
Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Document Title Methodology for Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 709

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-10

Document Change History
Date Release Changed by Description

2018-10-31 18-10
AUTOSAR
Release
Management

• renamed Application Manifest
to Execution Manifest
• moved references from spec.item

body to foot notes
• editorial changes

2018-03-29 18-03
AUTOSAR
Release
Management

• Split of machine design and machine
configuration
• Added diagnostic mapping
• Added roles
• Reviewed sections about deployment

of Software Packages

2017-10-27 17-10
AUTOSAR
Release
Management

• Design of service oriented
communication between CP and AP
• Design of signal oriented

communication between CP and AP
• Deployment by means of

SoftwareCluster
• Removed concept of TransportLay-

erIndependentInstanceId

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Table of Contents

1 Introduction 10

1.1 Objective and Scope . 10
1.2 Document Outline . 11
1.3 Document Conventions . 11
1.4 Abbreviations . 11
1.5 Methodology Concepts . 12
1.6 Requirements Traceability . 13
1.7 Known Limitations . 15

2 Use Cases for the Adaptive Platform 16

2.1 Overall View . 16
2.1.1 Purpose . 16
2.1.2 Description . 16

2.1.2.1 Domains of Development 16
2.1.2.2 Fundamental Activities 17
2.1.2.3 Workflow . 24

2.2 Architecture and Design . 27
2.2.1 Develop a Service Interface Description 27

2.2.1.1 Purpose . 27
2.2.1.2 Description . 27
2.2.1.3 Workflow . 28

2.2.2 Design communication between Classic Platform and
Adaptive Platform . 29

2.2.2.1 Design service oriented communication between
Classic Platform and Adaptive Platform . 29

2.2.2.2 Design signal oriented communication between
Classic Platform and Adaptive Platform . 32

2.2.3 Develop the communication structure by means of Machine
Design . 36

2.2.3.1 Purpose . 36
2.2.3.2 Description . 36
2.2.3.3 Workflow . 37

2.2.4 Create a Diagnostic Mapping 38
2.2.4.1 Purpose . 38
2.2.4.2 Description . 39
2.2.4.3 Workflow . 40

2.3 Software Development . 42
2.3.1 Develop Adaptive Application Software 42

2.3.1.1 Purpose . 42
2.3.1.2 Description . 42
2.3.1.3 Workflow . 43

2.3.2 Develop Adaptive Platform-level Software 46
2.3.2.1 Purpose . 46
2.3.2.2 Description . 46

3 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.3.2.3 Workflow . 46
2.4 Integration and Deployment . 47

2.4.1 Integrate Software . 47
2.4.1.1 Purpose . 47
2.4.1.2 Description . 48
2.4.1.3 Workflow . 49

2.4.2 Define and configure a Machine 51
2.4.2.1 Preparatory steps . 52
2.4.2.2 Configure the Machine 53

2.4.3 Create Execution Manifest 57
2.4.3.1 Purpose . 57
2.4.3.2 Description . 58
2.4.3.3 Workflow . 58

2.4.4 Define and Configure Service Instances 60
2.4.4.1 Purpose . 60
2.4.4.2 Description . 60
2.4.4.3 Workflow . 62

2.4.5 Set up an initial Machine . 64
2.4.5.1 Purpose . 64
2.4.5.2 Description . 65
2.4.5.3 Workflow . 66

2.4.6 Create Software Packages 67
2.4.6.1 Purpose . 67
2.4.6.2 Description . 67
2.4.6.3 Workflow . 72

2.4.7 Management and provision of Software Packages 75
2.4.7.1 Purpose . 75
2.4.7.2 Description . 75
2.4.7.3 Workflow . 76

3 Adaptive Methodology Library 79

3.1 Roles . 79
3.1.1 OEM . 79
3.1.2 Tier 1 . 80
3.1.3 Tier 2 . 80

3.2 Service Interface . 81
3.2.1 Tasks . 81

3.2.1.1 Provide Data Types for Adaptive Platform 81
3.2.1.2 Define Service Interfaces 82
3.2.1.3 Aggregate Service Interfaces 82

3.2.2 Work Products . 82
3.2.2.1 AUTOSAR AP Standard Package 82
3.2.2.2 AP Data Types . 83
3.2.2.3 Service Interface Description 83
3.2.2.4 Service Interface Mapping 85

3.3 Communication Mapping . 86

4 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.3.1 Tasks . 86
3.3.1.1 Map Method . 86
3.3.1.2 Map Event . 86
3.3.1.3 Map Field . 87
3.3.1.4 Map Fire and Forget 87
3.3.1.5 Map SignalBasedMethod to ISignalTriggerings . . . 88
3.3.1.6 Map SignalBasedEvent to ISignalTriggerings 88
3.3.1.7 Map SignalBasedField to ISignalTriggerings 89
3.3.1.8 Map ServiceInstance to PortPrototype 89

3.3.2 Work Products . 90
3.3.2.1 Client Server Interface Description 90
3.3.2.2 Sender Receiver Interface Description 90
3.3.2.3 Trigger Interface Description 91
3.3.2.4 Service Interface Mapping Set 91
3.3.2.5 Service Interface Mapping for Service Oriented

Communication . 92
3.3.2.6 System Description 92
3.3.2.7 Service Instance To Signal Mapping Set 94
3.3.2.8 Service Instance To Signal Mapping 95

3.4 Machine Design . 96
3.4.1 Tasks . 96

3.4.1.1 Define and configure the network connections of a
Machine . 96

3.4.1.2 Configure the Service Discovery Message Exchange 96
3.4.2 Work Products . 96

3.4.2.1 Machine Design . 96
3.5 Diagnostic Mapping . 97

3.5.1 Tasks . 97
3.5.1.1 Map Diagnostic Data 97
3.5.1.2 Map Diagnostic Enable Condition to Ports 98
3.5.1.3 Map Diagnostic Event to Ports 98
3.5.1.4 Map Diagnostic Storage Condition to Ports 99
3.5.1.5 Map Diagnostic Software Mapping 99
3.5.1.6 Map Diagnostic Operation Cycle to Ports 100
3.5.1.7 Associate a DiagnosticMapping with a ProcessDesign 100

3.5.2 Work Products . 101
3.5.2.1 Diagnostic Machine Extract 102
3.5.2.2 DID . 103
3.5.2.3 Diagnostic Enable Condition 103
3.5.2.4 Diagnostic Event . 103
3.5.2.5 Diagnostic Mapping 104
3.5.2.6 Diagnostic Operation Cycle 105
3.5.2.7 Diagnostic Storage Condition 105

3.6 Adaptive Application . 105
3.6.1 Tasks . 105

3.6.1.1 Generate Header Files for Service Interfaces 105

5 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.6.1.2 Design Software Component for Adaptive Platform . 106
3.6.1.3 Implement Software Component Functionality 106
3.6.1.4 Compile Software Component 107
3.6.1.5 Develop Main Function 108
3.6.1.6 Configure Serialization for Adaptive Platform 108
3.6.1.7 Generate Serialization Code for Adaptive Platform . 108
3.6.1.8 Implement Service Proxies and Skeletons 109
3.6.1.9 Build Executable Application 109

3.6.2 Work Products . 110
3.6.2.1 Header Files for Service Interfaces 110
3.6.2.2 Software Component Description for Adaptive Platform110
3.6.2.3 Build Chain Configuration 111
3.6.2.4 Software Component Source Code 112
3.6.2.5 Software Component Object Code 112
3.6.2.6 Serialization Configuration for Adaptive Platform . . 113
3.6.2.7 Serialization Source Code 113
3.6.2.8 Implemented Service Proxies and Skeletons 114
3.6.2.9 Main Function . 114
3.6.2.10 Executable Application 115

3.7 Platform and Machine . 116
3.7.1 Tasks . 116

3.7.1.1 Define ECU Description 116
3.7.1.2 Describe Available HW Resources 116
3.7.1.3 Define Machine States 117
3.7.1.4 Define Function Groups 117
3.7.1.5 Define State Timeouts 117
3.7.1.6 Map Process To Machine 118
3.7.1.7 Configure OS for Adaptive Platform 118
3.7.1.8 Configure Log and Trace module 118
3.7.1.9 Configure DoIP . 119
3.7.1.10 Configure NM module 119

3.7.2 Work Products . 119
3.7.2.1 Middleware Library Header Files 119
3.7.2.2 Middleware Libraries 120
3.7.2.3 ECU Resources Description 120
3.7.2.4 Configured Machine on Adaptive ECU 121
3.7.2.5 Machine Manifest . 122
3.7.2.6 Platform Object Code 122
3.7.2.7 Operating System for Adaptive Platform 123
3.7.2.8 Process to Machine Mapping 123
3.7.2.9 Function Groups . 124
3.7.2.10 Machine States . 124
3.7.2.11 PerState Timeouts 125

3.8 Execution Manifest . 125
3.8.1 Tasks . 125

3.8.1.1 Define Process . 125

6 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.8.1.2 Define Startup Configuration 125
3.8.1.3 Define Execution Dependencies 126
3.8.1.4 Associate Process with Process Design 126

3.8.2 Work Products . 127
3.8.2.1 Execution Manifest 127
3.8.2.2 Process . 128
3.8.2.3 Mode-dependent Startup Configuration 128
3.8.2.4 Process Design . 129

3.9 Service Instance . 129
3.9.1 Tasks . 129

3.9.1.1 Configure Service Interface Deployment 129
3.9.1.2 Define and Configure Service Instance 130
3.9.1.3 Define SOME/IP timing 131
3.9.1.4 Map Service Instance to Port Prototype 131
3.9.1.5 Map Service Instance to Machine 132

3.9.2 Work Products . 132
3.9.2.1 Service Interface Deployment Configuration 132
3.9.2.2 Service Instance Configuration 133
3.9.2.3 Service Instance To Machine Mapping 133
3.9.2.4 Service Instance To Port Prototype Mapping 133
3.9.2.5 Service Instance Manifest 134

3.10 Deployment . 135
3.10.1 Tasks . 135

3.10.1.1 Create an initial Software Package Manifest . 135
3.10.1.2 Identify necessary (software) artifacts 136
3.10.1.3 Collect belonging (software) artifacts of Sub Soft-

ware Clusters . 137
3.10.1.4 Model dependencies between Software Clusters . . 137
3.10.1.5 Create installation instructions 138

3.10.2 Work Products . 139
3.10.2.1 Software Cluster Design 139
3.10.2.2 Software Package 140
3.10.2.3 Software Cluster . 141
3.10.2.4 Software Package Manifest 141
3.10.2.5 (Sub) Software Cluster Group 142
3.10.2.6 Uploadable Design Artifacts 143
3.10.2.7 Back-end server . 144

A Change History 145

A.1 Change History for AP 18-10 . 145
A.1.1 Added Constraints in 18-10 145
A.1.2 Changed Constraints in 18-10 145
A.1.3 Deleted Constraints in 18-10 145
A.1.4 Added Traceables in 18-10 145
A.1.5 Changed Traceables in 18-10 145
A.1.6 Deleted Traceables in 18-10 146

7 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

A.2 Change History for AP 18-03 . 146
A.2.1 Added Specification Items in AP 18-03 146
A.2.2 Changed Specification Items in AP 18-03 146
A.2.3 Deleted Specification Items in AP 18-03 146

A.3 Change History for AP 17-10 . 147
A.3.1 Added Specification Items in AP 17-10 147
A.3.2 Changed Specification Items in AP 17-10 147
A.3.3 Deleted Specification Items in AP 17-10 147

A.4 Change History for AP 17-03 . 147
A.4.1 Added Specification Items in AP 17-03 147
A.4.2 Changed Specification Items in AP 17-03 148
A.4.3 Deleted Specification Items in AP 17-03 148

B Used classes in Manifest files 149

B.1 Used classes in Machine Manifest . 149
B.2 Used classes in Execution Manifest . 150
B.3 Used classes in Service Instance Manifest 151

8 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

References

[1] Methodology
AUTOSAR_TR_Methodology

[2] Requirements on Methodology
AUTOSAR_RS_Methodology

[3] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[4] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[6] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[7] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[8] Glossary
AUTOSAR_TR_Glossary

[9] Specification of Update and Configuration Management
AUTOSAR_SWS_UpdateAndConfigManagement

9 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

http://www.omg.org/spec/SPEM/2.0/

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

1 Introduction

1.1 Objective and Scope

AUTOSAR requires a common technical approach for at least the major development
steps, called the AUTOSAR methodology.

The methodology for the AUTOSAR Classic Platform is given by [1], whereas this
document defines the methodology for the AUTOSAR Adaptive Platform.

The corresponding requirements are defined in [2].

The present expansion was necessary, because the AUTOSAR Adaptive Platform has
introduced new concepts.

In contrast to the AUTOSAR Classic Platform, instances of Adaptive Applica-
tions, for example, are executed within the context of processes, entities managed
by the operating system. If permitted by the configuration of the operating system,
processes may be started, executed or stopped, at any time during the life cycle of
a machine. As a consequence, the way of configuration (by the means of Mani-
fests) or when and how software packages are deployed (e.g., by software updates
over-the-air) clearly differ from the concepts of the AUTOSAR Classic Platform.

Moreover, the term machine has been newly introduced with the AUTOSAR Adaptive
Platform. A machine is quasi a virtualized ECU, an entity where software can be
deployed to. In this spirit, one real ECU could run several machines, even though the
methodology will not detail this. In the simplest case the term machine may only be a
synonym for ECU.

Although the list is not complete, aforementioned aspects may serve as sufficient mo-
tivation to provide a separate methodology for the AUTOSAR Adaptive Platform.

Despite all the differences, there are also many commonalities, such as the description
of the system features, like topologies or hardware capabilities. This document, how-
ever, will rather focus on the specifics of the AUTOSAR Adaptive platform, in order to
avoid duplications. The specification of the common aspects of both platforms may be
the subject of a separate document (foundation document) later.

[TR_AMETH_00100] Scope of the Methodology for the AUTOSAR Adaptive Plat-
form d The methodology for the AUTOSAR Adaptive Platform describes main aspects
(use-cases, tasks, work products, ...) necessary to build an Adaptive AUTOSAR sys-
tem and how they relate to each other. However, the methodology does neither provide
a complete process description, nor does it stipulate a precise order of activities. Itera-
tions of activities are possible, but it is not described how and when iterations shall be
carried out. c(RS_METH_00006, RS_METH_00020, RS_METH_00056)

10 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

1.2 Document Outline

This document will follow the policies of the AUTOSAR Classic Platform, i.e., the way
how to model use-cases, how to structure the document and the way to specify.

Thus, the outline of this document follows roughly its counterpart of the AUTOSAR
Classic Platform:

The rest of this section documents the policies utilized and the requirements traceability
map.

Section 2 describes the major use cases for the development of a system implement-
ing an AUTOSAR Adaptive Platform. Note that the description of the life cycle of a
Software Package is not included in the AUTOSAR methodology.

Section 3 lists and describes all tasks and work products, which are used in the
descriptions of the use cases in section 2.

1.3 Document Conventions

This document follows a list of document conventions, which are described in the fol-
lowing.

Technical terms of AUTOSAR are typeset in mono spaced font, e.g. ECU. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
ECUs.

This document contains specification items in textual form that are distinguished from
the rest of the text by a unique numerical ID, a headline, and the actual text starting after
the d character and terminated by the c character. The conventions for requirements
traceability follow [TPS_STDT_00080], see Standardization Template ([3]).

1.4 Abbreviations

The following table contains a list of abbreviations used in the scope of this document
along with the spelled-out meaning of each of the abbreviations.

Abbreviation Meaning

ABI Application Binary Interface

AP AUTOSAR Adaptive Platform

API Application Programming Interface
ARXML AUTOSAR XML

5

11 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

4
Abbreviation Meaning
CP AUTOSAR Classic Platform
DoIP Diagnostics over IP

DM Diagnostic Manager

DTC Diagnostic Trouble Code
ECU Electrical Control Unit
E/E system Electric and Electronic system
HW Hardware
ID Identifier
IP Internet Protocol
JSON JavaScript Object Notation

NM Network Management
NV Non-Volatile
OEM Original Equipment Manufacturer

OS Operating System

PHM Platform Health Management

POSIX Portable Operating System Interface

SD Service Discovery
SOME/IP Scalable service-Oriented MiddlewarE over IP
SWC Software Component

TCP Transport Control Protocol

TLV Tag Length Value

UCM Update and Configuration Management

UDS Unified Diagnostic Services

UDP User datagram Protocol

UML Unified Modeling Language

UUID Universally Unique Identifier
VFB Virtual Functional Bus
XML Extensible Markup Language
XSD XML Schema Definition

Table 1.1: Abbreviations used in the scope of this Document

1.5 Methodology Concepts

The concepts of the methodology for the Adaptive Platform are identical with the con-
cepts of the methodology for the Classic Platform. Hence, we will only mention the
main principles here. Please refer to section 1.5 in [1] for further details.

12 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[TR_AMETH_00101] Definition of tasks, work products and use cases d The
methodology describes typical use cases by means of activitys, entities to aggre-
gate tasks and their corresponding work products. Tasks are defined as reusable
elements: input information (e.g., stored within particular work products) is pro-
cessed in order to generate new work products. c(RS_METH_00018) 1

[TR_AMETH_00102] Types and kinds of work products d Work products are ei-
ther artifacts or deliverables and can be of the kind AUTOSAR XML, source
code, object code, executable, text or custom. c(RS_METH_00018)

[TR_AMETH_00226] Documentation of work products d In order to document de-
sign decisions or restrictions during the development process, each work product
may aggregate a corresponding documentation. c(RS_METH_00069)

The definitions and the figures are made according to the Software Process Engi-
neering Meta-Model Specification (SPEM) [4]. The symbols are those used by the
Enterprise Architect modeling tool.

1.6 Requirements Traceability

The following table references the requirements specified in the corresponding require-
ments document [2].

Requirement Description Satisfied by
[RS_METH_00006] The methodology shall explain

how to build an AUTOSAR
system

[TR_AMETH_00016]
[TR_AMETH_00100]

[RS_METH_00015] The methodology shall be
independent of programming
languages

[TR_AMETH_00013]

[RS_METH_00016] The methodology shall support
building a system of both
AUTOSAR and Non-AUTOSAR
ECUs

[TR_AMETH_00212]
[TR_AMETH_00213]

[RS_METH_00018] The methodology shall be
modular

[TR_AMETH_00101]
[TR_AMETH_00102]
[TR_AMETH_00200]

[RS_METH_00020] The methodology shall support
round-trip engineering

[TR_AMETH_00100]

[RS_METH_00032] The methodology shall support
different levels of abstractions

[TR_AMETH_00001]
[TR_AMETH_00002]
[TR_AMETH_00200]
[TR_AMETH_00201]
[TR_AMETH_00202]
[TR_AMETH_00205]

1This document describes use cases in Section 2, tasks and work products in Section 3.

13 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[RS_METH_00041] The methodology shall support
top-down and bottom-up
approaches

[TR_AMETH_00019]
[TR_AMETH_00020]
[TR_AMETH_00034]
[TR_AMETH_00035]
[TR_AMETH_00204]

[RS_METH_00042] The methodology shall
incorporate the usage of
industry standard tools

[TR_AMETH_00013]
[TR_AMETH_00018]

[RS_METH_00056] The AUTOSAR methodology
shall not be bound to a particular
life-cycle model

[TR_AMETH_00100]

[RS_METH_00066] The methodology shall allow
activities that reference tools

[TR_AMETH_00012]
[TR_AMETH_00013]
[TR_AMETH_00016]
[TR_AMETH_00018]

[RS_METH_00069] It shall be possible to add
precise and human readable
documentation to each work
product

[TR_AMETH_00226]

[RS_METH_00077] The methodology shall support
different views on the SW-C
structure by OEMs and suppliers

[TR_AMETH_00014]
[TR_AMETH_00015]
[TR_AMETH_00016]
[TR_AMETH_00024]

[RS_METH_00078] The methodology shall explain
the typical usage of different
views on the system of the OEM

[TR_AMETH_00029]
[TR_AMETH_00033]
[TR_AMETH_00203]

[RS_METH_00079] The methodology shall explain
the typical usage of different
views on the system of the
supplier

[TR_AMETH_00203]

[RS_METH_00200] The methodology shall support
building a system consisting of
several AUTOSAR platforms

[TR_AMETH_00208]
[TR_AMETH_00209]
[TR_AMETH_00210]

[RS_METH_00201] The methodology shall explain
how to design the services of a
system

[TR_AMETH_00001]
[TR_AMETH_00007]
[TR_AMETH_00008]
[TR_AMETH_00009]
[TR_AMETH_00212]
[TR_AMETH_00213]

[RS_METH_00202] The methodology shall explain
how to develop an Adaptive
Application

[TR_AMETH_00002]
[TR_AMETH_00010]
[TR_AMETH_00011]
[TR_AMETH_00012]
[TR_AMETH_00013]
[TR_AMETH_00014]
[TR_AMETH_00015]
[TR_AMETH_00018]
[TR_AMETH_00205]
[TR_AMETH_00207]
[TR_AMETH_00208]
[TR_AMETH_00209]
[TR_AMETH_00210]

14 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[RS_METH_00203] The methodology shall explain
the high-level usage of the
Manifest Specification

[TR_AMETH_00003]
[TR_AMETH_00004]
[TR_AMETH_00005]
[TR_AMETH_00021]
[TR_AMETH_00022]
[TR_AMETH_00023]
[TR_AMETH_00024]
[TR_AMETH_00025]
[TR_AMETH_00026]
[TR_AMETH_00027]
[TR_AMETH_00028]
[TR_AMETH_00029]
[TR_AMETH_00033]
[TR_AMETH_00214]
[TR_AMETH_00215]
[TR_AMETH_00216]
[TR_AMETH_00217]

[RS_METH_00204] The methodology shall describe
how to configure a machine for
the Adaptive Platform

[TR_AMETH_00003]
[TR_AMETH_00021]
[TR_AMETH_00022]
[TR_AMETH_00023]
[TR_AMETH_00031]
[TR_AMETH_00214]
[TR_AMETH_00215]
[TR_AMETH_00216]
[TR_AMETH_00217]

[RS_METH_00205] The methodology shall describe
how to deploy software on the
Adaptive Platform

[TR_AMETH_00006]
[TR_AMETH_00031]
[TR_AMETH_00206]

[RS_METH_00206] The methodology shall explain
how to configure the instances
of services of a system

[TR_AMETH_00005]
[TR_AMETH_00027]
[TR_AMETH_00028]
[TR_AMETH_00029]
[TR_AMETH_00033]

[RS_METH_00207] The methodology shall explain
how to develop Platform
Software for the Adaptive
Platform

[TR_AMETH_00017]
[TR_AMETH_00019]
[TR_AMETH_00020]
[TR_AMETH_00034]
[TR_AMETH_00035]
[TR_AMETH_00212]
[TR_AMETH_00213]

1.7 Known Limitations

The sections related to the deployment of Software Packages, i.e., Section 2.4.5
(Set up an initial Machine), Section 2.4.6 (Create Software Packages) and Sec-
tion 2.4.7 (Management and provision of Software Packages), are still under dis-
cussion.

15 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2 Use Cases for the Adaptive Platform

This section describes the main use cases for building a system based on the
AUTOSAR Adaptive Platform.

Each section consists of subsections for the overall purpose of the use case, the de-
scription in terms of specifications, and the modeled workflow according to [4].

Please be aware that the roles shown in the diagrams may only be regarded as a good
approximation.

2.1 Overall View

2.1.1 Purpose

This section provides an overview of the design and development steps to build a
system based on the AUTOSAR Adaptive Platform. The main activities of the overall
development are depicted in Figure 2.6. An overview of the workflow including relevant
work products is given in Figure 2.7. A brief description of these main steps is given
below in Section 2.1.2. For a detailed description please refer to the relevant sections.

2.1.2 Description

2.1.2.1 Domains of Development

It is good practice to decompose the development of complex systems into different
work phases, for example analysis, design, implementation and the like. Each work
phase will thereby be linked to a different level of abstraction. Moreover, each stake-
holder of this development will need a distinct view on the system in order to emphasize
on its particular aspects.

Thus, all this needs to somehow be represented by the methodology, too. In this re-
spect, the methodology of the AUTOSAR Classic Platform is structured into so-called
domains of development [1], which is in some way a mix of the concepts separation of
concerns and abstraction.

The methodology of the AUTOSAR Adaptive Platform will follow this approach.

[TR_AMETH_00200] Domains of development utilized for the methodology of the
AUTOSAR Adaptive Platform d The methodology of the Adaptive Platform shall be
structured by the following domains of development:

• Analysis

• Architecture and Design

• System

16 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

• Software Development

• Integration and Deployment

c(RS_METH_00018, RS_METH_00032)

2.1.2.2 Fundamental Activities

2.1.2.2.1 Analysis

Analysis tasks are often necessary for the purpose of preparing later decisions. One
line of inquiry may be to identify and investigate timing critical event chains between
sensors and actuators of a vehicle function in order to comply with the required timing
behavior.

Although the present version does not, later versions of this document will specify
corresponding use-cases/activities.

2.1.2.2.2 Architecture and Design

Figure 2.1: From the Function Architecture to a Common Software Architecture

[TR_AMETH_00201] Develop a Function Architecture d An engineer, e.g., an E/E
system architect, may evaluate features and requirements necessary for a specific E/E
vehicle project in order to form an appropriate Function Architecture during the
activity Develop a Function Architecture.

The Function Architecture is composed of a number of function networks. A
function network consists of a set of function blocks with their interfaces and corre-
sponding interconnections. One functionality is encapsulated within one function block.
Therefore, a particular function network represents all functionality that is needed to ex-
ecute a particular feature (vehicle function). Note, that function blocks may be realized
in software or hardware or as a mix of both.

17 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

The result of this activity, i.e., the Function Architecture can be specified by
means of the Abstract System Description.

This activity is optional. c(RS_METH_00032)

[TR_AMETH_00202] Develop a Common Software Architecture d Another engi-
neer, e.g., a software architect, could take the Function Architecture as one in-
put to deduce a corresponding Common Software Architecture while executing
an activity Develop a Common Software Architecture.

The Common Software Architecture provides a dedicated view of all software
entities and their communication relation within the E/E vehicle system. In this light,
the Common Software Architecture comprises both types, AUTOSAR software
components of the Classic Platform as well as those entities that form later an Adap-
tive Application Software deployed to an Adaptive Platform-based machine. It
is important to stress this, because not only software components of the same platform
type communicate among each other. There is also a service oriented communica-
tion possible between software components or entities that belong to different platform
types.

