10.1.11 MirrorSourceNetworkLin

SWS ltem [ECUC_Mirror_00029]

Container Name MirrorSourceNetworkLin

Description Source bus representing a LIN network.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorNetworkld [ECUC_Mirror_00012]

Parent Container MirrorSourceNetworkLin

Description Network ID of the bus.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name MirrorSourceLinToCanBaseld [ECUC_Mirror_00041]
Parent Container MirrorSourceNetworkLin
Description Base ID merged with the LIN frame ID to form the CAN ID.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 4294967295 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceMaxDynamicFilters [ECUC_Mirror_00013]

Parent Container MirrorSourceNetworkLin

Description Maximum number of filters that can be dynamically added using
Mirror_AddXxxFilter().

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 255 |

Default Value 5

Post-Build Variant false

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorSourceNetworkLin
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

MirrorSourceLinFilter

0..255 Pre-configured filter for LIN frames.

AUTOSAR

MirrorSourceLinToCanld
Mapping

10.1.12 MirrorSourceLinFilter

Rule for mapping a LIN frame ID to a special CAN ID.

SWS ltem [ECUC_Mirror_00030]

Container Name MirrorSourceLinFilter

Description Pre-configured filter for LIN frames.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Container Choices

Container Name Multiplicity | Scope / Dependency

MirrorSourceLinFilter 0..1 Pre-configured mask based filter for LIN frames.
Mask

MirrorSourceLinFilter 0..1 Pre-configured range filter for LIN frames.
Range

10.1.13 MirrorSourceLinFilterRange

SWS ltem [ECUC_Mirror_00031]

Container Name MirrorSourceLinFilterRange

Description Pre-configured range filter for LIN frames.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorSourceLinFilterld [ECUC_Mirror_00034]

Parent Container MirrorSourceLinFilterRange

Description Unigue identifier of the pre-configured LIN filter.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |

Default Value

Post-Build Variant true

Value

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name MirrorSourceLinFilterLower [ECUC_Mirror_00032]

Parent Container MirrorSourceLinFilterRange

Description Lowest frame ID that is accepted by the filter.

Multiplicity 1

Type EcuclntegerParamDef

Range 0..63 |

Default Value

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Value

Name MirrorSourceLinFilterUpper [ECUC_Mirror_00033]
Parent Container MirrorSourceLinFilterRange

Description Highest frame ID that is accepted by the filter.
Multiplicity 1

Type EcuclntegerParamDef

Range 0. 63 |

Default Value

Post-Build Variant true

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

] No Included Containers

10.1.14 MirrorSourceLinFilterMask

SWS ltem [ECUC_Mirror_00035]
Container Name MirrorSourceLinFilterMask
Description Pre-configured mask based filter for LIN frames.

Post-Build Variant
Multiplicity

true

AUTOSAR

Multiplicity
Configuration Class

Pre-compile time X | VARIANT-PRE-COMPILE
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorSourceLinFilterld [ECUC_Mirror_00034]
Parent Container MirrorSourceLinFilterMask
Description Unique identifier of the pre-configured LIN filter.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name MirrorSourceLinFilterLinldCode [ECUC_Mirror_00036]
Parent Container MirrorSourceLinFilterMask
Description Value to match masked frame IDs.
Multiplicity 1
Type EcuclntegerParamDef
Range 0. 63 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceLinFilterLinldMask [ECUC_Mirror_00037]
Parent Container MirrorSourcelinFilterMask

Description Mask applied to frame IDs before comparison.
Multiplicity 1

Type EcuclntegerParamDef

Range 0. 63 |

Default Value

Post-Build Variant true

Value

AUTOSAR

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

10.1.15 MirrorSourceLinToCanldMapping

Configuration Class

Link time
Post-build time

SWS Item [ECUC_Mirror_00038]

Container Name MirrorSourceLinToCanldMapping

Description Rule for mapping a LIN frame ID to a special CAN ID.
Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

VARIANT-POST-BUILD

Configuration Parameters

Default Value

Name MirrorSourceLinToCanldMappingCanld [ECUC_Mirror_00040]
Parent Container MirrorSourceLinToCanldMapping

Description CAN ID which lies outside of the range mapping.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 4294967295

