AUTOSAR

Layered Software Architecture

- AUTOSAR Confidential -

BMWGroup (g =@ (=) BOSCH DAIMLER
m PSA PEUGEOT CITROim TOYOTA VO LKSWAG EN

Document Title

Layered Software Architecture

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 053
Document Status Final

Part of AUTOSAR Standard

Classic Platform

Part of Standard Release

4.4.0

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Document Change History

Date Release |Changed by Change Description
2018-10-31(4.4.0 AUTOSAR » Adopting LIN Slave Support, LinNm removed
Release » New Concepts: Key Management, 15t draft of MCAL Multicore Distribution
Management |5 Egitorial changes
2017-12-0814.3.1 AUTOSAR » Editorial changes
Release
Management
2016-11-30 (4.3.0 AUTOSAR > Incorporated new 4.3 concepts for Crypto Stack, Vehicle-2-X Communication, SOME/IP
Release Transport Protocol, DLT rework
Management |5 Removed obsolete Dbg module
» Editorial changes
2015-07-3114.2.2 AUTOSAR » Editorial changes
Release
Management
2014-10-31(4.2.1 AUTOSAR > Incorporated new 4.2 concepts for: Switch Configuration; Sender-Receiver-Serialization;
Release CAN-FD; Large-Data-COM; E2E-Extension; Global Time Synchronization; Support for Post-
Management build ECU-Configuration; Secure-Onboard-Communication; ASIL/QM-Protection
» Introduction of new error classification
» Editorial changes
2014-03-3114.1.3 AUTOSAR » Editorial changes
Release
Management

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Document Change History

Date Releas [Changed by Change Description
e
2013-03-15(4.1.1 |AUTOSAR > Clarification of partial network support for CAN/LIN slave.
Administration » New Ethernet stack extensions

» Added Crypto Service Manager to System Services

» Revised presentation of J1939 and added new J1939 modules

» Added new energy management concepts: “Pretended Networking”, “ECU Degradation”
» Added new modules: “Output Compare Unit Driver” and “Time Service”

» Changed handling of Production Errors

» Fixed various typography and layout issues

2011-12-22 (4.0.3 |AUTOSAR > Added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".
Administration » Added an overview chapter for energy management and partial networking

» Corrected examples regarding DEM symbol generation

» Fixed minor typography issues

» Clarification of term AUTOSAR-ECU on slide "94jt1"

» Corrected CDD access description for EcuM on slide "11123“

2009-12-18(4.0.1 |AUTOSAR > Added a note regarding support for System Basis Chips on slide "94juq"
Administration > Clarification of DBG and DLT text on slide "3edfg"
» Corrected DBG description on slide "11231"

2010-02-02(3.1.4 |[AUTOSAR » The document has been newly structured. There are now 3 main parts:
Administration m Architecture

m Configuration

m Integration and Runtime Aspects
» The whole content has been updated to reflect the content of the R 4.0 specifications.

» Topics which have bee newly introduced or heavily extended in release 4.0 have been
added. E.g.,. Multi-Core Systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety etc

> Legal disclaimer revised

- AUTOSAR Confidential -

4 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Document Change History

Date Release |Changed by |Change Description
2008-08-13 [3.1.1 AUTOSAR » Legal disclaimer revised
Administration
2007-12-21 |3.0.1 AUTOSAR » Updates based on new wakeup/startup concepts
Administration | > Detailed explanation for post-build time configuration
» "Slimming" of LIN stack description
» ICC2 figure
» Document meta information extended
» Small layout adaptations made
2007-01-24 (2.1.15 AUTOSAR > ICC clustering added.
Administration | > Document contents harmonized
» Legal disclaimer revised
» Release Notes added
» “Advice for users” revised
» “Revision Information” added
2006-11-28 (2.1.1 AUTOSAR Rework Of:
Administration | > Error Handling
» Scheduling Mechanisms
» More updates according to architectural decisions in R2.0
2006-01-02 |1.0.1 AUTOSAR » Correct version released
Administration
2005-05-31 (1.0.0 AUTOSAR > Initial release

Administration

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in it, as released by AUTOSAR, is for the purpose
of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intellectual property rights. The commercial exploitation
of the material contained in this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any
other purpose, no part of the work may be utilized or reproduced, in any form or by any means, without permission in writing from the
publisher.

The work has been developed for automotive applications only. It has neither been developed, nor tested for non-automotive
applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

- AUTOSAR Confidential -

6 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

17

o
I
=)
ke
©
(o
@
o

Introduction
Purpose and Inputs

Purpose of this document

The Layered Software Architecture describes the software architecture of AUTOSAR:

» it describes in an top-down approach the hierarchical structure of AUTOSAR software and
» maps the Basic Software Modules to software layers and

» shows their relationship.

This document does not contain requirements and is informative only. The examples given are
not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

» it does not specify a structural software architecture (design) with detailed static and dynamic
interface descriptions,

m these information are included in the specifications of the basic software modules
themselves.

Inputs
This document is based on specification and requirement documents of AUTOSAR.

- AUTOSAR Confidential -

18 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Introduction
Scope and Extensibility

—
=)
<
o
5
(0]
(@)
©
o

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:
» strong interaction with hardware (sensors and actuators),

» connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

»> microcontrollers (typically 16 or 32 bit) with limited resources of computing power and memory (compared
with enterprise solutions),

» Real Time System and
» program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according
software/configuration. The mechanical design is not in the scope of AUTOSAR. This means that if more than

one microcontroller in arranged in a housing, then each microcontroller requires its own description of an
AUTOSAR-ECU instance.

AUTOSAR extensibility
The AUTOSAR Software Architecture is a generic approach:
» standard modules can be extended in functionality, while still being compliant,
m still, their configuration has to be considered in the automatic Basic SW configuration process!
» non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

» further layers cannot be added.

- AUTOSAR Confidential -

19 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Overview of Software Layers
Top view

page id: 94qu9

The AUTOSAR Architecture distinguishes on the highest abstraction level between three

software layers: Application, Runtime Environment and Basic Software which run on a
Microcontroller.

Application Layer

Runtime Environment (RTE)

Microcontroller

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

Architecture — Overview of Software Layers
Coarse view

page id: 94ju3

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,
Microcontroller Abstraction and Complex Drivers.

Application Layer

Runtime Environment

A
B

Microcontroller

- AUTOSAR Confidential -

(—\4
Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I A a SA R

Architecture — Overview of Software Layers
Detailed view

page id: 94ju4

The Basic Software Layers are further divided into functional groups. Examples of Services
are System, Memory and Communication Services.

Application Layer

Runtime Environment

Pt

Microcontroller

- AUTOSAR Confidential -

(_\4
Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I A o SA R

Architecture — Overview of Software Layers
Microcontroller Abstraction Layer

©
s
<
o
h=)
o
o)
]
o]

The Microcontroller Abstraction Layer is the
lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the uC and
internal peripherals.

Task
Make higher software layers independent of uC

Microcontroller Abstraction Layer

Properties

Implementation: uC dependent

Upper Interface: standardized and puC
independent

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

23

Architecture — Overview of Software Layers
ECU Abstraction Layer

~
s
<
[e2]
h=)
)
O
]
o

The ECU Abstraction Layer interfaces the
drivers of the Microcontroller Abstraction

Layer. It also contains drivers for external
devices.

It offers an API for access to peripherals and
devices regardless of their location (uC
internal/external) and their connection to the
HUC (port pins, type of interface)

Microcontroller Abstraction Layer

Task

Make higher software layers independent of
ECU hardware layout

Properties

Implementation: pC independent, ECU hardware
dependent

Upper Interface: uC and ECU hardware
independent

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

24

Architecture — Overview of Software Layers
Complex Drivers

]
2
IF
(2]
=]

)

o)

@

Q|

The Complex Drivers Layer spans from the
hardware to the RTE.

Task

Provide the possibility to integrate special purpose
functionality, e.g. drivers for devices:

» which are not specified within AUTOSAR,
» with very high timing constrains or

> for migration purposes etc.

sIaAlIQ
xa|dwo)

ECU Abstraction Layer

Microcontroller Abstraction Layer

Properties

Implementation: might be application, pC and ECU
hardware dependent

Upper Interface: might be application, uC and ECU
hardware dependent

- AUTOSAR Confidential -

25 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

o)
2
F
o
b=
o
o)
]
Q|

Architecture — Overview of Software Layers
Services Layer

The Services Layer is the highest layer of the Basic

Software which also applies for its relevance for
the application software: while access to 1/0

signals is covered by the ECU Abstraction Layer, |

the Services Layer offers:

> Operating system functionality SIS Layen 5
» Vehicle network communication and management ECU Abstraction Layer g%
services i)
> Memory services (NVRAM management) Microcontroller Abstraction Layer
» Diagnostic Services (including UDS communication, error
memory and fault reatmen)
» ECU state management, mode management
» Logical and temporal program flow monitoring (Wdg
manager)
Task

Provide basic services for applications, RTE and

basic software modules.

Properties
Implementation: mostly uC and ECU hardware

independent

Upper Interface: pC and ECU hardware independent

26

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

o
s
<
o
h=)
o
o)
]
o]

Architecture — Overview of Software Layers
AUTOSAR Runtime Environment (RTE)

The RTE is a layer providing communication services
to the application software (AUTOSAR Software
Components and/or AUTOSAR Sensor/Actuator
components).

Above the RTE the software architecture style
changes from “layered” to “component style”.

The AUTOSAR Software Components communicate
with other components (inter and/or intra ECU)
and/or services via the RTE.

Task

Make AUTOSAR Software Components independent
from the mapping to a specific ECU.

Properties

Implementation: ECU and application specific
(generated individually for each ECU)

Upper Interface: completely ECU independent

AUTOSAR Runtime Environment (RTE)

Services Layer

sJanlg
xajdwod

ECU Abstraction Layer

Microcontroller Abstraction Layer

Microcontroller

- AUTOSAR Confidential -

27 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Architecture — Overview of Software Layers
Introduction to types of services

™
]
<
)
b=
o
=)
]
1

The Basic Software can be subdivided into the following types of services:

» Input/Output (1/0)

Standardized access to sensors, actuators and ECU onboard peripherals
» Memory

Standardized access to internal/external memory (non volatile memory)
» Crypto

Standardized access to cryptographic primitives including internal/external hardware
accelerators

> Communication

Standardized access to: vehicle network systems, ECU onboard communication systems and
ECU internal SW

> Off-board Communication

Standardized access to: Vehicle-to-X communication, in vehicle wireless network systems,
ECU off-board communication systems

» System

Provision of standardizeable (operating system, timers, error memory) and ECU specific (ECU
state management, watchdog manager) services and library functions

- AUTOSAR Confidential -

28 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Introduction to Basic Software Module Types
Driver (internal)

3
3
>
b=
©
)
&
o

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:
» Internal EEPROM

> Internal CAN controller
> Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller
Abstraction Layer.

- AUTOSAR Confidential -

29 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

o]
s
<
o
h=)
o
o)
]
o]

Architecture — Introduction to Basic Software Module Types
Driver (external)

External devices are located on the ECU hardware outside the microcontroller. Examples for
external devices are:

» External EEPROM

» External watchdog

» External flash

A driver for an external device is called external driver and is located in the ECU Abstraction
Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and
watchdogs are supported by AUTOSAR.

» Example: a driver for an external EEPROM with SPI interface accesses the external
EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the
microcontroller directly. Those external drivers are located in the Microcontroller Abstraction

Layer because they are microcontroller dependent.

- AUTOSAR Confidential -

30 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Introduction to Basic Software Module Types
Interface

H
3
b=
o
(o
&
o

An Interface (interface module) contains the functionality to abstract from modules which are
architecturally placed below them. E.g., an interface module which abstracts from the
hardware realization of a specific device. It provides a generic API to access a specific type of

device independent on the number of existing devices of that type and independent on the
hardware realization of the different devices.

The interface does not change the content of the data.
In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN

communication networks independent on the number of CAN Controllers within an ECU and
independent of the hardware realization (on chip, off chip).

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

31

Architecture — Introduction to Basic Software Module Types
Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous
access of one or multiple clients to one or more drivers. l.e. it performs buffering, queuing,
arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC
Driver).

- AUTOSAR Confidential -

32 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Introduction to Basic Software Module Types
Manager

N
9,
<
o
h=)
o
=)
]
1

A manager offers specific services for multiple clients. It is needed in all cases where pure
handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the
data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external

memory devices like flash and EEPROM memory. It also performs distributed and reliable
data storage, data checking, provision of default values etc.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

33

Architecture — Overview of Software Layers
Introduction to Libraries

o
o,
)
&
b=
o
=)
]
1

Libraries are a collection of functions for
related purposes

Libraries:

» can be called by BSW modules (that
including the RTE), SW-Cs, libraries
or integration code

run in the context of the caller in the
same protection environment

can only call libraries

are re-entrant

do not have internal states

do not require any initialization

are synchronous, i.e. they do not have
wait points

Y
AUTOSAR Libraries

YV V V VY

The following libraries are
specified within AUTOSAR:
Fixed point mathematical, > Interpolation for floating point data, » CRC calculation,

Floating point mathematical, » Bit handling, > Extended functions (e.g. 64bits
Interpolation for fixed point data, » E2E communication, calculation, filtering, etc.)