The communication entry and exit points of components are ports typed by a particu-
lar interface definition. In case of the Adaptive Platform, interfaces are expressed as
Service Interfaces. In this respect, typed ports are means to instantiate specific
interface definitions.

The term component may also include the term compositions of components.
An Adaptive Application Software may also be subdivided into more fine-
granular components.

The result of this activity, i.e., the Common Software Architecture can be speci-
fied by means of the System Description.

This activity is optional. c(RS_METH_00032) 1

Figure 2.2: Views of subsystems enable to emphasize on relevant aspects

1Figure 2.1 shows that a functionality may be implemented by one or more software components, by
software components which are finally be mapped either to a machine running an AUTOSAR Adaptive
Platform (gray boxes, named AApl for Adaptive Application) or to a Classic Platform ECU.

18 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[TR_AMETH_00203] Provide views of subsystems d A subsystem is a reduced part
of the overall technical system and emphasizes on relevant aspects of it.

It is absolutely feasible, for example, to generate a pure VFB view or a view on a
mixed Adaptive/Classic Platform subsystem. Latter could contain all those software
entities which communicate at least to one other Adaptive Application Software. It
may be usable to develop the interfaces for communication between software compo-
nents/entities which belong to different platforms (namely AUTOSAR Adaptive Platform
or AUTOSAR Classic Platform).

This activity is optional. c(RS_METH_00078, RS_METH_00079) 2

[TR_AMETH_00001] Develop Service Interfaces d During this activity, services for
service-oriented communication are specified, i.e., particular events, methods and
fields per interface. It may be done independently of any assignation to specific soft-
ware components or any instantiation. In this respect it may be seen as a prepa-
ration step towards the development of Adaptive Application Software entities. c
(RS_METH_00201, RS_METH_00032) 3

[TR_AMETH_00207] Design communication between Classic Platform ECUs and
Adaptive Platform machines d Adaptive Applications communicate in a ser-
vice oriented manner. However, a typical vehicle will also be equipped with ECUs de-
veloped for the Classical Platform. Thus, it is very likely that ECUs of different types
need to communicate.

In case that the Classic Platform ECU implements SOME/IP they can communicate
in service oriented way. However, in order to describe this kind of communication a
mapping between the elements of the ServiceInterface and the corresponding
elements of the respective PortInterface of the Classic Platform needs to be spec-
ified.

If the counterpart on a Classic Platform ECU, however, communicates only in a signal-
based way, a Signal-to-Service translation is needed. c(RS_METH_00202) 4

2Figure 2.2 shows two possible views on subsystems deduced from the Common Software Ar-
chitecture.

3This use case is elaborated in section 2.2.1.
4The use case of SOME/IP communication is elaborated in section 2.2.2.1. The use case of Signal-

to-Service translation is elaborated in section 2.2.2.2.

19 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Design signal oriented
communication between
Classic and Adaptive Platform

Design service oriented
communication between
Classic and Adaptive Platform

Design communication between
Classic and Adaptive Platform

0..1

«nesting»

0..1
«nesting»

Figure 2.3: Design Communication between Classic Platform and Adaptive Platform

Activity Design communication between Classic and Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Communication
Brief Description Design communication between CP and AP
Description Higher level activity that encloses all activities which are necessary to

design communication between a Classic Platform (ECU) and a
Adaptive Platform.

Relation Type Related Element Mul. Note
Aggregates Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

0..1

Aggregates Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

0..1

Table 2.1: Design communication between Classic and Adaptive Platform

2.1.2.2.3 System

Like for the CP methodology [1], this development domain will cover activities which re-
fine the Common Software Architecture into a system defined by specific ECUs
or machines. In this respect, the main activities/issues specified there will be in prin-
ciple also valid here (see Figure 2.4).

[TR_AMETH_00204] Develop the System d

The subsequent specifications of the Classic Platform methodology shall also be ap-
plicable for the Adaptive Platform (by following their general meanings):

• Development of the System (TR_METH_01046) and (Develop) the overall system
(TR_METH_01048), which talk about the refinement of the VFB by the definition
of a topology of ECUs and networks and the deployment of software components

20 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

onto ECUs, with the extensions necessary for the Common Software Archi-
tecture and the additions to specify machines and the corresponding mapping
of machines to ECUs.

• Two phase development approach (TR_METH_01047) and Interaction between
organizations (TR_METH_01049), which structures the collaboration between
different parties, like between OEMs and their suppliers.

c(RS_METH_00041)

Figure 2.4: System development: ECUs, machines, communication networks, mapping
of software entities to ECUs or machines

2.1.2.2.4 Software Development

[TR_AMETH_00002] Develop the software for AdaptiveAutosarApplications
d Once the service interfaces have been defined, software for AdaptiveAutosarAp-
plications of category application-level and platform-level can be developed. The
development may include several sub-activities like analysis, design, implementation
or test.

The most important artifacts of this activity are either source-code or object-code files,
depending on whether or not the developer knows the Build Chain Configura-
tion beforehand. The artifacts are handed over to an integrator. c(RS_METH_00202,
RS_METH_00032) 5

5Sections 2.3.1 and 2.3.2 will refine the necessary activities associated with the development of
application-level and platform-level software.

21 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Develop Adaptive
Application Software

Develop Adaptive Platform-
level Software

Develop Adaptive Software

0..1

«nesting»

0..1

«nesting»

Figure 2.5: Develop Adaptive Software

Activity Develop Adaptive Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Develop Adaptive Software
Description This higher level activity encloses the development of Adaptive

Applications with category application-level as well as platform-level.
Relation Type Related Element Mul. Note
Aggregates Develop Adap-

tive Application
Software

0..1

Aggregates Develop Adaptive
Platform-level Soft-
ware

0..1

Table 2.2: Develop Adaptive Software

2.1.2.2.5 Integration and Deployment

The term Integration and deployment of software (on the Adaptive Platform) refers to all
activities that are necessary to make designated software run on a specific machine,
determined by its hardware, connected networks, its operating system and (some)
Functional Clusters , in order to satisfy all requirements.

[TR_AMETH_00205] Integrate Software d An integrator will either take source-code
or object-code files delivered by the software development and will bind them together
in order to form an Executable for a specific machine and notably its application
binary interface (ABI).

This activity does not include instantiation, i.e., the binding of an actual Exe-
cutable to the context of an Process (exactly one Executable per Process).
c(RS_METH_00202, RS_METH_00032) 6

6Section 2.4.1 will refine the necessary activities associated with the integration of software.

22 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[TR_AMETH_00003] Configuration of the machine d In AUTOSAR adaptive the
meta model element Machine already represents a specific ECU implementation with
dedicated configurations. In this respect, the Machine is more a model entity in the
scope of an integrator of a Tier 1 company, than in the scope of on an communication
designer of an OEM.

Therefore, the meta model element MachineDesign has been introduced. It allows a
communication designer of an OEM to define requirements on a machine in the context
of a System during the system design stage. In this sense, MachineDesign acts as
a placeholder for a real adaptive ECU instance in early development phases.

In addition, the respective Machine Design will be uploaded onto the machines as
part of Uploadable Design Artifacts. Since a particular Machine model will
reference a particular MachineDesign model, the configurations of Machine De-
sign will also contribute to the Machine Manifest.

Thus, the configuration of the machine is subdivided into two process steps:

1. The first step is the configuration of the communication structure of a prospective
machine and will be performed by a communication designer of an OEM as part
of the (system) design phase. It will result in an Machine Design. This step
results in a Machine Design.

2. The second step covers activities and tasks for the configuration of a real adaptive
ECU. It will be executed by an integrator of a Tier 1 company. The resulting
configuration is then part of the actual result Machine Manifest.

c(RS_METH_00204, RS_METH_00203) 7

[TR_AMETH_00004] Creation of the Execution Manifest d Executables of an
AdaptiveAutosarApplication are instantiated by means of the Execution
Manifest. Instantiation here means to bind the executables to the context of specific
processes of the operating system. Each process may start with a different start-up
configuration depending on a machine mode. Further on, the Execution Manifest
may also define dependencies of processes. c(RS_METH_00203) 8

[TR_AMETH_00005] Configuration of the service instances d During this activity,
the service instances are configured, notably the binding of the service interfaces to
a chosen transport layer, whether a specific service instance is either provided or re-
quired and the mapping to a dedicated machine. The configurations of the service in-
stance are manifested in the Service Instance Manifest. c(RS_METH_00206,
RS_METH_00203) 9

[TR_AMETH_00006] Deployment of the application software d Software is de-
ployed to a machine, i.e., a particular Adaptive AUTOSAR Platform instance, by means
of Software Packages. This means that:

7See Section 2.2.3 for details regarding Machine Design. See Section 2.4.2 for details regarding
Machine Manifest.

8The creation of the Execution Manifest is detailed in Section 2.4.3.
9See Section 2.4.4 for details.

23 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

1. associated software artifacts need to be compiled into a dedicated Software
Package.

2. Software Packages are provided by an OEM-specific Back-end server in order
to be accessible by the machines in the field.

c(RS_METH_00205) 10

2.1.2.3 Workflow

Adaptive Methodology Overview

Develop a Service Interface
Description

Define and Configure Service
Instances

Define and configure
machine

Create Execution
Manifest

Provide and manage Software
Packages

Integrate Software

Set Up Initial Machine

Select OS
Distribution

Develop Adaptive Software

Create Software Package

Design communication between
Classic and Adaptive Platform

Develop the communication
structure by means of
MachineDesign

Create Diagnostic Mapping

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

«nesting»

Figure 2.6: Adaptive Methodology Overview: Overall Structure

Process Pattern Adaptive Methodology Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Adaptive Methodology Overview
Brief Description High-level view of the adaptive AUTOSAR methodology
Description This process pattern covers the typical activities to develop an

Adaptive AUTOSAR system.
Relation Type Related Element Mul. Note
Aggregates Create Diagnostic

Mapping
1

10See section 2.4.6 regarding create Software Packages. See section) 2.4.7 regarding deploy
Software Packages.

24 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates Create Execution

Manifest
1

Aggregates Create Software
Package

1

Aggregates Define and Con-
figure Service In-
stances

1

Aggregates Define and config-
ure machine

1

Aggregates Design commu-
nication between
Classic and Adap-
tive Platform

1

Aggregates Develop Adaptive
Platform-level Soft-
ware

1

Aggregates Develop Adaptive
Software

1

Aggregates Develop a Service
Interface Descrip-
tion

1

Aggregates Develop the com-
munication struc-
ture by means of
MachineDesign

1

Aggregates Integrate Software 1
Aggregates Provide and man-

age Software
Packages

1

Aggregates Select OS Distribu-
tion

1

Aggregates Set Up Initial Ma-
chine

1

Table 2.3: Adaptive Methodology Overview

25 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Machine
Manifest

Service Instance
Manifest

Execution
Manifest

Develop a Service
Interface Description

Service Interface
Description

Develop Adaptive
Application Software

Define and Configure
Service Instances

Create Execution
Manifest

Define and configure
machine

Executable Application

Autosar AP Standard
Package

Software Package

Provide and manage Software
Packages

Set Up
Initial
Machine

Configured Machine on Adaptive ECU

Operating
System for
Adaptive
Platform

Select OS
Distribution

Integrate Software

Software
Component
Object Code

Develop Adaptive Platform-
level Software

Platform Object Code

Create Software Package

Machine Design

Develop the communication
structure by means of
MachineDesign

Topology

Back-end Server

0..*

«input»

«output»

1..*

«output»

1..*

«output»

0..*

«output»

1..*

0..*

«input»

1

«input»

0..*

«input»

«output»

1..*

«output»
1

1
«input»

«output»

1

0..*

«input»

«output»

1

1

«input»

1

«input»

1

«input»

«output»

1

0..1

«input»

1

«input»

«output»
1..*

0..*

«input»

0..*

«input»

1..*

«input»

0..*

«input»

0..1

«input»

check_consistency

«output»

1

1
«input»

1

«input»

1..*
«input»

0..*

«input»

1

«input»

«output»
1

0..*

«input»

Figure 2.7: Adaptive Methodology Overview: Workflow

26 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2 Architecture and Design

2.2.1 Develop a Service Interface Description

2.2.1.1 Purpose

This use case gives an outline of the definition of the services in a system, independent
of any instantiation. All relevant tasks and deliverables for this use case are given in
Figure 2.8. The workflow is depicted in Figure 2.9.

2.2.1.2 Description

[TR_AMETH_00007] Definition of data types for the Adaptive Platform d Data
types for the Adaptive Platform can be defined based on standardized data types from
AUTOSAR. As on the Classic Platform, data types are defined on different levels of
abstractions: application data types, implementation data types and base types. Most
concepts and data types can be taken over from the Classic Platform. However, in
order to cope with the C++ programming language, for the Adaptive Platform also vec-
tors, strings and maps can be defined. c(RS_METH_00201)

For more information on data types as specified for the Classic Platform and the ex-
tensions for the Adaptive Platform, see [5] and [6].

[TR_AMETH_00008] Definition of service interfaces for the Adaptive Platform
d All service interfaces, which are used in a system, need to be defined. Service
interfaces aggregate elements as events, methods and fields. They are the basis
for the header file generation. Therefore, it is also possible to define namespaces
within a service interface, which has a direct influence on the generated code. c
(RS_METH_00201)

[TR_AMETH_00009] Aggregating service interfaces for reducing the bus load d
Optionally, service interfaces can be aggregated to more coarse-grained service inter-
faces by defining a service interface mapping or a service interface element mapping
respectively. This results in an update of the Service Interface Description.
The newly defined coarse-grained service interfaces are then used for the network-
based communication. c(RS_METH_00201)

27 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.1.3 Workflow

Develop a Service
Interface Description

Select or define Data Types for
Adaptive Platform

Define Service Interfaces Aggregate Service Interfaces

Autosar AP Standard Package

Service Interface Description

Service Interface Mapping

OEM

0..1

«input»

«output»

0..*

«nesting»

«performs»

+Service Interface Designer
«output» 1..*

0..1

«nesting»
«nesting»

Figure 2.8: Develop a Service Interface Description

Activity Develop a Service Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Service Interface Definition
Brief Description Define all service interfaces used in the system
Description This activity describes the definition of the service interfaces,

aggregating events, methods and fields, including the definition of data
types. In addition, coarse-grained service interfaces can be defined for
the network-based communication.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 Optional input for defining data types and

service interfaces for the adaptive
platform

Produces Service Interface
Description

1..* All service interfaces, which are used for
communication

Produces Service Interface
Mapping

0..* Optionally, coarse-grained service
interfaces are defined by a service
interface mapping

Aggregates Aggregate Service
Interfaces

0..1

Aggregates Define Service In-
terfaces

1

Aggregates Select or define
Data Types for
Adaptive Platform

1

Performed by OEM 1 Service Interface Designer: This activity
will probably be performed by a Service
Interface Designer

Table 2.4: Develop a Service Interface Description

28 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Autosar AP
Standard Package

Service Interface Description

Select or define Data Types
for Adaptive Platform

Define Service
Interfaces

Aggregate Service
Interfaces

AP Data Types

Service Interface Mapping

1..*

«input»

«output»

1..*

«output» 0..*

0..*«input»

«output»

1..*

«output»

0..*

0..1

«input»

Figure 2.9: Workflow for defining Service Interfaces

2.2.2 Design communication between Classic Platform and Adaptive
Platform

2.2.2.1 Design service oriented communication between Classic Platform
and Adaptive Platform

2.2.2.1.1 Purpose

This use case covers the activities necessary to design service oriented communica-
tion between applications of a Classic Platform ECU and those of an Adaptive
Platform machine via SOME/IP.

The respective deliverables, activities and tasks are depicted in Figure 2.10.

2.2.2.1.2 Description

[TR_AMETH_00208] Design service oriented communication between Classic
Platform and Adaptive Platform d The background of this activity is the request
to enable service oriented communication between applications of a Classic Platform
(CP) ECU and those of an Adaptive Platform (AP) machine via SOME/IP.

29 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Unfortunately, the AUTOSAR Classic Platform does not support ServiceInter-
faces. Thus, a SOME/IP service may be composed of different types of Classic Plat-
form PortInterfaces like SenderReceiverInterfaces, ClientServiceIn-
terfaces or TriggerInterfaces.

In order to describe the communication over SOME/IP between the CP ECU and an
AP machine, this activity describes the mapping of the elements of the PortInter-
faces of the Classical Platform to the elements of a single ServiceInterface of
the Apdaptive Platform.

Thus, the main objective of this activity is to map a single ServiceInterface to
PortInterface elements, in detail:

• to map method(s), i.e., to map a ClientServerOperation located in a
ClientServerInterface to a method located in a ServiceInterface.

• to map event(s), i.e., to map a VariableDataPrototype located in a Sender-
ReceiverInterface to an event located in a ServiceInterface.

• to map field(s), i.e., to map operations located in ClientServerOperations to
getter and setter methods of a ServiceInterface and to map a Variable-
DataPrototype of a SenderReceiverInterface to the field notifier of the
ServiceInterface.

• to map “Fire and Forget”, i.e., to map a “Fire and Forget” method located in a
ServiceInterface to a VariableDataPrototype in a SenderReceiver-
Interface or to a trigger of a TrigerInterface.

The mapping description serves currently only for documentation.

c(RS_METH_00200, RS_METH_00202)

30 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.2.1.3 Workflow

Design service oriented
communication between
Classic and Adaptive Platform

Map Event Map Field Map Fire and ForgetMap Method

Service Interface
Description

Client Server Interface
Description

Sender Receiver Interface
Description

Service Interface Mapping for
Service Oriented Communication

Trigger Interface
Description

OEM

Service Interface Mapping Set

1..*

«nesting»

0..*

«input»

«performs»

+Service Interface
Designer

0..*

«input»

1..*

«input»

0..*

«nesting»

0..*

«nesting»

0..*

«nesting»

0..*

«nesting»

«output»

1..*

0..* «input»

Figure 2.10: Design service oriented communication

Activity Design service oriented communication between Classic and
Adaptive Platform

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Design service oriented communication between CPand AP
Description The background of this activity is the request to enable service oriented

communication between applications of a Classic Platform (CP) ECU
and those of an Adaptive Platform (AP) machine via SOME/IP.

Unfortunately, the AUTOSAR Classic Platform does not support
ServiceInterfaces. Thus, a SOME/IP service may be composed of
different types of Classic Platform PortInterfaces like
SenderReceiverInterfaces, ClientServiceInterfaces or
TriggerInterfaces.

In order to describe the communication over SOME/IP between the CP
ECU and a AP machine, this activity describes the mapping of the
elements of the PortInterfaces of the Classical Platform to the
elements of a single ServiceInterface of the Apdaptive Platform.

The mapping description serves currently only for documentation.
Relation Type Related Element Mul. Note
Consumes Client Server Inter-

face Description
0..* The descriptions of Client Server

Interfaces of CP are used to map a
ClientServerOperation to a method in a
ServiceInterface or to map a
ClientServerOperation (representing
getter or setter methods) to a field in a
ServiceInterface

31 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Sender Receiver

Interface Descrip-
tion

0..* The descriptions of Sender Receiver
Interfaces of CP are used to map a
VariableDataPrototype to an Event in a
ServiceInterface or to map a
VariableDataPrototype to the notifier of a
Field of a ServiceInterface or to map a
Fire&Forget Method that is located in a
ServiceInterface to a
VariableDataPrototype in a
SenderReceiverInterface

Consumes Service Interface
Description

1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Consumes Trigger Interface
Description

0..* The descriptions of Trigger Interfaces are
used to map a Fire&Forget Method that
is located in ServiceInterface to a Trigger
in a TriggerInterface

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* An InterfaceMapping results from the
design of service-oriented
communication between CP and AP

Aggregates Map Event 0..*
Aggregates Map Field 0..*
Aggregates Map Fire and For-

get
0..*

Aggregates Map Method 0..*
Performed by OEM 1 Service Interface Designer: This activity

will probably be performed by a Service
Interface Designer of an OEM

Table 2.5: Design service oriented communication between Classic and Adaptive Plat-
form

2.2.2.2 Design signal oriented communication between Classic Platform
and Adaptive Platform

2.2.2.2.1 Purpose

This use case comprises activities to specify a signal oriented communication between
Classic Platform and Adaptive Platform applications, if there is no service
oriented communication possible.

The associated elements, i.e, deliverables, activities and tasks and their relations are
depicted in Figure 2.11.

32 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.2.2.2 Description

[TR_AMETH_00209] Define a signal-based ServiceInterface d As a prerequi-
site for the mapping of ServiceInterface elements to ISignalTriggerings, the
definition of a SignalBasedServiceInterfaceDeployment is needed. It speci-
fies the configuration settings for a ServiceInterface from which the content will
be transmitted in the signal-based way over a communication medium and therefore
provides the ability to bind a ServiceInterface to a signal-based communication
protocol like CAN or FlexRay.

Details are provided by the specifications TPS_MANI_03120, TPS_MANI_03121,
TPS_MANI_03122 and TPS_MANI_03123 of the Manifest specification [6]. c
(RS_METH_00200, RS_METH_00202)

[TR_AMETH_00210] Map signals to services d In a second step, the mapping of
ServiceInstance elements of a specific AdaptivePlatformServiceInstance
defined in the context of a process to ISignalTriggerings is described, in detail:

• to map SignalBasedMethodDeployment to ISignalTriggerings, accord-
ing to TPS_MANI_03125 of the Manifest specification [6]

• to map SignalBasedEventDeployment to ISignalTriggerings, accord-
ing to TPS_MANI_03124 of the Manifest specification [6]

• to map SignalBasedFieldDeployment to ISignalTriggerings, accord-
ing to TPS_MANI_03126 of the Manifest specification [6]

• to map a ServiceInstance to a PortPrototype, according to
TPS_MANI_03000 of the Manifest specification [6]

c(RS_METH_00200, RS_METH_00202)

33 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.2.2.3 Workflow

Design signal oriented
communication between
Classic and Adaptive
Platform

Service Instance To
Signal Mapping

Service Interface Description

Define a signal-based ServiceInterface
(SignalBasedServiceInterfaceDeployment)

Map Signals to Services

Map
SignalBasedEventDeployment
to ISignalTriggerings

Map
SignalBasedFieldDeployment
to ISignalTriggerings

Map
SignalBasedMethodDeployment
to ISignalTriggerings

Map ServiceInstance to
PortPrototype

System Description

OEM

Service Instance To
Signal Mapping Set

1..*

«nesting»

1..*
«input»

1

«input»

«nesting»

0..*

«nesting»

0..*

«nesting»

0..*

«nesting»

«nesting»

«performs»

+Service Interface
Designer

0..*

«nesting»

«output»

1..*

Figure 2.11: Design signal oriented communication

Activity Design signal oriented communication between Classic and
Adaptive Platform

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Design signal oriented communication between CP and AP
Description Usually, Adaptive Applications communicate between each other in a

service oriented manner. There is even an option that applications
deployed to an Adaptive Platform and Classic Platform communicate in
a service oriented way via SOME/IP.

If the counterpart on a Classic Platform ECU, however, communicates
only in a signal-based way, a Signal-to-Service translation is needed.

This activity encompasses the description of the mapping of signals to
elements of a particular ServiceInterface. It will be the base for the
configuration of the translation application.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Description of the Service Interfaces

which communicate to CP in a
signal-oriented manner

34 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes System Descrip-

tion
1 The System Description based on the

System Template on the AUTOSAR
classic platform is used; it contains a
communication matrix description with
Pdus and ISignals

Produces Service Instance
To Signal Mapping

1..* A signal-to-service mapping results from
the design of signal-oriented
communication between CP and AP

Aggregates Define a signal-
based Service
Interface (Signal
BasedService
InterfaceDeploy-
ment)

1

Aggregates Map Signals to
Services

1

Performed by OEM 1 Service Interface Designer: This activity
will probably be performed by a Service
Interface Designer of an OEM

Table 2.6: Design signal oriented communication between Classic and Adaptive Platform

Activity Map Signals to Services
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Communication
Brief Description Map Signals to Services
Description Describe the mapping of ServiceInstance elements of a specific

AdaptivePlatformServiceInstance defined in the context of a process to
ISignalTriggerings. The prerequisite is the definition of the
SignalBasedServiceInterface.

Relation Type Related Element Mul. Note
Aggregates Map ServiceIn-

stance to Port
Prototype

0..*

Aggregates Map SignalBased
EventDeploy-
ment to ISignal
Triggerings

0..*

Aggregates Map SignalBased
FieldDeployment
to ISignalTrigger-
ings

0..*

Aggregates Map SignalBased
MethodDeploy-
ment to ISignal
Triggerings

0..*

Table 2.7: Map Signals to Services

35 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Define a signal-based ServiceInterface
(SignalBasedServiceInterfaceDeployment)

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Define SignalBasedServiceInterface
Description Express that a ServiceInterface will be transmitted via a signal-based

communication protocol like CAN or FlexRay.
Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Description of the Service Interfaces

Consumes System Descrip-
tion

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Table 2.8: Define a signal-based ServiceInterface (SignalBasedServiceInterfaceDeploy-
ment)

2.2.3 Develop the communication structure by means of Machine Design

2.2.3.1 Purpose

By means of this activity, an OEM specifies the communication structure as well as
corresponding configuration parameters of prospective machines, already during the
(system) design phase.

2.2.3.2 Description

A primary task of an OEM is to specify entities which are associated with the topology,
network and the system design, already in early development phases.

[TR_AMETH_00021] Define and configure the network communication for ma-
chine d This activity will cover the definition and configuration of the network commu-
nication for a prospective machine and consists of the following tasks:

• Define and configure the network connection of a prospective machine, i.e., de-
fine all network endpoint with corresponding IP address (IPv4 or IPv6)

• Configure the service discovery message exchange of a prospective machine,
i.e., specify all designated multicast IP addresses and a UDP port

c(RS_METH_00204, RS_METH_00203)

The Machine is a model entity which already represents a specific ECU implementation
with dedicated configurations. Therefore, it should not be used during system design.

The meta model element MachineDesign has been introduced in order to allow the
communication designer to define a placeholder for an adaptive ECU (Machine) in the

36 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

scope of the System. In this respect, the element MachineDesign corresponds to the
EcuInstance of AUTOSAR classic.

Hence, the design activities of this step will result in a deliverable Machine Design,
which will contribute to the Machine Manifest, since a particular Machine model
will reference a particular MachineDesign model.

