
Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Document Title Specification of Update and
Configuration Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 888

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-10

Document Change History
Date Release Changed by Description

2018-10-31 18-10
AUTOSAR
Release
Management

• Updated interaction other functional
clusters like PER and EMO/SM
• Introduction of vehicle package

distribution

2018-03-29 18-03
AUTOSAR
Release
Management

• Extended and updated service
interface
• Introduction of Software Package
• Introduction to securing update

process

2017-10-27 17-10
AUTOSAR
Release
Management

• Initial release

1 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Table of Contents

1 Introduction and functional overview 6

2 Acronyms and abbreviations 7

3 Related documentation 8

3.1 Input documents & related standards and norms 8
3.2 Related specification . 8
3.3 Further applicable specification . 8

4 Constraints and assumptions 9

4.1 Limitations . 9
4.2 Applicability to car domains . 9

5 Dependencies to other functional clusters 10

5.1 Interfaces to Adaptive State Management 10
5.2 UCM service over ara::com . 10
5.3 Interfaces to Adaptive Crypto Interface 10
5.4 Interfaces to Identity and Access Management 10

6 Requirements Tracing 11

7 Functional specification 15

7.1 Technical Overview . 15
7.1.1 Software Package Management 16

7.1.1.1 Software Package 16
7.1.1.2 Content of a Software Package 17
7.1.1.3 Applications Persisted Data 17

7.1.2 Runtime dependencies . 18
7.1.3 Update scope and state management 18

7.2 Transferring Software Packages . 19
7.3 Processing Software Packages . 21
7.4 Status Reporting . 23
7.5 Activation and Rollback . 25

7.5.1 Activation . 26
7.5.2 Rollback . 27
7.5.3 Boot options . 27
7.5.4 Failing Activation . 28
7.5.5 Boot monitoring . 28
7.5.6 Finishing activation . 28

7.6 Logging and history . 29
7.7 Version Reporting . 29
7.8 SoftwareCluster lifecycle . 29
7.9 Securing Software Updates . 30

8 API specification 31

3 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

9 Service Interfaces 32

9.1 Type definitions . 32
9.1.1 TransferIdType . 32
9.1.2 SwInfoName . 32
9.1.3 ByteVectorType . 32
9.1.4 SwPackageStateType . 33
9.1.5 SwPackageInfoType . 33
9.1.6 SwPackageInfoVectorType 33
9.1.7 SwClusterStateType . 34
9.1.8 SwClusterInfoType . 34
9.1.9 SwClusterInfoVectorType . 35
9.1.10 LogLevelType . 35
9.1.11 LogEntryType . 35
9.1.12 LogVectorType . 36
9.1.13 PackageManagerStatusType 36
9.1.14 ActivateOptionType . 37
9.1.15 ActionType . 37
9.1.16 ResolutionType . 37
9.1.17 GetHistoryType . 38
9.1.18 GetHistoryVectorType . 38

9.2 Service Interfaces . 39
9.2.1 Provided Service Interfaces 39

9.2.1.1 Package Management 39
9.3 Application Errors . 46

9.3.1 Application Error Domain . 46
9.3.1.1 UCMErrorDomain 46

10 Sequence diagrams 48

10.1 Update process . 48
10.2 Data transmission . 49
10.3 Package processing . 50
10.4 Activation . 51

A Not applicable requirements 52

B Mentioned Class Tables 53

C Interfaces to other Functional Clusters (informative) 57

C.1 Overview . 57
C.2 Interfaces Tables . 57

C.2.1 UCM update notification . 57

D Packages distribution within vehicle (informative) 58

D.1 Overview . 58
D.2 Packages distribution sequence diagrams 59

D.2.1 UCM slave discovery . 59
D.2.2 Collect information of present SWCLs in vehicle 60

4 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D.2.3 Action computation . 61
D.2.3.1 Pull package from backend into vehicle 61
D.2.3.2 Push package from backend into vehicle 63

D.2.4 Packages transfer from backend into targeted UCM 63
D.2.5 Package processing . 65
D.2.6 Package activation . 66
D.2.7 Package rollback . 67
D.2.8 Campaign reporting . 67

5 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

1 Introduction and functional overview

This software specification contains the functional description and interfaces of the
functional cluster Update and Configuration Management which belongs to the
AUTOSAR Adaptive Platform Services. Update and Configuration Management
has the responsibility of installing, updating and removing software on an AUTOSAR
Adaptive Platform in a safe and secure way while not sacrificing the dynamic
nature of the AUTOSAR Adaptive Platform.

The Update and Configuration Management functional cluster is responsible
for:

• Version reporting of the software present in the AUTOSAR Adaptive Platform

• Receiving and buffering software updates

• Checking that enough resources are available to ensure a software update

• Performing software updates and providing log messages and progress informa-
tion

• Validating the outcome of a software update

• Providing rollback functionality to restore a known functional state in case of fail-
ure

In addition to updating and changing software on the AUTOSAR Adaptive Plat-
form, the Update and Configuration Management is also responsible for updates and
changes to the AUTOSAR Adaptive Platform itself, including all functional clus-
ters, the underlying POSIX OS and its kernel with the responsibilities defined above.

In order to allow flexibility in how Update and Configuration Management is used, it will
expose its functionality via ara::com service interfaces, not direct APIs. This ensures
that the user of the functional cluster Update and Configuration Management does not
have to be located on the same ECU.

6 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to the UCM module
that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:
DM AUTOSAR Adaptive Diagnostic Management
UCM Update and Configuration Management

The definition of all technical terms used throughout this document, that are not in-
cluded in the official [1] AUTOSAR Glossary or [2] TPS Manifest Specification.