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

Default Value

Name MirrorSourceLinToCanldMappingLinld [ECUC_Mirror_00039]
Parent Container MirrorSourceLinToCanldMapping

Description Frame ID which is excluded from the range mapping.
Multiplicity 1

Type EcuclntegerParamDef

Range 0..63

Post-Build Variant
Value

true

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

10.1.16 MirrorSourceNetworkFlexRay

SWS Item [ECUC_Mirror_00042]

Container Name MirrorSourceNetworkFlexRay

Description Source bus representing a FlexRay network.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorNetworkld [ECUC_Mirror_00012]

Parent Container MirrorSourceNetworkFlexRay

Description Network ID of the bus.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |

Default Value

Post-Build Variant
Value

true

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Value

Name MirrorSourceMaxDynamicFilters [ECUC_Mirror_00013]

Parent Container MirrorSourceNetworkFlexRay

Description Maximum number of filters that can be dynamically added using
Mirror_AddXxxFilter().

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 255 |

Default Value 5

Post-Build Variant false

AUTOSAR

Value Configuration
Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: local

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorSourceNetworkFlexRay

Description Reference to the ComMChannel that represents the bus.
Multiplicity 1

Type Symbolic name reference to ComMChannel

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local
Included Containers
Container Name Multiplicity | Scope / Dependency
MirrorSourceFlexRay 0..255 Pre-configured filter for FlexRay frames.
Filter

10.1.17 MirrorSourceFlexRayFilter

SWS ltem [ECUC_Mirror_00043]

Container Name MirrorSourceFlexRayFilter

Description Pre-configured filter for FlexRay frames.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name MirrorSourceFlexRayFilterChannelAssignment [ECUC_Mirror_00049]
Parent Container MirrorSourceFlexRayFilter
Description FlexRay channels accepted by the filter.
Multiplicity 1
Type EcucEnumerationParamDef
Range MIRROR_FR_CHANNEL_ | FlexRay channel A only.
A
MIRROR_FR_CHANNEL_ | FlexRay channel A and B.
AB

AUTOSAR

MIRROR_FR_CHANNEL_ | FlexRay channel B only.
B
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceFlexRayFilterCycleRepetition [ECUC_Mirror_00048]
Parent Container MirrorSourceFlexRayFilter
Description Cycle repetition of accepted cycles.
Multiplicity 1
Type EcuclntegerParamDef
Range 1..64 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceFlexRayFilterld [ECUC_Mirror_00050]
Parent Container MirrorSourceFlexRayFilter
Description Unique identifier of the pre-configured FlexRay filter.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0..255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Default Value

Name MirrorSourceFlexRayFilterLowerBaseCycle [ECUC_Mirror_00046]
Parent Container MirrorSourceFlexRayFilter

Description Lowest base cycle number that is accepted by the filter.
Multiplicity 1

Type EcuclntegerParamDef

Range 0. 63 |

AUTOSAR

Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorSourceFlexRayFilterLowerSlot [ECUC_Mirror_00044]
Parent Container MirrorSourceFlexRayFilter
Description Lowest slot ID that is accepted by the filter.
Multiplicity 1
Type EcuclntegerParamDef
Range 1..2047 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local
Name MirrorSourceFlexRayFilterUpperBaseCycle [ECUC_Mirror_00047]
Parent Container MirrorSourceFlexRayFilter
Description Highest base cycle number that is accepted by the filter.
Multiplicity 1
Type EcuclntegerParamDef
Range 0..63 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Value

Name MirrorSourceFlexRayFilterUpperSlot [ECUC_Mirror_00045]
Parent Container MirrorSourceFlexRayFilter

Description Highest slot ID that is accepted by the filter.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..2047 |

Default Value

Post-Build Variant true

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

10.1.18 MirrorDestNetwork

SWS Item [ECUC_Mirror_00051]
Container Name MirrorDestNetwork
Description Destination bus to which frames are sent by the Bus Mirroring module.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Container Choices

Container Name Multiplicity | Scope / Dependency

MirrorDestNetworkCan 0..1 Destination bus representing a CAN network.
MirrorDestNetworkCdd 0..1 Destination bus representing a user defined network.
MirrorDestNetworkFlex 0..1 Destination bus representing a FlexRay network.
Ray

MirrorDestNetworklp 0..1 Destination bus representing an IP network.