Since the configuration elements of Machine Design are needed during run-time,
Machine Design needs to be uploaded to the target machine. Thus, Machine De-
sign needs to be part of Uploadable Design Artifacts.

Figure 2.12 shows the involved entities – inputs, outputs, tasks – necessary to perform
this activity.

2.2.3.3 Workflow

Develop the communication
structure by means of
MachineDesign

Machine Design

Define and configure the
network connections of a
Machine

Configure the Service Discovery
Message Exchange

Topology

OEM

«output»

1

«performs»

+Machine Designer

«nesting» «nesting»

1

«input»

Figure 2.12: Develop the communication structure by means of Machine Design

37 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Develop the communication structure by means of
MachineDesign

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Develop Machine Design

Brief Description placeholder during the design phase for an adaptive ECU(Machine) in
the Scope of an System.

Description The Machine is a model entity which already represents a specific ECU
implementation with dedicated configurations. Therefore, it should not
be used during system design.

The element MachineDesign has been introduced in order to allow the
communication designer to define a placeholder for an adaptive ECU
(Machine) in the scope of the System. The element MachineDesign
corresponds to the EcuInstance of AUTOSAR classic, in this respect.

This activity will aggregate the following tasks:

• Define and configure the network connection of a prospective
machine

• Configure the service discovery message exchange of a
prospective machine

Relation Type Related Element Mul. Note
Consumes Topology 1 Description of (inter)connections

between Machines.
Produces Machine Design 1 Configuration settings of the network

connections and service discovery
network exchange of a Machine

Aggregates Configure the
Service Discov-
ery Message
Exchange

1

Aggregates Define and con-
figure the network
connections of a
Machine

1

Performed by OEM 1 Machine Designer: This activity will
probably be performed by a dedicated
designer of an OEM.

Table 2.9: Develop the communication structure by means of MachineDesign

2.2.4 Create a Diagnostic Mapping

2.2.4.1 Purpose

This activity associates given diagnostic information (diagnostic data, diagnostic en-
able conditions, diagnostic events, diagnostic operation cycles) with the software struc-
ture (applications, instances, components, ports, events, data) of a particular machine.

38 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.4.2 Description

[TR_AMETH_00212] Design a diagnostic mapping d This activity covers all nec-
essary tasks to perform the diagnostic mapping, except the task which associates
corresponding ProcessDesign(s) and DiagnosticMapping(s).

These tasks are in detail:

• Map Diagnostic Data

• Map Diagnostic Enable Condition to Port(s)

• Map Diagnostic Event to Port(s)

• Map Diagnostic Storage Condition to Port(s)

• Diagnostic Software Mapping

• Map Diagnostic Operation Cycle to Port(s)

In order to perform the particular tasks, the following inputs are necessary:

• The Diagnostic Machine Extract that contains the diagnostic information

• Service Interface Descriptionwhich collects the descriptions of the ser-
vice interfaces with their events, methods and fields

• Software Component Description for Adaptive Platform which
collects the description of software components and their ports

This step results in partly filled in artifact Diagnostic Mapping.

c(RS_METH_00207, RS_METH_00201, RS_METH_00016)

[TR_AMETH_00213] Relate diagnostic mappings to instances of Executables d
It may be necessary that different instances of a particular application software (i.e.,
different Processes based on the very same Executable) require different diagnostic
mappings. Therefore, a relation between a particular diagnostic mapping and a partic-
ular Process needs to be established. Since Processes at design do not exist, yet, the
(meta) model element ProcessDesign may stand in as a proxy.

This assignment may be independent of the step of designing diagnostic mappings
and may be done in a final extra step, separately; the corresponding task: Associate
DiagnosticMapping with ProcessDesign.

To accommodate for this potential modeling, the reference from a diagnostic mapping
to ProcessDesign has been decorated by stereotype «atpSplitable».

This step takes the partly filled in artifact Diagnostic Mapping and the artifact Pro-
cessDesign as inputs and results in a completely filled in Diagnostic Mapping. c
(RS_METH_00207, RS_METH_00201, RS_METH_00016)

Figure 2.13 depicts an overview of diagnostic mapping; how the involved deliverables,
activities and tasks are related to each other.

39 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.2.4.3 Workflow

Design Diagnostic
Mapping

Service Interface
Description

Map Diagnostic Data

Diagnostic Software MappingMap Diagnostic
Event to Port(s)

Map Diagnostic Operation Cycle to
Port(s)

Map Diagnostic Enable
Condition to Port(s)

Map Diagnostic
Storage Condition to
Port(s)

Software Component
Description for Adaptive
Platform

Process Design

Diagnostic Mapping

Diagnostic Machine
Extract

Associate
DiagnosticMapping
with ProcessDesign

Create Diagnostic
Mapping

OEM

«performs»

+Diagnostic Designer

0..*

«nesting»

1..*«input»

1

«input»

1..*«input»

«nesting»

1..*

«input»

«output»

+ful ly

1..*

0..*

«nesting»0..*

«nesting»

0..*

«nesting»

1..*

«input»

0..*

«nesting»

«output» +partial ly

1..*

«nesting»

0..*

«nesting»

Figure 2.13: Create a Diagnostic Mapping

Activity Create Diagnostic Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Diagnostic Mapping
Brief Description Create diagnsotic mappings
Description This activity comprises all necessary tasks to create complete

diagnostic mappings.

A diagnostic mapping is a formal model for the relation between the
adaptive diagnostic management (module) and specific endpoints in
the application software. This mapping enables the configuration of the
service-oriented communication middleware, so that the service
discovery can connect the corresponding endpoints correctly.

Relation Type Related Element Mul. Note
Aggregates Associate Diag-

nosticMapping
with Process
Design

1

40 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates Design Diagnostic

Mapping
1

Performed by OEM 1 Diagnostic Designer: The activity of
designing the diagnostic mapping will
probably be performed by a Diagnostic
Designer of an OEM

Table 2.10: Create Diagnostic Mapping

Activity Design Diagnostic Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Diagnostic Mapping
Brief Description Perform diagnostic mappings
Description This activity covers all necessary tasks to perform the diagnostic

mapping, except the task which associates corresponding
ProcessDesign(s) and DiagnosticMapping(s).

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Service Interface

Description
1..* Collection of service interfaces. Service

interfaces can consist of events,
methods and fields.

Consumes Software Compo-
nent Description
for Adaptive Plat-
form

1..* Description of a software component for
the Adaptive Platform with all its ports,
available at design time.

Produces Diagnostic Map-
ping

1..* partially: The diagnostic mapping for a
Machine, except the linkage between the
mappings and the corresponding
ProcessDesigns

Aggregates Diagnostic Soft-
ware Mapping

0..*

Aggregates Map Diagnostic
Data

0..*

Aggregates Map Diagnostic
Enable Condition
to Port(s)

0..*

Aggregates Map Diagnostic
Event to Port(s)

0..*

Aggregates Map Diagnostic
Operation Cycle to
Port(s)

0..*

Aggregates Map Diagnostic
Storage Condition
to Port(s)

0..*

Table 2.11: Design Diagnostic Mapping

41 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.3 Software Development

2.3.1 Develop Adaptive Application Software

2.3.1.1 Purpose

This section explains how to develop application-level software for the Adaptive Plat-
form. First, the design of the software components is described. Based on this de-
scription, the functionality can be implemented. An overview of all relevant tasks for
this use case is given in Figure 2.14. The artifact-based workflow is depicted in Figure
2.15.

2.3.1.2 Description

[TR_AMETH_00010] Application-level Software d An Adaptive Application of cate-
gory application-level is a collection of executables. The executables themselves can
be derived from several software components. c(RS_METH_00202)

[TR_AMETH_00011] Design of the software components d Based on the service in-
terfaces, the development of adaptive application software starts with the design of the
software components. The software components can have an hierarchical structure.
For all software components it is defined if service interfaces are required or provided.
This behavior is designed by using the corresponding ports for the software compo-
nents.
c(RS_METH_00202)

[TR_AMETH_00012] Generation of the header files for service interface d In paral-
lel, the header files for the service interfaces are generated. This step is independent
of the design of the software component and therefore its ports. Instead, the header
files are generated for all service interfaces and afterwards, the relevant ones are used
for the development of the software component.
The generation includes the generation of service proxies and skeletons, which need
to be implemented for a specific platform. c(RS_METH_00202, RS_METH_00066)

[TR_AMETH_00013] Implementation and compilation of software components d
The generated header files are the basis for the implementation of the core function-
ality of a software component. Two typical use cases for the development exist that
depend on the fact if the Build Chain Configuration is known or not known and
therefore if source code or object code is delivered by the application developer. c
(RS_METH_00202, RS_METH_00015, RS_METH_00066, RS_METH_00042)

[TR_AMETH_00014] Development with knowledge of the Build Chain Con-
figuration d In this approach, the integrator hands over the Build Chain Con-
figuration to the software developer beforehand. The software developer can build
his software component against this build chain and can deliver object code back to
the integrator. c(RS_METH_00202, RS_METH_00077)

42 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[TR_AMETH_00015] Development without knowledge of the Build Chain Con-
figuration d For this use case, the application developer is not aware of the
Build Chain Configuration and needs to deliver source code to the integra-
tor. The integrator then takes over the compilation of the the software component.
c(RS_METH_00202, RS_METH_00077)

2.3.1.3 Workflow

Develop Adaptive Application
Software

Service Interface Description

Develop Software
Components

Design Software Component for
Adaptive Platform

Generate Header Files
for Service Interfaces

Implement Software
Component Functionality

Develop Main
Function

Software Component
Object Code

Main Function

Software Component
Description for Adaptive
Platform

Software Component
Source Code

Tier 2

«performs»

+Application Software
Designer

«nesting»

«nesting»

«nesting»

«nesting»

1..*

«input»

«output»

1..*

«output»

0..*

«nesting»

«performs»

+Application Software
Developer

«output» 0..*

«output»

1

Figure 2.14: Develop Adaptive Application Software

43 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Develop Adaptive Application Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Design and development of software components for Adaptive Platform
Description Develop an Adaptive Application with category application-level. In this

activity, Adaptive Application Software in terms of Software Component
Object Code for the Adaptive Platform is developed. In addition, the
main function for the executable is developed. The integration of these
is done in the proceeding step. The software component description is
needed as deliverable for a later mapping of service instances to port
prototypes.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Service Interfaces are the basis for the

development of adaptive application
software

Produces Main Function 1 One main function per executable is
produced

Produces Software Compo-
nent Description
for Adaptive Plat-
form

1..* Output of component model for the
software components

Produces Software Compo-
nent Object Code

0..* Compiled software components

Produces Software Compo-
nent Source Code

0..* Software components as source code

Aggregates Design Software
Component for
Adaptive Platform

1

Aggregates Develop Software
Components

1

Table 2.12: Develop Adaptive Application Software

Activity Develop Software Components
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Implement the core functionality of one executable application
Description In this activity, the software components for one executable are

implemented and compiled. After the header files for the service
interfaces are generated, the functionality can be implemented. For
each executable, a main function needs to be implemented, which
defines the internal communication and scheduling.

Relation Type Related Element Mul. Note
Aggregates Develop Main

Function
1

Aggregates Generate Header
Files for Service
Interfaces

1

Aggregates Implement Soft-
ware Component
Functionality

1

44 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Performed by Tier 2 1 Application Software Developer: This

activity will probably be performed by an
Application Software Developer of a Tier
2 company

Table 2.13: Develop Software Components

Service Interface Description

Design Software
Component for Adaptive
Platform

Generate Header Files for
Service Interfaces

Software Component
Description for Adaptive
Platform

Implement Software
Component Functionality

Header Files for
Service Interfaces

Compile Software
Component

Software Component
Source Code

Software Component Object Code

Build Chain
Configuration

Main Function

Develop Main
Function

Middleware Library
Header Fi les

1..*

«input»

1..*

«input»

«output»

1

«output»

1..*

1..*

«input»

1..*

«input»

1

«input»

«output»
1

1..*

«input»

«output»

1

«output»

1

1..*

«input»

1

«input»

0..*

«input»

Figure 2.15: Workflow for developing application-level software for the Adaptive Plat-
form

45 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.3.2 Develop Adaptive Platform-level Software

2.3.2.1 Purpose

This section explains how to develop platform-level software for the Adaptive Platform.
The artifact workflow is depicted in Figure 2.16.

2.3.2.2 Description

[TR_AMETH_00035] Platform-level Software d An Adaptive Application of category
platform-level is a collection of executables. The executable may consist of soft-
ware components if these are based on standardized service interfaces, but may also
be directly implemented without a software component model. c(RS_METH_00207,
RS_METH_00041)

[TR_AMETH_00020] Development of Platform Object Code d The platform
modules, which consist of an executable, need to be developed. Similar as application-
level software, they are later instantiated in terms of an Execution Manifest and then
deployed on the machine. For each executable the corresponding main function needs
to be developed as well. c(RS_METH_00207, RS_METH_00041)

2.3.2.3 Workflow

Autosar AP Standard
Package

Develop Adaptive Platform-
level Software

Platform Object Code

Main FunctionMiddleware Library
Header Fi les

Tier 2

«performs»

+Platform Software
Designer0..1

«input»

«output»

1

«performs»

+Platform Software
Developer

0..*

«input»

«output» 1..*

Figure 2.16: Develop Adaptive Platform-level Software

46 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Develop Adaptive Platform-level Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Develop an Adaptive Software of category platform-level.
Description Develop an Adaptive Software of category platform-level. These

platform software modules consist of an executable and are deployed
together with an Execution Manifest onto the machine (in contrast to
e.g. the OS). This activity also includes the implementation of the
corresponding main function.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 In case standardized service interfaces

are used for adaptive platform-level
software

Consumes Middleware Library
Header Files

0..* Library header files needed for compiling
the adaptive platform-level software

Produces Main Function 1 Main function for platform-level
executable

Produces Platform Object
Code

1..* Object code of platform module

Performed by Tier 2 1 Platform Software Designer: The design
tasks within the development of
Platform-level Software will probably be
performed by a Platform Software
Designer of a Tier 2 company

Performed by Tier 2 1 Platform Software Developer: The real
development tasks (i.e., to write source
code and the like) within the
development of Platform-level Software
will probably be performed by a Platform
Software Developer of a Tier 2 company

Table 2.14: Develop Adaptive Platform-level Software

2.4 Integration and Deployment

2.4.1 Integrate Software

2.4.1.1 Purpose

After the implementation and compilation of the software, it needs to be integrated
into one executable. Since the executable also contains platform-specific aspects, this
process step also describes other activities as e.g. the development of the serialization
for a specific platform and the implementation of the proxies and skeletons.

47 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.1.2 Description

[TR_AMETH_00016] Development of serialization properties d It needs to be de-
scribed how the data in the service interfaces shall be serialized for the transport on the
network. In particular, this is important for the communication over SOME/IP between
Classic and Adaptive Platform.
For the service interfaces, the properties of the serialization will be defined. For
SOME/IP, this includes the alignment, the configuration of length fields that are added
in front of arrays or structures, etc. Based on this Serialization Configuration,
the serialization code can be generated. The serialization is developed for a dedicated
Adaptive Platform. c(RS_METH_00006, RS_METH_00077, RS_METH_00066)

[TR_AMETH_00017] Implementation of service proxies and skeletons d The ser-
vice proxies and skeletons, which are contained in the Header Files for Service
Interfaces and used within the software components, need to be implemented. For
this implementation, the serialization of data needs to be known. c(RS_METH_00207)

[TR_AMETH_00018] Building the Executable Application d The Executable
Application can be built based on application-level Software Component Ob-
ject Code or platform-level Platform Object Code together with the respective
Main Function. Additionally, the Serialization Source Code and all neces-
sary libraries and implementations are linked to one Executable Application. c
(RS_METH_00202, RS_METH_00066, RS_METH_00042)

48 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.1.3 Workflow

Integrate Software

Service Interface Description

Header Files for
Service Interfaces

Software Component Object Code

Executable Application

Main Function

Build Chain
Configuration

Generate Serial ization Code for
Adaptive Platform

Build Executable
Application

Configure
Serial ization for
Adaptive Platform

Implement Service Proxies and
Skeletons

Platform Object
Code

Software Component
Source Code

Tier 1

0..*

«input»

0..*

«input»

0..*
«input»

«output»

1

0..*

«input»

«nesting»

1

«input»

«nesting» «nesting»

1

«input» «nesting»

0..*

«input»

«performs»

+Software Integrator

Figure 2.17: Integrate the software components

Activity Integrate Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Integration::Integrate Software
Brief Description Integrate software to one executable
Description In this activity, the compiled software and one main function are

integrated into one executable. For this step, several other artifacts
may be necessary, as the serialization code, the implemented proxies
and skeletons and necessary middleware libraries.

Several executables can later be packaged into an Adaptive AUTOSAR
Application.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Needed for linking all artifacts

Consumes Header Files for
Service Interfaces

0..* Proxies and skeletons to be implemented

Consumes Main Function 1 One main function per executable
Consumes Platform Object

Code
0..* Object code for platform-level executable

49 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
0..* Needed for defining the serialization

Consumes Software Compo-
nent Object Code

0..* Object code for application-level
executable

Consumes Software Compo-
nent Source Code

0..* Source code for application-level
executable

Produces Executable Appli-
cation

1 Software is integrated into one
executable application

Aggregates Build Executable
Application

1

Aggregates Configure Serial-
ization for Adaptive
Platform

1

Aggregates Generate Serial-
ization Code for
Adaptive Platform

1

Aggregates Implement Service
Proxies and Skele-
tons

1

Performed by Tier 1 1 Software Integrator: This activity will
probably be performed by a Software
Integrator of a Tier 1 company

Table 2.15: Integrate Software

50 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Service Interface Description

Header Files for
Service Interfaces

Generate Serial ization
Code for Adaptive
Platform

Build Executable
Application

Serial ization
Source Code

Software Component
Object Code

Executable
Application

Middleware
Libraries

Main Function

Serialization
Configuration

Configure
Serial ization for
Adaptive Platform

Implement Service Proxies and
Skeletons

Implemented
Proxies and
Skeletons

Build Chain
Configuration

Platform Object Code

0..*

«input»

1..*

«input»

1

«input»

1..*

«input»

0..*

«input»

«output»

1

«output»

1..*

1..*

«input»

0..*

«input»

0..1

«input»

1

«input»

«output»

1..*

0..1

«input»
1..*

«input»

0..*

«input»

«output»

1

Figure 2.18: Workflow for integrating the software

2.4.2 Define and configure a Machine

As outlined in [TR_AMETH_00003], the definition and configuration is subdivided into
two process steps. This section here will deal with the second one, the activities and
tasks necessary for the configuration of a real adaptive ECU in order to obtain a com-
plete Machine Manifest.

51 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.2.1 Preparatory steps

2.4.2.1.1 Purpose

This subsection describes some preparatory activities towards the real configuration
step of the machine.

2.4.2.1.2 Description

[TR_AMETH_00019] Description of the Adaptive Platform d As a first preparatory
step, the available hardware elements of the particular Adaptive Platform need to be
specified. This can be done by means of the ECU Resources Description which
enables to describe all hardware elements, like processing units, memories, sensors,
actuators or pins. c(RS_METH_00207, RS_METH_00041)

ECU resources can be specified based on the ECU Resource Template [7].

[TR_AMETH_00034] Select the Operating System for the Adaptive Plat-
form d Furthermore, an operating system (OS) needs to be selected for a particular
Adaptive Platform and assembled. To that, it might be necessary to port or at least to
adjust the OS for the specific hardware.

The OS for the Adaptive Platform is a platform module not having an Execution Man-
ifest. Note, that its development workflow will differ from the workflow of platform-
level software. c(RS_METH_00207, RS_METH_00041) 11

2.4.2.1.3 Workflow

Operating System for Adaptive
Platform

Select OS Distribution

«output»

1

Figure 2.19: Select the OS Distribution

Activity Select OS Distribution
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Develop
Platform Software

Brief Description Select and assemble an operating system
Description Select an operating system and assemble it. The workflow for the

platform modules as the OS is different to the workflow of platform-level
applications, which will be instantiated with an Execution Manifest.

Relation Type Related Element Mul. Note

11see section 2.3.2 for platform-level software development workflow details.

52 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Operating System

for Adaptive Plat-
form

1 Selected OS distribution

Table 2.16: Select OS Distribution

2.4.2.2 Configure the Machine

2.4.2.2.1 Purpose

The machine describes the computing resource on which the Adaptive AUTOSAR Soft-
ware Stack is executed.

Based on the assumptions of [TR_AMETH_00003], this use case describes all defi-
nition and configuration activities for the machine, independent of the deployment in-
formation of applications or service instances. All produced content will be part of the
Machine Manifest.

The overview of inputs, outputs and all tasks is given in Figure 2.20. The workflow is
described in Figure 2.21.

2.4.2.2.2 Description

[TR_AMETH_00022] Definition of machine states, function group states and per-
state timeouts d The configuration of a machine includes the definition of machine
states, function group states and per-state timeouts.

A machine can have several machine states, in which certain processes will be acti-
vated or deactivated. These states need to be defined and can then be used for the
start-up configuration of a process, which might depend on the machine states.

Function groups with function group states individually control groups of functionally
coherent application processes.

It is possible to define timeouts by means of EnterExitTimeouts for se-
lected machine states (modes) or function group states. c(RS_METH_00204,
RS_METH_00203)

[TR_AMETH_00217] Definition of resources d The configuration of a machine may
include the definition of resources. Based on the ECU Resources Description
(as an input), available hardware resources for a machine can be described . c
(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00216] Map Processes to a particular machine d The configuration of
the machine includes the mapping of Processes to a particular machine by means of
the meta model element ProcessToMachineMapping, assuming that one Process
shall only be mapped once, to exactly one machine.

53 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

To perform this, a list of Processes supposed to run on the machine is required as
input. c(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00023] Configuration of the operating system d The configuration of
the operating system is defined via the AdaptiveModuleInstantiation meta class. For a
specific instantiation of the operating system, resource groups as well as the supported
timer granularity can be defined. c(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00214] Configuration of Platform Services d The configuration of a
machine includes the machine-specific configuration of Adaptive Platform Services,
like the machine-specific configuration of

• the NM module

• DoIP

c(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00215] Configuration of Platform Foundation Modules d Beside the
configuration of the Operating System, the configuration of a machine also includes
the machine-specific configuration of the Adaptive Platform Foundation Modules, like
the machine-specific configuration of

• the Log & Trace module

c(RS_METH_00204, RS_METH_00203)

54 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.2.2.3 Workflow

Describe Available
HW Resources

Machine Manifest

Define Machine
States

Configure OS for
Adaptive Platform

Define and
configure machine

ECU Resources
Description

Operating System for Adaptive
Platform

Tier 1 Tier 2

Machine Design

Define Function Groups Define State Timeouts

Map Process To Machine

Configure Adaptive Autosar Modules
and Platform

Process

Configure Log and
Trace module

Configure DoIP

Configure NM module

«nesting»

«nesting»

«nesting»
«nesting»

«nesting»

1

«input»

«nesting»

0..1

«performs»

+Machine
Integrator

«nesting»

«nesting» «nesting»

«output»

1

«nesting»

1

«input»

0..* «input»

0..1

«input»

0..1

«performs»

+Machine
Integrator

Figure 2.20: Define and Configure Machine

Activity Define and configure machine
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description Configuration of the machine independent of deployment information of
applications or service instances

Description The activity describes tasks for the configuration of the machine, which
do not depend on deployment information of applications or service
instances. This includes the configuration for the communication on the
network based on service discovery, the description of all machine
states and the available resources as well as dedicated configuration of
the OS.

Relation Type Related Element Mul. Note

55 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes ECU Resources

Description
0..1 All resources which are available for the

ECU
Consumes Machine Design 1 Configuration settings of the network

connections and service discovery
network exchange of a Machine

Consumes Operating System
for Adaptive Plat-
form

1 OS to be configured

Consumes Process 0..* Processes dedicated to run Executables
on a Machine

Produces Machine Manifest 1 The machine manifest describes all the
configuration settings for one Machine

Aggregates Configure Adaptive
Autosar Modules
and Platform

1

Aggregates Define Function
Groups

1

Aggregates Define Machine
States

1

Aggregates Define State Time-
outs

1

Aggregates Describe Available
HW Resources

1

Aggregates Map Process To
Machine

1

Performed by Tier 1 0..1 Machine Integrator: This activity will
probably be performed by a Machine
Integrator of a Tier 1 company

Performed by Tier 2 0..1 Machine Integrator: Alternatively, this
activity could also be performed by a
Machine Integrator of a Tier 2 company

Table 2.17: Define and configure machine

Activity Configure Adaptive Autosar Modules and Platform
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description
Description Configure individual Adaptive Autosar modules, i.e., the OS as well as

non-OS modules.
Relation Type Related Element Mul. Note
Aggregates Configure DoIP 1
Aggregates Configure Log and

Trace module
1

Aggregates Configure NM
module

1

Aggregates Configure OS for
Adaptive Platform

1

56 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note

Table 2.18: Configure Adaptive Autosar Modules and Platform

Describe Available
HW Resources

Machine Manifest

Define Machine States

Configure OS for
Adaptive PlatformOperating System for

Adaptive Platform

ECU Resources
Description

«SPEM_Ta...
Define ECU
Description

(from Tasks)

Define State TimeoutsDefine Function Groups

Configure Log and
Trace module

Configure DoIP

Configure NM module

Map Process To Machine

Process

ProcessToMachineMapping

Machine StatesFunction Groups PerStateTimeouts

Machine Design

0..1«input»

0..1

«input»

«output»

0..1

1

«nesting»

«output»

0..1

«output»

0..1

«output»

0..1

1

«nesting»

«input»

1

«input»

«output»

1

«input»

0..1

«input»

«output»

0..1

«output»

0..1

«output»

0..1

«output»

1..*

«input»

1

«input»

1

«nesting»

«output»

1

1..*

«nesting»

Figure 2.21: Workflow for defining and configuring an machine

2.4.3 Create Execution Manifest

2.4.3.1 Purpose

This use case defines all tasks, which are necessary in order to instantiate the Exe-
cutable Application. For on overview see Figure 2.22. The workflow is given in
Figure 2.23.