YV V V

34 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

35

Architecture — Content of Software Layers Application Layer
Microcontroller Abstraction Layer RTE

N
S
2
o
e
)
)
@
[=X

The uC Abstraction Layer consists of the following module groups:

» Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)

Functions with direct uC access (e.g. Core test)
» Communication Drivers

Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN).

OSl-Layer: Part of Data Link Layer

» Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices

(e.g. external Flash)

» 1/O Drivers:
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)

» Crypto Drivers Drivers for on-chip crypto devices like SHE or HSM

» Wireless Communication Drivers: Drivers for wireless network systems (in-vehicle or off-board communication) Group of
Software
Microcontroller Drivers Memory Drivers Crypto Communication Drivers Wireless 1/0 Drivers modules of
Drivers Comm. | Mo
. similar type
Drivers
7
=l s
=| '3 =
< 5| 3 o 3 n| om 2 - 2
® = < | po) 3 - T — (@)] > 0 (@) = > lw)
3| 2 a g B| 2 :-,_’ m 3 5| Z| 2 ? g E ol § 3| © % Software
ol &| g [2| =8l =2 o &|2|8|%5|3 2 ol 2| g 22| ¢ module
=i =) DN (e 8| e o -
5| 2 2 2 4
© ©
internal
U peripheral
I .
i m %) %) 0 o) ol BN B= device
= > Q
L 7

- AUTOSAR Confidential -

36 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (5)SA R

Architecture — Content of Software Layers

Application Layer
Microcontroller Abstraction Layer: SPIHandlerDriver

N
<
T
s
7]
(0]
(o)
(]
[oX

RTE

The SPIHandlerDriver allows concurrent

access of several clients to one or more SPI ---
busses. -

Microcontroller (uC)

To abstract all features of a SPI microcontroller
pins dedicated to Chip Select, those shall
directly be handled by the SPIHandlerDriver.
That means those pins shall not be available
in DIO Driver.

Example:

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

37

Architecture — Content of Software Layers Application Layer
Complex Drivers RTE

N
—
—
—
N
kel
o
o)
IS
Q.

A Complex Driver is a module which implements non-
standardized functionality within the basic software
stack.

1o
An example is to implement complex sensor

evaluation and actuator control with direct access
to the uC using specific interrupts and/or complex
UC peripherals (like PCP, TPU), e.g.

» Injection control
» Electric valve control
» Incremental position detection

Example:

Task:

Fulfill the special functional and timing requirements
for handling complex sensors and actuators

Properties:

Implementation: highly uC, ECU and application
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

- AUTOSAR Confidential -

38 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Content of Software Layers Application Layer
ECU Abstraction: I/O Hardware Abstraction RTE

=1
©
]
©
°
k=]
)
=2
©
=1

The I/O Hardware Abstraction is a group of modules
which abstracts from the location of peripheral I/O
devices (on-chip or on-board) and the ECU commun o
hardware layout (e.g. uC pin connections and Drivers DIvers
signal level inversions). The I/O Hardware
Abstraction does not abstract from the
sensors/actuators!

Microcontroller (uC)

The different I/O devices might be accessed via an I/0
signal interface. Example:

Task: I/0 Signal Interface

Represent I/O signals as they are connected to the
Driver for ext. Driver for ext.

ECU hardware (e.g. current, voltage, frequency).
COM Drivers I/O Drivers

Hide ECU hardware and layout properties from higher
software layers.

Properties:

Implementation: uC independent, ECU hardware
dependent

Upper Interface: uC and ECU hardware independent,

dependent on signal type specified and
implemented according to AUTOSAR (AUTOSAR E

interface)

18Auqg
J8|pueH|dS
19A11d OId
J8Ag DAV

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

39

: Architecture — Content of Software Layers Application Layer
s ECU Abstraction: Communication Hardware Abstraction RTE
The Communication Hardware Abstraction is a COM HW
group of modules which abstracts from the Co’r‘:::m_
location of communication controllers and the ECU Gty e
rvers

hardware layout. For all communication systems a :

specific Communication Hardware Abstraction is
required (e.g. for LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal
CAN channels and an additional on-board ASIC

with 4 CAN controllers. The CAN-ASIC is Example:
connected to the microcontroller via SPI. Communication Hardware Abstraction
The communication drivers are accessed via bus CAN Interface
specific interfaces (e.g. CAN Interface). —
Trans- Driver for ext.
ceiver CAN ASIC
Task: Driver
Provide equal mechanisms to access a bus channel 1O Drivers Communication Drivers
regardless of it's location (on-chip / on-board) 9 e o
o =2 =
' 3 S E =4
Properties:) : Il

Implementation: uC independent, ECU hardware
dependent and external device dependent

Upper Interface: bus dependent, uC and ECU
hardware independent

- AUTOSAR Confidential -

40 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Content of Software Layers Application Layer
Scope: Memory Hardware Abstraction RTE
The Memory Hardware Abstraction is a group of
modules which abstracts from the location of -
peripheral memory devices (on-chip or on-board) Memory || COmmun-
and the ECU hardware layout. Drivers Saoon
Example: on-chip EEPROM and external EEPROM Microcontroller (C)
devices are accessible via the same
mechanism.

Example:

The memory drivers are accessed via memory specific
abstraction/emulation modules (e.g. EEPROM

i
. . emol straction Interface
By emulating an EEPROM abstraction on top of Flash °

hardware units a common access via Memory ooV Abstact Sl BT
straction

Emulation

Abstraction Interface to both types of hardware is

enabled.
External External
EEPROM Driver Flash Driver
Task:

Provide equal mechanisms to access internal (on-chip)
and external (on-board) COM Drivers Memory Drivers
memory devices and type of memory hardware

(EEPROM, Flash). o3 ofl Bs
] 28| 93
. 3 2 5°
Properties: 5 =
Implementation: uC independent, external device
dependent

Upper Interface: uC, ECU hardware and memory
device independent

- AUTOSAR Confidential -

41 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

%
X

S
X
K

o
o
o)
]
Q|

Architecture — Content of Software Layers

Application Layer

Onboard Device Abstraction

RTE

The Onboard Device Abstraction contains -

drivers for ECU onboard devices which

cannot be seen as sensors or actuators like

Micro-
controller
Drivers

Communi-
cation
Drivers

internal or external watchdogs. Those
drivers access the ECU onboard devices via
the uC Abstraction Layer.

Task:
Abstract from ECU specific onboard devices.

Properties:

Implementation: uC independent, external
device dependent

Upper Interface: pC independent, partly ECU
hardware dependent

- AUTOSAR Confidential -

42 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

Example:

Watchdog Interface

External
Watchdog Driver

COM Dirivers Microcontroller

Drivers

JanuQ
18|pueHIdS
JBALP
Bopyorem
[eusayul

AUTO SAR

Architecture — Content of Software Layers Application Layer
Scope: Crypto Hardware Abstraction RTE

Crypto
Services

The Crypto Hardware Abstraction is a group of
modules which abstracts from the location of

cryptographic primitives (internal- or external
hardware or software-based). --

Example: AES primitive is realized in SHE or provided

as software library

Task: Example:

Provide equal mechanisms to access internal (on-chip)
and software _
cryptographic devices.

Properties:
Implementation: uC independent

Upper Interface: uC, ECU hardware and crypto device
independent

- AUTOSAR Confidential -

43 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s AR

3 Architecture — Content of Software Layers Application Layer
s Services: Crypto Services RTE
= Crypto
Services
The Crypto Services consist of two modules Coypto W
» the Crypto Service Manager is responsible Crypto
for the management of cryptographic jobs prvers
» the Key Manager interacts with the key
provisioning master (either in NVM or Crypto
Driver) and manages the storage and
verification of certificate chains
Task: Provide cryptographic primitives and key Example:
storage to the application in a uniform way. ' SR
Abstract from hardware devices and
properties.
Key Manager | C’y&fniggice |
Properties:

Implementation: uC and ECU hardware
independent, highly configurable

Upper Interface: uC and ECU hardware
independent specified and implemented
according to AUTOSAR
(AUTOSAR interface)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

44

g
=
h=]
)
g

Architecture — Content of Software Layers
Communication Services — General

Application Layer

RTE

The Communication Services are a group of

modules for vehicle network communication (CAN,

LIN, FlexRay and Ethernet). They interface with
the communication drivers via the communication
hardware abstraction.

Task:
Provide a uniform interface to the vehicle network for
communication.
Provide uniform services for network management
Provide uniform interface to the vehicle network for
diagnostic communication

Hide protocol and message properties from the
application.

Properties:

Implementation: uC and ECU HW independent, partly
dependent on bus type

Upper Interface: uC, ECU hardware and bus type
independent

The communication services will be detailed for each
relevant vehicle network system on the following
pages.

Microcontroller (uC)

Example:

| T

State <Bus
Manager specific>
NM

<Bus specific>
Transport
Protocol

- Bus specific modules

- AUTOSAR Confidential -

45 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

Architecture — Content of Software Layers Application Layer
Communication Stack — CAN RTE
CAN

State

Manager The CAN Communication Services are a group of
modules for vehicle network communication with the
CAN Transport communication system CAN.

Protocol
Task:

> Provide a uniform interface to the CAN network.
CAN Interface Hide protocol and message properties from the
CAN Transceiver Driver for ext. appl | Cation .

Driver CAN ASIC

Example:

Microcontroller (uC)

The CAN Communication Stack supports:
| CANBIET > Classic CAN communication (CAN 2.0)

» CAN FD communication, if supported by hardware

[SUEE
CAN Controller

- AUTOSAR Confidential -

46 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

g Architecture — Content of Software Layers Application Layer
f,, Communication Stack — CAN —
} ot
Services
Properties: COM Fw
» Implementation: pC and ECU HW independent, partly Cor =
dependent on CAN. cation Drivers

» AUTOSAR COM, Generic NM (Network Management)

Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

» CAN NM is specific for CAN networks and will be
instantiated per CAN vehicle network system.

» The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

- AUTOSAR Confidential -

47 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Content of Software Layers Application Layer
Communication Stack Extension — TTCAN RTE

Microcontroller (uC)

The TTCAN Communication Services are the
optional extensions of the plain CAN Interface and
CAN Transport CAN Driver module for vehicle network communi-
cation with the communication system TTCAN.

Task:

CAN Interface] ! » Provide a uniform interface to the TTCAN network.
CAN Transceiver Driver for ext Hide protocol and message properties from the
— — application.
CANDriver } TTCAN ; Please Note:
» The CAN Interface with TTCAN can serve both a
plain CAN Driver and a CAN Driver TTCAN.

External
TTCAN Controller

- AUTOSAR Confidential -

48 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

Architecture — Content of Software Layers

Application Layer
Communication Stack Extension — TTCAN

<
<
[=2
=2
=2

k=]
)
=2
]
=1

RTE

Communi-
cation
Services

Properties: -

» TTCAN is an absolute superset to CAN, i.e. a CAN stack Commun: o
which supports TTCAN can serve both a CAN and a Divers_JL_2°"S
TTCAN bus.

» Canlf and CanDrv are the only modules which need
extensions to serve TTCAN communication.

» The properties of the communication stack CAN are also
true for CAN with TTCAN functionality.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

49

Architecture — Content of Software Layers
Communication Stack Extension —J1939

The J1939 Communication Services extend the plain CAN

communication stack for vehicle network communication in
CAN J1939 H
Transport Transport heavy duty vehicles.

Protocol Protocol .
Task:

> Provide the protocol services required by J1939. Hide

protocol and message properties from the application where
not required.

Application Layer

Q
=
Q|
[}
(0]
o)
©
Q|

RTE

Example:

=

Microcontroller (uC)

Jabeuely a1relS

AN 6E6TC

CAN Interface

CAN Transceiver Driver for ext.
Driver CAN ASIC

Please Note:
» There are two transport protocol modules in the CAN stack
| | CAN Driver (CanTp and J1939Tp) which can be used alternatively or in
parallel on different channels:. They are used as follows:

m CanTp: ISO Diagnostics (DCM), large PDU transport
on standard CAN bus

External m J1939Tp: J1939 Diagnostics, large PDU transport on
b J1939 driven CAN bus

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

50

Architecture — Content of Software Layers
Communication Stack Extension —J1939

Application Layer

Qo
=
a
a
b=
[}
o)
©
1

RTE

Communi-
cation
) Services
Properties: coM Hw
Str.
> Implementation: pC and ECU HW independent, based on Communt =
CAN. Sﬁsgg Drivers

» AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

» Supports dynamic frame identifiers that are not known at
configuration time.

» J1939 network management handles assignment of unique
addresses to each ECU but does not support

sleep/wakeup handling and related concepts like partial
networking.

» Provides J1939 diagnostics and request handling.

- AUTOSAR Confidential -

51 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Content of Software Layers

Application Layer
Communication Stack — LIN

O
o
N
~
[ee)
9
(]
)
©
o

RTE

‘ Microcontroller (uC)

The LIN Communication Services are a group of modules for vehicle
LIN State
Manager network communication with the communication system LIN.

‘ Task:

LIN Interface Properties:

Provide a uniform interface to the LIN network. Hide protocol and
message properties from the application.

LIN Transceiver Driver for ext.