10.1.19 MirrorDestNetworkCan

SWS Item [ECUC_Mirror_00052]

Container Name MirrorDestNetworkCan

Description Destination bus representing a CAN network.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

AUTOSAR

Name MirrorDestQueueSize [ECUC_Mirror_00054]

Parent Container MirrorDestNetworkCan

Description Number of frames that can be stored in the output queue for the
destination bus.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535

Default Value 20

Post-Build Variant false

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Default Value

Name MirrorNetworkld [ECUC_Mirror_00012]

Parent Container MirrorDestNetworkCan

Description Network ID of the bus.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |

Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name MirrorStatusCanld [ECUC_Mirror_00061]
Parent Container MirrorDestNetworkCan
Description CAN ID of the CAN status frame.
If configured, a status frame will be sent on the CAN destination bus
that contains the state of all active source buses.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 4294967295
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

AUTOSAR

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorDestNetworkCan
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

MirrorDestPdu

1.% |I-PDU used for transmission of the mirrored frames on
the destination bus.

For FlexRay, an arbitrary number of I-PDUs can be
configured. For the other bus types, only one I-PDU is
supported per destination bus.

10.1.20 MirrorDestNetworkFlexRay

SWS ltem [ECUC_Mirror_00058]
Container Name MirrorDestNetworkFlexRay
Description Destination bus representing a FlexRay network.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Value

Name MirrorDestQueueSize [ECUC_Mirror_00054]

Parent Container MirrorDestNetworkFlexRay

Description Number of frames that can be stored in the output queue for the
destination bus.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535

Default Value 20

Post-Build Variant false

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name MirrorDestTransmissionDeadline [ECUC_Mirror_00059]

Parent Container MirrorDestNetworkFlexRay

Description Time in seconds after which the collection of source frames into the
destination frame stopped and the frame is sent at the latest.
If omitted, destination frames are only sent when full or when the time
stamp overflows after 655.35ms.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 0.655] |

Default Value 0.1

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name MirrorNetworkld [ECUC_Mirror_00012]
Parent Container MirrorDestNetworkFlexRay
Description Network ID of the bus.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorDestNetworkFlexRay
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

MirrorDestPdu 1.* I-PDU used for transmission of the mirrored frames on
the destination bus.
For FlexRay, an arbitrary number of I-PDUs can be
configured. For the other bus types, only one I-PDU is
supported per destination bus.
10.1.21 MirrorDestNetworkip
SWS ltem [ECUC_Mirror_00060]
Container Name MirrorDestNetworklp
Description Destination bus representing an IP network.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Value

Name MirrorDestQueueSize [ECUC_Mirror_00054]

Parent Container MirrorDestNetworklp

Description Number of frames that can be stored in the output queue for the
destination bus.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535

Default Value 20

Post-Build Variant false

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name MirrorDestTransmissionDeadline [ECUC_Mirror_00059]

Parent Container MirrorDestNetworklp

Description Time in seconds after which the collection of source frames into the
destination frame stopped and the frame is sent at the latest.
If omitted, destination frames are only sent when full or when the time
stamp overflows after 655.35ms.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 0.655] |

Default Value 0.1

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name MirrorNetworkld [ECUC_Mirror_00012]
Parent Container MirrorDestNetworklp
Description Network ID of the bus.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorDestNetworklp
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

MirrorDestPdu

1.% |I-PDU used for transmission of the mirrored frames on
the destination bus.

For FlexRay, an arbitrary number of I-PDUs can be
configured. For the other bus types, only one I-PDU is
supported per destination bus.

10.1.22 MirrorDestNetworkCdd

SWS Item [ECUC_Mirror_00062]
Container Name MirrorDestNetworkCdd
Description Destination bus representing a user defined network.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Value

Name MirrorDestQueueSize [ECUC_Mirror_00054]

Parent Container MirrorDestNetworkCdd

Description Number of frames that can be stored in the output queue for the
destination bus.

Multiplicity 1

Type EcuclntegerParamDef

Range 1..65535

Default Value 20

Post-Build Variant false

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name MirrorDestTransmissionDeadline [ECUC_Mirror_00059]

Parent Container MirrorDestNetworkCdd

Description Time in seconds after which the collection of source frames into the
destination frame stopped and the frame is sent at the latest.
If omitted, destination frames are only sent when full or when the time
stamp overflows after 655.35ms.