57 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.3.2 Description

[TR_AMETH_00024] Instantiation of Executable Application d Define the in-
stantiation of an Executable Application on a specific machine in terms of a
process. One executable can be instantiated several times and in different ways, e.g.
varying in the definition of the startup behavior. This results in several processes. c
(RS_METH_00203, RS_METH_00077)

[TR_AMETH_00025] Definition of startup behavior of a process d For each process
the startup behavior can be defined depending on a machine state. Therefore, the
process might have a different startup behavior in one machine state compared to a
second machine state. This behavior can e.g. vary in terms of the scheduling priority
or the execution dependencies to other processes. c(RS_METH_00203)

[TR_AMETH_00026] Definition of Execution Manifest d The Execution Man-
ifest aggregates the process and its startup configuration. Therefore, one Execu-
tion Manifest is defined per process. c(RS_METH_00203)

2.4.3.3 Workflow

Executable Application

Create Execution Manifest

Define Startup
Configuration

Define Execution
Dependencies

Execution Manifest

Define Process

Machine Manifest

Associate Process with
ProcessDesign

Tier 1

1«input»

«nesting»

1

«input»

«nesting»
«nesting»

«performs»

+Software Integrator

«output»

1..*

«nesting»

Figure 2.22: Create an Execution Manifest

58 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Create Execution Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Execution Manifest
Brief Description Instantiation-specific configuration of executable
Description In this activity, the processes are defined. One executable can be

instantiated several times, which results in multiple processes for one
executable. One Execution Manifest is defined per process and
contains all its attributes including startup configuration and execution
dependencies.

Relation Type Related Element Mul. Note
Consumes Executable Appli-

cation
1 One executable can be instantiated

several times
Consumes Machine Manifest 1 Instantiation is defined on one specific

machine
Produces Execution Manifest 1..* One execution manifest per instantiated

executable
Aggregates Associate Pro-

cess with Process
Design

1

Aggregates Define Execution
Dependencies

1

Aggregates Define Process 1
Aggregates Define Startup

Configuration
1

Performed by Tier 1 1 Software Integrator: This activity will
probably be performed by a Software
Integrator of a Tier 1 company

Table 2.19: Create Execution Manifest

59 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Define Execution
Dependencies

Define Process

Define Startup
Configuration

Mode-dependent
Startup Configuration

Process

Executable Application

Machine Manifest

Associate Process with
ProcessDesign

Process Design

1

«input»

1

«input»

«output»

1..*

«output»

1..*

1

1

1«input» 1
«input»

«output»1..*

1
«input»

1..*

«input»

«output»

1..*

1..* «input»

Figure 2.23: Workflow for defining a Process

2.4.4 Define and Configure Service Instances

2.4.4.1 Purpose

This use case describes the definition and configuration of service instances in the
system. For an overview of all tasks see Figure 2.24. For the workflow see Figure 2.25.
The outcome of this activity is the Service Instance Manifest.

2.4.4.2 Description

[TR_AMETH_00027] Configuration of Service Interface Deployment d The system
responsible specifies in Service Interface Deployment Configuration how
the service interfaces shall be deployed. This includes the properties describing the
individual transport layer binding of the service interface.
E.g. for SOME/IP deployment, an ID for each service interface is defined. This ID
needs to be unique in the system. Additionally methodID, eventID as well as event
groups are defined unambiguously in the scope of the SOME/IP service interface de-
ployment. c(RS_METH_00206, RS_METH_00203) 12

[TR_AMETH_00028] Configuration of Service Instances d Afterwards, the sys-
tem responsible defines instances of the deployed service interfaces and decides

12see 3.9.2.1

60 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

whether the service instance is provided or consumed. In order to set up the service-
oriented communication Service Instance Configuration includes properties
for search or offer criteria.
E.g. for SOME/IP, an ID for each provided service instance is defined. This ID needs
to be unique in the system (and should be globally unambiguous). For required service
instances SOME/IP allows to specify optionally a required service instance ID (which
ofcourse should be provided somewhere). c(RS_METH_00206, RS_METH_00203) 13

[TR_AMETH_00029] Mapping of Service Instances to Machine d The service in-
stances will be deployed to a Machine (i.e. a Adaptive Platform instance) that will
execute the service instance. This Service Instance To Machine Mapping in-
cludes technology specific properties.
E.g. for SOME/IP, the TP and IP configuration for the client and the server are de-
scribed. c(RS_METH_00206, RS_METH_00203, RS_METH_00078) 14

[TR_AMETH_00033] Mapping of Service Instances to Port Prototypes d In addi-
tion, the service instances need to be mapped to their representation in the application
(i.e. to instances of port prototypes) via the Service Instance To Port Proto-
type Mapping. This mapping is necessary in order to ensure a unique relationship
between locally implemented service instances within the application and global ser-
vice instances available on the network. The Service Instance To Port Pro-
totype Mapping includes technology specific properties.
E.g. for SOME/IP the provided (and optionally also required) service instance IDs are
specified. c(RS_METH_00206, RS_METH_00203, RS_METH_00078) 15

13see 3.9.2.2
14see 3.9.1.5
15see 3.9.1.4

61 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.4.3 Workflow

Define and Configure
Service Instances

Service Instance Manifest

Define and Configure
Service Instance

Define SOME/IP Timing

Map Service Instance to
Machine

Service Interface Description

Map Service Instance to
Port Prototype

Configure Service
Interface Deployment

Software Component
Description for Adaptive
Platform

Design Service
Topology

OEM Tier 1

Machine Design

«nesting» «nesting»

«performs»

+Software Integrator

«nesting»

«performs»

+Service Topology Designer1

«SPEM_ParameterIn»

1

«input»

«nesting»

«nesting»

1
«input»

«output»

1..*

1

«input»

«nesting»

Figure 2.24: Define and Configure Service Instances

Activity Define and Configure Service Instances
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Service Instance Definition
Brief Description Configuration of service interface deployment and service instances
Description This activity covers the configuration of the service interfaces for the

used network layer, independent of any instantiation on the one hand
as well as the definition and configuration of service instances on the
other.

Relation Type Related Element Mul. Note
Consumes Machine Design 1 Service instances will be mapped to

machine
Consumes Service Interface

Description
1 Deployment of service interfaces needs

to be configured
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1 Used to map the service instances to
ports of a software component

Produces Service Instance
Manifest

1..* Contains all configuration settings for the
service instance on a specific machine

Aggregates Design Service
Topology

1

62 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates Map Service In-

stance to Port Pro-
totype

1

Table 2.20: Define and Configure Service Instances

Activity Design Service Topology
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Service Instance Definition
Brief Description Design Service Topology
Description This activity subsumed all design tasks which are related to the design

of a network topology
Relation Type Related Element Mul. Note
Aggregates Configure Ser-

vice Interface
Deployment

1

Aggregates Define SOME/IP
Timing

1

Aggregates Define and Con-
figure Service In-
stance

1

Aggregates Map Service In-
stance to Machine

1

Performed by OEM 1 Service Topology Designer: This activity
will probably be performed by a Service
Topology Designer of an OEM

Table 2.21: Design Service Topology

63 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Define and
Configure Service
Instance

Define SOME/IP
Timing

Map Service Instance
to Machine

Service Instance Manifest

Service Interface
Deployment
Configuration

Service Instance
Configuration

Map Service Instance to
Port Prototype

Service Interface
Description

Configure Service
Interface Deployment

Software Component
Description for Adaptive
Platform

Machine Design

Service Instance To
Machine Mapping

Service Instance To Port
Prototype Mapping

1

«input»

«nesting»

1

«SPEM_ParameterIn»

«output»

1

1

«input»

1
«input»

«nesting»

«output»

1

«nesting»

«output»

1

1

«input»

1
«input»

«nesting»

«output»

1..*

«output»
1

1

«input»

Figure 2.25: Workflow for defining and configuring service instances

2.4.5 Set up an initial Machine

Disclaimer: the content of this section is under discussion.

2.4.5.1 Purpose

This activity describes how a machine is set up so that software can be deployed onto
it.

64 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.5.2 Description

[TR_AMETH_00031] Setting up an initial machine d The aim of this activity is to
obtain a machine that is initially set up. ’Initially set up’ means here, that the machine
is able to upload and install additional software by means of Software Packages.
For this purpose at least the Platform module UCM and dependent modules (like the
diagnostic communication module) need to run on the initially set up machine. Thus,
this activity will (at least) include the following tasks:

1. Install the selected Operating System on the selected target (machine).

2. Install all necessary Platform modules on top of the installed OS in order to be
able to perform the upload and the installation of additional application software
by means of Software Packages.

In order to be able to execute this activity, the following inputs are necessary:

• A selected Operating System for Adaptive Platform

• The configuration settings by means of the Machine Manifest

• Possibly, design artifacts like the Machine Design

• The Executables of the Platform and Application modules which shall be installed

• Execution Manifests and Service Instance Manifests of the Platform and Applica-
tion modules which shall be installed

• Possibly, diagnostic information by means of the Diagnostic Machine Ex-
tract since the upload and installation process may use the diagnostic environ-
ment

c(RS_METH_00205, RS_METH_00204)

Figure 2.26 shows the aforementioned; illustrating the relations of the involved entities.

65 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.5.3 Workflow

Machine Manifest

Set Up Initial Machine Configured Machine
on Adaptive ECU

Operating System for
Adaptive Platform

Tier 1 Tier 2

Service Instance Manifest

Execution Manifest

Executable Application

Diagnostic Machine Extract

Uploadable Design Arti facts

1

«input»

0..1

«performs»

+Machine Integrator

0..1

«performs»

+Machine Integrator

0..*

«input»

0..1

«input»

0..* «input» «output»

1

0..*

«input»

1

«input»

0..1

«input»

Figure 2.26: Set up initial machine

Activity Set Up Initial Machine
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Setup Machine
Brief Description Set up the machine based on the machine manifest
Description Configure and install the OS and other necessary platform modules

(e.g., UCM) on the machine. The configuration settings are given by
the Machine Manifest. In addition, the network connections as well as
machine states are set up.

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
0..1 Diagnostic extract for a Machine

Consumes Executable Appli-
cation

0..* Executables of those Platform modules
and Adaptive Applications that should
run on a initially configured machine.
Beside the OS, at least the UCM and
connected Platform modules (e.g., a
diagnostic communication manager)
need to be installed in order to be able to
upload other software.

Consumes Execution Manifest 0..* All Execution Manifests needed to run
the desired adaptive application
(instances or Processes) on a Machine

Consumes Machine Manifest 1 Containing all configuration settings for
the Machine

66 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Operating System

for Adaptive Plat-
form

1 OS to be installed on machine

Consumes Service Instance
Manifest

0..* All Service Instance Manifests needed to
run the desired adaptive application
(instances or Processes) on a Machine

Consumes Uploadable Design
Artifacts

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Produces Configured Ma-
chine on Adaptive
ECU

1 Machine is configured and software can
now be deployed

Performed by Tier 1 0..1 Machine Integrator: This activity will
probably be performed by a Machine
Integrator of a Tier 1 company

Performed by Tier 2 0..1 Machine Integrator: Alternatively, this
activity could also be performed by a
Machine Integrator of a Tier 2 company

Table 2.22: Set Up Initial Machine

2.4.6 Create Software Packages

Disclaimer: the content of this section is under discussion.

2.4.6.1 Purpose

This use case comprises all activities and tasks to specify Software Packages.

2.4.6.2 Description

The AUTOSAR Adaptive Platform offers the ability to upload software onto machines
(AUTOSAR Adaptive Platform instances) without to reflash everything.

According to the glossary [8], Software Packages are the units for deployment onto
machines (AUTOSAR Adaptive Platform instances). In this respect, they are inputs for
and processed by the Adaptive Platform Service UCM.

In fact, a Software Package consists of two main parts:

• a bundle of the actual software artifacts, referred to as Software Cluster here

• corresponding model data needed to control the upload and installation process
of this Software Cluster executed by the UCM [9], referred to as Software
Package Manifest here

67 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Thus, from an UCM point of view, the term Software Cluster identifies a bundle of
software artifacts that are uploaded together in order to be installed by the UCM. In gen-
eral, a Software Cluster may contain Executables, Execution Manifests,
Service Instance Manifests, Machine Manifests and other development ar-
tifacts. It should be mentioned, that a Software Cluster may be structured into
sub-blocks in order to mimic the CP diagnostic workflow, where blocks are the smallest
parts of update and to enable the execution of update campaigns (see details in [9]).

Otherwise, the term Software Cluster may also refer to a set of installed software
entities (processes that run Executables, data or manifests) which form a logical
group and which are addressable by the diagnostic management by a shared diagnos-
tic address.

Not surprisingly, both definitions match in the sense that the bundle of software up-
loaded are needed to form the set of installed software entities addressed by the same
diagnostic address.

A Software Cluster (in the UCM sense) is described by its model, collected in
the Software Package Manifest. The root-element of this description is called
SoftwareCluster (category ROOT_SOFTWARE_CLUSTER) [6]. From a model point
of view, the sub-blocks, mentioned above, can be expressed likewise by the same
meta model element SoftwareCluster, but in the role subSoftwareCluster (or
category SUB_SOFTWARE_CLUSTER) [6].

The meta model supports also the expression of dependencies between Soft-
wareClusters or subSoftwareClusters [6], the assignment of a diagnostic ad-
dress for SoftwareCluster of category ROOT_SOFTWARE_CLUSTER and, of course,
information about which artifact belongs to which SoftwareCluster. See [6] for a
deeper insight into the respective modeling.

In general, it might be useful for integrator to store incoming artifacts as well as assem-
bled Software Clusters into repository and manage them by some sort of data
base.

Note, that the real format of the Software Package is implementation specific and
not covered by any specification [9].

[TR_AMETH_00206] Create a Software Package d The following activities/tasks
are needed in order to obtain a Software Package:

• Create an initial Software Package Manifest

• Collect all software artifacts that belong to a Software Cluster, structure and
model them

• Model dependencies between Software Cluster of any category

• Develop installation instructions

• Create the Software Package

• Manage the data base of Software Clusters (of any category)

68 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

c(RS_METH_00205) 16

One input of this activity is the deliverable Software Cluster Design based on
the meta model element SoftwareClusterDesign [6]. The deliverable Software
Cluster Design contains the requirements that have initially been formulated by
an OEM. The formal structure of the SoftwareClusterDesign is similar to Soft-
wareCluster [6]. Thus, by means of this, the OEM is able to define the composition
and structure of Software Clusters, dedicated diagnostic addresses as well as
internal and external dependencies of Software Clusters.

The clear separation of the meta model elements SoftwareCluster and Soft-
wareClusterDesign is motivated from a methodology point of view, because dif-
ferent parties are involved at different design stages. To specify requirements for the
structure of Software Packages is the genuine interest of an OEM, because he
knows best about its IT- and vehicle infrastructure, whereas (most probably) a Tier 1
company is responsible for the integration and deployment processes.

[TR_AMETH_00218] Create an initial Software Package Manifest d The main
input for this step are the requirements of the OEM given by means of Software
Cluster Design. Thus, this task is about to create an new Software Package
Manifest and to transfer the structure and the entries of the given Software Clus-
ter Design into the newly created Software Package Manifest. c()

[TR_AMETH_00219] Collect all software artifacts that belong to a Software
Cluster, structure and model them d On base of the Software Cluster De-
sign o the newly created Software Package Manifest, this step includes the
following sub-tasks:

• Identify necessary (software) artifacts

– Identify necessary (software) artifacts in order to build the Software
Package, also with respect to their versions

– Check, whether there are deviations between the required and actual sets of
Sub Software Clusters (by means of the aggregated artifacts and versions) ,
if necessary solve them and re-model the Software Package Manifest
accordingly

– Check, whether there are discrepancies between the required and actual set
of the (root) Software Cluster (by means of its aggregated Sub Software
Clusters and versions)

• Collect belonging (software) artifacts of Sub Software Clusters

– Collect belonging (software) artifacts of Sub Software Clusters into separate
baskets ((Sub) Software Cluster Groups) in order to prepare the fi-
nal step of creating the Software Package

– Execute a receiving inspection (optional)
16Figure 2.27 shows the corresponding input and output deliverables.

69 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

– Store incoming artifacts into a repository

c()

[TR_AMETH_00220] Model dependencies between Software Clusters of any
category d Dependencies between Software Clusters of the same or different
categories may already be given by the requirements of an OEM by means of a
SoftwareClusterDesign. Dependencies to Software Clusters are specified
by means of their identification (name) and version.

Therefore, the respective SoftwareClusterDesign is will be one input for this ac-
tivity.

However, dependencies may change during the development process and the activity
needs to consider it.

Thus, this task describes the handling of dependencies by at least the following sub-
tasks:

• Check, whether the dependencies between Software Clusters of the same
or different categories, given by the respective SoftwareClusterDesign are
still valid

• Determine changes between the actual and required dependencies between
Software Clusters of any category

• If necessary, re-model the Software Package Manifest in accordance with
the outcomes of the both tasks above

c()

[TR_AMETH_00221] Develop installation instructions d Installation instruction con-
trol the behavior of the UCM during the update of Software Packages. Installation
instructions can either be ’add/update’ meaning to install a package or ’remove’ to ex-
press that a package shall be uninstalled and deleted from the machine. Installation
instructions are defined per Software Cluster, independent of its category. For
details, see [9].

Thus, this task may includes the sub-tasks:

• Specify installation instructions per Software Cluster (of any category)

• Develop update campaigns (optional)

The particular installation instructions are part of the Software Package Mani-
fest.

c()

[TR_AMETH_00222] Create the Software Package d The format of the Software
Package as well as the update strategy, i.e., whether you go for a complete or a delta
update are implementation specific. Both issues will not be specified by AUTOSAR.

70 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Thus, this activity handles the compilation of Software Cluster and Software
Package Manifest into a Software Package.

Since AUTOSAR does not specify how the Software Package looks like, the break-
down of this activity into tasks is also specific to particular OEMs and their suppliers.

c()

[TR_AMETH_00223] Manage the data base of Software Clusters (of any cat-
egory) d A general activity may be the management of the data base of Software
Clusters with respect to all their versions, dependencies and further aspects.

It is assumed that this activity is also specific to particular OEMs/suppliers. Therefore a
more fine-granular task structure will not be specified here. c()

71 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

2.4.6.3 Workflow

Service Instance Manifest

Execution Manifest

Software Package

Executable Application

Configured Machine on
Adaptive ECU

Create Software Package

Tier 1Diagnostic Machine Extract

Uploadable Design Artifacts

Software Cluster Design

Collect all software
arti facts that belong to a
Software Cluster

«SPEM_Ta...
Model

dependencies
between

Software Clusters
of any category

(from Tasks)

«SPEM_Ta...
Create

instal lation
instructions

(from Tasks)

Compile the Software Package

Manage the data base of
Software Clusters (of any
category)

Create an initial
Software Package
Manifest

Identify necessary (software) artifacts
Collect belonging (software) arti facts
of Sub Software Clusters

«nesting»

«nesting»

«nesting»

«nesting»

«output»

1

«performs»

+Software Deployment Integrator

0..1

«input»

1

«input»

0..*

«input»

«nesting» «nesting»

check_consistency

«nesting»

0..*
«input»

0..*

«input»

«nesting»

0..1

«input»

Figure 2.27: Create a Software Package

Activity Create Software Package
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Create a Software Package
Description This activity describes the creation of a Software Package.
Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
0..1 Diagnostic extract for a Machine

Consumes Executable Appli-
cation

0..* Executables of deployed processes

Consumes Execution Manifest 0..* Several processes can be deployed
Consumes Service Instance

Manifest
0..* Several service instance manifests can

be deployed

72 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Software Cluster

Design
1 Requirements of the OEM wrt. package

structure and parameters given by
means of the meta model element
SoftwareClusterDesign.

Consumes Uploadable Design
Artifacts

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Produces Software Package 1 Software Package for deployment
defined

Aggregates Collect all software
artifacts that be-
long to a Software
Cluster

1

Aggregates Compile the Soft-
ware Package

1

Aggregates Create an initial
Software Package
Manifest

1

Aggregates Create installation
instructions

1

Aggregates Manage the data
base of Software
Clusters (of any
category)

1

Aggregates Model dependen-
cies between Soft-
ware Clusters of
any category

1

Performed by Tier 1 1 Software Deployment Integrator: This
activity will probably be performed by a
Software Deployment Integrator of a Tier
1 company

Table 2.23: Create Software Package

73 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Collect all software artifacts that belong to a Software Cluster
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Collect all software artifacts
Description On base of the Software Cluster Design o the newly created Software

Package Manifest, this step includes the following tasks:

• Identify and gather all needed (software) artifacts in order to
build the Software Package, also with respect to their versions

• Execute a receiving inspection (optional)

• Store incoming artifacts into a repository

• Assemble belonging (software) artifacts for Sub Software
Clusters into separate ’baskets’ (Software Cluster Groups) in
order to prepare the final step of creating the Software Package

• Check, whether there are divergences within the required and
actual sets of Sub Software Clusters (by means of the
aggregated artifacts and versions) . If necessary solve them and
re-model the Software Package Manifest, accordingly

• Check, whether there are discrepancies between the required
and actual set of the Root Software Cluster (by means of its
aggregated Sub Software Clusters and versions)

Relation Type Related Element Mul. Note
Aggregates Collect belonging

(software) artifacts
of Sub Software
Clusters

1

Aggregates Identify necessary
(software) artifacts

1

Table 2.24: Collect all software artifacts that belong to a Software Cluster

Activity Compile the Software Package
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Compile the Software Package
Description The format of the Software Package as well as the update strategy, i.e.,

whether you go for a complete or a delta update are implementation
specific. Both issues will not be specified by AUTOSAR.

Thus, this activity copes with compilation of the belonging parts into a
Software Package, without being able to specify how the Software
Package looks like.

Therefore, the structure of this activity by tasks is also specific to
particular OEMs and their suppliers.

Relation Type Related Element Mul. Note
Consumes (Sub) Software

Cluster Group
0..* Compile all Sub Software Clusters into

the Software Package
Consumes Software Package

Manifest
1 Integrate the Software Package Manifest

into the Software Package

74 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Software Package 1 Compiled Software Package

Table 2.25: Compile the Software Package

Activity Manage the data base of Software Clusters (of any category)
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Manage the data base of Software Clusters
Description A general activity may be the management of the data base of

Software Clusters with respect to all their versions, dependencies and
further aspects.

It is assumed that this activity is also specific to particular
OEMs/suppliers. Therefore a more fine-granular task structure will not
be specified here.

Relation Type Related Element Mul. Note
Consumes Software Cluster 1..* Store and manage software cluster

within a repository
Consumes Software Package

Manifest
1..* Manage meta data of corresponding

Software Cluster

Table 2.26: Manage the data base of Software Clusters (of any category)

2.4.7 Management and provision of Software Packages

Disclaimer: the content of this section is under discussion.

2.4.7.1 Purpose

This activity may comprise two aspects:

• The management of Software Packages ready to upload onto the machines

• The provision of Software Packages for the upload

2.4.7.2 Description

[TR_AMETH_00224] Management of Software Packages d Once Software
Packages have been created, they are generally ready to be deployed to dedicated
machines (Adaptive ECUs) in the field.

In order to do so, the Software Package may be stored, e.g., into a repository of
packages located on a Back-end server.

75 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

The management of this repository of the Software Packages may be supported by
means of data bases.

Since the management of Software Packages is an immanent task of an OEM and
will differ between the companies, this activity will not be detailed further. c()

[TR_AMETH_00225] Provision of Software Packages for machines in the field
d A Back-end server may also provide some sort of (sophisticated) business logic. It
may enable, e.g., a tester not only to access particular versions of particular Soft-
ware Packages for upload, but also to provide change sets of different versions of
Software Packages.

The handling of a concrete upload procedure is specified by diagnostic standards to
some extend. However, as mentioned before, the format of the Software Package
as well as the update strategy are not specified. There will be differences in handling
and procedures among OEMs and therefore, this activity will not be further subdivided.
c()

2.4.7.3 Workflow

Software Package

Provide and manage Software
Packages

OEM

Back-end Server

Management of Software
Packages

Provision of Software Packages
for machines in the field

«output»

1..*

«performs»

+ECU Software Manager

«nesting» «nesting»

1..*

«input»

Figure 2.28: Provision of Software Packages

76 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Activity Provide and manage Software Packages
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Provide and manage Software Packages
Description This activity may comprise two aspects:

• The management of Software Packages ready to upload onto
the machines

• The provision of Software Packages for the upload

Relation Type Related Element Mul. Note
Consumes Software Package 1..* Deploy software on a Back-end server by

means of Software Package
Produces Back-end Server 1..* Store uploadable packages (Software

Packages) into a repository of a
Back-end server

Aggregates Management of
Software Pack-
ages

1

Aggregates Provision of Soft-
ware Packages for
machines in the
field

1

Performed by OEM 1 ECU Software Manager: This activity will
be probably performed by an ECU
Software Manager of an OEM

Table 2.27: Provide and manage Software Packages

Activity Management of Software Packages
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Management of Software Packages
Description Once Software Packages have been created, they are generally ready

to be deployed to dedicated machines (Adaptive ECUs) in the field.

In order to do so, the Software Package may be stored, e.g., into a
repository of packages located on a Back-end server.

The management of this repository of the Software Packages may be
supported by means of data bases.

Since the management of Software Packages is an immanent task of
an OEM and will differ between the companies, this activity will not be
detailed further.

Relation Type Related Element Mul. Note
Consumes Software Package 1..* Newly created or updated Software

Packages are stored into a repository
and subject of the management of all
available Software Packages (including
their history)

77 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Back-end Server 1..* Software Packages are stored into a

repository of Software Packages.

In addition, update of a common data
base of available Software Packages
including their history.

Table 2.28: Management of Software Packages

Activity Provision of Software Packages for machines in the field
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Packaging and Provision
Brief Description Provision of Software Packages
Description Present the Software Packages in a way, that the UCM of machines

are able to access the respective Software Packages.

A Back-end server may also provide some sort of (sophisticated)
business logic. It may enable, e.g., a tester not only to access
particular versions of particular Software Packages for upload, but also
to provide change sets of different versions of Software Packages.

The handling of a concrete upload procedure is specified by diagnostic
standards to some extend. However, as mentioned before, the format
of the Software Package as well as the update strategy are not
specified. There will be differences in handling and procedures among
OEMs and therefore, this activity will not be further subdivided.

Relation Type Related Element Mul. Note
Consumes Back-end Server 1 Status quo of the presentation layer of

the Back-end Server
Produces Back-end Server 1 Organize the Back-end Server in

accordance with the requirements of an
OEM

Table 2.29: Provision of Software Packages for machines in the field

78 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3 Adaptive Methodology Library

The Adaptive Methodology Library lists all work products and tasks that are used for
modeling the use cases in section 2.