Driver LIN ASIC The LIN Communication Services contain:
» An ISO 17987 compliant communication stack with

m Schedule table manager to handle requests to switch to other
e schedule tables (for LIN master nodes)
river

m Communication handling of different LIN frame types
m Transport protocol, used for diagnostics
m A WakeUp and Sleep Interface

» An underlying LIN Driver:

m Implementing LIN protocol and accessing the specific hardware

m Supporting both simple UART and complex frame based LIN
hardware

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

§ Architecture — Content of Software Layers Application Layer
s Communication Stack —LIN —
. S ation
Services
Note: Integration of LIN into AUTOSAR: COMEW
> LIN Interface controls the WakeUp/Sleep API ot
and allows the slaves to keep the bus awake _ Drivers
(decentralized approach).

» The communication system specific LIN State
Manager handles the communication
dependent Start-up and Shutdown features.
Furthermore it controls the communication
mode requests from the Communication
Manager. The LIN State Manager also
controls the I-PDU groups by interfacing
COM.

» When sending a LIN frame, the LIN Interface
requests the data for the frame (I-PDU) from
the PDU Router at the point in time when it
requires the data (i.e. right before sending
the LIN frame).

- AUTOSAR Confidential -

53 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Content of Software Layers

Communication Stack — FlexRay
FlexRay

Microcontroller (uC)
State

Manager o The FlexRay Communication Services are a group
exRay

M of modules for vehicle network communication with
the communication system FlexRay.

Application Layer

page id: ki890

RTE

Example:

FlexRay Transport
Protocol

Task:

» Provide a uniform interface to the FlexRay network.
Hide protocol and message properties from the

FlexRay Interface

. . application.
Driver for FlexRay Driver for external
Transceiver FlexRay Controller
Please Note:
» There are two transport protocol modules in the
DLl e el FlexRay stack which can be used alternatively
FlexRay Controller

m FrTp: FlexRay ISO Transport Layer

m FrArTp: FlexRay AUTOSAR Transport Layer,
provides bus compatibility to AUTOSAR R3.x

Host uC Internal FlexRay Controller

Data lines
External External

FlexRay Controller FlexRay Transceiver Control/status lines
(e.g. MFR 4200) (e.g. TJA 1080)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (—\ s AR

54

Architecture — Content of Software Layers Application Layer
Communication Stack — FlexRay RTE

o
)
<
N
<
o
[
o)
It
o

Communi-
cation
Services

Properties: -

» Implementation: uC and ECU HW independent, Communi-

cation

partly dependent on FlexRay. Drivers

> AUTOSAR COM, Generic NM Interface and

Diagnostic Communication Manager are the same
for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher.
No further functionality is included. In case of
gateway ECUSs, it is replaced by the NM
Coordinator which in addition provides the
functionality to synchronize multiple different
networks (of the same or different types) to
synchronously wake them up or shut them down.

» FlexRay NM is specific for FlexRay networks and is
instantiated per FlexRay vehicle network system.

» The communication system specific FlexRay State
Manager handles the communication system
dependent Start-up and Shutdown features.
Furthermore it controls the different options of COM
to send PDUs and to monitor signal timeouts.

- AUTOSAR Confidential -

55 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Architecture — Content of Software Layers
Communication Stack — TCP/IP

Application Layer

©
©
Ire)
<
<
kel
©
o)
©
Q.

RTE

Example:

Microcontroller (uC)
Ethernet

State The TCP/IP Communication Services are a
e group of modules for vehicle network
communication with the communication

Socket Adaptor

TCP/IP Communication Services SyStem TCP/IP
Task:
Ethernet Interface) . .
et S B » Provide a gnlform interface to the TCP/IP
Ethernet Transceiver Driver nEtWOH(Hlde prOtOCO| and message

properties from the application.

Ethernet Driver

Ethernet

External
Ethernet Controller

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

56

Architecture — Content of Software Layers
Communication Stack — TCP/IP

Application Layer

-
3]
4]
o
o

o
o
o)
]
Q|

RTE

Communi-
cation
Services

Properties: -
» The Tcplp module implements the main e
protocols of the TCP/IP protocol family Drivers
(TCP, UDP, IPv4, IPv6, ARP, ICMP, DHCP)

and provides dynamic, socket based
communication via Ethernet.

» The Socket Adaptor module (SoAd) is the
sole upper layer module of the Tcplp
module.

- AUTOSAR Confidential -

57 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

o
c
c

s)

Ks)

R
)
D
]
=1

Architecture — Content of Software Layers
Communication Stack — General

Application Layer

RTE

General communication stack properties:

VY VY

58

Communi-
cation
Services

Communi-
cation
Drivers

A signal gateway is part of AUTOSAR COM to route

signals.
PDU based Gateway is part of PDU router.

IPDU multiplexing provides the possibility to add
information to enable the multiplexing of I-PDUs (different
contents but same IDs on the bus).

Multi I-PDU to container mapping provides the possibility to
combine several I-PDUs into one larger (container-)I-PDU
to be transmitted in one (bus specific) frame.

Upper Interface: uC, ECU hardware and network type
independent.

For refinement of GW architecture please refer to
“Example Communication”

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Architecture — Content of Software Layers Application Layer
Off-board Communication Stack — Vehicle-2-X

Example:

V2X Facilities
Microcontroller (uC)

: The Off-board Communication Services are
V2X Basic .
Transport a group of modules for Vehicle-to-X
Frotocol communication via an ad-hoc wireless

JuswabeueN XZA

V2X Geo network.

Networking

» Facilities: implement the functionality for reception and
transmission of standardized V2X messages, build the
interface for vehicle specific SW-Cs

» Basic Transport Protocol = Layer 4

» Geo-Networking = Layer 3 (Addressing based on
geographic areas, the respective Ethernet frames have
their own Ether-Type)

» V2X Management: manages cross-layer functionality

(like dynamic congestion control, security, position and
Wireless Ethernet Driver tlme)

Task:
— > Provide a uniform interface to the Wireless
Wireless Ethernet Controller Ethernet network. Hide protocol and

message properties from the application.

- AUTOSAR Confidential -

-
59 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (‘ o)SA R

Architecture — Content of Software Layers

Application Layer
Services: Memory Services

=
o°
i)
(<]
b=
)
o)
@
Q|

RTE

Memory
Services

The Memory Services consist of one module,
the NVRAM Manager. It is responsible for
the management of non volatile data

(readjwrite from different memory drivers).

Task: Provide non volatile data to the
application in a uniform way. Abstract from
memory locations and properties. Provide
mechanisms for non volatile data
management like saving, loading, checksum Example:
protection and verification, reliable storage e e
etc.

NVRAM Manager

Properties:

Implementation: uC and ECU hardware
independent, highly configurable

Upper Interface: uC and ECU hardware
independent specified and implemented
according to AUTOSAR
(AUTOSAR interface)

- AUTOSAR Confidential -

60 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Architecture — Content of Software Layers
Services: System Services

The System Services are a group of modules
and functions which can be used by modules
of all layers. Examples are Real Time
Operating System (which includes timer
services) and Error Manager.

Some of these services are:

» WC dependent (like OS), and may support special
UC capabilities (like Time Service),

» partly ECU hardware and application dependent
(like ECU State Manager) or

» hardware and pC independent.

Task:

Provide basic services for application and
basic software modules.

Properties:

Implementation: partly uC, ECU hardware and
application specific

Upper Interface: uC and ECU hardware

Example:

Application Layer

RTE

Microcontroller (uC)

independent - AUTOSAR Confidential -

61 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

Architecture — Content of Software Layers Application Layer
Error Handling, Reporting and Diagnostic RTE

o)
R
B
ol
™
o
[
o)
©
Q|

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller (uC)

There are dedicated modules for different aspects
of error handling in AUTOSAR. E.g.:

» The Diagnostic Event Manager is responsible
for processing and storing diagnostic events
(errors) and associated FreezeFrame data.

» The module Diagnostic Log and Trace
supports logging and tracing of applications. It
collects user defined log messages and converts
them into a standardized format.

Microcontroller

» All detected development errors in the Basic Software are reported to Default Error Tracer.
» The Diagnostic Communication Manager provides a common API for diagnostic services
> etc.

- AUTOSAR Confidential -

-
62 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (‘ o)SA R

Architecture — Content of Software Layers Application Layer
Application Layer: Sensor/Actuator Software Components N ReE

x
)
x
b=
©
<)
&
o

The Sensor/Actuator AUTOSAR Software
Component is a specific type of AUTOSAR
Software Component for sensor evaluation
and actuator control. Though not belonging
to the AUTOSAR Basic Software, it is
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above

Example:

the RTE for integration reasons

(standardized interface implementation and

interface description). Because of their ARTEEE LEYET

strong interaction with raw local signals,

relocatability is restricted. etator oo

Component Component

Task:
Provide an abstraction from the specific RTE

physical properties of hardware sensors and

actuators, which are connected to an ECU. Basic Software

Interfaces to (e.g.)
. * 1/0 HW Abstraction (access to I/O signals)
Pro P erties: « Memory Services (access to calibration data)

. . » System Services (access to Error Manager)
Implementation: uC and ECU HW independent,
sensor and actuator dependent

- AUTOSAR Confidential -

63 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

64

m
X
)
3

§=1
@
o)
>
m
0O
-
2
—
>0
)
—_
2
o
2)
9
®
3.
Q
o
(@)
o
>S5
>
=
=3
)
@

Architecture — Content of Software Layers

Example of a Layered Software Architecture for Multi-Core Microcontroller

ECU

[

core 0:

core 1:

partition O:

Application Layer

siaALQ xadwo)

_ Communi-
System Services Memory cation
Services Services
(Master)
1/0 HW
Abstraction
Onboard Dev. Memory HW A%(sjt':gz?gn
Abstraction Abstraction
(e.g. ETH)
Micro- Memo 110
controller mory . Drivers
Drivers privers eI (e.g. Master
(e.g. MCU (e.g. Flash, cation Drivers (.)r.direct
9 ! RAM test, (e.g. ETH)
Core test, EEPROM) access for
GPT) DIO)

partition 1:

Og;;?;::g Communi-
cation
Services
ECU State (Satellite)
Manager /O HW
Abstraction
BSW Mode
Manager COM HW
Abstraction
(e.g. CAN,
FR)
Micro- 1/0
controller Memory Communi- Drivers
Drivers Drivers cation Drivers (e.g. Satellite
(e.g. MCU, (e.g. RAM (e.g. CAN, or direct
Core test, test) FR) access for
GPT) DIO)

slanuq xajdwo)d

Microcontroller (uC)

65

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

- AUTOSAR Confidential -

AUTO SAR

Architecture — Content of Software Layers
Detailed View of Distributed BSW Modules

» BSW modules can be distributed across ECU f::]
several partitions and cores. All partitions
share the same code.

» Modules can either be completely identical on partition O: partition 1:
each partition, as shown for the DIO driver out
of I/O stack in the figure.

» As an alternative, they can use core- RTE
dependent branching to realize different

core O: core 1:

Application Layer

behavior. Com service and PWM driver use . -
master-satellite communication for processing {%?3?324—‘ I TS fadon.
a call to the master from the according N (Satelite)
satellites.

m The communication between master and
satellite is not standardized. For example,
it can be based on functions provided by
the BSW scheduler or on shared memory.

PWM Communi- PWM

» The arrows indicate which components are DID | reliie|| cation Drivers Magter | f°
involved in the handling of a service call,

depending on the approach to distribution and
on the origin of the call. Microcontroller (uC)

m
=
)
3

j=1
@
o)
>
m
0O
c
2
—+
>0
)
—
s
o
o
=)
®
3.
Q
o
(@)
o
=
=
=
=)
)
@

)

1o B Il ; o
Driver Driver

- AUTOSAR Confidential -

66 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

Architecture — Content of Software Layers
Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions

=
=
—
-
=
b=
o
o)
IS
o

ECU

core O: core 1:

partition O: partition 1: partition 2: partition 3: partition 4:
Application Layer

BswM BswM BswM BswM BswM
EcuM EcuM
oS (ON

Microcontroller (uC)

» Basic Software Mode Manager (BswM) in every partition that runs BSW modules
m all these partitions are trusted

» One EcuM per core (each in a trusted partition)

» EcuM on that core that gets started via the boot-loader is the master EcuM
m Master EcuM starts all Satellite EcuMs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

67

Architecture — Content of Software Layers Application Layer
Scope: Multi-Core System Services RTE

System Services

» The I0C, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on
the same ECU. The I0C is part of the OS.

» BSW modules can be executable on several cores, such

as the ComM in the figure. The core responsible for executing
a service is determined at runtime.