Multiplicity 0..1

Type EcucFloatParamDef

Range [0.001 .. 0.655] |

Default Value 0.1

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name MirrorNetworkld [ECUC_Mirror_00012]
Parent Container MirrorDestNetworkCdd
Description Network ID of the bus.
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0.. 255 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name MirrorComMNetworkHandleRef [ECUC_Mirror_00064]
Parent Container MirrorDestNetworkCdd
Description Reference to the ComMChannel that represents the bus.
Multiplicity 1
Type Symbolic name reference to ComMChannel
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Included Containers

Container Name

Multiplicity | Scope / Dependency

MirrorDestPdu

1.% |I-PDU used for transmission of the mirrored frames on
the destination bus.

For FlexRay, an arbitrary number of I-PDUs can be
configured. For the other bus types, only one I-PDU is
supported per destination bus.

10.1.23 MirrorDestPdu

SWS ltem [ECUC_Mirror_00055]
Container Name MirrorDestPdu
Description I-PDU used for transmission of the mirrored frames on the destination

bus.

For FlexRay, an arbitrary number of I-PDUs can be configured. For the
other bus types, only one I-PDU is supported per destination bus.

Post-Build Variant

true

Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Default Value

Name MirrorDestPduld [ECUC_Mirror_00057]

Parent Container MirrorDestPdu

Description I-PDU identifier used for TxConfirmation from PduR.

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535 |

Post-Build Variant
Value

false

AUTOSAR

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

Name MirrorDestPduUsesTriggerTransmit [ECUC_Mirror_00063]
Parent Container MirrorDestPdu
Description Switches transmission via TriggerTransmit.
e true: The I-PDU is transmitted using TriggerTransmit.
o false: The |I-PDU is transmitted directly with the Transmit call.
Multiplicity 1
Type EcucBooleanParamDef

Default Value

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

Name MirrorDestPduRef [ECUC_Mirror_00056]

Parent Container MirrorDestPdu

Description Reference to the Pdu object representing the I-PDU.
Multiplicity 1

Type Reference to Pdu

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time
Link time

Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: local

] No Included Containers

10.2 Configuration Constraints

This section lists configuration constraints for the the MirrorDestPdus of the sup-
ported destination buses.

AUTOSAR

10.2.1 CAN Destination Bus

[SWS_Mirror_CONSTR_00001] | The MirrorDestPdu of a MirrorDestNet-—
workCan requires a MetaDatalItem Of MetaDataItemType CAN_ID_32. The
CanIfTxPduCanIdMask of the corresponding CanIfTxPduCfg shall be 0. |
(SRS_Mirror_00001)

This way, the Bus Mirroring module can transmit CAN destination frames with any CAN
ID.

[SWS_Mirror_CONSTR_00002] | The CanFdPaddingValue thatis used to transmit
the PDU referenced by MirrorDestPduRef for a CAN-FD destination bus shall be
set to 0 to ensure that the NetworkStateAvailable of a CAN status item is 0 if
the status item has not been written by the Bus Mirroring module but lies in a padded
region of the status frame. |(SRS_Mirror_00001)

10.2.2 FlexRay Destination Bus

To avoid padding, the MirrorDestPdu used for a FlexRay destination bus shall be
placed on dynamic frames.

[SWS_Mirror_CONSTR_00004] | FrIfAllowDynamicLSduLength shall be set to
true for all FrIfFrameStructures that contain FrIfTxPdus referenced by a Mir-
rorDestPdu of aMirrorDestNetworkFlexRay. |(SRS_Mirror_00001)

According to [SWS_Frlf_05092], a FlexRay PDU with dynamic length must be placed
at the end of a FlexRay frame, or must be the only PDU within the frame.

10.2.3 Mirroring of Serialized Frames

In principal, when a serialized frame is received by an ECU that features Bus Mirroring,
it would be nice to merge it into the stream of serialized messages created by the Bus
Mirroring module. But as declared section 4.1, this would mean that the Bus Mirroring
module would have to first de-serialize the received message and then re-serialize the
elements of the message, which would be quite complicated and expensive regarding
run-time, and it would require an extended configuration because the mirroring could
not discern serialized frames from other frames that accidentally could be interpreted
as serialized frames.