3.1 Roles

3.1.1 OEM

Role OEM
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Common Elements::Roles
Brief Description OEM - Original Equipment Manufacturer
Description OEM - Original Equipment Manufacturer

An OEM refers to a company that makes a final product for the
consumer marketplace.

Relation Type Related Element Mul. Note
Performs Create Diagnostic

Mapping
1 Diagnostic Designer: The activity of

designing the diagnostic mapping will
probably be performed by a Diagnostic
Designer of an OEM

Performs Design Service
Topology

1 Service Topology Designer: This activity
will probably be performed by a Service
Topology Designer of an OEM

Performs Design service ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 Service Interface Designer: This activity
will probably be performed by a Service
Interface Designer of an OEM

Performs Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 Service Interface Designer: This activity
will probably be performed by a Service
Interface Designer of an OEM

Performs Develop a Service
Interface Descrip-
tion

1 Service Interface Designer: This activity
will probably be performed by a Service
Interface Designer

Performs Develop the com-
munication struc-
ture by means of
MachineDesign

1 Machine Designer: This activity will
probably be performed by a dedicated
designer of an OEM.

Performs Provide and man-
age Software
Packages

1 ECU Software Manager: This activity will
be probably performed by an ECU
Software Manager of an OEM

Table 3.1: OEM

79 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.1.2 Tier 1

Role Tier 1
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Common Elements::Roles
Brief Description Direct (major) suppliers of parts to OEMs
Description Tier 1 companies are direct (major) suppliers of parts to OEMs.
Relation Type Related Element Mul. Note
Performs Create Execution

Manifest
1 Software Integrator: This activity will

probably be performed by a Software
Integrator of a Tier 1 company

Performs Create Software
Package

1 Software Deployment Integrator: This
activity will probably be performed by a
Software Deployment Integrator of a Tier
1 company

Performs Integrate Software 1 Software Integrator: This activity will
probably be performed by a Software
Integrator of a Tier 1 company

Performs Map Service In-
stance to Port Pro-
totype

1 Software Integrator: This activity will
probably be performed by a Software
Integrator of a Tier 1 company

Performs Define and config-
ure machine

0..1 Machine Integrator: This activity will
probably be performed by a Machine
Integrator of a Tier 1 company

Performs Set Up Initial Ma-
chine

0..1 Machine Integrator: This activity will
probably be performed by a Machine
Integrator of a Tier 1 company

Table 3.2: Tier 1

3.1.3 Tier 2

Role Tier 2
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Common Elements::Roles
Brief Description Key suppliers to tier 1 suppliers,
Description Tier 2 companies are key suppliers to tier 1 suppliers, without

supplying a product directly to OEM companies.
Relation Type Related Element Mul. Note
Performs Design Software

Component for
Adaptive Platform

1 Application Software Designer: The
design of software components will
probably be performed by an Application
Software Designer of a Tier 2 company

Performs Develop Adaptive
Platform-level Soft-
ware

1 Platform Software Designer: The design
tasks within the development of
Platform-level Software will probably be
performed by a Platform Software
Designer of a Tier 2 company

80 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Performs Develop Adaptive

Platform-level Soft-
ware

1 Platform Software Developer: The real
development tasks (i.e., to write source
code and the like) within the
development of Platform-level Software
will probably be performed by a Platform
Software Developer of a Tier 2 company

Performs Develop Software
Components

1 Application Software Developer: This
activity will probably be performed by an
Application Software Developer of a Tier
2 company

Performs Define and config-
ure machine

0..1 Machine Integrator: Alternatively, this
activity could also be performed by a
Machine Integrator of a Tier 2 company

Performs Set Up Initial Ma-
chine

0..1 Machine Integrator: Alternatively, this
activity could also be performed by a
Machine Integrator of a Tier 2 company

Table 3.3: Tier 2

3.2 Service Interface

This chapter contains the definition of work products and tasks used for the definition
of service interfaces for the Adaptive Platform.

3.2.1 Tasks

3.2.1.1 Provide Data Types for Adaptive Platform

Task Definition Select or define Data Types for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Define a set of AP data types for a specific project, which are not

already defined by Autosar.
Description Select or define a set of data types, which are required for the Adaptive

Platform Instance, but which are not already defined by AUTOSAR.
Standardized data types can be used as input in order to copy and
refine them. Already existing data types can be reused. The AP Data
Types are used for specifying DataElements in service interfaces. The
focus is on the definition application data types and implementation
data types and the necessary data type mapping sets.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 Use standardized elements (e.g. data

types, compu methods) to create the
corresponding elements of the specific
project.

Produces AP Data Types 1..* Defined AP Data Types for a specific
project

Table 3.4: Select or define Data Types for Adaptive Platform

81 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.2.1.2 Define Service Interfaces

Task Definition Define Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Define the service interfaces that are used for the header file

generation.
Description Define service interfaces by defining events, methods and fields.

Additionally, a namespace for the header file generation can be
defined.

Relation Type Related Element Mul. Note
Consumes AP Data Types 1..* Used for specifying DataElements in

service interfaces
Produces Service Interface

Description
1..* Collection of all service interfaces

Table 3.5: Define Service Interfaces

3.2.1.3 Aggregate Service Interfaces

Task Definition Aggregate Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Aggregate service interfaces to a coarse-grained service interface.
Description In this optional task, it is possible to define coarse-grained service

interfaces, which are used for network communication with the help of
a service interface mapping. The service interface mapping maps the
fine-grained service interfaces to the coarse-grained service
interfaces.

Alternatively, if the service interface mapping would result in a name
clash due to equal names of some elements of the service interfaces,
then the elements can be mapped by using the service interface
element mapping.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
0..* Fine-grained service interfaces

Produces Service Interface
Description

0..* Coarse-grained service interfaces

Produces Service Interface
Mapping

0..* Mapping between fine-grained service
and coarse-grained service interfaces

Table 3.6: Aggregate Service Interfaces

3.2.2 Work Products

3.2.2.1 AUTOSAR AP Standard Package

82 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Autosar AP Standard Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Package with standardized AUTOSAR elements for the Adaptive

Platform.
Description Package with standardized AUTOSAR elements (e.g. data types,

service interfaces) for the Adaptive Platform. This deliverable is
released by AUTOSAR and is read only within the methodology.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Develop Adaptive

Platform-level Soft-
ware

0..1 In case standardized service interfaces
are used for adaptive platform-level
software

Consumed by Develop a Service
Interface Descrip-
tion

0..1 Optional input for defining data types and
service interfaces for the adaptive
platform

Consumed by Select or define
Data Types for
Adaptive Platform

0..1 Use standardized elements (e.g. data
types, compu methods) to create the
corresponding elements of the specific
project.

Table 3.7: Autosar AP Standard Package

3.2.2.2 AP Data Types

Artifact AP Data Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Definition of data types for the Adaptive Platform
Description Data types, which are required for the Adaptive Platform Instance and

not already defined by AUTOSAR. The AP Data Types are used for
specifying DataElements in service interfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Select or define

Data Types for
Adaptive Platform

1..* Defined AP Data Types for a specific
project

Consumed by Define Service In-
terfaces

1..* Used for specifying DataElements in
service interfaces

Table 3.8: AP Data Types

3.2.2.3 Service Interface Description

83 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Service Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Collection of service interfaces with events, methods and fields.
Description Collection of service interfaces. Service interfaces can consist of

events, methods and fields and are the basis for the generation of
header files for a software component. In addition, the namespace
used for the header file generation can be defined.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Service In-

terfaces
1..* Collection of all service interfaces

Produced by Develop a Service
Interface Descrip-
tion

1..* All service interfaces, which are used for
communication

Produced by Aggregate Service
Interfaces

0..* Coarse-grained service interfaces

Consumed by Configure Ser-
vice Interface
Deployment

1 Deployment is configured for each
service interface

Consumed by Define and Con-
figure Service In-
stances

1 Deployment of service interfaces needs
to be configured

Consumed by Define a signal-
based Service
Interface (Signal
BasedService
InterfaceDeploy-
ment)

1..* Description of the Service Interfaces

Consumed by Design Diagnostic
Mapping

1..* Collection of service interfaces. Service
interfaces can consist of events,
methods and fields.

Consumed by Design Software
Component for
Adaptive Platform

1..* All service interfaces that shall be
implemented by the software component

Consumed by Design service ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Consumed by Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* Description of the Service Interfaces
which communicate to CP in a
signal-oriented manner

Consumed by Develop Adap-
tive Application
Software

1..* Service Interfaces are the basis for the
development of adaptive application
software

Consumed by Generate Header
Files for Service
Interfaces

1..* For all service interfaces header files are
generated.

84 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumed by Generate Serial-

ization Code for
Adaptive Platform

1..* Service interfaces that are implemented
by the software components are needed
for generating the serialization code

Consumed by Map Diagnostic
Data

1..* Collection of service interfaces. Service
interfaces can consist of events,
methods and fields.

Consumed by Map Event 1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Consumed by Map Field 1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Consumed by Map Fire and For-
get

1..* Description of the Service Interface
which communicates to CP in a
service-oriented manner

Consumed by Map Method 1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Consumed by Map ServiceIn-
stance to Port
Prototype

1..* Description of the Service Interfaces

Consumed by Map SignalBased
EventDeploy-
ment to ISignal
Triggerings

1..* Description of the Service Interfaces

Consumed by Map SignalBased
FieldDeployment
to ISignalTrigger-
ings

1..* Description of the Service Interfaces

Consumed by Map SignalBased
MethodDeploy-
ment to ISignal
Triggerings

1..* Description of the Service Interfaces

Consumed by Configure Serial-
ization for Adaptive
Platform

0..1 Optional if you only configure default
values for the serialization

Consumed by Aggregate Service
Interfaces

0..* Fine-grained service interfaces

Consumed by Integrate Software 0..* Needed for defining the serialization

Table 3.9: Service Interface Description

3.2.2.4 Service Interface Mapping

85 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Service Interface Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Mapping from fine-grained service interfaces to coarse-grained service

interface.
Description The service interface mapping maps the fine-grained service interfaces

to the coarse-grained service interfaces.

In case of an element mapping, this work product contains the
mapping of the elements of interfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Aggregate Service

Interfaces
0..* Mapping between fine-grained service

and coarse-grained service interfaces
Produced by Develop a Service

Interface Descrip-
tion

0..* Optionally, coarse-grained service
interfaces are defined by a service
interface mapping

Table 3.10: Service Interface Mapping

3.3 Communication Mapping

3.3.1 Tasks

3.3.1.1 Map Method

Task Definition Map Method
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Method
Description Map a ClientServerOperation located in a ClientServerInterface to a

method located in a ServiceInterface.

see TPS_MANI_03111 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes Client Server Inter-

face Description
1..* The descriptions of Client Server

Interfaces of CP
Consumes Service Interface

Description
1..* Description of the Service Interfaces

which communicate to CP in a
service-oriented manner

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* Service Interface Mappings

Table 3.11: Map Method

3.3.1.2 Map Event

86 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Map Event
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Event
Description Map a VariableDataPrototype located in a SenderReceiverInterface to

an event located in a ServiceInterface.

see TPS_MANI_03112 of of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes Sender Receiver

Interface Descrip-
tion

1..* The descriptions of Sender Receiver
Interfaces of CP

Consumes Service Interface
Description

1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* Service Interface Mappings

Table 3.12: Map Event

3.3.1.3 Map Field

Task Definition Map Field
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Field
Description Map operations located in ClientServerOperations to getter and setter

methods of a ServiceInterface. Map a VariableDataPrototype of a
SenderReceiverInterface to the field notifier of the ServiceInterface.

see TPS_MANI_03113 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes Client Server Inter-

face Description
1..* The descriptions of Client Server

Interfaces of CP
Consumes Sender Receiver

Interface Descrip-
tion

1..* The descriptions of Sender Receiver
Interfaces of CP

Consumes Service Interface
Description

1..* Description of the Service Interfaces
which communicate to CP in a
service-oriented manner

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* Service Interface Mappings

Table 3.13: Map Field

3.3.1.4 Map Fire and Forget

87 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Map Fire and Forget
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Fire and Forget
Description Map a Fire&Forget method located in a ServiceInterface to a

VariableDataPrototype in a SenderReceiverInterface or to a trigger of a
TrigerInterface.

see TPS_MANI_03115 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Description of the Service Interface

which communicates to CP in a
service-oriented manner

Consumes Sender Receiver
Interface Descrip-
tion

0..* The descriptions of Sender Receiver
Interfaces of CP

Consumes Trigger Interface
Description

0..* The descriptions of Trigger Interfaces

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* Service Interface Mappings

Table 3.14: Map Fire and Forget

3.3.1.5 Map SignalBasedMethod to ISignalTriggerings

Task Definition Map SignalBasedMethodDeployment to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedMethod to ISignalTriggerings
Description see TPS_MANI_03125 of of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes System Descrip-

tion
1 The System Description based on the

System Template on the AUTOSAR
classic platform

Consumes Service Interface
Description

1..* Description of the Service Interfaces

Produces Service Instance
To Signal Mapping

1..* Mapping of
SignalBasedMethodDeployment to
ISignalTriggerings

Table 3.15: Map SignalBasedMethodDeployment to ISignalTriggerings

3.3.1.6 Map SignalBasedEvent to ISignalTriggerings

88 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Map SignalBasedEventDeployment to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedEvent to ISignalTriggerings
Description see TPS_MANI_03124 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes System Descrip-

tion
1 The System Description based on the

System Template on the AUTOSAR
classic platform

Consumes Service Interface
Description

1..* Description of the Service Interfaces

Produces Service Instance
To Signal Mapping

1..* Mapping of
SignalBasedEventDeployment to
ISignalTriggerings

Table 3.16: Map SignalBasedEventDeployment to ISignalTriggerings

3.3.1.7 Map SignalBasedField to ISignalTriggerings

Task Definition Map SignalBasedFieldDeployment to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedField to ISignalTriggerings
Description see TPS_MANI_03126 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes System Descrip-

tion
1 The System Description based on the

System Template on the AUTOSAR
classic platform

Consumes Service Interface
Description

1..* Description of the Service Interfaces

Produces Service Instance
To Signal Mapping

1..* Mapping of
SignalBasedFieldDeployment to
ISignalTriggerings

Table 3.17: Map SignalBasedFieldDeployment to ISignalTriggerings

3.3.1.8 Map ServiceInstance to PortPrototype

Task Definition Map ServiceInstance to PortPrototype
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map ServiceInstance to PortPrototype
Description see TPS_MANI_03000 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note
Consumes System Descrip-

tion
1 The System Description based on the

System Template on the AUTOSAR
classic platform

Consumes Service Interface
Description

1..* Description of the Service Interfaces

89 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Service Instance

To Signal Mapping
1..* Mapping of ServiceInstance to

PortPrototype

Table 3.18: Map ServiceInstance to PortPrototype

3.3.2 Work Products

3.3.2.1 Client Server Interface Description

Deliverable Client Server Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Client Server Interface Description
Description This represents the particular description of a ClientServerInterface of

the Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Map Field 1..* The descriptions of Client Server

Interfaces of CP
Consumed by Map Method 1..* The descriptions of Client Server

Interfaces of CP
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

0..* The descriptions of Client Server
Interfaces of CP are used to map a
ClientServerOperation to a method in a
ServiceInterface or to map a
ClientServerOperation (representing
getter or setter methods) to a field in a
ServiceInterface

Table 3.19: Client Server Interface Description

3.3.2.2 Sender Receiver Interface Description

Deliverable Sender Receiver Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Sender Receiver Interface Description
Description This represents a particular description of a SenderReceiverInterface

of the Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Map Event 1..* The descriptions of Sender Receiver

Interfaces of CP
Consumed by Map Field 1..* The descriptions of Sender Receiver

Interfaces of CP

90 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

0..* The descriptions of Sender Receiver
Interfaces of CP are used to map a
VariableDataPrototype to an Event in a
ServiceInterface or to map a
VariableDataPrototype to the notifier of a
Field of a ServiceInterface or to map a
Fire&Forget Method that is located in a
ServiceInterface to a
VariableDataPrototype in a
SenderReceiverInterface

Consumed by Map Fire and For-
get

0..* The descriptions of Sender Receiver
Interfaces of CP

Table 3.20: Sender Receiver Interface Description

3.3.2.3 Trigger Interface Description

Deliverable Trigger Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Trigger Interface Description
Description This represents the particular description of the Trigger Interface of the

Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

0..* The descriptions of Trigger Interfaces are
used to map a Fire&Forget Method that
is located in ServiceInterface to a Trigger
in a TriggerInterface

Consumed by Map Fire and For-
get

0..* The descriptions of Trigger Interfaces

Table 3.21: Trigger Interface Description

3.3.2.4 Service Interface Mapping Set

Deliverable Service Interface Mapping Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Service Interface Mapping Set
Description Collection of Service Interface mappings
Kind AUTOSAR XML
Relation Type Related Element Mul. Note

91 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates Service Inter-

face Mapping for
Service Oriented
Communication

1..*

Table 3.22: Service Interface Mapping Set

3.3.2.5 Service Interface Mapping for Service Oriented Communication

Artifact Service Interface Mapping for Service Oriented Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Mappings for service oriented communication
Description Mappings of elements of AP-based ServiceInterfaces to elements of

corresponding elements of CP-based SenderReceiverInterfaces,
ClientServerInterfaces and TriggerInterfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* An InterfaceMapping results from the
design of service-oriented
communication between CP and AP

Produced by Map Event 1..* Service Interface Mappings
Produced by Map Field 1..* Service Interface Mappings
Produced by Map Fire and For-

get
1..* Service Interface Mappings

Produced by Map Method 1..* Service Interface Mappings

Table 3.23: Service Interface Mapping for Service Oriented Communication

3.3.2.6 System Description

92 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Partial Extract of a System
Description Generic deliverable for defining a System. It is used in different roles

within the methodology.

In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps, e.g. when defining a
subsystem from a complete system or later for the single ECUs. If such
variation points are present, the System Description may optionally
include PredefinedVariants in order to predefine variants for later
selection and an Evaluated Variant Set.

Please note that this generic deliverable does not correspond to the
system description with the system category
"SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system
description with the category "SYSTEM_DESCRIPTION" is
represented by the deliverable "System Configuration Description".

This deliverable is equivalent to a description of a system with any
category. In the System Template Specification "system description" is
the most frequently used term for this kind of artifact.

Kind Delivered
Extended by Abstract System Description, System Configuration Description,

System Constraint Description, System Extract
Relation Type Related Element Mul. Note
Aggregates System Descrip-

tion Root Element
1

Aggregates Communication
Layers

0..1

Aggregates Mapping of Soft-
ware Components
to ECUs

0..1

Aggregates Mapping of Soft-
ware Components
to Implementations

0..1

Aggregates Rapid Prototyping
Scenario

0..1

Aggregates Topology 0..1
Aggregates Alias Name Set 0..*
Aggregates Communication

Matrix
0..*

Aggregates Data Mapping 0..*
Aggregates Evaluated Variant

Set
0..*

Aggregates Postbuild Variant
Set

0..*

Aggregates Predefined Variant 0..*
Aggregates System Constant

Value Set
0..*

93 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates System Signal 0..*
Aggregates System Signal

Group
0..*

Aggregates System Timing 0..*
In/out Select Design

Time Variant
1

Consumed by Define System
View Mapping

2

Consumed by Define System
Safety Information

1

Consumed by Define a signal-
based Service
Interface (Signal
BasedService
InterfaceDeploy-
ment)

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Consumed by Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 The System Description based on the
System Template on the AUTOSAR
classic platform is used; it contains a
communication matrix description with
Pdus and ISignals

Consumed by Map ServiceIn-
stance to Port
Prototype

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Consumed by Map SignalBased
EventDeploy-
ment to ISignal
Triggerings

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Consumed by Map SignalBased
FieldDeployment
to ISignalTrigger-
ings

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Consumed by Map SignalBased
MethodDeploy-
ment to ISignal
Triggerings

1 The System Description based on the
System Template on the AUTOSAR
classic platform

Consumed by Define Alias
Names

0..1 Needed for definition of alias names with
system, system extract or ECU scope,
depending of the role of the System
Description.

Consumed by Define System
Variants

0..*

Table 3.24: System Description

3.3.2.7 Service Instance To Signal Mapping Set

94 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Service Instance To Signal Mapping Set
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Service Instance To Signal Mapping Set
Description Collection of Service Instance to Signal mappings
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Service Instance

To Signal Mapping
1..*

Table 3.25: Service Instance To Signal Mapping Set

3.3.2.8 Service Instance To Signal Mapping

Artifact Service Instance To Signal Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Mappings for signal oriented communication
Description Mappings of ServiceInstances to ISignalTriggerings.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design signal ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* A signal-to-service mapping results from
the design of signal-oriented
communication between CP and AP

Produced by Map ServiceIn-
stance to Port
Prototype

1..* Mapping of ServiceInstance to
PortPrototype

Produced by Map SignalBased
EventDeploy-
ment to ISignal
Triggerings

1..* Mapping of
SignalBasedEventDeployment to
ISignalTriggerings

Produced by Map SignalBased
FieldDeployment
to ISignalTrigger-
ings

1..* Mapping of
SignalBasedFieldDeployment to
ISignalTriggerings

Produced by Map SignalBased
MethodDeploy-
ment to ISignal
Triggerings

1..* Mapping of
SignalBasedMethodDeployment to
ISignalTriggerings

Table 3.26: Service Instance To Signal Mapping

95 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.4 Machine Design

3.4.1 Tasks

3.4.1.1 Define and configure the network connections of a Machine

Task Definition Define and configure the network connections of a Machine
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Machine Design::Tasks
Brief Description Definition of all network endpoints with corresponding IP address.
Description Define all network connections of a Machine and their configuration out

of contracting. All network endpoints with corresponding IP address
are specified.

Relation Type Related Element Mul. Note
Consumes Topology 1 Description of (inter)connections

between machines.
Produces Machine Design 0..1 Definition of all network connections of a

Machine and their configuration

Table 3.27: Define and configure the network connections of a Machine

3.4.1.2 Configure the Service Discovery Message Exchange

Task Definition Configure the Service Discovery Message Exchange
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Machine Design::Tasks
Brief Description Definition of ports and multicast IP addresses for service discovery

message exchange
Description Define ports and multicast IP address over which the service discovery

messages are exchanged.
Relation Type Related Element Mul. Note
Consumes Topology 1 Description of (inter)connections

between machines.
Produces Machine Design 0..1 Definition of ports and multicast IP

address over which the service discovery
messages are exchanged.

Table 3.28: Configure the Service Discovery Message Exchange

3.4.2 Work Products

3.4.2.1 Machine Design

96 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact Machine Design
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Machine Design::Work Products
Brief Description Proxy for a Machine at design time
Description This element stands in as a proxy for a Machine at the time when it

does not exist, yet, i.e., at design time.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Develop the com-

munication struc-
ture by means of
MachineDesign

1 Configuration settings of the network
connections and service discovery
network exchange of a Machine

Produced by Configure the
Service Discov-
ery Message
Exchange

0..1 Definition of ports and multicast IP
address over which the service discovery
messages are exchanged.

Produced by Define and con-
figure the network
connections of a
Machine

0..1 Definition of all network connections of a
Machine and their configuration

Consumed by Define and Con-
figure Service In-
stances

1 Service instances will be mapped to
machine

Consumed by Define and config-
ure machine

1 Configuration settings of the network
connections and service discovery
network exchange of a Machine

Consumed by Map Service In-
stance to Machine

1 Description of machine that the service
instances shall be mapped to

Consumed by Configure DoIP 0..1 Configuration settings of the network
connections and service discovery
network exchange of a Machine

Consumed by Configure Log and
Trace module

0..1 Configuration settings of the network
connections and service discovery
network exchange of a Machine

Consumed by Configure NM
module

0..1 Configuration settings of the network
connections and service discovery
network exchange of a Machine

Table 3.29: Machine Design

3.5 Diagnostic Mapping

3.5.1 Tasks

3.5.1.1 Map Diagnostic Data

97 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Map Diagnostic Data
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping between a diagnostic data element and an event or field
Description This task covers the mapping between a diagnostic data element (as

part of the diagnostic protocol) and an event or field or even an element
of an event or field of a DataPrototype aggregated by a
ServiceInterface in the context of a PortPrototype. See
[TPS_MANI_1037], [TPS_MANI_01060] and [constr_MANI_1496].

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Service Interface

Description
1..* Collection of service interfaces. Service

interfaces can consist of events,
methods and fields.

Consumes Software Compo-
nent Description
for Adaptive Plat-
form

1..* Description of a software component for
the Adaptive Platform with all its ports,
available at design time.

Produces Diagnostic Map-
ping

1 One diagnostic data mapping

Table 3.30: Map Diagnostic Data

3.5.1.2 Map Diagnostic Enable Condition to Ports

Task Definition Map Diagnostic Enable Condition to Port(s)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping of a diagnostic enable condition to one or many service ports
Description This task covers the mapping of a diagnostic enable condition (as part

of the diagnostic protocol) to one or many service ports of a particular
application (instance) by means of SwcServiceDependency. See
[TPS_MANI_01050] and [constr_1502]

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Produces Diagnostic Map-
ping

1 One diagnostic EnableConditionToPorts
mapping

Table 3.31: Map Diagnostic Enable Condition to Port(s)

3.5.1.3 Map Diagnostic Event to Ports

98 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Map Diagnostic Event to Port(s)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping of a diagnostic event to one or many service ports
Description This task covers the mapping of a diagnostic event (as part of the

diagnostic protocol) to one or many service ports of a particular
application (instance) by means of SwcServiceDependency. See
[TPS_MANI_01048] and [constr_1500].

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Produces Diagnostic Map-
ping

1 One diagnostic EventToPort mapping

Table 3.32: Map Diagnostic Event to Port(s)

3.5.1.4 Map Diagnostic Storage Condition to Ports

Task Definition Map Diagnostic Storage Condition to Port(s)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping of a diagnostic storage condition to one or many service ports
Description This task covers the mapping of a diagnostic storage condition (as part

of the diagnostic protocol) to one or many service ports of a particular
application (instance) by means of SwcServiceDependency. See
[TPS_MANI_01051] and [constr_1503]

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Produces Diagnostic Map-
ping

1 One diagnostic StorageConditionToPorts
mapping

Table 3.33: Map Diagnostic Storage Condition to Port(s)

3.5.1.5 Map Diagnostic Software Mapping

99 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Diagnostic Software Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping between a DiagnosticServiceInstance and a

SwcServiceDependency
Description This task covers the mapping between a DiagnosticServiceInstance

and a SwcServiceDependency, defined in the context of an
AdaptiveApplicationSwComponent Type.