» Every core runs a kind of ECU state management.

m .
z Microcontroller C]
3 core O: core 1.
=3
) .)
. System Services System Services
QD
> o
m 3
m o| & g O O & 2 0
9) 5 S g : : o z Bmo | oS
8Q @) = == = = =0 g @ =
S i 95 | 7 | §5| 53 53| 5§ <5 20 §3
= 285 © 2 3 &3 && &3 | 23 285 S 25
=S 5 S = =9 I
= =30 Sl o JREQ BT Y R 286 Bos W2
O F [} Q = O F =} o
e 52 8 8 S 2 > S =3 3 3
— S5 o = =) =) =
s 35 = S
o
O
o
=
>
® 3_C>| c
3 o o
2 : :
a 2 o!
o
5
~
-
=k
D
-

- AUTOSAR Confidential -

68 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

69

Architecture — Content of Software Layers
Overview of AUTOSAR safety handling

&
>
g
5
o
(o
©
o

» AUTOSAR offers a flexible
approach to support el
safety relevant ECUs. Two QM Application @1\ WVeJel[[e=Vio]s ASIL Application
methods can be used:
1. Al BSW modules
are developed
according to the
required ASIL

2. Selected modules
are developed
according to ASIL.

BSW BSW BSW BSW BSW
ASIL and non-ASIL oS modules modules modules modules modules

modules are
separated into
different partitions
(BSW distribution)

Hardware

Note: The partitions are based on OS-

Applications. The TRUSTED attribute

of the OS-Application is not related to Example for usage of method (1)
ASIL/non-ASIL.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

70

Architecture — Content of Software Layers
AUTOSAR BSW distribution for safety systems

2
s
b=
o
(o
&
o

» Example of using different MCU
BSW partitions

- M Applicati M Applicati
m Watchdog stack is QUL ALRATEENIO QM Application

ASIL Application

partition

m ASIL and non-ASIL
SW-Cs can access
WdgM via RTE

m Rest of BSW is placed
in own partition

SW-C

QM BSW partition SV partition

| Other BSW
oS

modules

Wdglf
_ Other BSW
- modules

- 1

Wdg

Hardware

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

71

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

72

Architecture
Overview of Modules — Implementation Conformance Class 3 - ICC3

This figure shows the mapping of basic software modules to AUTOSAR layers

page id: 9dfc8

Application Layer

AUTOSAR Runtime Environment (RTE)

xxx Interface
Trev. ext. Drv

i

Microcontroller

Not all modules are shown here
- AUTOSAR Confidential -
Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s AR

o]

L

g /\ M a

ol Qve 2W O odule plementatio ONTO o e ASSeE

]

Q)
€ ering 0 ao € e one aertinea b € proje 0 A OSAR € ot re g the ering
0 evel 10 adead ed S aiffere 0 3 d o[atlo eria 0 ead to aiffere

ering ere gnt be dirrerent A OSAR erings aga omplia an pe stated pased on a to be

gefined appro O omp €

Application Layer

AUTOSAR Runtime Environment

]

; o
| H —r
|

— NN

ECU Hardware

- ICC3 module -- ICC2 clusters
OSAR Co de a

ayeredSoftwareArchitecture A - N =

Architecture
Overview of Modules — Implementation Conformance Classes — ICC1

page id: 9421

In a basic software which is compliant to ICC1 no modules or clusters are required.
The inner structure of this proprietary basic software is not specified.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

Architecture

—
o~
Q.
<
[}
B
()
o)
©
Q|

Overview of Modules — Implementation Conformance Classes — behavior to the outside

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by the ICC3
module specification.

For example the behavior towards:
» buses,

> boot loaders and
» Applications

Additionally, the ICC1/2 configuration shall be compatible regarding the system description as in ICC3.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

|

- AUTOSAR Confidential -
Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au T(o\‘)s A R

ICC 3 compliant
behavior

76

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

77

Interfaces
Type of Interfaces in AUTOSAR

5]
[{e]
~
N
=
B
)
O
]
o

An "AUTOSAR Interface" defines the information exchanged between
software components and/or BSW modules. This description is
independent of a specific programming language, ECU or network
technology. AUTOSAR Interfaces are used in defining the ports of
AUTOSAR Interface software-components and/or BSW modules. Through these ports
software-components and/or BSW modules can communicate with each
other (send or receive information or invoke services). AUTOSAR makes
it possible to implement this communication between Software-
Components and/or BSW modules either locally or via a network.

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose

- syntax and semantics are standardized in AUTOSAR. The "Standardized
Standardized AUTOSAR AUTOSAR Interfaces" are typically used to define AUTOSAR Services,
which are standardized services provided by the AUTOSAR Basic
Software to the application Software-Components.

Interface

A "Standardized Interface" is an API which is standardized within
AUTOSAR without using the "AUTOSAR Interface" technique. These
"Standardized Interfaces" are typically defined for a specific programming
language (like "C"). Because of this, "standardized interfaces" are
typically used between software-modules which are always on the same
ECU. When software modules communicate through a "standardized
interface", it is NOT possible any more to route the communication
between the software-modules through a network.

Standardized Interface

- AUTOSAR Confidential -

78 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Interfaces
Components and interfaces view (simplified)

To)
s
<
o
h=)
o
o)
]
o]

Application Actuator Sensor
AUTOSAR Software Software Software
Software Component Component Component
ST [IEIE AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface
Interface

Standard
Soa:‘?wg:e II I II

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)

T

Application
Software
Component

AUTOSAR
Interface

T

not specified
within AUTOSAR)

ECU-Hardware

Note: This figure is incomplete with respect to the possible interactions between the layers.
- AUTOSAR Confidential -

79 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Standardized Sfﬂ?gg":sd Standardized AUTOSAR AUTOSAR
Interfaces: Interface Interface Interface Interface Interface
: . . ECU
o lVFB (t& RTE Services Communication b
relevan
% Standardized Standardized Standardized
<:> RTE =8 Interface Interface Interface
relevant : =~ 2
Operating | § o A Complex
@ Bsw System |2 o Drivers
relevant ® N Standardized
2 Interface
Possib_le i_nterfaces
5 _'”g'o:ce Microcontroller
a(?/:/%iccr)m ;V:':re Abstraction

Interfaces: General Rules
General Interfacing Rules

=
=
N
©
@®©
k=]
)
o)
<
o]

Horizontal Interfaces Vertical Interfaces

Services Layer: horizontal interfaces are allowed
Example: Error Manager saves fault data using the
NVRAM manager

One Layer may access all interfaces of the SW layer
below

ECU Abstraction Layer: horizontal interfaces are Bypassing of one software layer should be avoided
allowed
A complex driver may use selected other BSW

Bypassing of two or more software layers is not
modules

allowed

1111

HC Abstraction Layer: horizontal interfaces are not
allowed. Exception: configurable notifications are

Bypassing of the uC Abstraction Layer is not allowed
allowed due to performance reasons.

A module may access a lower layer module of
another layer group (e.g. SPI for external hardware)

o \ @ @ © =

All layers may interact with system services.

Microcontroller (UC)

- AUTOSAR Confidential -

80 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Interfaces: General Rules
Layer Interaction Matrix

—
&=
°
X
—
h=]
)
o)
]
o1

This normative matrix shows the allowed
interactions between

)
@
AUTOSAR Basic Software layers §
T
ks
o
=
o
o
o
Q
v allowed to use =
% not allowed to SW Components / RTE
use viiiv]v v I A vV v
Arestricted use VIV v x| x| Al x| x| v] x| x| x| x| x| x] %
(Callbackonly) VIiv]iv]is]s|A]l x| x] x]v]x] x| x| x| x| x
VEIVI]IVIVIVIA]l x| s <] x|] x| x| x| x] x
The matrix is read 4 A BE BE EE Y RS K RS K RS RS S RS
row-wise: restricted access -> see the following two slides
.o« Vx| v]x]|x]x|vV]vV]x]|x]|Vv]vV]x]x]|Vv]|V
Ex_ample. I/O V] x] x| x| x x| x| v | % x| v]v] % x| vV
rnvers are Vv x]|x] x| x| v]v]x]|v]x]|v]x]| V] x
a”OWGdtOUS.e VIV v]Ix]|] x| x| v]x]|vV] x| x| x] x| x|V
System Services A== T T=[=["T<I=["T=[=<l=["1
and Hardware, Vsl x| x| x| <s|AlA]l x| Al x| Al x| x| x| A
but no other Vs x| x] x| x| x| x| Al x| x| x| x| x| x| x
layers”. Vsl s x] x| x| x| x| x| A] x| x]x]| x| x|«
(gray background indicates v el x] x| e x]x|A]x]x ol Bl I I R
“non-Basic Software” v A
layers)
*: includes wired and wireless communication

- AUTOSAR Confidential -

81 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (—\ s AR

Interfaces Application Layer
Interfacing with Complex Drivers (1) RTE

N
]
—
—
—
R
)
D
]
=1

Complex Drivers may need to interface to other modules
in the layered software architecture, or modules in
the layered software architecture may need to interface

to a Complex Driver. If this is the case, :
. Microcontroller (uC)
the following rules apply:

1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing
AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus system.
This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces, and are
prepared to be accessed by a Complex Driver. Usually this means that

The respective interfaces are defined to be re-entrant.
If call back routines are used, the names are configurable

No upper module exists which does a management of states of the module (parallel access would change states
without being noticed by the upper module)

Y V V

- AUTOSAR Confidential -

82 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Interfaces Application Layer
Interfacing with Complex Drivers (2) RTE

%]
]
—
—
—
k=]
)
=2
©
=1

In general, it is possible to access the following modules:
» The SPI driver
» The GPT driver

»> The I/O drivers with the restriction that re-entrancy often only exists

separate groups/channels/etc. Parallel access to the same
group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.

The NVRAM Manager as exclusive access point to the memory stack

The Watchdog Manager as exclusive access point to the watchdog stack

The PDU Router as exclusive bus and protocol independent access point to the communication stack
The bus specific interface modules as exclusive bus specific access point to the communication stack
The NM Interface Module as exclusive access point to the network management stack

The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

» Det, Dem and DIt
» The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For example,
‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

- AUTOSAR Confidential -

83 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

%]
]
—
-
o
R
)
D
]
=1

Interfaces Application Layer
Interfacing with Complex Drivers (3) RTE

In case of multi-core architectures, there are additional rules:

>

84

The BSW can be distributed across several cores. The core
responsible for executing a call to a BSW service is determined
by the task mapping of its BswOperationinvokedEvent.

Crossing partition and core boundaries is permitted for module

internal communication only, using a master/satellite implementation.

Consequently, if the CDD needs to access standardized interfaces of the BSW, it needs to reside on the same
core.

In case a CDD resides on a different core, it can use the normal port mechanism to access AUTOSAR interfaces
and standardized AUTOSAR interfaces. This invokes the RTE, which uses the IOC mechanism of the operating
system to transfer requests to the other core.

However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the same core,

m either a satellite providing the standardized interface can run on the core where the CDD resides and forward
the call to the other core

m or a stub part of the CDD needs to be implemented on the other core, and communication needs to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

Additionally, in the latter case the initialization part of the CDD also needs to reside in the stub part on the
different core.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

=
=
5
[o)]
b=
o
(o
&
o

Table of contents

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

85

Interfaces: Interaction of Layers — Example “Memory”
Introduction

1o
0
s
N
b
()
O)
©
[oX

The following pages explain using the example ,,memory*“:
» How do the software layers interact?

» How do the software interfaces look like?

» What is inside the ECU Abstraction Layer?

» How can abstraction layers be implemented efficiently?

- AUTOSAR Confidential -

86 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

©
~
[ee)
[e2]
(o)
ke
(]
)
©
Q)

Interfaces: Interaction of Layers — Example “Memory”

Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an

external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

» routing during runtime based on device index (int/ext)

» routing during runtime based on the block index (e.g. >
Ox01FF = external EEPROM)

» routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists ,virtually®)

MemIf Read()
MemIf Write ()

WdgIf Trigger ()

Spi ReadIB()
Spi WriteIB()

Fls Read()
Fls Write()

External External

Watchdog EEPROM

- AUTOSAR Confidential -

87 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

<t
g
©
—
b
(0]
O)
o]
o

Interfaces: Interaction of Layers — Example “Memory”
Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accesses drivers via the
Memory Abstraction Interface. It addresses Nvm Write (BlockIndex)
different memory devices using a device index. B

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

MemIf Write (

Std ReturnType MemIf Write

DevicelIndex,

(BlockNumber,
uints8 DevicelIndex, DataBufferPtr)
uintlo BlockNumber,
uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std ReturnType Ea Write

(
uintl6 BlockNumber,
uint8 *DataBufferPtr

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (SAR

88

~
N
O

s

=]
)
(o
o]
Q.

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be

implemented as a simple macro which neglects the Devicelndex parameter. The following example shows
the write function only:

File Memif.h:
#include “Ea.h"“ /* for providing access to the EEPROM Abstraction */

#define MemIf Write (DeviceIndex, BlockNumber, DataBufferPtr) \
Ea Write (BlockNumber, DataBufferPtr)

File Memlf.c:
Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash
Emulation directly.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

89

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

T}
<
]
]
—
k=]
)
=2
©
=1

Situation 2: two or more different types of NV devices used

In this case the Devicelndex has to be used for selecting the correct NV device. The implementation can also

be very efficient by using an array of pointers to function. The following example shows the write function
only:

File Memlf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf Write (DeviceIndex, BlockNumber, DataBufferPtr) \
WriteFctPtr[DevicelIndex] (BlockNumber, DataBufferPtr)

File Memif.c:

#include “Ea.h"“ /* for getting the API function addresses */
#include “Fee.h“ /* for getting the API function addresses */
#include “MemIf.h"“ /* for getting the WriteFctPtrType */
const WriteFctPtrType WriteFctPtr[2] = {Ea Write, Fee Write};
Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

- AUTOSAR Confidential -

90 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Interfaces: Interaction of Layers — Example “Memory”
Conclusion

Conclusions:
» Abstraction Layers can be implemented very efficiently
» Abstraction Layers can be scaled

» The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more
EEPROM and Flash devices

- AUTOSAR Confidential -

91 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Interfaces: Interaction of Layers — Example “Communication”
PDU Flow through the Layered Architecture

Layer N+1

» Explanation of terms: W
>> ES[)LJ LayerN Tx (*PDU) ;

SDU is the abbreviation of “Service Data Unit”. It

is the data passed by an upper layer, with the

request to transmit the data. It is as well the data Layer N
which is extracted after reception by the lower

layer and passed to the upper layer.