Note that this scenario can only happen on a FlexRay source bus, because |IP/Ethernet
and proprietary networks cannot be configured as source buses.

IfaMirrorSourceFlexRayFilter accepts the serialized frames, they will therefore
be packed as a single frame into the serialized destination frame, resulting in a nested
serialization. To avoid such a nested serialization, it should be avoided that serialized
frames are accepted by the Bus Mirroring module by setting the FlexRay frame filters
accordingly.

AUTOSAR

[SWS_Mirror_CONSTR_00003] | The configured MirrorSourceFlexRayFilters
shall be configured such that they do not include serialized frames transmitted on the
source bus. |(SRS_Mirror_00001)

Instead, a direct routing of the serialized frame should be configured using PduR, re-
sulting in additional PDUs which could carry serialized frames on the destination bus.

10.3 Published Information

For detalils, refer to the section 10.3 “Published Information” in [2, SWS BSW General].

	1 Introduction and Functional Overview
	2 Acronyms and Abbreviations
	3 Related Documentation
	3.1 Input Documents & Related Standards and Norms
	3.2 Related Specification

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Applicability to Car Domains

	5 Dependencies to Other Modules
	5.1 File Structure
	5.1.1 Code File Structure
	5.1.2 Header File Structure

	6 Requirements Tracing
	7 Functional Specification
	7.1 Overview
	7.2 Module Handling
	7.2.1 Initialization
	7.2.2 Timing Related Functionality
	7.2.3 Selection of Active Source Buses
	7.2.4 Switching the Destination Bus
	7.2.5 Controlling Frame Filters

	7.3 Access to Source Buses
	7.3.1 Access to CAN
	7.3.1.1 Source Bus Activation
	7.3.1.2 Frame Acquisition
	7.3.1.3 Frame Filters
	7.3.1.4 Status Acquisition

	7.3.2 Access to LIN
	7.3.2.1 Source Bus Activation
	7.3.2.2 Frame Acquisition
	7.3.2.3 Frame Filters
	7.3.2.4 Status Acquisition

	7.3.3 Access to FlexRay
	7.3.3.1 Source Bus Activation
	7.3.3.2 Frame Acquisition
	7.3.3.3 Frame Filters
	7.3.3.4 Status Acquisition

	7.4 Mirroring to FlexRay, IP, and CDD
	7.4.1 Handling of Destination Frames
	7.4.1.1 Creation
	7.4.1.2 Queueing
	7.4.1.3 Transmission

	7.4.2 Mirroring Protocol
	7.4.2.1 Header Layout
	7.4.2.1.1 ProtocolVersion
	7.4.2.1.2 SequenceNumber
	7.4.2.1.3 HeaderTimestamp
	7.4.2.1.4 DataLength

	7.4.2.2 Data Item Layout
	7.4.2.2.1 Timestamp
	7.4.2.2.2 NetworkStateAvailable
	7.4.2.2.3 FrameIDAvailable
	7.4.2.2.4 PayloadAvailable
	7.4.2.2.5 NetworkType
	7.4.2.2.6 NetworkID
	7.4.2.2.7 NetworkState
	7.4.2.2.7.1 CAN
	7.4.2.2.7.2 LIN
	7.4.2.2.7.3 FlexRay

	7.4.2.2.8 FrameID
	7.4.2.2.8.1 CAN
	7.4.2.2.8.2 LIN
	7.4.2.2.8.3 FlexRay

	7.4.2.2.9 PayloadLength
	7.4.2.2.10 Payload

	7.5 Mirroring to CAN
	7.5.1 Handling of Source Frames
	7.5.1.1 ID Mapping
	7.5.1.1.1 CAN
	7.5.1.1.2 LIN

	7.5.1.2 Queuing
	7.5.1.3 Transmission

	7.5.2 Creation of Status Frames
	7.5.3 Status Protocol
	7.5.3.1 Status Header Layout
	7.5.3.1.1 ProtocolVersion

	7.5.3.2 Status Item Layout
	7.5.3.2.1 NetworkStateAvailable
	7.5.3.2.2 FrameIDAvailable
	7.5.3.2.3 NetworkType
	7.5.3.2.4 NetworkID
	7.5.3.2.5 NetworkState
	7.5.3.2.6 FrameID