See [TPS_MANI_01038] and [constr_1499].
Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Produces Diagnostic Map-

ping
1 One diagnostic software mapping

Table 3.34: Diagnostic Software Mapping

3.5.1.6 Map Diagnostic Operation Cycle to Ports

Task Definition Map Diagnostic Operation Cycle to Port(s)
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Mapping of a diagnostic operation cycle to one or many service ports
Description This task covers the mapping of a diagnostic operation cycle (as part of

the diagnostic protocol) to one or many service ports of a particular
application (instance) by means of SwcServiceDependency. See
[TPS_MANI_01049] and [constr_1501].

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
1 All available diagnostic information at the

design time
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Produces Diagnostic Map-
ping

1 One diagnostic OperationCycleToPorts
mapping

Table 3.35: Map Diagnostic Operation Cycle to Port(s)

3.5.1.7 Associate a DiagnosticMapping with a ProcessDesign

100 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Associate DiagnosticMapping with ProcessDesign
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Tasks
Brief Description Associate one DiagnosticMapping with one ProcessDesign
Description It may be necessary that different instances of a particular application

software require different diagnostic mappings. Therefore, a relation
between a particular diagnostic mapping and a particular Process
needs to be established.

This assignment may be done in a final extra step, represented by this
task.

To accommodate for this potential modeling, the reference from a
diagnostic mapping to ProcessDesign has been decorated by
stereotype "atpSplitable".

Relation Type Related Element Mul. Note
Consumes Diagnostic Map-

ping
1..* The diagnostic mapping for a Machine,

except the linkage between the
mappings and the corresponding
ProcessDesigns

Consumes Process Design 1..* All dedicated ProssesDesigns for a
Machine

Produces Diagnostic Map-
ping

1..* fully: The linkage between the diagnostic
mappings and the corresponding
ProcessDesigns

Table 3.36: Associate DiagnosticMapping with ProcessDesign

3.5.2 Work Products

Diagnostic Extract

Diagnostic Machine Extract

Diagnostic Mapping

DID

Diagnostic Event
Diagnostic Operation Cycle Diagnostic Enable Condition

Diagnostic Storage Condition

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

0..*

«aggregation»

Figure 3.1: Structure of the Diagnostic Machine Extract

101 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.5.2.1 Diagnostic Machine Extract

Deliverable Diagnostic Machine Extract
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description Diagnostic information of a Machine
Description This deliverable contains diagnostic information of a Machine.
Kind AUTOSAR XML
Extends Diagnostic Extract
Relation Type Related Element Mul. Note
Aggregates DID 0..*
Aggregates Diagnostic Enable

Condition
0..*

Aggregates Diagnostic Event 0..*
Aggregates Diagnostic Map-

ping
0..*

Aggregates Diagnostic Opera-
tion Cycle

0..*

Aggregates Diagnostic Storage
Condition

0..*

Consumed by Design Diagnostic
Mapping

1 All available diagnostic information at the
design time

Consumed by Diagnostic Soft-
ware Mapping

1 All available diagnostic information at the
design time

Consumed by Map Diagnostic
Data

1 All available diagnostic information at the
design time

Consumed by Map Diagnostic
Enable Condition
to Port(s)

1 All available diagnostic information at the
design time

Consumed by Map Diagnostic
Event to Port(s)

1 All available diagnostic information at the
design time

Consumed by Map Diagnostic
Operation Cycle to
Port(s)

1 All available diagnostic information at the
design time

Consumed by Map Diagnostic
Storage Condition
to Port(s)

1 All available diagnostic information at the
design time

Consumed by Collect belonging
(software) artifacts
of Sub Software
Clusters

0..1 Diagnostic extract for a Machine

Consumed by Create Software
Package

0..1 Diagnostic extract for a Machine

Consumed by Identify necessary
(software) artifacts

0..1 Diagnostic extract for a Machine

Consumed by Set Up Initial Ma-
chine

0..1 Diagnostic extract for a Machine

Table 3.37: Diagnostic Machine Extract

102 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.5.2.2 DID

Artifact DID
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description
Description This represents the definition of a diagnostic data identifier.

Data Identified according to ISO 14229-1[1]. This 16 bit value uniquely
defines one ore more data elements (parameters) that can are used in
diagnostics to read, write or control data.

Kind
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Table 3.38: DID

3.5.2.3 Diagnostic Enable Condition

Artifact Diagnostic Enable Condition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description
Description Represents the definition of a diagnostic enable condition.
Kind
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Table 3.39: Diagnostic Enable Condition

3.5.2.4 Diagnostic Event

Artifact Diagnostic Event
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description
Description Represents the definition of a diagnostic event.

A diagnostic event uniquely identifies a fault path of the system. An
application monitors the system and reports events to the DM.

Kind
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Table 3.40: Diagnostic Event

103 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.5.2.5 Diagnostic Mapping

Artifact Diagnostic Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description Diagnostic Mappings
Description This represents the mapping of information related to the diagnostic

protocol content and the application software.

In detail, it contains the results of the following tasks:

• DiagnosticServiceDataMapping

• DiagnosticServiceSwMapping

• DiagnosticEventPortMapping

• DiagnosticOperationCyclePortMapping

• DiagnosticEnableConditionPortMapping

• DiagnosticStorageConditionPortMapping

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Produced by Diagnostic Soft-
ware Mapping

1 One diagnostic software mapping

Produced by Map Diagnostic
Data

1 One diagnostic data mapping

Produced by Map Diagnostic
Enable Condition
to Port(s)

1 One diagnostic EnableConditionToPorts
mapping

Produced by Map Diagnostic
Event to Port(s)

1 One diagnostic EventToPort mapping

Produced by Map Diagnostic
Operation Cycle to
Port(s)

1 One diagnostic OperationCycleToPorts
mapping

Produced by Map Diagnostic
Storage Condition
to Port(s)

1 One diagnostic StorageConditionToPorts
mapping

Produced by Associate Diag-
nosticMapping
with Process
Design

1..* fully: The linkage between the diagnostic
mappings and the corresponding
ProcessDesigns

Produced by Design Diagnostic
Mapping

1..* partially: The diagnostic mapping for a
Machine, except the linkage between the
mappings and the corresponding
ProcessDesigns

Consumed by Associate Diag-
nosticMapping
with Process
Design

1..* The diagnostic mapping for a Machine,
except the linkage between the
mappings and the corresponding
ProcessDesigns

104 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note

Table 3.41: Diagnostic Mapping

3.5.2.6 Diagnostic Operation Cycle

Artifact Diagnostic Operation Cycle
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description
Description Represents a definition of an operation cycle that is base of the event

qualifying and for DEM scheduling.

An operation cycle is the execution of monitor within an application,
from a start point to a defined end point inside the application run.

Kind
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Table 3.42: Diagnostic Operation Cycle

3.5.2.7 Diagnostic Storage Condition

Artifact Diagnostic Storage Condition
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Diagnostic Mapping::Work Products
Brief Description
Description Represents the definition of a diagnostic storage condition.
Kind
Relation Type Related Element Mul. Note
Aggregated by Diagnostic Ma-

chine Extract
0..*

Table 3.43: Diagnostic Storage Condition

3.6 Adaptive Application

This chapter contains the definition of work products and tasks used for the defintion
of service interfaces for the Adaptive Platform.

3.6.1 Tasks

3.6.1.1 Generate Header Files for Service Interfaces

105 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Generate Header Files for Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Generate header files for service interfaces with proxies and skeletons
Description Header files are generated based on service interfaces. Therefore, the

header files are generated regardless of the usage of services by a
specific software component. For each service interface one proxy
header file and one skeleton header file is generated. The generation
contains the header files for the implementation of the software
component as well as the service proxies and skeletons, which need to
be implemented.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* For all service interfaces header files are

generated.
Produces Header Files for

Service Interfaces
1..* One proxy header file and one skeleton

header file per service interface are
generated.

Table 3.44: Generate Header Files for Service Interfaces

3.6.1.2 Design Software Component for Adaptive Platform

Task Definition Design Software Component for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Design a software component with ports that implement service

interfaces.
Description A software component is defined with its ports. Each port implements a

service interface. If a software component requires a service interface,
an RPort is used. If it provides a service interface, an PPort is used. A
hierarchy of software components is described by a composition.

Relation Type Related Element Mul. Note
Performed by Tier 2 1 Application Software Designer: The

design of software components will
probably be performed by an Application
Software Designer of a Tier 2 company

Consumes Service Interface
Description

1..* All service interfaces that shall be
implemented by the software component

Produces Software Compo-
nent Description
for Adaptive Plat-
form

1 Software component model with the
ports that implement service interfaces

Table 3.45: Design Software Component for Adaptive Platform

3.6.1.3 Implement Software Component Functionality

106 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Implement Software Component Functionality
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Implement the core functionality of the software component.
Description In this task, the core functionality of the software component is

implemented. This can be done independently of the main function of
the executable, where the scheduling local to the executable is
described.

Relation Type Related Element Mul. Note
Consumes Header Files for

Service Interfaces
1..* Proxy and skeleton header files are the

basis for implementing the software
component

Consumes Software Compo-
nent Description
for Adaptive Plat-
form

1..* The software component model as input
for the implementation of the software
component.

Produces Software Compo-
nent Source Code

1 The source code of the software
component

Table 3.46: Implement Software Component Functionality

3.6.1.4 Compile Software Component

Task Definition Compile Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Compile the software component in order to produce object code.
Description Compile the software component together with the header files for

service interfaces.

This task can be performed by the application developer in case
software component object code shall be delivered. In this case, the
used compiler and compiler settings need to be agreed on between
application developer and integrator. This Build Chain Configuration is
given beforehand to the application developer.

On the other hand, this task can be performed by the integrator. In this
case, the application developer has delivered the source code directly
to the integrator.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Settings used for compiling the software

component
Consumes Software Compo-

nent Source Code
1 Source code of the software component

for compilation
Consumes Header Files for

Service Interfaces
1..* Used header files of the software

component for compilation
Consumes Middleware Library

Header Files
0..* Library header files needed for compiling

the software components
Produces Software Compo-

nent Object Code
1 Object code of the software component

after compilation

Table 3.47: Compile Software Component

107 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.6.1.5 Develop Main Function

Task Definition Develop Main Function
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Develop the main function for one executable.
Description For one executable, which can contain several software components,

one main function is developed. The main function defines the control
flow of the executable including the scheduling of the software
components inside the executable.

Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Source Code
1..* Scheduling and communication of

several software components within one
executable is defined

Produces Main Function 1 One main function per executable

Table 3.48: Develop Main Function

3.6.1.6 Configure Serialization for Adaptive Platform

Task Definition Configure Serialization for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Define serialization properties for the Adaptive Platform
Description Define the properties of the serialization, i.e. how the data in the

service interfaces shall be serialized for the transport on SOME/IP. The
alignment, session handling, size of length indicator and endianness
needs to be defined.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
0..1 Optional if you only configure default

values for the serialization
Produces Serialization Con-

figuration
1..* Serialization properties for the service

interfaces

Table 3.49: Configure Serialization for Adaptive Platform

3.6.1.7 Generate Serialization Code for Adaptive Platform

Task Definition Generate Serialization Code for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Generate serialization code for service interfaces.
Description Generate the serialization code based on the configuration settings.
Relation Type Related Element Mul. Note
Consumes Serialization Con-

figuration
1..* Configuration settings are the basis for

generating the serialization code.

108 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Service interfaces that are implemented

by the software components are needed
for generating the serialization code

Produces Serialization
Source Code

1 Source code for the serialization can be
generated

Table 3.50: Generate Serialization Code for Adaptive Platform

3.6.1.8 Implement Service Proxies and Skeletons

Task Definition Implement Service Proxies and Skeletons
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Implement service proxies and skeletons for an Adaptive Platform
Description Service proxies and skeletons for an Adaptive Platform, i.e. the method

calls that are used for service-oriented communication, are
implemented. The implementation is based on the serialization settings
for the platform.

Relation Type Related Element Mul. Note
Consumes Header Files for

Service Interfaces
1..* Header files contain proxies and

skeletons to be implemented
Consumes Serialization Con-

figuration
1..* Serialization of data is needed for

implementing service proxies and
skeletons

Produces Implemented Prox-
ies and Skeletons

1..* Implementation of service proxies and
skeletons given as source code

Table 3.51: Implement Service Proxies and Skeletons

3.6.1.9 Build Executable Application

Task Definition Build Executable Application
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Build executable application based on several software components.
Description The software components are linked together with the serialization

code and necessary middleware libraries. Together with the main
function, the executable application is build.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Settings for the compiler and linker

Consumes Main Function 1 One main function per executable
Consumes Serialization

Source Code
0..1 Serialization for the executable

Consumes Implemented Prox-
ies and Skeletons

0..* Source code of service proxies and
skeletons

Consumes Middleware Li-
braries

0..* Libraries needed to build the executable

109 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Platform Object

Code
0..* Platform modules to be linked together to

one executable
Consumes Software Compo-

nent Object Code
0..* Software component to be linked

together to one executable
Produces Executable Appli-

cation
1 One executable is built

Table 3.52: Build Executable Application

3.6.2 Work Products

3.6.2.1 Header Files for Service Interfaces

Deliverable Header Files for Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Header files generated for service interfaces
Description The generated header files of service interfaces consist of

• proxy header files for service discovery and method invocation
as well as event subscription and reception

• skeleton header files for method calls and event publishing

The header files are the basis for implementing the functionality of a
software component.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Header

Files for Service
Interfaces

1..* One proxy header file and one skeleton
header file per service interface are
generated.

Consumed by Compile Software
Component

1..* Used header files of the software
component for compilation

Consumed by Implement Service
Proxies and Skele-
tons

1..* Header files contain proxies and
skeletons to be implemented

Consumed by Implement Soft-
ware Component
Functionality

1..* Proxy and skeleton header files are the
basis for implementing the software
component

Consumed by Integrate Software 0..* Proxies and skeletons to be implemented

Table 3.53: Header Files for Service Interfaces

3.6.2.2 Software Component Description for Adaptive Platform

110 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Software Component Description for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Description of a software component for the Adaptive Platform
Description Description of a software component for the Adaptive Platform with all

its ports. A RPort is used, if the software component requires a service
interface. A PPort is used, if the software component provides a
service interface. A software component can also be of type
composition.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design Software

Component for
Adaptive Platform

1 Software component model with the
ports that implement service interfaces

Produced by Develop Adap-
tive Application
Software

1..* Output of component model for the
software components

Consumed by Define and Con-
figure Service In-
stances

1 Used to map the service instances to
ports of a software component

Consumed by Map Service In-
stance to Port Pro-
totype

1 In case the service instances are
mapped to ports of a software
component

Consumed by Design Diagnostic
Mapping

1..* Description of a software component for
the Adaptive Platform with all its ports,
available at design time.

Consumed by Implement Soft-
ware Component
Functionality

1..* The software component model as input
for the implementation of the software
component.

Consumed by Map Diagnostic
Data

1..* Description of a software component for
the Adaptive Platform with all its ports,
available at design time.

Consumed by Map Diagnostic
Enable Condition
to Port(s)

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Consumed by Map Diagnostic
Event to Port(s)

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Consumed by Map Diagnostic
Operation Cycle to
Port(s)

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Consumed by Map Diagnostic
Storage Condition
to Port(s)

1..* Description of software component for
the Adaptive Platform with all their
(service) ports, known at design time.

Table 3.54: Software Component Description for Adaptive Platform

3.6.2.3 Build Chain Configuration

111 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Build Chain Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Used compiler and compiler settings for building the executable
Description The Build Chain Configuration contains the used compiler and compiler

settings. These settings are platform implementation specific.
Kind Text
Relation Type Related Element Mul. Note
Consumed by Build Executable

Application
1 Settings for the compiler and linker

Consumed by Compile Software
Component

1 Settings used for compiling the software
component

Consumed by Integrate Software 1 Needed for linking all artifacts

Table 3.55: Build Chain Configuration

3.6.2.4 Software Component Source Code

Deliverable Software Component Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Source code of the core functionality of a software component
Description This deliverable contains the source code of the core functionality of a

software component. The deliverable includes documentation of the
software component.

In case the integrator is completely responsible for the compilation of
the software components and the build of the executable, the source
code will be delivered directly.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Implement Soft-

ware Component
Functionality

1 The source code of the software
component

Produced by Develop Adap-
tive Application
Software

0..* Software components as source code

Consumed by Compile Software
Component

1 Source code of the software component
for compilation

Consumed by Develop Main
Function

1..* Scheduling and communication of
several software components within one
executable is defined

Consumed by Integrate Software 0..* Source code for application-level
executable

Table 3.56: Software Component Source Code

3.6.2.5 Software Component Object Code

112 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Software Component Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Object code of one software component
Description Compiled software component source code. Since these software

components belong to application-level executables, their
implementation is restricted to use the standardized ara API.

Kind Object Code
Relation Type Related Element Mul. Note
Produced by Compile Software

Component
1 Object code of the software component

after compilation
Produced by Develop Adap-

tive Application
Software

0..* Compiled software components

Consumed by Build Executable
Application

0..* Software component to be linked
together to one executable

Consumed by Integrate Software 0..* Object code for application-level
executable

Table 3.57: Software Component Object Code

3.6.2.6 Serialization Configuration for Adaptive Platform

Deliverable Serialization Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Configuration of serialization of the data in the service interface
Description Settings necessary for the serialization of the data in the service

interfaces. For SOME/IP, this is e.g. the length of length fields that is
put in front of an array.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Configure Serial-

ization for Adaptive
Platform

1..* Serialization properties for the service
interfaces

Consumed by Generate Serial-
ization Code for
Adaptive Platform

1..* Configuration settings are the basis for
generating the serialization code.

Consumed by Implement Service
Proxies and Skele-
tons

1..* Serialization of data is needed for
implementing service proxies and
skeletons

Table 3.58: Serialization Configuration

3.6.2.7 Serialization Source Code

113 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact Serialization Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Serialization of data
Description Source code for serializing data with SOME/IP.
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Serial-

ization Code for
Adaptive Platform

1 Source code for the serialization can be
generated

Consumed by Build Executable
Application

0..1 Serialization for the executable

Table 3.59: Serialization Source Code

3.6.2.8 Implemented Service Proxies and Skeletons

Artifact Implemented Proxies and Skeletons
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Implemented service proxies and skeletons
Description Implemented source code for the service proxies and skeletons.
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Implement Service

Proxies and Skele-
tons

1..* Implementation of service proxies and
skeletons given as source code

Consumed by Build Executable
Application

0..* Source code of service proxies and
skeletons

Table 3.60: Implemented Proxies and Skeletons

3.6.2.9 Main Function

Deliverable Main Function
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Main function of executable application
Description This artifact is the main function for one executable. It contains the

control flow of the executable including the scheduling of the software
components inside the executable.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Develop Adap-

tive Application
Software

1 One main function per executable is
produced

Produced by Develop Adaptive
Platform-level Soft-
ware

1 Main function for platform-level
executable

114 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produced by Develop Main

Function
1 One main function per executable

Consumed by Build Executable
Application

1 One main function per executable

Consumed by Integrate Software 1 One main function per executable

Table 3.61: Main Function

3.6.2.10 Executable Application

Deliverable Executable Application
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Executable application containing several software components
Description The executable application, or just executable, can contain an arbitrary

hierarchy of software components. The software components contain
the functionality of the executable.

Executables can be of category application-level or platform-level.
Kind Executable
Relation Type Related Element Mul. Note
Produced by Build Executable

Application
1 One executable is built

Produced by Integrate Software 1 Software is integrated into one
executable application

Consumed by Create Execution
Manifest

1 One executable can be instantiated
several times

Consumed by Define Process 1 Executable to be instantiated
Consumed by Collect belonging

(software) artifacts
of Sub Software
Clusters

0..* Executables of deployed processes

Consumed by Create Software
Package

0..* Executables of deployed processes

Consumed by Identify necessary
(software) artifacts

0..* Executables of deployed processes

Consumed by Set Up Initial Ma-
chine

0..* Executables of those Platform modules
and Adaptive Applications that should
run on a initially configured machine.
Beside the OS, at least the UCM and
connected Platform modules (e.g., a
diagnostic communication manager)
need to be installed in order to be able to
upload other software.

Table 3.62: Executable Application

115 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.7 Platform and Machine

This chapter contains the definition of work products and tasks, which are used for the
definition and configuration of a machine.

3.7.1 Tasks

3.7.1.1 Define ECU Description

The reference to the performing role is given in [1].

Task Definition Define ECU Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define a particular ECU’s resources.
Description Define a particular ECU’s resources by describing Hardware Elements,

pins, connections.The HW Elements are the main describing elements
of an ECU,e.g processing units, memory, peripherals, sensors and
actuators. HW Elements have a unique name and can be identified
within the ECU description. HW Elements do not necessarily have to
be described on the level of an ECU. It is possible to describe HW
Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW
PinGroups and HW Pins for being interconnected among each others.
HW PinGroups allow a rough description of how certain groups of
HWPins are arranged. The detailed description can be done using the
HW Pins.HW Connections are used to describe connection on several
levels:connections between HW Elements, connections between HW
PinGroups, connections between HW Pins.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Produces ECU Resources

Description
1..* Decription of the ECU

Table 3.63: Define ECU Description

3.7.1.2 Describe Available HW Resources

Task Definition Describe Available HW Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Description of available hardware resources for the machine
Description Optional step for describing available hardware resources for the

Machine.
Relation Type Related Element Mul. Note

116 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes ECU Resources

Description
1 Definition of available HW resources for

the Machine based on the description of
the ECU

Produces Machine Manifest 0..1 Available hardware resources of machine

Table 3.64: Describe Available HW Resources

3.7.1.3 Define Machine States

Task Definition Define Machine States
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Define additional states of the machine
Description Define states (modes) of the Machine. These states can later be used

for defining a startup configuration and execution dependencies for a
process per machine state.

Relation Type Related Element Mul. Note
Produces Machine States 0..1 States defined for the Machine

Table 3.65: Define Machine States

3.7.1.4 Define Function Groups

Task Definition Define Function Groups
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Define Function groups of the Machine
Description Define function group states of the Machine. Function groups with

function group states individually control groups of functionally
coherent Application processes.

Relation Type Related Element Mul. Note
Produces Function Groups 0..1 Function groups defined for the Machine

Table 3.66: Define Function Groups

3.7.1.5 Define State Timeouts

Task Definition Define State Timeouts
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Define timeouts for machine states (modes) or function group states
Description Define timeouts for machine states (modes) or function group states. It

is possible to define EnterExitTimeouts for selected machine states or
function group states.

Relation Type Related Element Mul. Note
Consumes Function Groups 1 Function Groups of a Machine

117 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Machine States 1 Machine States of a Machine
Produces PerStateTimeouts 0..1 PerState Timeouts defined for a Machine

Table 3.67: Define State Timeouts

3.7.1.6 Map Process To Machine

Task Definition Map Process To Machine
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Map processes to a particular Machine
Description Map processes to a particular Machine.
Relation Type Related Element Mul. Note
Consumes Process 1 Description of a dedicated Process
Produces ProcessToMa-

chineMapping
1 Mapping of exactly one Process to

exactly one Machine

Table 3.68: Map Process To Machine

3.7.1.7 Configure OS for Adaptive Platform

Task Definition Configure OS for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Configuration of the platform and the platform modules
Description Configure the operating system, e.g. the resource groups and the timer

granularity can be defined.
Relation Type Related Element Mul. Note
Consumes Operating System

for Adaptive Plat-
form

1 OS to be configured

Produces Machine Manifest 0..1 Configuration settings of OS

Table 3.69: Configure OS for Adaptive Platform

3.7.1.8 Configure Log and Trace module

Task Definition Configure Log and Trace module
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Configure the Log and Trace module
Description Define the Machine-specific configuration settings for the Log and

Trace functional cluster.
Relation Type Related Element Mul. Note

118 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Machine Design 0..1 Configuration settings of the network

connections and service discovery
network exchange of a Machine

Produces Machine Manifest 1 Configuration of the Log and Trace
module

Table 3.70: Configure Log and Trace module

3.7.1.9 Configure DoIP

Task Definition Configure DoIP
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Configure DoIP
Description Define the Machine-specific configuration settings for DoIP.
Relation Type Related Element Mul. Note
Consumes Machine Design 0..1 Configuration settings of the network

connections and service discovery
network exchange of a Machine

Produces Machine Manifest 0..1 Configuration of DoIP

Table 3.71: Configure DoIP

3.7.1.10 Configure NM module

Task Definition Configure NM module
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Configure the NM module
Description Define the Machine-specific configuration settings for the NM module.
Relation Type Related Element Mul. Note
Consumes Machine Design 0..1 Configuration settings of the network

connections and service discovery
network exchange of a Machine

Produces Machine Manifest 0..1 Configuration of the NM module

Table 3.72: Configure NM module

3.7.2 Work Products

3.7.2.1 Middleware Library Header Files

119 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact Middleware Library Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Header files of middleware libraries
Description Header files of middleware libraries, which are needed for application

development.
Kind Source Code
Relation Type Related Element Mul. Note
Consumed by Compile Software

Component
0..* Library header files needed for compiling

the software components
Consumed by Develop Adaptive

Platform-level Soft-
ware

0..* Library header files needed for compiling
the adaptive platform-level software

Table 3.73: Middleware Library Header Files

3.7.2.2 Middleware Libraries

Artifact Middleware Libraries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Middleware libraries that are needed in order to build the executable
Description Object code of middleware libraries. These are linked together with

other object code in order to build an Executable Application.
Kind Object Code
Relation Type Related Element Mul. Note
Consumed by Build Executable

Application
0..* Libraries needed to build the executable

Table 3.74: Middleware Libraries

3.7.2.3 ECU Resources Description

The references to other tasks and work products are given in [1].