A SDU is part of a PDU.

void LayerN Tx (*SDU);

data structure

data structure

LayerN+1 Tx (*PDU);

» PCI

PCl is the abbreviation of “Protocol Control
Information”. This Information is needed to pass a RS
SDU from one instance of a specific protocol layer PCl SDU
to another instance. E.g. it contains source and
target information.

The PCI is added by a protocol layer on the
transmission side and is removed again on the
receiving side.

void LayerN+1l Tx (*SDU);

™

I data structure E:I!I

> PDU
PDU is the abbreviation of “Protocol Data Unit”. PDU
The PDU contains SDU and PCI.
On the transmission side the PDU is passed from
the upper layer to the lower layer, which interprets CANIF

this PDU as its SDU.

PCI data structure

- AUTOSAR Confidential -

92 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

o
3
F
o
S
()
O)
IS
[oX

Interfaces: Interaction of Layers Application Layer
Example “Communication” (1) RTE
Communi-
cation
. . Services
SDU and PDU Naming Conventions ORI
The naming of PDUs and SDUs respects the following rules: Cﬁ:ﬁn._
For PDU: <bus prefix> <layer prefix> - PDU saton
For SDU: <bus prefix> <layer prefix> - SDU
The bus prefix and layer prefix are described in the following table:
ISO Layer Layer AUTOSAR PDU Name | CAN/ LIN prefix | FlexRay
Prefix Modules TTCAN prefix
prefix
Layer 6: | COM, DCM I-PDU N/A
Presentation | PDU router, PDU I-PDU N/A
(Interaction) .
multiplexer SF:
Single Frame
Layer 3: N TP Layer N-PDU CAN SF LIN SF FR SF FE:
Network Layer CAN FF LIN FF FR FF First Frame
CAN CF LIN CF FR CF CF: _
CAN FC LIN FC FR FC Consecutive
Frame
Layer 2: L Driver, Interface L-PDU CAN LIN FR FC:
Data Link Layer Flow Control

Examples:
»1-PDU or I-SDU

»CAN FF N-PDU or FR CF N-SDU

»LIN L-PDU or FR L-SDU

93

For details on the frame types, please refer to the
AUTOSAR Transport Protocol specifications for CAN, TTCAN, LIN and FlexRay.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Interfaces: Interaction of Layers
Example “Communication” (2)

Components

» PDU Router:
m Provides routing of PDUs between different abstract communication controllers and upper layers

m Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)
m Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered

» COM:
m Provides routing of individual signals or groups of signals between different I-PDUs

» NM Coordinator:
m Synchronization of Network States of different communication channels connected to an ECU via the
network managements handled by the NM Coordinator

» Communication State Managers:
m Start and Shutdown the hardware units of the communication systems via the interfaces

m Control PDU groups

- AUTOSAR Confidential -

94 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Interfaces: Interaction of Layers
Example “Communication” (3)

Communication
Manager

FlexRay | TTCAN N o~ N state | LIN State

Secure Diagnostic Eth State
SOME/IP Onboard IPDU AUTOSAR Communi-
TP Communi- Multiplexer COM cation

cation Manager

. . Generic
Diagnostic State State Manager Manager NM interface

Log and Manager

Trace

Manager Manager

NM
Coordinator

PDU Router

Ethernet Protocol

See description

on next slide FlexRay Tp

LIN Interface
Eth Interf; FlexRay Interf 2 X

FlexRay Driver CAN Driver2 LIN Low Level Driver

Note: This image is not complete with 1The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.
respect to all internal communication In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-Pdus > Frame size.
paths. 2 Canlf with TTCAN serves both CanDrv with or without TTCAN. Canlf without TTCAN cannot serve CanDrv with TTCAN.

- AUTOSAR Confidential -

-
95 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (‘ o)SA R

Interfaces: Interaction of Layers
Example “Communication” (4) — Ethernet Protocol

of and inside the Ethernet

protocol stack.
_ poP |

Socket Adaptor
Messages Streams

| o | | b

UDP

IPacket ISegment

Services

IPv4/v6

TCP/IP Communication

ARP/ND

Eth Interface
Eth Driver

- AUTOSAR Confidential -

96 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

Interfaces: Interaction of Layers
Example “Data Transformation” (1) — Introduction

—
o
n
2
a

R
)
D
®©
=1

The following pages explain communication with Data Transformation:

» How do the software layers interact?

> How do the software interfaces look like?

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

97

Interfaces: Interaction of Layers
Example “Data Transformation” (2) — Example and First Look

[
<
n
&2
)
h=]
)
o)
I
Q|

This example shows the data flow if data transformation is
used for inter-ECU communication

SW-C Application Layer
A SW-C sends data configured to be transmitted to a remote

ECU and subject to data transformation. This data
transformation doesn’t use in-place buffer handling.

Functionality

» The RTE calls the SOME/IP transformer as the first
transformer in the chain and transfers the data from the
SW'C. . 1 |

» The SOME/IP transformer executes the transformation and
writes the output (byte array) to a buffer provided by the
RTE.

» Afterwards, the RTE executes the Safety transformer
which is second in the transformer chain. The Safety

transformer’s input is the output of the SOME/IP SOME/P 2l PlL TOR AR
transformer Transformer Transformer COM

» The Safety transformer protects the data and writes the
output into another buffer provided by the RTE. A new
buffer is required because in-place buffer handling is not
used.

» The RTE transfers the final output data as a byte array to
the COM module.

Buffer 1 Buffer 2

- AUTOSAR Confidential -

98 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (_\ s AR

Interfaces: Interaction of Layers
Example “Data Transformation” (3) — Closer Look at Interfaces

™
b
%)
&
7]

=
)
o)
I

o

Architecture Description

The RTE uses the transformer which are located in SW-C
the System Service Layer.

Rte Write (data)

Interface Description
The transformers in this example have the following

interfaces:
Buffer 2
SomeIpXf SOMEIP Signall
(
uint8 *bufferl, SomeIpXf SOMEIP Signall i’afetyXf—safety—Slg”all Com_SendDynSignal
. ((
uintlo *pbufferllength, putferl, buffer, Signall,
< > d sbufferllLength, &bufferzlength, buffer2,
type ata bufferl,
data buffer2Length
)) bufferlLength)
)

SafetyXf Safety Signall
(

uint8 *buffer?2,
uintlo *pbuffer2Length,
uint8 *bufferl,
uintlé6 bufferlLength SOME/IP AUTOSAR
E2E Transformer
) Transformer COM

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

99

Interfaces: Interaction of Layers
Example “Data Transformation” (4) — COM Based Transformation

<
o
n
2
a

R
)
D
®©
=1

Goal

The COM Based Transformer provides serialization .
functionality to the transformer chain based on a fixed Application Layer
communication matrix.

The fixed communication matrix allows an optimized placement
of signals into PDUs (e.g. a boolean data can be configured
to only occupy one bit in the PDU). This enables the usage Transformer Coordination
of transformer chains in low payload networks like Can or

Lin. Buffer 1 Buffer 2

Functionality

» The COM Based Transformer is the first transformer
(serializer) and gets the data from the application via the

RTE.)))]) Com Based Other AUTOSAR
» Based on the COM configuration (communication matrix) Transformer Transformer COM

the data is serialized exactly in the same way as the COM
module would have done it (endianess, sign extension).

» Other transformers may enhance the payload to have
CRCs and sequence counters (SC).

» The transformer payload is passed to the COM module as
one array of byte via the Com_SendSignalGroupArray API. [

» The COM module can be configured to perform CRC
transmission mode selection based on the communication
matrix definition.

Signal Pdu

- AUTOSAR Confidential -

100 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Table of contents

<
A
X
=
o)}
o
[
o)
It
o]

1. Architecture

1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi-Core Systems
Content of Software Layers in Mixed-Critical Systems
Overview of Modules

Interfaces
1. General
2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime Aspects

ep L s BV e

- AUTOSAR Confidential -

101 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Configuration
Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compiletime
m Preprocessor instructions
m Code generation (selection or synthetization)

2. Link time

m Constant data outside the module; the data can be configured after the module has been
compiled

3. Post-build time

m Loadable constant data outside the module. Very similar to [2], but the data is located in a
specific memory segment that allows reloading (e.g. reflashing in ECU production line)

Independent of the configuration class, single or multiple configuration sets can be provided by means
of variation points. In case that multiple configuration sets are provided, the actually used configuration
set is to be chosen at runtime in case the variation points are bound at run-time.

In many cases, the configuration parameters of one module will be of different configuration classes.

Example: a module providing Post-build time configuration parameters will still have some parameters
that are Pre-compile time configurable.

Note: Multiple configuration sets were modeled as a sub class of the Post-build time configuration class
up to AUTOSAR 4.1.x.

- AUTOSAR Confidential -

102 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Pre-compile time (1)

a
[}
S
=}
>
k=]
)
o)
It
o

Use cases
Pre-compile time configuration would be chosen for

» Enabling/disabling optional functionality

This allows to exclude parts of the source code that are not needed
» Optimization of performance and code size

Using #defines results in most cases in more efficient code than

access to constants or even access to constants via pointers.
Generated code avoids code and runtime overhead.

Restrictions
» The module must be available as source code

» The configuration is static and it may consist of one or more
configuration sets identified by means of variation points. To update
any configuration set (e.g. change the value of certain parameters),
the module has to be recompiled. .

: : : Nm_Cfg.c | Nm Cfg.h
Required implementation | ;
Pre-compile time configuration shall be done via the module'stwo e, o
configuration files (*_Cfg.h, * Cfg.c) and/or by code generation: (optional) ™ inciudes
m * Cfg.h stores e.g. macros and/or #defines .
— m.cC

m * Cfg.c stores e.g. constants

- AUTOSAR Confidential -

103 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Pre-compile time (2)

[&]
o
S
S
>
o
o
o)
]
Q|

Example 1: Enabling/disabling functionality
File Spi_Cfg.h:
#define SPI DEV ERROR DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1U;
File Spi.c (available as source code):

#include "Spi Cfg.h" /* for importing the configuration parameters */

extern const uint8 myconstant;

#if (SPI_DEV_ERROR DETECT == ON)
Det ReportError (Spi ModuleId, 0U, 3U, SPI E PARAM LENGTH); /* only one instance available */
fendif

Note: The Compiler Abstraction and Memory Abstraction (as specified by AUTOSAR) are not used to keep the example simple.

- AUTOSAR Confidential -

104 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Configuration
Pre-compile time (3)

=]
o
o
o
o
k=]
)
=2
©
=1

Example 2: Event IDs reported to the Dem
XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NvM E REQ FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem EventIdType; /* total number of events = 46 => uint8 sufficient */

#define DemConf DemEventParameter FLS E ERASE FAILED 0 1U0
#define DemConf DemEventParameter FLS E ERASE FAILED 1 2U
#define DemConf DemEventParameter FLS E WRITE FAILED 0 30
#define DemConf DemEventParameter FLS E WRITE FAILED 1 40U

Example for a multiple
instance driver (e.g. internal
and external flash module)

#define DemConf DemEventParameter NVM E REQ FAILED 5U
#define DemConf DemEventParameter CANSM E BUS OFF 6U
File Dem.h:

#include "Dem Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem_SetEventStatus (DemConf DemEventParameter NVM E REQ FAILED, DEM EVENT STATUS PASSED);

- AUTOSAR Confidential -

105 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Link time (1)

)
o
o
o
o
R
)
D
<
=1

Use cases
Link time configuration would be chosen for

» Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)

» Creation of configuration after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection
Configuration data shall be captured in external constants. These external constants are
located in a separate file. The module has direct access to these external constants.

2. 2..n configuration sets, runtime selection possible
Configuration data shall be captured within external constant structs. The module gets a

pointer to one of those structs at initialization time. The struct can be selected at each
initialization.

- AUTOSAR Confidential -

106 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

=
S
S
S
>
o
o
o)
]
Q|

Configuration
Link time (2)

Example 1: Event IDs reported to the Dem by a multiple instantiated module (Flash Driver) only available as object code
XML configuration file of the Flash Driver:
Specifies that it needs the event symbol FL.S E WRITE FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uintl6 Dem EventIdType; /* total number of events = 380 => uintl6 required */

#define DemConf DemEventParameter FLS E ERASE FAILED 0 1U0
#define DemConf DemEventParameter FLS E ERASE FAILED 1 2U
#define DemConf DemEventParameter FLS E WRITE FAILED 0 30
#define DemConf DemEventParameter FLS E WRITE FAILED 1 40U
#define DemConf DemEventParameter NVM E REQ FAILED 50
#define DemConf DemEventParameter CANSM E BUS OFF 6U

File FIs_Lcfg.c:
#include "Dem Cfg.h" /* for providing access to event symbols */

const Dem EventIdType Fls WriteFailed[2] = {DemConf DemEventParameter FLS E WRITE FAILED 1,
DemConf DemEventParameter FLS E WRITE FAILED 2};

File Fls.c (available as object code):

#include "Dem.h" /* for reporting production errors */
extern const Dem EventIdType Fls WriteFailed[];

Dem SetEventStatus (Fls WriteFailed[instance], DEM EVENT STATUS FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

- AUTOSAR Confidential -

107 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Link time (3)

o)
[}
S
S
>
o
[
o)
It
o]

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented
as uint16. The Flash Driver uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem EventIdType) have to be fixed and

distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code
using the correct types.