	7.6 Error Classification
	7.6.1 Development Errors
	7.6.2 Runtime Errors
	7.6.3 Transient Faults
	7.6.4 Production Errors
	7.6.5 Extended Production Errors

	7.7 Api Parameter Checking

	8 API Specification
	8.1 Imported Types
	8.2 Type Definitions
	8.2.1 Mirror_ConfigType
	8.2.2 MIRROR_INVALID_NETWORK

	8.3 Function Definitions
	8.3.1 Generic Functions
	8.3.1.1 Mirror_Init
	8.3.1.2 Mirror_DeInit
	8.3.1.3 Mirror_GetVersionInfo

	8.3.2 Filter Handling
	8.3.2.1 Mirror_GetStaticFilterState
	8.3.2.2 Mirror_SetStaticFilterState
	8.3.2.3 Mirror_AddCanRangeFilter
	8.3.2.4 Mirror_AddCanMaskFilter
	8.3.2.5 Mirror_AddLinRangeFilter
	8.3.2.6 Mirror_AddLinMaskFilter
	8.3.2.7 Mirror_AddFlexRayFilter
	8.3.2.8 Mirror_RemoveFilter

	8.3.3 State Handling
	8.3.3.1 Mirror_IsMirrorActive
	8.3.3.2 Mirror_Offline
	8.3.3.3 Mirror_GetDestNetwork
	8.3.3.4 Mirror_SwitchDestNetwork
	8.3.3.5 Mirror_IsSourceNetworkStarted
	8.3.3.6 Mirror_StartSourceNetwork
	8.3.3.7 Mirror_StopSourceNetwork

	8.3.4 Support Functions
	8.3.4.1 Mirror_GetNetworkType
	8.3.4.2 Mirror_GetNetworkId
	8.3.4.3 Mirror_GetNetworkHandle

	8.4 Callback Notifications
	8.4.1 Mirror_ReportCanFrame
	8.4.2 Mirror_ReportLinFrame
	8.4.3 Mirror_ReportFlexRayFrame
	8.4.4 Mirror_ReportFlexRayChannelStatus
	8.4.5 Mirror_TxConfirmation
	8.4.6 Mirror_TriggerTransmit

	8.5 Scheduled Functions
	8.5.1 Mirror_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces

	8.7 Service Interfaces
	8.7.1 Implementation Data Types
	8.7.1.1 Mirror_NetworkType
	8.7.1.2 Mirror_FlexRayChannelType
	8.7.1.3 Mirror_CanIdType

	8.7.2 Client-Server Interfaces
	8.7.2.1 MirrorControl

	8.7.3 Provided Ports
	8.7.3.1 MirrorControl

	9 Sequence Diagrams
	10 Configuration Specification
	10.1 Containers and Configuration Parameters
	10.1.1 Mirror
	10.1.2 MirrorGeneral
	10.1.3 MirrorConfigSet
	10.1.4 MirrorSourceNetwork
	10.1.5 MirrorSourceNetworkCan
	10.1.6 MirrorSourceCanFilter
	10.1.7 MirrorSourceCanFilterRange
	10.1.8 MirrorSourceCanFilterMask
	10.1.9 MirrorSourceCanSingleIdMapping
	10.1.10 MirrorSourceCanMaskBasedIdMapping
	10.1.11 MirrorSourceNetworkLin
	10.1.12 MirrorSourceLinFilter
	10.1.13 MirrorSourceLinFilterRange
	10.1.14 MirrorSourceLinFilterMask
	10.1.15 MirrorSourceLinToCanIdMapping
	10.1.16 MirrorSourceNetworkFlexRay
	10.1.17 MirrorSourceFlexRayFilter
	10.1.18 MirrorDestNetwork
	10.1.19 MirrorDestNetworkCan
	10.1.20 MirrorDestNetworkFlexRay
	10.1.21 MirrorDestNetworkIp
	10.1.22 MirrorDestNetworkCdd
	10.1.23 MirrorDestPdu

	10.2 Configuration Constraints
	10.2.1 CAN Destination Bus
	10.2.2 FlexRay Destination Bus
	10.2.3 Mirroring of Serialized Frames

	10.3 Published Information