Artifact ECU Resources Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Definition of the resources available on an ECU.
Description Definition of the resources available on an ECU. It mainly contains a

description of hardware elements (like physical memory sections or
peripherals, pins, hardware connections) which need to be referred by
a software component or a basic software description. The focus is to
describe an already engineered piece of hardware, its content and
structure. It is not in the focus of the ECU Resource Description to
support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

120 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregated by Complete ECU

Description
1

Produced by Define ECU De-
scription

1..* Decription of the ECU

Consumed by Describe Available
HW Resources

1 Definition of available HW resources for
the Machine based on the description of
the ECU

Consumed by Define System
Topology

1..*

Consumed by Define BSW Inter-
faces

0..1

Consumed by Define ECU
Abstraction Com-
ponent

0..1

Consumed by Define and config-
ure machine

0..1 All resources which are available for the
ECU

Consumed by Extend Topology 0..1
Consumed by Generate ECU Ex-

ecutable
0..1 may be used to set up build environment

Meth.bindingTime = CompileTime
Consumed by Implement a BSW

Module
0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Compo-
nent Resources

0..1

Consumed by Measure Re-
sources

0..1

Consumed by Define Complex
Driver Component

0..*

Consumed by Define VFB Sen-
sor or Actuator
Component

0..*

Use meta model element HwElement 1

Table 3.75: ECU Resources Description

3.7.2.4 Configured Machine on Adaptive ECU

Deliverable Configured Machine on Adaptive ECU
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Work Products
Brief Description Configured Adaptive Platform instance
Description This work product is a configured Adaptive Platform instance, i.e. a

configured machine, where software can be deployed on. The
configuration settings are based on the Machine Manifest.

Kind Custom
Relation Type Related Element Mul. Note
Produced by Set Up Initial Ma-

chine
1 Machine is configured and software can

now be deployed

121 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note

Table 3.76: Configured Machine on Adaptive ECU

3.7.2.5 Machine Manifest

Deliverable Machine Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Work Products
Brief Description Configuration of the machine
Description Description of deployment content for the configuration of the machine,

independent of any service instances or applications.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Function Groups 1 Function Groups configuration of a

machine
Aggregates Machine States 1 Machine Groups configuration of a

Machine
Aggregates PerStateTimeouts 1 PerState Timeouts configuration of a

Machine
Aggregates ProcessToMa-

chineMapping
1..* All ProcessToMachineMappings of a

Machine
Produced by Configure Log and

Trace module
1 Configuration of the Log and Trace

module
Produced by Define and config-

ure machine
1 The machine manifest describes all the

configuration settings for one Machine
Produced by Configure DoIP 0..1 Configuration of DoIP
Produced by Configure NM

module
0..1 Configuration of the NM module

Produced by Configure OS for
Adaptive Platform

0..1 Configuration settings of OS

Produced by Describe Available
HW Resources

0..1 Available hardware resources of machine

Consumed by Create Execution
Manifest

1 Instantiation is defined on one specific
machine

Consumed by Define Execution
Dependencies

1 Execution dependencies are defined per
machine mode.

Consumed by Define Startup
Configuration

1 Startup configuration is defined per
machine mode given in the Machine
Manifest

Consumed by Set Up Initial Ma-
chine

1 Containing all configuration settings for
the Machine

Table 3.77: Machine Manifest

3.7.2.6 Platform Object Code

122 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Deliverable Platform Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Object code of platform-level software
Description This is the object code of platform modules. It might be based on

standardized service interfaces, as e.g. for the Adaptive Diagnostic
Manager, where part of the platform module has been implemented in
terms of a software component. Alternatively, the implementation is not
based on software components and hence pure platform object code
(as e.g. Execution Management). A main function is needed in order to
build the executable application.

Kind Object Code
Relation Type Related Element Mul. Note
Produced by Develop Adaptive

Platform-level Soft-
ware

1..* Object code of platform module

Consumed by Build Executable
Application

0..* Platform modules to be linked together to
one executable

Consumed by Integrate Software 0..* Object code for platform-level executable

Table 3.78: Platform Object Code

3.7.2.7 Operating System for Adaptive Platform

Deliverable Operating System for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Operating System for the Adaptive Platform
Description The operating system for the Adaptive Platform is a platform module,

which does not have an Execution Manifest and therefore does not
follow the workflow of platform-level applications. The OS is the basis
for configuring and setting up the machine.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Select OS Distribu-

tion
1 Selected OS distribution

Consumed by Configure OS for
Adaptive Platform

1 OS to be configured

Consumed by Define and config-
ure machine

1 OS to be configured

Consumed by Set Up Initial Ma-
chine

1 OS to be installed on machine

Table 3.79: Operating System for Adaptive Platform

3.7.2.8 Process to Machine Mapping

123 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact ProcessToMachineMapping
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description
Description An ProcessToMachineMapping links exactly one Process to one

machine.
Kind
Relation Type Related Element Mul. Note
Produced by Map Process To

Machine
1 Mapping of exactly one Process to

exactly one Machine

Table 3.80: ProcessToMachineMapping

3.7.2.9 Function Groups

Artifact Function Groups
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description
Description This artifact contains the configuration of function groups of a machine.
Kind
Relation Type Related Element Mul. Note
Produced by Define Function

Groups
0..1 Function groups defined for the Machine

Consumed by Define State Time-
outs

1 Function Groups of a Machine

Table 3.81: Function Groups

3.7.2.10 Machine States

Artifact Machine States
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description
Description This artifact contains the configuration of machine states of a machine.
Kind
Relation Type Related Element Mul. Note
Produced by Define Machine

States
0..1 States defined for the Machine

Consumed by Define State Time-
outs

1 Machine States of a Machine

Table 3.82: Machine States

124 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.7.2.11 PerState Timeouts

Artifact PerStateTimeouts
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment::Define and Configure Machine::Machine
Configuration

Brief Description
Description This artifact contains the configuration of timeouts for selected

machine states and function group states.
Kind
Relation Type Related Element Mul. Note
Produced by Define State Time-

outs
0..1 PerState Timeouts defined for a Machine

Table 3.83: PerStateTimeouts

3.8 Execution Manifest

This chapter contains the definition of work products and tasks, which are used for
creating the execution manifest.

3.8.1 Tasks

3.8.1.1 Define Process

Task Definition Define Process
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Tasks
Brief Description Define a process as an instantiation of an executable
Description Define the instantiation of executables. An executable can be

instantiated several times (e.g. with different startup parameters)
resulting in different processes.

Relation Type Related Element Mul. Note
Consumes Executable Appli-

cation
1 Executable to be instantiated

Produces Process 1..* Different instantiation of executables can
result in different processes.

Table 3.84: Define Process

3.8.1.2 Define Startup Configuration

125 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Define Startup Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Tasks
Brief Description Define the startup configuration for one process
Description Define the startup configuration for one process per machine mode.
Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Startup configuration is defined per

machine mode given in the Machine
Manifest

Consumes Process 1 Startup configuration to be defined for
process

Produces Mode-dependent
Startup Configura-
tion

1..* Startup configuration of a process for
each mode

Table 3.85: Define Startup Configuration

3.8.1.3 Define Execution Dependencies

Task Definition Define Execution Dependencies
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Tasks
Brief Description Define execution dependencies to other processes
Description Define the execution dependencies for one process to other processes

per machine mode. Referencing other processes means that they shall
be launched before this process is started.

Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Execution dependencies are defined per

machine mode.
Consumes Process 1 Execution dependencies defined for one

process
Produces Mode-dependent

Startup Configura-
tion

1..* Execution dependencies of a process for
each mode

Table 3.86: Define Execution Dependencies

3.8.1.4 Associate Process with Process Design

Task Definition Associate Process with ProcessDesign
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Tasks
Brief Description
Description Establish a 1:1 relation between a actual process and its placeholder

during the design phase ProcessDesign.
Relation Type Related Element Mul. Note
Consumes Process 1..* Process as input in order to link it to the

respective ProcessDesign

126 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Process Design 1..* ProcessDesign as placeholder during

design time for the real Process
Produces Process 1..* A Process references a respective

ProcessDesign

Table 3.87: Associate Process with ProcessDesign

3.8.2 Work Products

3.8.2.1 Execution Manifest

Execution Manifest

Mode-dependent
Startup Configuration

Process

0..*

«nesting»

1

«nesting»

Figure 3.2: Structure of Deliverable Execution Manifest

Deliverable Execution Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Work Products
Brief Description Definition of a process and all its properties
Description The execution manifest defines the process with all its properties. It is

defined for a specific machine by referencing its modes in the startup
configuration. One execution manifest is defined per process.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Process 1 The process is defined via the Execution

Manifest
Aggregates Mode-dependent

Startup Configura-
tion

0..* For each process the startup
configuration can be defined in the
Execution Manifest

Produced by Create Execution
Manifest

1..* One execution manifest per instantiated
executable

Consumed by Collect belonging
(software) artifacts
of Sub Software
Clusters

0..* Several processes can be deployed

Consumed by Create Software
Package

0..* Several processes can be deployed

127 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumed by Identify necessary

(software) artifacts
0..* Several processes can be deployed

Consumed by Set Up Initial Ma-
chine

0..* All Execution Manifests needed to run
the desired adaptive application
(instances or Processes) on a Machine

Table 3.88: Execution Manifest

3.8.2.2 Process

Artifact Process
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Work Products
Brief Description Instantiation of an executable
Description The process is the top-level element of the Execution Manifest and

references an executable. It is the unit of deployment on the AUTOSAR
adaptive platform and refers to a POSIX process.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Associate Pro-

cess with Process
Design

1..* A Process references a respective
ProcessDesign

Produced by Define Process 1..* Different instantiation of executables can
result in different processes.

Consumed by Define Execution
Dependencies

1 Execution dependencies defined for one
process

Consumed by Define Startup
Configuration

1 Startup configuration to be defined for
process

Consumed by Map Process To
Machine

1 Description of a dedicated Process

Consumed by Associate Pro-
cess with Process
Design

1..* Process as input in order to link it to the
respective ProcessDesign

Consumed by Define and config-
ure machine

0..* Processes dedicated to run Executables
on a Machine

Table 3.89: Process

3.8.2.3 Mode-dependent Startup Configuration

128 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact Mode-dependent Startup Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Execution Manifest::Work Products
Brief Description Startup configuration of a process
Description Startup configuration for one process and depending on the machine

mode.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Execution

Dependencies
1..* Execution dependencies of a process for

each mode
Produced by Define Startup

Configuration
1..* Startup configuration of a process for

each mode

Table 3.90: Mode-dependent Startup Configuration

3.8.2.4 Process Design

Artifact Process Design
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Common Design Artifacts::Work
Products

Brief Description Proxy for a Process at design time
Description This element stands in as a proxy for a Process at the time when it

does not exist, yet, i.e., at design time, although the element Process is
needed during runtime in order to distinguish different instances of
Executables.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Associate Diag-

nosticMapping
with Process
Design

1..* All dedicated ProssesDesigns for a
Machine

Consumed by Associate Pro-
cess with Process
Design

1..* ProcessDesign as placeholder during
design time for the real Process

Table 3.91: Process Design

3.9 Service Instance

This chapter contains the definition of work products and tasks necessary for instanti-
ating the services.

3.9.1 Tasks

3.9.1.1 Configure Service Interface Deployment

129 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Configure Service Interface Deployment
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Configure the binding of a Service Interface to a transport layer
Description Define the transport layer (e.g. SOME/IP or User Defined) and

configure the binding of a service interface to this transport layer. For
all elements of the service interface, i.e., events, methods and fields,
the deployment is configured.

For SOME/IP, an identifier for the service interface is defined. This ID
needs to be uniquely defined system-wide and is send as service ID in
SOME/IP service discovery messages. In addition, message IDs and
SOME/IP event groups for a logical grouping of events are defined.
The IDs for messages and event groups need to be uniquely defined in
the context of the enclosing SomeipServiceInterface.

The User Defined service interface deployment can e.g. be used
machine local IPC communication.

The responsibility of the configuration of service interface deployment
lies with the system responsible.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1 Deployment is configured for each

service interface
Produces Service Inter-

face Deployment
Configuration

1 Configuration of binding of a service
interface to a transport layer

Table 3.92: Configure Service Interface Deployment

3.9.1.2 Define and Configure Service Instance

Task Definition Define and Configure Service Instance
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define the service instances and configure their search or offer criteria
Description Define service instances. A service interface can be instantiated

several times for different purposes resulting in several service
instances. There can be provided service instances (server) if the
functionality of a service interface is provided, and there can be
required service instances (client) in case a service is required.

Configure search criteria for required service instances and offer
criteria for provided service instances. For search criteria in SOME/IP,
the required service instance IDs and required service interface
version needs to be defined. Also, required event groups can be
specified. For offer criteria in SOME/IP, the provided service instance
IDs need to defined. The instance IDs need to be defined system-wide.

Relation Type Related Element Mul. Note
Consumes Service Inter-

face Deployment
Configuration

1 Instances of service interfaces to be
defined

130 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Service Instance

Configuration
1..* Service instances and their configuration

defined

Table 3.93: Define and Configure Service Instance

3.9.1.3 Define SOME/IP timing

Task Definition Define SOME/IP Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define the timing for SOME/IP for the server and the client
Description Define SOME/IP timing for the server

(SomeipSdServerServiceInstanceConfig,
SomeipSdServerEventTimingConfig) and the client
(SomeipSdClientServiceInstanceConfig,
SomeipSdClientEventGroupTimingConfig).

This task is optional and only necessary if communication via SOME/IP
is used.

Relation Type Related Element Mul. Note
Consumes Service Instance

Configuration
1 Timing for service instances to be

defined
Produces Service Instance

Manifest
1 Timing for service instances contributes

to Service Instance Manifest

Table 3.94: Define SOME/IP Timing

3.9.1.4 Map Service Instance to Port Prototype

Task Definition Map Service Instance to Port Prototype
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define mapping of service instance to a port prototype
Description Map service instance to a software component port using the

ServiceInstanceToPortPrototypeMapping. This mapping is needed in
order to ensure a unique relationship between all local service
instances within the application (represented by software component
ports) and the service instances on the network (e.g. SOME/IP service
instances).

Relation Type Related Element Mul. Note
Performed by Tier 1 1 Software Integrator: This activity will

probably be performed by a Software
Integrator of a Tier 1 company

Consumes Service Instance
Configuration

1 Service instances to be mapped to port
prototypes

Consumes Software Compo-
nent Description
for Adaptive Plat-
form

1 In case the service instances are
mapped to ports of a software
component

131 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Service Instance

To Port Prototype
Mapping

1 Mapping contributes to Service Instance
Manifest

Table 3.95: Map Service Instance to Port Prototype

3.9.1.5 Map Service Instance to Machine

Task Definition Map Service Instance to Machine
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define mapping of service instance to machine
Description Map service instance to a machine via a communication connector

using the ServiceInstanceToMachineMapping. This allows to configure
the communication without any assumptions on the applications. For
SOME/IP, IP and TP configuration for the client and the server are
defined.

Relation Type Related Element Mul. Note
Consumes Machine Design 1 Description of machine that the service

instances shall be mapped to
Consumes Service Instance

Configuration
1 Service instances to be mapped to

machine
Produces Service Instance

To Machine Map-
ping

1 Mapping contributes to Service Instance
Manifest

Table 3.96: Map Service Instance to Machine

3.9.2 Work Products

3.9.2.1 Service Interface Deployment Configuration

Artifact Service Interface Deployment Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Deployment configuration for a service interface
Description Description of deployment configuration with respect to a transport

layer for a service interface. For SOME/IP, service interface ID,
message IDs and event groups are defined.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Configure Ser-

vice Interface
Deployment

1 Configuration of binding of a service
interface to a transport layer

Consumed by Define and Con-
figure Service In-
stance

1 Instances of service interfaces to be
defined

Table 3.97: Service Interface Deployment Configuration

132 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.9.2.2 Service Instance Configuration

Artifact Service Instance Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Definition and configuration of the service instances
Description Required as well as provided service instances are defined and

configured. For the configuration, the search criteria for required
service instances and offer criteria for provided service instances are
specified.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define and Con-

figure Service In-
stance

1..* Service instances and their configuration
defined

Consumed by Define SOME/IP
Timing

1 Timing for service instances to be
defined

Consumed by Map Service In-
stance to Machine

1 Service instances to be mapped to
machine

Consumed by Map Service In-
stance to Port Pro-
totype

1 Service instances to be mapped to port
prototypes

Table 3.98: Service Instance Configuration

3.9.2.3 Service Instance To Machine Mapping

Artifact Service Instance To Machine Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description
Description Service Instances shall be mapped to a Machine (to be more precise:

to a communication connector of a Machine)
Kind
Relation Type Related Element Mul. Note
Produced by Map Service In-

stance to Machine
1 Mapping contributes to Service Instance

Manifest

Table 3.99: Service Instance To Machine Mapping

3.9.2.4 Service Instance To Port Prototype Mapping

133 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Artifact Service Instance To Port Prototype Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description
Description Service Instances need to be mapped to Port Prototypes in instance

context (the instance context includes process, executable, all nesting
levels of the software composition and the port prototype).

With this mapping it is possible to define how specific Port Prototypes
are represented in the middleware in terms of service configuration.

Kind
Relation Type Related Element Mul. Note
Produced by Map Service In-

stance to Port Pro-
totype

1 Mapping contributes to Service Instance
Manifest

Table 3.100: Service Instance To Port Prototype Mapping

3.9.2.5 Service Instance Manifest

Service Instance Manifest

Service Instance
Configuration

Service Interface
Deployment
Configuration

Service Instance To
Machine Mapping

Service Instance To Port
Prototype Mapping

«nesting»«nesting» «nesting»
«nesting»

Figure 3.3: Parts of the Service Instance Manifest

Deliverable Service Instance Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Definition and configuration of a service instance
Description Definition of a service instance with its configuration for the service

discovery. The mapping of the service instances to the machine is
defined. Optionally, the mapping of service instances to the software
component ports is specified.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Service Instance

Configuration
1

134 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Aggregates Service Instance

To Machine Map-
ping

1

Aggregates Service Instance
To Port Prototype
Mapping

1

Aggregates Service Inter-
face Deployment
Configuration

1

Produced by Define SOME/IP
Timing

1 Timing for service instances contributes
to Service Instance Manifest

Produced by Define and Con-
figure Service In-
stances

1..* Contains all configuration settings for the
service instance on a specific machine

Consumed by Collect belonging
(software) artifacts
of Sub Software
Clusters

0..* Several service instance manifests can
be deployed

Consumed by Create Software
Package

0..* Several service instance manifests can
be deployed

Consumed by Identify necessary
(software) artifacts

0..* Several service instance manifests can
be deployed

Consumed by Set Up Initial Ma-
chine

0..* All Service Instance Manifests needed to
run the desired adaptive application
(instances or Processes) on a Machine

Table 3.101: Service Instance Manifest

3.10 Deployment

This chapter contains the definition of work products and tasks necessary for deploying
Software Packages.

3.10.1 Tasks

3.10.1.1 Create an initial Software Package Manifest

135 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Create an initial Software Package Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Tasks
Brief Description Create an initial Software Package Manifest
Description The main input for this step are the requirements of the OEM given by

means of the Software Cluster Design.

This task is about to create an new Software Package Manifest and to
transfer the structure and the entries of the given Software Cluster
Design into the newly created Software Package Manifest.

Relation Type Related Element Mul. Note
Consumes Software Cluster

Design
1 Requirements regarding Software

Clusters by the OEM
Produces Software Package

Manifest
1 partially: Initial meta data of a respective

Software Package

Table 3.102: Create an initial Software Package Manifest

3.10.1.2 Identify necessary (software) artifacts

Task Definition Identify necessary (software) artifacts
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Tasks
Brief Description Identify necessary artifacts
Description Identify necessary (software) artifacts in order to build the Software

Package, also with respect to their versions.

Check, whether there are divergences within the required and actual
sets of Sub Software Clusters (by means of the aggregated artifacts
and versions) , if necessary solve them and re-model the Software
Package Manifest accordingly.

Check, whether there are discrepancies between the required and
actual set of the Root Software Cluster (by means of its aggregated
Sub Software Clusters and versions)

Relation Type Related Element Mul. Note
Consumes Diagnostic Ma-

chine Extract
0..1 Diagnostic extract for a Machine

Consumes Software Cluster
Design

0..1 Requirements that have initially been
formulated by an OEM

Here, not necessarily needed since the
data is already available in Software
Package Manifest

Consumes Software Package
Manifest

0..1 Meta data which are already transferred
from Software Cluster Design

Consumes Uploadable Design
Artifacts

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Consumes Executable Appli-
cation

0..* Executables of deployed processes

136 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumes Execution Manifest 0..* Several processes can be deployed
Consumes Service Instance

Manifest
0..* Several service instance manifests can

be deployed
Produces Software Package

Manifest
1 Updates of the meta data after checks

Table 3.103: Identify necessary (software) artifacts

3.10.1.3 Collect belonging (software) artifacts of Sub Software Clusters

Task Definition Collect belonging (software) artifacts of Sub Software Clusters
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Tasks
Brief Description Collect belonging artifacts
Description Collect belonging (software) artifacts of Sub Software Clusters into

separate baskets (Sub Software Cluster Group) in order to prepare the
final step of creating the Software Package

(Optional) Execute a receiving inspection of the software artifacts
Relation Type Related Element Mul. Note
Consumes Software Package

Manifest
1 Already consolidated meta data (after

checks and re-modeling)
Consumes Diagnostic Ma-

chine Extract
0..1 Diagnostic extract for a Machine

Consumes Uploadable Design
Artifacts

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Consumes Executable Appli-
cation

0..* Executables of deployed processes

Consumes Execution Manifest 0..* Several processes can be deployed
Consumes Service Instance

Manifest
0..* Several service instance manifests can

be deployed
Produces (Sub) Software

Cluster Group
0..* Collection of corresponding artifacts (per

Sub Software Cluster)

Table 3.104: Collect belonging (software) artifacts of Sub Software Clusters

3.10.1.4 Model dependencies between Software Clusters

137 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Task Definition Model dependencies between Software Clusters of any category
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Tasks
Brief Description Model dependencies
Description Thus, this activity describes the handling of dependencies by at least

the following tasks:

• Check, whether the dependencies between Software Clusters of
the same or different categories, given by the respective
SoftwareClusterDesign are still valid

• Determine changes between the actual and required
dependencies between Software Clusters of any category

• If necessary, re-model the Software Package Manifest in
accordance with the outcomes of the both tasks above

Relation Type Related Element Mul. Note
Consumes Software Package

Manifest
1 Dependencies of the Software Package

Manifest were transferred from the
Software Cluster Design

Consumes (Sub) Software
Cluster Group

0..* Optional source in order to check
dependencies between Software
Clusters (of any category)

Produces Software Package
Manifest

1 Re-modeled (consolidated)
dependencies between Software
Clusters of any category

Table 3.105: Model dependencies between Software Clusters of any category

3.10.1.5 Create installation instructions

Task Definition Create installation instructions
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Tasks
Brief Description Create installation instructions
Description Installation instruction control the behavior of the UCM during the

update of Software Packages. Installation instructions can either be
’add/update’ meaning to install a package or ’remove’ to express that a
package shall be uninstalled and deleted from the machine. Installation
instructions are defined per Software Cluster, independent of its
category.

Thus, this activity may includes the tasks:

• Specify installation instructions per Software Cluster (of any
category)

• Develop update campaigns (optional)

Relation Type Related Element Mul. Note
Consumes Software Package

Manifest
1 Software Package Manifest without or

incomplete installation instructions

138 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produces Software Package

Manifest
1 Software Package Manifest, enhanced

by installation instruction

Table 3.106: Create installation instructions

3.10.2 Work Products

3.10.2.1 Software Cluster Design

Deliverable Software Cluster Design
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Software Cluster Design
Description The deliverable Software Cluster Design contains the requirements

that have initially been formulated by an OEM. The formal structure of
the corresponding meta model element SoftwareClusterDesign is
similar to its counterpart SoftwareCluster. Thus, by means of this, the
OEM is able to define the composition and structure of Software
Clusters, dedicated diagnostic addresses as well as internal and
external dependencies of Software Cluster.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Create Software

Package
1 Requirements of the OEM wrt. package

structure and parameters given by
means of the meta model element
SoftwareClusterDesign.

Consumed by Create an initial
Software Package
Manifest

1 Requirements regarding Software
Clusters by the OEM

Consumed by Identify necessary
(software) artifacts

0..1 Requirements that have initially been
formulated by an OEM

Here, not necessarily needed since the
data is already available in Software
Package Manifest

Use meta model element SoftwareCluster
Design

1

Table 3.107: Software Cluster Design

139 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

3.10.2.2 Software Package

Software Package

Software Package Manifest Software Cluster

1

«nesting»

1

«nesting»

Figure 3.4: Parts of a Software Package

Deliverable Software Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Container to deploy software artifacts to a machine
Description According to the AUTOSAR glossary, Software Packages are the units

for deployment onto machines (AUTOSAR Adaptive Platform
instances). In this respect, they are inputs for and processed by the
Adaptive Platform Service UCM} (Update and Configuration
Management).

In fact, a Software Package consists of two main parts:

• a bundle of the actual software artifacts, referred to as Software
Cluster

• corresponding model data needed to control the upload and
installation process of this Software Cluster executed by the
UCM

Kind Custom
Relation Type Related Element Mul. Note
Aggregates Software Cluster 1
Aggregates Software Package

Manifest
1

Produced by Compile the Soft-
ware Package

1 Compiled Software Package

Produced by Create Software
Package

1 Software Package for deployment
defined

Consumed by Management of
Software Pack-
ages

1..* Newly created or updated Software
Packages are stored into a repository
and subject of the management of all
available Software Packages (including
their history)

Consumed by Provide and man-
age Software
Packages

1..* Deploy software on a Back-end server by
means of Software Package

140 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note

Table 3.108: Software Package

3.10.2.3 Software Cluster

Artifact Software Cluster
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Software Cluster
Description Thus, from an UCM point of view, the term Software Cluster identifies a

bundle of software artifacts that are uploaded together in order to be
installed by the UCM. In general, a Software Cluster may contain
Executable(s), Execution Manifest(s), Service Instance Manifest(s),
Machine Manifest(s) and other development artifacts. It should be
mentioned, that a Software Cluster may be structured into sub-blocks
in order to mimic the CP diagnostic workflow, where blocks are the
smallest parts of update and to enable the execution of update
campaigns.

Otherwise, the term Software Cluster may also refer to a set of
installed software entities (processes that run executables, data or
manifests) which form a logical group and which are addressable by
the diagnostic management by a shared diagnostic address.

Not surprisingly, both definitions match in the sense that the bundle of
software uploaded are needed to form the set of installed software
entities addressed by the same diagnostic address.