- AUTOSAR Confidential -

108 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

<
[=]
o
=]
>
R
)
D
<
=1

Configuration
Post-build time (1)

Use cases
Post-build time configuration would be chosen for
» Configuration of data where only the structure is defined but the contents not known during ECU-build time
» Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

» Reusability of ECUs across different car versions (same application, different configuration), e.g. ECU in a low-cost car
version may transmit less signals on the bus than the same ECU in a luxury car version.

Restrictions

» Implementation requires storing all possibly relevant configuration items in a flashable area and requires pointer dereferencing
upon config access. Implementation precludes generation of code, which has impact on performance, code and data size.

Required implementation

1. One configuration set, no runtime selection
Configuration data shall be captured in external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded. The module gets a pointer to a base struct at initialization time.

2. 2..n configuration sets, runtime selection possible
Configuration data shall be captured within external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded. The module gets a pointer to one of several base structs at initialization time. The
struct can be selected at each initialization.

- AUTOSAR Confidential -

109 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Post-build time (2)

5
o
(=]
>
e
()
o)
(]
[oX

Example 1

If the configuration data is fix in memory size and position, the module has direct access to these external structs

PduR.c — Compiler —> Linker — PduR.o
4 Direct access
_ _ (via reference as given by
Linker control file the pointer parameter of
i PduR’s initialization function)
PduR PBcfg.c|—* Compiler > Linker —|PduR_PBcfg.o

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

110

Configuration
Post-build time (3)

X
[=)
S
o
>
o
o
o)
]
Q|

Required implementation 2: Configuration of CAN Driver that is available as object code only; a configuration set can be
selected out of multiple configuration sets during initialization time.

File Can_PBcfg.c:
#include “Can.h” /* for getting Can ConfigType */
const Can_ ConfigType MySimpleCanConfig [2] =
{
{

Can BitTiming = 0xDF,
Can_AcceptanceMaskl = OxXFFFFFFFF,
Can_AcceptanceMask2 = OxFFFFFFFF, \\\\\\\\\\\\\\‘
Can_AcceptanceMask3 = 0x00034DFF, (:0n1p”er
Can_AcceptanceMask4 = 0x00FF0000
}V
{ o }
bi
File EcuM.c:
#include “Can.h"“ /* for initializing the CAN Driver */ ik
Can Init (&MySimpleCanConfig[0]); Linker
File Can.c (available as object code):
#include “Can.h"™ /* for getting Can ConfigType */

void Can Init (Can ConfigType* Config)
{ . .

/* write the init data to the CAN HW */ Binary file
i

- AUTOSAR Confidential -

111 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Variants

Different use cases require different kinds of configurability. Therefore the following configuration variants are
provided:
» VARIANT-PRE-COMPILE
Only parameters with "Pre-compile time" configuration are allowed in this variant.

» VARIANT-LINK-TIME
Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.

» VARIANT-POST-BUILD
Parameters with "Pre-compile time", “Link time" and "Post-build time" are allowed in this variant.

Example use cases:
> Reprogrammable PDU routing tables in gateway (Post-build time configurable PDU Router required)

» Statically configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
required)

To allow the implementation of such different use cases in each BSW module, up to 3 variants can be
specified:
> A variant is a dedicated assignment of the configuration parameters of a module to configuration
classes

» Within a variant a configuration parameter can be assigned to only ONE configuration class

» Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile for development error detection and post-build for reprogrammable PDU routing tables

> Itis possible and intended that specific configuration parameters are assigned to the same
configuration class for all variants (e.g. development error detection is in general Pre-compile time

configurable). - AUTOSAR Confidential -

112 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Memory Layout Example: Post-build configuration

EcuM defines the index: Description where to find what is an overall agreement:
1. EcuM needs to know all addresses including index
0x8000 &index (=0x8000) ;

: - 2. The modules (xx, yy, zz)need toknow their own
0x8000 fxx_configuration = Ox4710 start address: in this case: 0x4710, 0x4720 ...
0x8002 fi ti = 0x4720 . ..

- Ty con %gura fon - 3. The start addresses might be dynamic i.e. changes
0x8004 &zz configuration = 0x4730 Wlth new Configuration

4. When initializing a module (e.g. xx, vy, zz), ECuM
_ _ _ passes the base address of the configuration data (e.g.
Xx defines the modules configuration data: 0x4710, 0x4720, 0x4730)tothe module to allow for

0x4710 sthe real xx_configuration variable sizes of the configuration data.

0x4710 lower = 2

0x4712 upper =7 The module data is agreed locally (in the module) only
0x4714 more data 1. The module (xx, yy) knows its own start address

(to enable the implementer to allocate data section)
_ _ _ 2. Only the module (xx, yy) knows the internals of
Yy defines the modules configuration data: . .)
its own configuration
0x4720 &the real yy configuration
0x4720 Xx datal=0815 . ”
_data - ‘mp\e en\at\on n
0x4722 Yy data2=4711 “Pos’t—bu‘\d " =l s.pdf’
0x4724 more data de’ta“s see Cha& e(;\mp\e { fion
r k)
Fo “AUTOSAR’T _
v

- AUTOSAR Confidential -

113 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Configuration
Memory Layout Example: Multiple configuration sets

o
>
(&)
3

5
(0]
(@)
©
o

0x8000 &index[] (=0x8000) As before, the description where to find what is an
FL 0x8000 &xx configuration = 0x4710 overall agreement
0x8002 syy configuration = 0x4720 1. The index contains more than one description (FL,
. . FR,..) in an array
0x8004 &zz configuration = 0x4730 . .
- (here the size of an array element is agreed to be
8)
R 0x8008 &xx_configuration = 0x5000 2. There is an agreed variable containing the position
0x800a &yy configuration = 0x5400 of one deSCI’IptIOI’]
0x800c &zz configuration = 0x5200 selector = Chec.kPlnComl.Jlnatlo.n())
3. Instead of passing the pointer directly there is one
indirection:
0x8010 &xx_configuration = .. (struct EcuM__ConfigType *) &index|[selector];
RL 0x8012 &yy_configuration = .. 4. Everything else works as in conventional single
0x8014 &zz configuration = .. configuration case.
ion
“ — U‘\d \mp\e df”
ails, c\mp
For det TR_

- AUTOSAR Confidential -

114 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (5)s A R

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

115 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I SA R

[page id: 11eer]

Integration and Runtime Aspects

Mapping of Runnables

» Runnables are the
active parts of
Software Components

» They can be executed
concurrently, by
mapping them to
different Tasks.

» The figure shows
further entities like OS-

applications, Partitions,

nC-Cores and BSW-
Resources which have
to be considered for
this mapping.

116

M3IA

{ Runnable }

0.

1

v

)l
0.

BSW-Ressource
(E.g., NV-block)

14

[Tas(l: * }
1

0..*
4
[HC-Core }

MBIA-NDT/uoneiuawadw

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Table of contents

<
=
=
[e]
=]
)
o)
@
Q|

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

117 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I SA R

Integration and Runtime Aspects - Partitioning
Introduction

» Partitioning is implemented by using OS-Applications within the OS

» OS-Applications are used as error containment regions:
m Permit logical grouping of SW-Cs and resources
m Recovery policies defined individually for each OS-Application

» OS-Application consistency is ensured by the system/platform, for instance for:
m Memory access violation
m Time budget violation

» OS-Applications can be terminated or restarted during run-time as a result of a detected error:
m Further actions required: see example on following slides
m All BSW modules are placed in privileged OS-Applications
m These OS-Applications should not be restarted or terminated

» OS-Applications are configured in the ECU configuration:
m SW-Cs are mapped to OS-Applications (Consequence: restricts runnable to task

mapping)
m An OS-Application can be configured as restartable or not

» Communication across OS-Application boundaries is realized by the I0C

- AUTOSAR Confidential -

118 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Partitioning
Example of restarting OS-Application

S

\ A violation (error) has occurred in the system (e.g., memory or
timing violation)

Decision (by integrator code) to restart the OS-Application

O

— Other OS-Applications remain unaffected

The OS-Application is terminated by the OS, cleanup possible

Communication to the OS-Application is stopped

0 ED e

Communication from the OS-Application is stopped (e.g., default
values for ports used)

A
@ The OS-Application is restarting (integrator code), initial environ-
ment for OS-Application setup (init runnables, port values etc)
llllj Communication to the OS-Application is stopped
=

Communication from the OS-Application is stopped

©)

9
~

The OS-Application is restarted and up and running

Communication is restored

OS-Application internally handles state consistency

115 Bocument D 053 - AUTGSAR EXP LayeredSofmareArchieciire Eu—r@;ﬁR

Integration and Runtime Aspects - Partitioning
Involved components

» Protection Hook
m Executed on protection violation (memory or timing)
m Decides what the action is (Terminate, Restart, Shutdown, Nothing)
m Provided by integrator
m OS acts on decision by inspecting return value
» OsRestartTask
m Started by OS in case Protection Hook returns Restart
m Provided by integrator
m Runs in the OS-Application’s context and initiates necessary cleanup and restart activities, such as:
= Stopping communication (ComM)
= Updating NvM
» Informing Watchdog, CDDs etc.
> RTE
m Functions for performing cleanup and restart of RTE in OS-Application
m Triggers init runnables for restarted OS-Application
m Handles communication consistency for restarting/terminated OS-Applications
» Operating System
m OS-Applications have states (APPLICATION ACCESSIBLE, APPLICATION RESTART,
APPLICATION TERMINATED)

m OS provides API to terminate other OS-Applications (for other errors than memory/timing)

- AUTOSAR Confidential -

120 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Partitioning
restart example

sd TerminateRestartPartition/I

Os-Application
state for the oS ProtectionHook OSRestartTask RTE BSW modules
considered
Partition.
APPLICATION_ACTIVE ' : : : :
. ProtectionHook . ! . .
inform the RTE 1 1
e . = 5
<--mmmmmmmmsmmmm--eeeS ; , , ,
6PPLICATION_RESTARTIN9 ActivateT ask | | |
: > : :
. Trigger cleanup in the BSW patrtition .
: T E P
. Polling end of asynchronous cleanups .
| L e >
: request a restart of the partition to the RTE 1
! . »T]
AllowAccess
¢ i
(APPLICATION_ACTIVE) !
TerrlninateTask
< !

- AUTOSAR Confidential -

121 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Partitioning
Other examples

» Termination
m An OS-Application can be terminated directly
m Also for termination, some cleanup may be needed, and this shall be performed in the
same way as when restarting an OS-Application

» Error detection in applications
m SW-Cs may require restart for other reasons than memory or timing violation
m A termination/restart can be triggered from a SW-C using the OS service
TerminateApplication()
m Example: a distributed application requires restart on multiple ECUs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

122

Table of contents

<
A
c
=
o
o
o
o)
]
Q|

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

123 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects - Scheduling
General Architectural Aspects

» Basic Software Scheduler and the RTE are generated together.
» This enables
m that the same OS Task schedules BSW Main Functions and Runnable Entities of

Software Components

= to optimize the resource consumption
= to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

m a coordinated switching of a Mode affecting BSW Modules and Application Software
Components

m the synchronized triggering of both, Runnable Entities and BSW Main Functions by the
same External Trigger Occurred Event.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

124

a
—
™
%)
>
o
[
o)
It
o]

Integration and Runtime Aspects - Scheduling
Basic Scheduling Concepts of the BSW

BSW Scheduling shall
» Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms

>

Apﬁli(ejd Iqata consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured
scheduling.

Single BSW modules do not know about

>
>
>

ECU wide timing dependencies
Scheduling implications
Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE

>
>

>
>
>

generator together with the RTE
Eases the integration task
Enables applying different scheduling strategies to schedulable objects
m Preemptive, non-preemptive, ...
Enables applying different data consistency mechanisms
Enables reducing resources (e.g., minimize the number of tasks)
Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality
» Only the BSW Scheduler and the RTE shall use OS objects or OS services

>

125

(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL
modules may enable/disable interrupts)
Rationale:

m Scheduling of the BSW shall be transparent to the system (integrator)

m Enables reducing the usage of OS resources (Tasks, Resources,...)

m Enables re-using modules in different environments

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Scheduling
Scheduling Objects, Triggers and Mode Disabling Dependencies

[&]
—
™
»

>
o

o

o)

]

Q|

BSW Scheduling objects
» Main functions

®m n per module

m |ocated in all layers

RTE

Zzz MainFunction Aaa

BSW Events

BswTimingEvent
BswBackgroundEvent
BswModeSwitchEvent
BswModeSwitchedAckEvent

BswInternalTriggerOccuredEvent

Yyy MainFunction Aaa

‘

Xxx Isr Yyy

Microcontroller

BswExternalTriggerOccuredEvent

VV VY V VY YV

BswOperationInvokedEvent

\

Triggers

» Main functions can be triggered in all layers by
the listed BSW Events

Mode Disabling Dependencies

» The scheduling of Main functions can be
disabled in particular modes.