Kind Custom
Relation Type Related Element Mul. Note
Consumed by Manage the data

base of Software
Clusters (of any
category)

1..* Store and manage software cluster
within a repository

Table 3.109: Software Cluster

3.10.2.4 Software Package Manifest

Artifact Software Package Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Software Package Manifest
Description Model, based on meta model element SoftwareCluster, needed to

control the upload and installation process of a Software Cluster
executed by the UCM.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note

141 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Produced by Create an initial

Software Package
Manifest

1 partially: Initial meta data of a respective
Software Package

Produced by Create installation
instructions

1 Software Package Manifest, enhanced
by installation instruction

Produced by Identify necessary
(software) artifacts

1 Updates of the meta data after checks

Produced by Model dependen-
cies between Soft-
ware Clusters of
any category

1 Re-modeled (consolidated)
dependencies between Software
Clusters of any category

Consumed by Collect belonging
(software) artifacts
of Sub Software
Clusters

1 Already consolidated meta data (after
checks and re-modeling)

Consumed by Compile the Soft-
ware Package

1 Integrate the Software Package Manifest
into the Software Package

Consumed by Create installation
instructions

1 Software Package Manifest without or
incomplete installation instructions

Consumed by Model dependen-
cies between Soft-
ware Clusters of
any category

1 Dependencies of the Software Package
Manifest were transferred from the
Software Cluster Design

Consumed by Manage the data
base of Software
Clusters (of any
category)

1..* Manage meta data of corresponding
Software Cluster

Consumed by Identify necessary
(software) artifacts

0..1 Meta data which are already transferred
from Software Cluster Design

Use meta model element SoftwareCluster 1

Table 3.110: Software Package Manifest

3.10.2.5 (Sub) Software Cluster Group

Deliverable (Sub) Software Cluster Group
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description (Sub) Software Cluster Group
Description Basket to collect the (software) artifacts of a Sub Software Cluster
Kind Custom
Relation Type Related Element Mul. Note
Produced by Collect belonging

(software) artifacts
of Sub Software
Clusters

0..* Collection of corresponding artifacts (per
Sub Software Cluster)

Consumed by Compile the Soft-
ware Package

0..* Compile all Sub Software Clusters into
the Software Package

142 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note
Consumed by Model dependen-

cies between Soft-
ware Clusters of
any category

0..* Optional source in order to check
dependencies between Software
Clusters (of any category)

Table 3.111: (Sub) Software Cluster Group

3.10.2.6 Uploadable Design Artifacts

Process Design
Machine Design

Uploadable Design Artifacts

0..1

«nesting»

0..*

«nesting»

Figure 3.5: Design artifacts needed to be uploaded to the Machine

Deliverable Uploadable Design Artifacts
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Common Design Artifacts::Work
Products

Brief Description Design artifacts needed needed to be uploaded to the Machine
Description Covers design artifacts, i.e., ’Machine Design’ and ’Process Design’,

that are needed to be uploaded to the Machine in addition to the
Manifests.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Machine Design 0..1
Aggregates Process Design 0..*
Consumed by Collect belonging

(software) artifacts
of Sub Software
Clusters

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Consumed by Create Software
Package

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Consumed by Identify necessary
(software) artifacts

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

Consumed by Set Up Initial Ma-
chine

0..1 Optional input: Additional design data
which are not part of an Application or
Machine Manifest

143 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

Relation Type Related Element Mul. Note

Table 3.112: Uploadable Design Artifacts

3.10.2.7 Back-end server

Deliverable Back-end Server
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Repository of uploadable packages on a Back-end server
Description Repository of uploadable packages (Software Packages) including

corresponding data bases and server programs in order to provide
dedicated versions, change sets and the like to the Machines (Adaptive
ECUs) in the field.

Kind Custom
Relation Type Related Element Mul. Note
Produced by Provision of Soft-

ware Packages for
machines in the
field

1 Organize the Back-end Server in
accordance with the requirements of an
OEM

Produced by Management of
Software Pack-
ages

1..* Software Packages are stored into a
repository of Software Packages.

In addition, update of a common data
base of available Software Packages
including their history.

Produced by Provide and man-
age Software
Packages

1..* Store uploadable packages (Software
Packages) into a repository of a
Back-end server

Consumed by Provision of Soft-
ware Packages for
machines in the
field

1 Status quo of the presentation layer of
the Back-end Server

Table 3.113: Back-end Server

144 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

A Change History

A.1 Change History for AP 18-10

A.1.1 Added Constraints in 18-10

none

A.1.2 Changed Constraints in 18-10

none

A.1.3 Deleted Constraints in 18-10

none

A.1.4 Added Traceables in 18-10

none

A.1.5 Changed Traceables in 18-10

Number Heading

[TR_AMETH_00004] Creation of the Execution Manifest

[TR_AMETH_00020] Development of Platform Object Code

[TR_AMETH_00026] Definition of Execution Manifest

[TR_AMETH_00031] Setting up an initial machine

[TR_AMETH_00034] Select the Operating System for the Adaptive Platform

Table A.1: Changed Traceables in 18-10

145 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

A.1.6 Deleted Traceables in 18-10

Number Heading

[TR_AMETH_00211] Pool Executables together to form ExecutableGroups

Table A.2: Deleted Traceables in 18-10

A.2 Change History for AP 18-03

A.2.1 Added Specification Items in AP 18-03

Number Heading
[TR_AMETH_00211] Pool Executables together to form ExecutableGroups
[TR_AMETH_00212] Design a diagnostic mapping
[TR_AMETH_00213] Relate diagnostic mappings to instances of Executables
[TR_AMETH_00214] Configuration of Platform Services
[TR_AMETH_00215] Configuration of Platform Foundation Modules
[TR_AMETH_00216] Map Processes to a particular machine
[TR_AMETH_00217] Definition of resources
[TR_AMETH_00218] Create an initial Software Package Manifest
[TR_AMETH_00219] Collect all software artifacts that belong to a Software Cluster, structure

and model them
[TR_AMETH_00220] Model dependencies between Software Clusters of any category
[TR_AMETH_00221] Develop installation instructions
[TR_AMETH_00222] Create the Software Package
[TR_AMETH_00223] Manage the data base of Software Clusters (of any category)
[TR_AMETH_00224] Management of Software Packages
[TR_AMETH_00225] Provision of Software Packages for machines in the field
[TR_AMETH_00226] Documentation of work products

Table A.3: Added specification items in AP 18-03

A.2.2 Changed Specification Items in AP 18-03

Number Heading
[TR_AMETH_00205] Integrate Software
[TR_AMETH_00206] Create a Software Package
[TR_AMETH_00021] Configuration of network communication for machine
[TR_AMETH_00208] Map a single ServiceInterface to PortInterface elements
[TR_AMETH_00031] Setting up an initial machine
[TR_AMETH_00022] Definition of machine states, function group states and per-state timeouts

Table A.4: Changed specification items in AP 18-03

A.2.3 Deleted Specification Items in AP 18-03

Number Heading
TR_AMETH_00032 Deploying the Software Package

Table A.5: Deleted specification items in AP 18-03

146 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

A.3 Change History for AP 17-10

A.3.1 Added Specification Items in AP 17-10

Number Heading
[TR_AMETH_00200] Domains of development utilized for the methodology of the AUTOSAR Adap-

tive Platform
[TR_AMETH_00201] Develop a Function Architecture
[TR_AMETH_00202] Develop a Common Software Architecture
[TR_AMETH_00203] Provide views of subsystems
[TR_AMETH_00204] Develop the System
[TR_AMETH_00205] Integrate Software to form AdaptiveAutosarApplications
[TR_AMETH_00206] Create SoftwareCluster
[TR_AMETH_00207] Design communication between Classic Platform ECUs and Adaptive Platform

machines
[TR_AMETH_00208] Map a single ServiceInterface to PortInterface elements
[TR_AMETH_00209] Define a signal-based ServiceInterface
[TR_AMETH_00210] Map signals to services

Table A.6: Added specification items in AP 17-10

A.3.2 Changed Specification Items in AP 17-10

Number Heading
[TR_AMETH_00100] Scope of the Methodology for the Adaptive Platform
[TR_AMETH_00101] Definition of tasks, work products and use cases
[TR_AMETH_00102] Types of work products
[TR_AMETH_00001] Description of the services in a system
[TR_AMETH_00002] Development of the software
[TR_AMETH_00006] Deployment of the application software
[TR_AMETH_00032] Deploying the Software Package
[TR_AMETH_00033] Mapping of Service Instances to Port Prototypes

Table A.7: Changed specification items in AP 17-10

A.3.3 Deleted Specification Items in AP 17-10

Number Heading
[TR_AMETH_00030] Machine-driven and model-driven approach

Table A.8: Deleted specification items in AP 17-10

A.4 Change History for AP 17-03

A.4.1 Added Specification Items in AP 17-03

Number Heading
[TR_AMETH_00100] Scope of the Methodology for the Adaptive Platform
[TR_AMETH_00101] Definition of tasks, work products and use cases

147 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

[TR_AMETH_00102] Types of work products
[TR_AMETH_00001] Description of the services in a system
[TR_AMETH_00002] Development of the software
[TR_AMETH_00003] Configuration of the machine
[TR_AMETH_00004] Creation of the [Application Manifest]
[TR_AMETH_00005] Configuration of the service instances
[TR_AMETH_00006] Deployment of the application software
[TR_AMETH_00007] Definition of data types for the Adaptive Platform
[TR_AMETH_00008] Definition of service interfaces for the Adaptive Platform
[TR_AMETH_00009] Aggregating service interfaces for reducing the bus load
[TR_AMETH_00010] Application-level Software
[TR_AMETH_00011] Design of the software components
[TR_AMETH_00012] Generation of the header files for service interface
[TR_AMETH_00013] Implementation and compilation of software components
[TR_AMETH_00014] Development with knowledge of the Build Chain Configuration
[TR_AMETH_00015] Development without knowledge of the Build Chain Configuration
[TR_AMETH_00016] Development of serialization properties
[TR_AMETH_00017] Implementation of service proxies and skeletons
[TR_AMETH_00018] Building the Executable Application
[TR_AMETH_00019] Description of the Adaptive Platform
[TR_AMETH_00020] Development of Platform Software
[TR_AMETH_00021] Configuration of network communication for machine
[TR_AMETH_00022] Definition of machine states and resources
[TR_AMETH_00023] Configuration of the operating system
[TR_AMETH_00024] Instantiation of Executable Application
[TR_AMETH_00025] Defintion of startup behavior of a process
[TR_AMETH_00026] Defintion of [Application Manifest]
[TR_AMETH_00027] Configuration of Service Interface Deployment
[TR_AMETH_00028] Configuration of Service Instances
[TR_AMETH_00029] Deployment of Service Instances
[TR_AMETH_00030] Machine-driven and model-driven approach
[TR_AMETH_00031] Setting up the machine
[TR_AMETH_00032] Deploying the Software Package
[TR_AMETH_00033] Mapping of Service Instances to Application Endpoints
[TR_AMETH_00034] Selecting the Operating System for Adaptive Platform
[TR_AMETH_00035] Platform-level Software

Table A.9: Added specification items in AP 17-03

A.4.2 Changed Specification Items in AP 17-03

N/A

A.4.3 Deleted Specification Items in AP 17-03

N/A

148 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

B Used classes in Manifest files

B.1 Used classes in Machine Manifest

Used classes Base
AdaptiveModuleInstantiation other

CommunicationConnector other

CryptoDriver PackageableElement

CryptoDriverToCryptoJobMapping other

CryptoJob other

CryptoKeySlot other

CryptoModuleInstantiation other

CryptoNeedToCryptoJobMapping other

CryptoPrimitive other

DoIpInstantiation other

EnterExitTimeout other

EthernetCluster PackageableElement

EthernetCommunicationConnector other

EthernetNetworkConfiguration other

EthernetPhysicalChannel other

GenericModuleInstantiation other

LogAndTraceInstantiation other

MacMulticastGroup other

Machine PackageableElement

MachineDesign PackageableElement

ModeDeclaration other

ModeDeclarationGroup PackageableElement

ModeDeclarationGroupPrototype other

NetworkConfiguration other

NetworkEndpoint other

NetworkEndpointAddress other

NmCluster other

NmConfig PackageableElement

NmInstantiation other

NmNode other

NonOsModuleInstantiation other

OsModuleInstantiation other

PerStateTimeout other

Processor other

ProcessorCore other

PskIdentityToKeySlotMapping other

PureLocalTimeBase other

ResourceGroup other

SecOcDeployment other

SecOcJobMapping other

SecureCommunicationDeployment other

ServiceDiscoveryConfiguration other

SomeipServiceDiscovery other

SynchronizedMasterTimeBase other

SynchronizedSlaveTimeBase other

TimeBaseResource other

TimeSyncModuleInstantiation other

149 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

TlsDeployment other

TlsJobMapping other

UdpNmCluster other

UdpNmNode other

Table B.1: Used classes in MachineManifest

B.2 Used classes in Execution Manifest

Used classes Base
Action other

ActionItem other

ActionList other

AliveSupervision other

ApplicationActionItem other

Arbitration other

CheckpointTransition other

DeadlineSupervision other

ExecutionDependency other

GlobalSupervision other

HealthChannel other

HealthChannelExternalStatus other

HealthChannelSupervision other

HttpAcceptEncoding other

LocalSupervision other

LogicalExpression other

LogicalSupervision other

ModeDeclaration other

ModeDeclarationGroup PackageableElement

ModeDeclarationGroupPrototype other

ModeDependentStartupConfig other

PersistencyFile PackageableElement

PersistencyFileArray PackageableElement

PersistencyKeyValueDatabase PackageableElement

PersistencyKeyValuePair other

PersistencyPortPrototypeToFileArrayMapping PackageableElement

PersistencyPortPrototypeToKeyValueDatabaseMapping PackageableElement

PhmContributionToMachineMapping PackageableElement

PlatformActionItem other

PlatformHealthManagementContribution PackageableElement

Process PackageableElement

ProcessToMachineMapping other

ProcessToMachineMappingSet PackageableElement

RestHttpPortPrototypeMapping PackageableElement

Rule other

ServiceInstanceToPortPrototypeMapping PackageableElement

StartupConfig other

StartupConfigSet PackageableElement

StartupOption other

SupervisionCheckpoint other

WatchdogActionItem other

Table B.2: Used classes in ExecutionManifest

150 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

B.3 Used classes in Service Instance Manifest

Used classes Base
AdaptivePlatformServiceInstance PackageableElement

DdsEventDeployment other

DdsServiceInstanceToMachineMapping PackageableElement

DdsServiceInterfaceDeployment PackageableElement

E2EProfileConfiguration other

E2EProfileConfigurationSet PackageableElement

End2EndEventProtectionProps other

InitialSdDelayConfig other

PresharedKeyIdentity other

ProvidedApServiceInstance PackageableElement

ProvidedDdsEventQosProps other

ProvidedDdsServiceInstance PackageableElement

ProvidedSomeipServiceInstance PackageableElement

ProvidedUserDefinedServiceInstance PackageableElement

RequestResponseDelay other

RequiredApServiceInstance PackageableElement

RequiredDdsEventQosProps other

RequiredDdsServiceInstance PackageableElement

RequiredSomeipServiceInstance PackageableElement

RequiredUserDefinedServiceInstance PackageableElement

SecOcJobRequirement other

SecOcSecureComProps other

SecureComProps other

SecureComPropsSet PackageableElement

ServiceEventDeployment other

ServiceFieldDeployment other

ServiceInstanceToMachineMapping PackageableElement

ServiceInterfaceDeployment PackageableElement

ServiceInterfaceElementSecureComConfig other

ServiceMethodDeployment other

SomeipEventDeployment other

SomeipEventGroup other

SomeipEventProps other

SomeipFieldDeployment other

SomeipMethodDeployment other

SomeipMethodProps other

SomeipProvidedEventGroup other

SomeipRequiredEventGroup other

SomeipSdClientEventGroupTimingConfig other

SomeipSdClientServiceInstanceConfig other

SomeipSdServerEventTimingConfig other

SomeipSdServerServiceInstanceConfig other

SomeipServiceInstanceToMachineMapping PackageableElement

SomeipServiceInterfaceDeployment PackageableElement

SomeipServiceInterfaceVersion other

SomeipTimingProps other

TagWithOptionalValue other

TlsCipherSuite other

TlsJobRequirement other

TlsSecureComProps other

151 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 18-10

UserDefinedEventDeployment other

UserDefinedFieldDeployment other

UserDefinedMethodDeployment other

UserDefinedServiceInstanceToMachineMapping PackageableElement

UserDefinedServiceInterfaceDeployment PackageableElement

Table B.3: Used classes in ServiceInstanceManifest

152 of 152
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

	1 Introduction
	1.1 Objective and Scope
	1.2 Document Outline
	1.3 Document Conventions
	1.4 Abbreviations
	1.5 Methodology Concepts
	1.6 Requirements Traceability
	1.7 Known Limitations

	2 Use Cases for the Adaptive Platform
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Domains of Development
	2.1.2.2 Fundamental Activities
	2.1.2.3 Workflow

	2.2 Architecture and Design
	2.2.1 Develop a Service Interface Description
	2.2.1.1 Purpose
	2.2.1.2 Description
	2.2.1.3 Workflow

	2.2.2 Design communication between Classic Platform and Adaptive Platform
	2.2.2.1 Design service oriented communication between Classic Platform and Adaptive Platform
	2.2.2.2 Design signal oriented communication between Classic Platform and Adaptive Platform

	2.2.3 Develop the communication structure by means of Machine Design
	2.2.3.1 Purpose
	2.2.3.2 Description
	2.2.3.3 Workflow

	2.2.4 Create a Diagnostic Mapping
	2.2.4.1 Purpose
	2.2.4.2 Description
	2.2.4.3 Workflow

	2.3 Software Development
	2.3.1 Develop Adaptive Application Software
	2.3.1.1 Purpose
	2.3.1.2 Description
	2.3.1.3 Workflow

	2.3.2 Develop Adaptive Platform-level Software
	2.3.2.1 Purpose
	2.3.2.2 Description
	2.3.2.3 Workflow

	2.4 Integration and Deployment
	2.4.1 Integrate Software
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Define and configure a Machine
	2.4.2.1 Preparatory steps
	2.4.2.2 Configure the Machine

	2.4.3 Create Execution Manifest
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.4.4 Define and Configure Service Instances
	2.4.4.1 Purpose
	2.4.4.2 Description
	2.4.4.3 Workflow

	2.4.5 Set up an initial Machine
	2.4.5.1 Purpose
	2.4.5.2 Description
	2.4.5.3 Workflow

	2.4.6 Create Software Packages
	2.4.6.1 Purpose
	2.4.6.2 Description
	2.4.6.3 Workflow

	2.4.7 Management and provision of Software Packages
	2.4.7.1 Purpose
	2.4.7.2 Description
	2.4.7.3 Workflow

	3 Adaptive Methodology Library
	3.1 Roles
	3.1.1 OEM
	3.1.2 Tier 1
	3.1.3 Tier 2

	3.2 Service Interface
	3.2.1 Tasks
	3.2.1.1 Provide Data Types for Adaptive Platform
	3.2.1.2 Define Service Interfaces
	3.2.1.3 Aggregate Service Interfaces

	3.2.2 Work Products
	3.2.2.1 AUTOSAR AP Standard Package
	3.2.2.2 AP Data Types
	3.2.2.3 Service Interface Description
	3.2.2.4 Service Interface Mapping

	3.3 Communication Mapping
	3.3.1 Tasks
	3.3.1.1 Map Method
	3.3.1.2 Map Event
	3.3.1.3 Map Field
	3.3.1.4 Map Fire and Forget
	3.3.1.5 Map SignalBasedMethod to ISignalTriggerings
	3.3.1.6 Map SignalBasedEvent to ISignalTriggerings
	3.3.1.7 Map SignalBasedField to ISignalTriggerings
	3.3.1.8 Map ServiceInstance to PortPrototype

	3.3.2 Work Products
	3.3.2.1 Client Server Interface Description
	3.3.2.2 Sender Receiver Interface Description
	3.3.2.3 Trigger Interface Description
	3.3.2.4 Service Interface Mapping Set
	3.3.2.5 Service Interface Mapping for Service Oriented Communication
	3.3.2.6 System Description
	3.3.2.7 Service Instance To Signal Mapping Set
	3.3.2.8 Service Instance To Signal Mapping

	3.4 Machine Design
	3.4.1 Tasks
	3.4.1.1 Define and configure the network connections of a Machine
	3.4.1.2 Configure the Service Discovery Message Exchange

	3.4.2 Work Products
	3.4.2.1 Machine Design

	3.5 Diagnostic Mapping
	3.5.1 Tasks
	3.5.1.1 Map Diagnostic Data
	3.5.1.2 Map Diagnostic Enable Condition to Ports
	3.5.1.3 Map Diagnostic Event to Ports
	3.5.1.4 Map Diagnostic Storage Condition to Ports
	3.5.1.5 Map Diagnostic Software Mapping
	3.5.1.6 Map Diagnostic Operation Cycle to Ports
	3.5.1.7 Associate a DiagnosticMapping with a ProcessDesign

	3.5.2 Work Products
	3.5.2.1 Diagnostic Machine Extract
	3.5.2.2 DID
	3.5.2.3 Diagnostic Enable Condition
	3.5.2.4 Diagnostic Event
	3.5.2.5 Diagnostic Mapping
	3.5.2.6 Diagnostic Operation Cycle
	3.5.2.7 Diagnostic Storage Condition

	3.6 Adaptive Application
	3.6.1 Tasks
	3.6.1.1 Generate Header Files for Service Interfaces
	3.6.1.2 Design Software Component for Adaptive Platform
	3.6.1.3 Implement Software Component Functionality
	3.6.1.4 Compile Software Component
	3.6.1.5 Develop Main Function
	3.6.1.6 Configure Serialization for Adaptive Platform
	3.6.1.7 Generate Serialization Code for Adaptive Platform
	3.6.1.8 Implement Service Proxies and Skeletons
	3.6.1.9 Build Executable Application

	3.6.2 Work Products
	3.6.2.1 Header Files for Service Interfaces
	3.6.2.2 Software Component Description for Adaptive Platform
	3.6.2.3 Build Chain Configuration
	3.6.2.4 Software Component Source Code
	3.6.2.5 Software Component Object Code
	3.6.2.6 Serialization Configuration for Adaptive Platform
	3.6.2.7 Serialization Source Code
	3.6.2.8 Implemented Service Proxies and Skeletons
	3.6.2.9 Main Function
	3.6.2.10 Executable Application

	3.7 Platform and Machine
	3.7.1 Tasks
	3.7.1.1 Define ECU Description
	3.7.1.2 Describe Available HW Resources
	3.7.1.3 Define Machine States
	3.7.1.4 Define Function Groups
	3.7.1.5 Define State Timeouts
	3.7.1.6 Map Process To Machine
	3.7.1.7 Configure OS for Adaptive Platform
	3.7.1.8 Configure Log and Trace module
	3.7.1.9 Configure DoIP
	3.7.1.10 Configure NM module

	3.7.2 Work Products
	3.7.2.1 Middleware Library Header Files
	3.7.2.2 Middleware Libraries
	3.7.2.3 ECU Resources Description
	3.7.2.4 Configured Machine on Adaptive ECU
	3.7.2.5 Machine Manifest
	3.7.2.6 Platform Object Code
	3.7.2.7 Operating System for Adaptive Platform
	3.7.2.8 Process to Machine Mapping
	3.7.2.9 Function Groups
	3.7.2.10 Machine States
	3.7.2.11 PerState Timeouts

	3.8 Execution Manifest
	3.8.1 Tasks
	3.8.1.1 Define Process
	3.8.1.2 Define Startup Configuration
	3.8.1.3 Define Execution Dependencies
	3.8.1.4 Associate Process with Process Design

	3.8.2 Work Products
	3.8.2.1 Execution Manifest
	3.8.2.2 Process
	3.8.2.3 Mode-dependent Startup Configuration
	3.8.2.4 Process Design

	3.9 Service Instance
	3.9.1 Tasks
	3.9.1.1 Configure Service Interface Deployment
	3.9.1.2 Define and Configure Service Instance
	3.9.1.3 Define SOME/IP timing
	3.9.1.4 Map Service Instance to Port Prototype
	3.9.1.5 Map Service Instance to Machine

	3.9.2 Work Products
	3.9.2.1 Service Interface Deployment Configuration
	3.9.2.2 Service Instance Configuration
	3.9.2.3 Service Instance To Machine Mapping
	3.9.2.4 Service Instance To Port Prototype Mapping
	3.9.2.5 Service Instance Manifest

	3.10 Deployment
	3.10.1 Tasks
	3.10.1.1 Create an initial Software Package Manifest
	3.10.1.2 Identify necessary (software) artifacts
	3.10.1.3 Collect belonging (software) artifacts of Sub Software Clusters
	3.10.1.4 Model dependencies between Software Clusters
	3.10.1.5 Create installation instructions

	3.10.2 Work Products
	3.10.2.1 Software Cluster Design
	3.10.2.2 Software Package
	3.10.2.3 Software Cluster
	3.10.2.4 Software Package Manifest
	3.10.2.5 (Sub) Software Cluster Group
	3.10.2.6 Uploadable Design Artifacts
	3.10.2.7 Back-end server

	A Change History
	A.1 Change History for AP 18-10
	A.1.1 Added Constraints in 18-10
	A.1.2 Changed Constraints in 18-10
	A.1.3 Deleted Constraints in 18-10
	A.1.4 Added Traceables in 18-10
	A.1.5 Changed Traceables in 18-10
	A.1.6 Deleted Traceables in 18-10

	A.2 Change History for AP 18-03
	A.2.1 Added Specification Items in AP 18-03
	A.2.2 Changed Specification Items in AP 18-03
	A.2.3 Deleted Specification Items in AP 18-03

	A.3 Change History for AP 17-10
	A.3.1 Added Specification Items in AP 17-10
	A.3.2 Changed Specification Items in AP 17-10
	A.3.3 Deleted Specification Items in AP 17-10

	A.4 Change History for AP 17-03
	A.4.1 Added Specification Items in AP 17-03
	A.4.2 Changed Specification Items in AP 17-03
	A.4.3 Deleted Specification Items in AP 17-03

	B Used classes in Manifest files
	B.1 Used classes in Machine Manifest
	B.2 Used classes in Execution Manifest
	B.3 Used classes in Service Instance Manifest