- AUTOSAR Confidential -

-
126 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (‘ o)s A R

o
—
™
%)
>
o
[
o)
It
o]

Integration and Runtime Aspects - Scheduling
Transformation Process

127

YV V V

YV VYV

V V V

Ideal concurrency
Unrestricted resources
Only real data dependencies

Scheduling objects
Trigger
m BSW Events
Sequences of scheduling objects
Scheduling Conditions

Restricted concurrency

Restricted resources

Real data dependencies
Dependencies given by restrictions

: 1

YV V V V

» OS objects
Tasks
ISRs
Alarms
Resources
m OS services
Sequences of scheduling objects within tasks
Sequences of tasks

Y V VYV

>

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au l SA R

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 1

Logical Architecture (Model) Technical Architecture (Schedule Module)

Taskl {

Zzz MainFunction Bbb () ;

Zzz MainFunction Bbb () ; Yyy MainFunction Aaa();

P o reimmncrion ras0 [oo

Xxx MainFunction Aaa(); Xxx MainFunction RAaa () ;

——
.
.
.

Nanstormetion

Mapping of scheduling objects to OS Tasks

Specification of sequences of scheduling objects within tasks

- AUTOSAR Confidential -

128 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (SAR

Integration and Runtime Aspects - Scheduling
Transformation Process — Example 2

Logical Architecture (Model) Technical Architecture (Schedule Module)

Task?2 {

Xxx MainFunction Bbb();

Xxx_ MainFunction Bbb () ; }

76

Yyy MainFunction Bbb(); Task3 {

129

Yyy MainFunction Bbb () ;

Nanstormetion

Mapping of scheduling objects to OS Tasks

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (SAR

Integration and Runtime Aspects - Scheduling
Data Consistency — Motivation

» Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx Module

Xxx MainFunction () ;

Yyy Accesgresource () ;
I ——

o™

Yyy MainFunction() ; ﬁ"

W >

2

Yyy Module

- AUTOSAR Confidential -

130 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

Logical Architecture (Model)/ Implementation of Schedule Module

Technical Architecture (Schedule Module) RS Behk e _anost_wemes i

DisableAllInterrupts
#define SchM Exit <mod> <name> \

Taskl Xxx_Module EnableAllInterrupts

m

Yyy Acces

Yyy MainFunction () {

SchM Enter Yyy XYZ();

/’T\\ - : <access_to_shared resource>
\>/7 > Yyy_MalnFunctlon () H SChM_EXit_Yyy_XYZ () ;

Task?

Nanstormetion

Data consistency is ensured by:

Interrupt blocking

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

131

Integration and Runtime Aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

Technical Architecture (Schedule Module) RIS HEmi e _Sioes_<aEmes |

/* nothing required */
#define SchM Exit <mod> <name> \
Taskl Xxx Module /* nothing reguired */

m

Yyy Acces

Yyy MainFunction () {

SchM Enter Yyy XYZ();

/’T\\ - : <access_to_shared resource>
\>/7 > Yyy_MalnFunctlon () H SChM_EXit_Yyy_XYZ () ;

Task?

Nanstormetion

Data consistency is ensured by:

Sequence

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

132

Integration and Runtime Aspects
Mode Communication / Mode Dependent Scheduling

[0}
—
™
%)
>
o
[
o)
It
o]

» The mode dependent scheduling of BSW Modules is identical to the mode dependent
scheduling of runnables of software components.

» A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic
Software Module Description, and the BSW Scheduler provides an API to communicate mode
switch requests to the BSW Scheduler

» A mode user defines a Required ModeDeclarationGroupPrototype in its Basic Software

Module Description. On demand the BSW Scheduler provides an API to read the current
active mode

> If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW
Scheduler suppresses the scheduling of BSW Main functions in particular modes.

- AUTOSAR Confidential -

133 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Table of contents

<
S
o
14
o
o
o
o)
]
Q|

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

134 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects
Vehicle and application mode management (1)

Q
N
N
o~
o
k=]
)
=2
]
=1

Relation of Modes: Vehicle
: Modes A A

» Every system contains Modes at

different levels of granularity. As shown iuence each oer

in the figure, there are vehicle modes Aoolicati

.) . pplication

and several applications with modes and Modes A i

ECUs with local BSW modes. M iivence eachather | tuence each other
» Modes at all this levels influence each

BSW
other. Modes
v v

Therefore:

» Depending on vehicle modes, applications may be active or inactive and thus be in different
application modes.

> Vice versa, the operational state of certain applications may cause vehicle mode changes.

» Depending on vehicle and application modes, the BSW modes may change, e.g. the
communication needs of an application may cause a change in the BSW mode of a
communication network.

» Vice versa, BSW modes may influence the modes of applications and even the whole
vehicle, e.g. when a communication network is unavailable, applications that depend on it
may change into a limp-home mode.

- AUTOSAR Confidential -

135 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects
Vehicle and application mode management (2)

o
N
N
o~
o
k=]
)
o)
It
o

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to
control the BSW locally based on the results.

This implies that in each OS-Application, there has to be a mode manager that switches the modes
for its local mode users and controls the BSW. Of course there can also be multiple mode
managers that switch different Modes.

The mode request is a “normal” sender/receiver communication (system wide) while the mode
switch always a local service.

Mode Mode
Requester oy Revest L urit Sl swier Goer
Mode [éVIV\(/)i?ceh Mode [
I Manager |] I} User

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

136

Integration and Runtime Aspects Application Layer
Vehicle and application mode management (3)

System Services

Layer Functionality per module

App Mode Arbitration SW-C

Microcontroller (uC)

» The major part of the needed functionality is

BswM placed in the Basic Software Mode Manager

(BswM for short). Since the BswM is located
' ’ in the BSW, it is present in every OS-

BSW { Mode Arbitration Mode Control S
: Application and local to the mode users as

well as the controlled BSW modules.

» The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

> E.g. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

» BswMs running in different OS-Applications can propagate mode requests by Sender-
Receiver communication (SchMWrite, SchMRead).

- AUTOSAR Confidential -

137 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

o
N
N
o~
o
k=]
)
o)
It
o

Integration and Runtime Aspects
Vehicle and application mode management (4)

Mode Processing Cycle

>

138

The mode requester SW-C requests mode

A through its sender port. The RTE
distributes the request and the BswM
receives it through its receiver port.

The BswM evaluates its rules and if a

rule triggers, it executes the corresponding

action list.

When executing the action list, the BswM
may issue a (configurable optional) RTE
call to the mode switch API as a last action

to inform the mode users about the

arbitration result, e.g. the resulting mode A'.

Any SW-C, especially the mode
requester can register to receive the
mode switch indication.

The mode requests can originate from
local and remote ECUs or OS-Applications.

Note that the mode requestor can only
receive the mode switch indications from
the local BswM, even if the requests are

sent out to multiple OS-Applications.

1: request
mode A

Applications

Mode requesting
SW-C

Mode using
SW-C

3: switch
mode A"

Mode request Local mode
distribution handling
v
BswM |
Mode | Mode
2. execute | Arbitration | Control
associated — Action list
action list :
Mode arbitration | Action 1
overrides the | Action 2
request for mode i
A with mode A", i RteSwitch (mode A7)
|

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTO SAR

Table of contents

<
S
=3
&
o
o
o
o)
]
Q|

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

139 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (1)

(=)
o
o
[}
S
k=]
)
o)
It
o

Types of errors

Hardware errors / failures

m Root cause: Damage, failure or ,value out of range’, detected by software
m Example 1: EEPROM cell is not writable any more

m Example 2: Output voltage of sensor out of specified range

Software errors

m Root cause: Wrong software or system design, because software itself can never fail

m Example 1: wrong API parameter (EEPROM target address out of range)
m Example 2: Using not initialized data

System errors

m Example 1. CAN receive buffer overflow
m Example 2: time-out for receive messages

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

140

[}
=2}
)
b=
[
o)
@
o]

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Classification (2)

Error Classes

» Development Errors

Development errors are software errors. They shall be detected like assertions and fixed during
development phase. The detection of errors that shall only occur during development can be switched off
per module for production code (by static configuration namely preprocessor switches). The according API

is specified within AUTOSAR, but the functionality can be chosen/implemented by the developer according
to specific needs.

> Runtime Errors

Runtime errors are systematic software errors. They indicate severe exceptions that hinder correct

execution of the code. The monitors may stay in code even for a deployed systems. Synchronous handling
of these errors can be done optionally in integrator code.

» Transient Faults

Transient faults occur in hardware e. g. by passage of particles or thermal noise. Synchronous handling of
these faults can be done optionally in integrator code. The detecting module may offer behavioral
alternatives selectable by this integrator code.

» Production Errors / Extended Production Errors

Those errors are stored in fault memory for repair actions in garages. Their occurrence can be anticipated
and cannot be avoided in production code. Production errors have a detection and a healing condition.

- AUTOSAR Confidential -

141 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Alternatives

]
=
N
~
O
h=]
)
(o)
]
o

There are several alternatives to report an error (detailed on the following slides):

Via API
Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)
Inform the caller about failure of an operation

Via central Error Hooks (Default Error Tracer, Det)
For logging and tracing errors during product development. Can be switched off for production code.

Via central Callouts (Default Error Tracer, Det)
For handling errors during product life time.

Via central Error Function (AUTOSAR Diagnostic Event Manager)
For error reaction and logging in series (production code)

Each application software component (SW-C) can report errors to Diagnostic Event Manager (Dem).

- AUTOSAR Confidential -

142 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Mechanism in relation to AUTOSAR layers and system life time

~
N
O
]
-

B
)
O
]
o

Default
Error Tracer
(Det)
Diagnostic
Log End to End
and Trace Communication
(Dlt) (E2E)
Basic Software
Diagnostic Event
Manger (Dem)
and Function
Inhibition
Manager (FiM)
Watchdog ECU Hardware
(Wdg)
Life cycle: development production After production

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

143

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting via API

~
o
o
@
>

k=]
)
o)
It
Q|

Error reporting via API
Informs the caller about failure of an operation by returning an error status.

Basic return type
Success: E_OK (value: 0)

Failure: E NOT OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be
defined. Different errors shall only be used if the caller can really handle these. Specific
development errors shall not be returned via the API. They can be reported to the Default
Error Tracer (Det).

Example: services of EEPROM driver
Success: EEP E OK

General error (service not accepted): EEP_ E NOT OK
Write Operation to EEPROM was not successful: EEP E WRITE FAILED

- AUTOSAR Confidential -

144 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

=
N

=
5

b=
o
(o
&
o

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Introduction

Error reporting via Diagnostic Event Manager (Dem)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:
» Writing to error memory

» Disabling of ECU functions (e.g. via Function Inhibition Manager)

» Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code
and whose functionality is specified within AUTOSAR.

Error reporting via Default Error Tracer (Det)
For reporting development/runtime errors.

The Default Error Tracer is mainly intended for handling errors during development time but also for handling
systematic errors in production code. Within the Default Error Tracer many mechanisms are possible, e.g.:

» Count errors

» Write error information to ring buffer in RAM

» Send error information via serial interface to external logger
> Infinite Loop, Breakpoint

The detection and reporting of development errors to the Default Error Tracer can be statically switched on/off
per module (preprocessor switch or different object code builds of the module) but not for Runtime errors.

- AUTOSAR Confidential -

145 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

=
=
=
R
i}
)
o)
]
o1

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Event Manager — Diagnostic Error Reporting

API

The Diagnostic Event Manager has the following API:
Dem SetEventStatus (EventId, EventStatus)

Problem: the error IDs passed with this APl have to be ECU wide defined, have to be statically defined and have to occupy a

compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation
Properties:

Process:

146

Source and object code compatible
Single name space for all production relevant errors
Tool support required

Consecutive error numbers - Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Each BSW Module declares all production code relevant error variables it needs as “extern”
Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g. CANSM E BUS OFF)

The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single
file with global constant variables that are expected by the SW modules (e.g.

const Dem EventIdType DemConf DemEventParameter CANSM E BUS OFF=7U; or

#define DemConf DemEventParameter CANSM E BUS OFF ((Dem EventIdType)))

The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

N
N~
o]
<
o
)
)
IS
[oX

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Default Error Tracer — Example: Development Error Reporting

API

The Default Error Tracer has the following API for reporting development errors (runtime errors and transient faults use identical
APIs with different names):

Det ReportError (uintl6 ModuleId, uint8 Instanceld, uint8 Apild, uint8 ErrorId)

Error numbering concept
ModuleId (uintl6)

The Module ID contains the AUTOSAR module ID from the Basic Software Module List.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.

InstanceId (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.

ApiId (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined in the module starting with 0.

ErrorId (uilnt8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module‘s header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

- AUTOSAR Confidential -

147 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (1)

Qo
>
o
o
>

B
)
o)
]
Q|

The module Diagnostic Log and Trace (Dlt) collects log messages and converts them into a

standardized format. The DIt module forwards the data to the PduR, which sends it to the
configured communications bus.

Therefore the DIt provides the following functionalities:
» Logging

m logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a
standardized AUTOSAR interface,

m gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized
AUTOSAR service component (DIt) in the BSW,

m logging of messages from Det and

m logging of messages from Dem.
» Tracing

m of RTE activities
> Control

m individual log and trace messages can be enabled/disabled and

m Log levels can be controlled individually by back channel.
» Generic

m DIt is available during development and production phase,

m access over standard diagnosis or platform specific test interface is possible and
m Ssecurity mechanisms to prevent misuse in production phase are provided.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

148

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (2)

Qo
>
()
X

°

kel
©
o)
©

Q)

The DIt communication module is
enabled by an external client. Aoblication L

: . - t
(1) A SW-C is generating a log PRI
message. The log message is sent

to DIt by calling the Interface
provided by DIt

(2) DIt implements the DIt protocol

(3) DIt sends the encoded log message
to the communication bus

(4) An external DIt client collects the log
message and provides it for later
analysis

CAN / Flexray /
Ethernet / Serial

- AUTOSAR Confidential -

149 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic
Diagnostic Log and Trace (3)

API
The Diagnostic Log and Trace has syntactically the following API:
D1t SendLogMessage (D1t SessionIDType session_id, DIt MessageLogInfoType log_info, uint3

*1og data,
uintT6 log_data length)

Log message identification :

session_id. : e . o : .
Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or

trace messages. If a SW-C is instantiated several times or opens several ports to Dlt, a new session with a new Session
ID for every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened

to DIt.

log info contains:

Application ID / Context ID
Application ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user

defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each Application ID can
o;/]vn several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID
Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for

identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log data
Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the DIt

transmission protocol.

Description File
Normally the 1og data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).

Additionally a description file shall be provided. Within this file the same information for a log messages associated with the
Message ID are posted. These are information how to interpret the 1og data buffer and what fixed entries belonging to a log

message.

- AUTOSAR Confidential -

150 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Table of contents

<
T
=
=
)}
o
o
o)
I
o]

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

151 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects - Measurement and Calibration
XCP

o)
&
o
S
>
ke
[
o)
I
Q|

XCP is an ASAM standard for calibration purpose of an ECU.

XCP within AUTOSAR provides
the following basic features:

» Synchronous data acquisition

» Synchronous data stimulation 0 N purosar [Comment Dt
» Online memory calibration (read / write cou caon Trace

Manager

access)

XCP Protocol

> Calibration data page initialization and XCPoFr _
. . XCPonCAN / PDU Router
switchi ng XCPonTCP/IP / m

» Flash Programming for ECU e

development purposes

Bus Interface(s)
(or Socket Adaptor on ethernet)

Bus Driver(s)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

152

Table of contents

<
3
7]
<
o
R
)
D
]
=1

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

153 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects — Safety End to End (E2E) Communication Protection
Overview

o
>
o
5

5
(0]
()]
©
o

Typical sources of interferences,
- - — — causing errors detected by E2E

Libraries OS-Application 2 OS-Application 1 protection:
Receiver 1 Sender
SW-related sources:
S1. Error in mostly generated RTE,
S2. Error in partially generated and
partially hand-coded COM
S3. Error in network stack

S4. Error in generated 10C or OS

Direct function call Direct function call Il

HW-related sources:
RTE

H1. Failure of HW network

H2. Network electromagnetic
interference

H3. Microcontroller failure during
context switch or on the
communication between cores

Receiver
2

\ Microcontroller 2

/ ECU 2

Microcontroller 1/ECU 1

- AUTOSAR Confidential -

-
154 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (a\)s A R

Integration and Runtime Aspects — Safety End to End (E2E) Communication Protection
Logic

Ke)
>
(%]
2

b=
)
o)
@
Q|

Libraries OS-Application 2

OS-Application 1
Receiver 1

8. Call E2E check on array
- E2E_PO0xCheck ()

3. Call E2E protect on array — E2E_POx_Protect() |

4. Invoke RTE - RTE Write <p> <o>() to
transmit the data element

\l/ 7. Invoke RTE read - RTE Read <p> <o> () to get

AUTOSAR Runtime Environment (RTE)

5. RTE communication (intra or inter ECU), either through COM, 10C,
or local in RTE

Notes:

> For each RTE Write or Read function that transmits safety-related data (like Rte Write <p> <o>()), thereis the
corresponding E2E protection wrapper function.

The wrapper function invokes AUTOSAR EZ2E Library.
The wrapper function is a part of Software Component and is preferably generated.
The wrapper function has the same signature as the corresponding RTE function, just instead of Rte there is E2EPW .

The E2EPW function is called by Application logic of SW-Cs, and the wrapper does the protection/checks and calls
internally the RTE function.

For inter-ECU communication, the data elements sent through E2E Protection wrapper are be byte arrays. The byte
arrays are put without any alterations in COM I-PDUs.
- AUTOSAR Confidential -

155 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

YV V.V V

A\

Table of contents

T}
EY
2]
<
o
R
)
D
<
=1

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

156 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects — Secure Onboard Communication
Overview - Message Authentication and Freshness Verification

Application Layer Application Layer

RTE

N
N~
[S]
o
7]
k=]
()
O
@
o

RTE

MAC verification

Monotonic
counter .
Monotonic
counter
sync
Authentic Authentic T < N Authentic T =< > Authentic
I-PDU _— I-PDU < g < I-PDU < g - I-PDU
Secured I-PDU Secured I-PDU

MAC: Message Authentication Code
FV: Freshness Counter Value

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

157

Integration and Runtime Aspects — Secure Onboard Communication
Integration as communication service

(2
N~
[S]
o
2]
k=]
()
D)
@
o

SecOC BSW:

» adds/verifies authentication information
(for/from lower layer)

» realizes interface of upper and lower
layer modules

» is addressed by PduR routing
configuration

» maintains buffers to store and modify
secured I-PDUs

Upper Layer SW Module (e.g. COM)

- Authentic I-PDU

- SecOC
| PDUR (Secure Onboard

Frif

“':" Communication)

\

Secured I-PDU

_____ > . Authentication
Authentic I-PDU Information

Lower Layer Communication Modules
(e.g. Canlf, CanTp)

Canlf

- AUTOSAR Confidential -

-
158 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (‘o)SAR

Integration and Runtime Aspects — Secure Onboard Communication

Integration with other services
PDU-Routing
Cryptographic

Services
RTE

<
~
[S]
o
2]

h=]
(]
D)
©
(=1

Key & Counter
Management
Services

Key Management
(optional)

Error Reporting

I AN
Routing Table

Frif

Canlf ‘

- AUTOSAR Confidential -

-
159 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au l (‘o)SAR

Table of contents

©
b
7]
<
o
R
)
o)
]
=1

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

160 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

o]

I
ol
©
o}

k=]
)
o)
It
o

Energy Management
Introduction

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power
saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

» Allows for turning off network communication across multiple ECUs in case their provided
functions are not required under certain conditions. Other ECUs can continue to
communicate on the same bus channel.

» Uses NM messages to communicate the request/release information of a partial network
cluster between the participating ECUSs.

Pretended Networking (currently only for CAN)

» Allows turning off an ECU in an existing network while communication is on the bus. The ECU
can reduce runtime power consumption by increasing the idle time of the MCU.

» Uses an ECU local approach (node can decide by itself to switch into a power saving mode)
and therefore allows for easy integration into existing networks.

ECU Degradation
» Allows to switch of peripherals.

- AUTOSAR Confidential -

161 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Energy Management — Partial Networking
Example scenario of a partial network going to sleep

©
™
Q)
[}
o}
o
[
o)
It
o

Initial situation
A » ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.
ECUs “B”, “C” and “D” are members of PNC 2.

» All functions of the ECUs are organized either in PNC 1 or PNC 2.

m
0
c
>

A » Both PNCs are active.
ECUB | » PNC 2 is only requested by ECU “C”.
2 » The function requiring PNC 2 on ECU “C” is terminated, therefore

ECU “C” can release PNC 2.
This is what happens:
2 » ECU “C” stops requesting PNC 2 to be active.

» ECUs “C” and “D” are no longer participating in any PNC and can
be shutdown.

ECUID — > ECU “B” ceases transmission and reception of all signals
associated with PNC 2.

» ECU “B” still participates in PNC 1. That means it remains awake

and continues to transmit and receive all signals associated with
Partial Network Cluster 1 —— PNC 1.

Physical CAN Bus —

Partial Network Cluster 2 > ECU “A” is not affected at all.

- AUTOSAR Confidential -

162 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Energy Management — Partial Networking
Conceptual terms

[&]
[52)
Q|
[
o
o
o
o)
]
Q|

» A significant part of energy management is about mode handling. For the terms
m Vehicle Mode,

m Application Mode and
m Basic Software Mode
see chapter 3.4 of this document.

» Virtual Function Cluster (VFC): groups the communication on port level between SW-
components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

» VFC-Controller: Special SW-component that decides if the functions of a VFC are required at
a given time and requests or releases communication accordingly.

» Partial Network Cluster (PNC): is a group of system signals necessary to support one or
more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

163

=

[
Q|
)
o

o
o
o)
]
Q|

Energy Management — Partial Networking
Restrictions

» Partial Networking (PN) is currently supported on CAN and FlexRay buses.

» LIN and CAN slave buses (i.e. CAN buses without network management) can be activated*
using PN but no wake-up or communication of PN information are supported on those buses

» To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

m The standard wake-up without special transceiver HW known from previous AUTOSAR
releases is still supported.

» A VFC can be mapped to any number of PNCs (including zero)

m The concept of PN considers a VFC with only ECU-internal communication by mapping it
to the internal channel type in ComM as there is no bus communication and no physical
PNC

» Restrictions for CAN
m J1939 and PN exclude each other, due to address claiming and J1939 start-up behaviour

m J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

m A J1939 bus not using address claiming can however be activated using PN as a CAN
slave bus as described above

» Restrictions on FlexRay
m FlexRay is only supported for requesting and releasing PNCs.
m FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the nodes.

- AUTOSAR Confidential -

164 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Energy Management — Partial Networking
Mapping of Virtual Function Cluster to Partial Network Cluster

SW-C SW-Component of VFC1

SW-Component of VFC2

SW-C
1

SW-C SW-Component of VFC3

CompositionType O Communication Port

|vrc1] |vrc2] [vecs |
Mapping of
VFC on PNC % [—ﬁ
pnct | [PNe2

* Here both Partial Networks
map to one CAN bus.

* One Partial Network can also
span more than one bus.

ECU Hardware ECU Hardware ECU Hardware
PNC1 CAN Bus PNC2

- AUTOSAR Confidential -

165 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (o\)SA R

Energy Management — Partial Networking
Involved modules — Solution for CAN

page id: eep3b

Application Layer

* VFC to PNC to channel
translation
* Coordination of I-PDU

* PNC management (request /
group switching Mode ComRM_Use: - release of PNCs)
« Start / stop I-PDU-groups request S

* Indication of PN states

—

» Exchange PNC request / release
information between NM and
ComM via NM user data

» Enable / disable I-PDU-groups

Filter incoming NM messages
Collect internal and external PNC requests
Send out PNC request infocmation in NM user data

Spontaneous sending of NM messages on PNC
startup

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

Energy Management — Pretended Networking
Involved modules — Solution for CAN

Mode
request

W'

Activate or deactivate ICOM

.
I

Activate or deactivate ICOM

» Enable, disable interrupts

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (SAR

=

<
=¥
[
o

o
o
o)
]
Q|

Energy Management — Pretended Networking
Restrictions

>

>

A\

168

Pretended Networking is currently supported on CAN buses only. Future releases will also
support FlexRay.

Pretended Networking in gateway ECUs is not supported.

For level 1, the functionality of the BSW is reduced while the MCU is in Pretended
Networking mode. This increases the idle time of the software, which increases the time the
MCU can be put in an energy efficient state. Only when the payload of received message has
to be filtered for wakeup reasons, or messages have to be sent, the software needs to be
active.

Level 1 can, therefore, reuse existing communication controllers. It does, however, require a
hardware timer to issue a cyclic wakeup, even when the MCU is paused.

For level 2, a new type of Intelligent Communication Controllers (ICOMs) will be required.
ICOMSs are able to send, receive and filter frames, even if the MCU is not running. Dedicated
hardware will be necessary especially for high-speed busses such as FlexRay, because the
activation time for the software based approach would decrease the saving potential of
Pretended Networking due to the much higher data rate. In Release 4.1 only Level 1 is
available.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Energy Management — ECU Degradation
Involved modules — Solution for I1/O Drivers

Mode
request
A
‘ £
\

Switch power state

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (SAR

Energy Management — ECU Degradation
Restrictions

=

1)
o
[
o

o
o
o)
]
Q|

» ECU Degradation is currently supported only on MCAL drivers Pwm and Adc.
» Core HALT and ECU sleep are considered mutually exclusive modes.

» Clock modifications as a means of reducing power consumption are not in the scope of the
concept (but still remain available as specific MCU driver configurations).

- AUTOSAR Confidential -

170 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (\ s A R

Table of contents

()]
2
7]
<
o
R
)
D
]
=1

1. Architecture

2. Configuration

3. Integration and Runtime Aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Measurement and Calibration

Functional Safety

Security

Energy Management

10. Global Time Synchronization

©obp =l ey @l s Gy e

- AUTOSAR Confidential -

171 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s A R

Integration and Runtime Aspects — Global Time Synchronization

0
Q
)
2
o)
h=]
)
o)
5]
o

Global Time Synchronization provides synchronized time base(s) over multiple in-vehicle
networks.

StbM provides the following features: K=

» Time provision

» Time base status

» Time gateway

i AUTOSAR gll?ng"!rr:?jrt:ﬁ
CanTSyn / FrTSyn / EthTSyn provides - e
the network-specific time synchronization
protocol

EthTSyn provides additionally a rate-
correction and latency calculation.
CanTSyn FrTSyn EthTSyn
Tp

Use-case examples:
» Sensor data fusion
» Cross-ECU logging

Can Fr Eth GPT ‘rﬂi
Driver Driver Driver Driver
- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I (s A R

172