Term Description
Application Error Errors returned by UCM
Boot options Boot Manager Configuration

Table 2.1: Technical Terms

Some technical terms used in this document are already defined in the corresponding
document mentioned in the table below. This is to avoid duplicate definition of the
technical term. And to refer to the correct document.

Term Description

Adaptive Application see [1] AUTOSAR Glossary
Application see [1] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [1] AUTOSAR Glossary
Adaptive Platform Foundation see [1] AUTOSAR Glossary
Adaptive Platform Services see [1] AUTOSAR Glossary
Manifest see [1] AUTOSAR Glossary
Executable see [1] AUTOSAR Glossary
Functional Cluster see [1] AUTOSAR Glossary
Machine see [1] AUTOSAR Glossary
Service see [1] AUTOSAR Glossary
Service Interface see [1] AUTOSAR Glossary
Service Discovery see [1] AUTOSAR Glossary
Execution Management see [3] AUTOSAR Execution Management
kRunning see [3] AUTOSAR Execution Management

Table 2.2: Reference to Technical Terms

7 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

3 Related documentation

3.1 Input documents & related standards and norms

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[3] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[4] General Specification of Adaptive Platform
AUTOSAR_SWS_General

[5] Specification of State Management
AUTOSAR_SWS_StateManagement

[6] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[7] Specification of Identity and Access Management
AUTOSAR_SWS_IdentityAndAccessManagement

[8] Requirements on Update and Configuration Management
AUTOSAR_RS_UpdateAndConfigManagement

[9] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[10] Specification of Persistency
AUTOSAR_SWS_Persistency

[11] Requirements on Security Management for Adaptive Platform
AUTOSAR_RS_SecurityManagement

3.2 Related specification

See chapter 3.1.

3.3 Further applicable specification

AUTOSAR provides a general specification [4] which is also applicable for UCM. The
specification SWS General shall be considered as additional and required specification
for implementation of UCM.

8 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4 Constraints and assumptions

4.1 Limitations

UCM is not responsible to initiate the update process. UCM realizes a service interface
to achieve this operation. The user of this service interface is responsible to verify that
the vehicle is in a safe state before executing a software update procedure on demand.
It is also in the responsibility of the user to communicate with other AUTOSAR Adap-
tive Platforms or Classic Platforms within the vehicle. Therefore management of
software dependencies between different physical or virtual ECU software platforms
is currently out of UCM’s scope but will be managed by the UCM Master which will be
introduced in the next release.

The UCM receives a locally available software package for processing. The software
package is usually downloaded from the OEM backend. The download of the software
packages has to be done by another application, i.e. UCM does not manage the connec-
tion to the OEM backend. Prior to triggering their processing, the software packages
have to be transferred to UCM by using the provided ara::com interface.

The UCM update process is designed to cover updates on use case with sin-
gle AUTOSAR Adaptive Platform. UCM can update Adaptive Applications, the
AUTOSAR Adaptive Platform itself, including all functional clusters and the under-
lying OS. Distinction between different types of updates, such as safety critical updates
vs infotainment updates, isn’t addressed in this release. Currently such distinction shall
be included into vendor specific meta-data.

The UCM is not responsible for enforcing authentication and access control to the pro-
vided interfaces. The document currently does not provide any mechanism for the
confidentiality protection as well as measures against denial of service attacks. The
assumption is that the platform preserves the integrity of parameters exchanged be-
tween UCM and its user.

4.2 Applicability to car domains

No restrictions to applicability.

9 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

5 Dependencies to other functional clusters

The UCM functional cluster exposes services to client applications via the ara::com
middleware.

5.1 Interfaces to Adaptive State Management

Certain applications can conflict with the update process or the newly updated pack-
age, and they need to be stopped during the update process. This could be achieved
by putting the machine to a safe Machine State, for example Update State, or by
activating a combination of suitable Function Groups and its states. It is the re-
sponsibility of the platform integrator to define this state or Function Groups. The
application accessing the UCM, should make sure that the platform is switched to this
state (using interfaces from State Management [5]), before starting the update.

UCM uses State Management interface field parameter FunctionGroupState to monitor
the restart of the updated software.

5.2 UCM service over ara::com

The UCM shall provide a service interface over ara::com using methods and fields.

5.3 Interfaces to Adaptive Crypto Interface

UCM uses Crypto Interface for Adaptive Platform [?,] to verify package integrity and
authenticity and to decrypt confidential update data.

5.4 Interfaces to Identity and Access Management

Communication Management,[6] uses Identity and Access Management [7] to validate
the authorization of requests made to UCM’s service interface PackageManagement.

10 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

6 Requirements Tracing

The following tables reference the requirements specified in [8] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_SM_00001] State Management shall

support Function Group
state change requests.

[SWS_UCM_00102]
[SWS_UCM_00124]

[RS_UCM_00001] UCM shall support installing new
software on AUTOSAR Adaptive
Platform

[SWS_UCM_00001]
[SWS_UCM_00017]
[SWS_UCM_00073]
[SWS_UCM_00099]
[SWS_UCM_00131]
[SWS_UCM_00137]

[RS_UCM_00002] UCM shall support reporting
version information for an
AUTOSAR Adaptive Platform

[SWS_UCM_00004]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00071]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00112]
[SWS_UCM_00130]
[SWS_UCM_00131]

[RS_UCM_00003] UCM shall support updating
installed software on Adaptive
Platform

[SWS_UCM_00017]

[RS_UCM_00004] UCM shall support uninstalling
software on AUTOSAR Adaptive
Platform

[SWS_UCM_00001]
[SWS_UCM_00137]

[RS_UCM_00005] UCM shall make sure that
persistent data owned by
uninstalled software is deleted

[SWS_UCM_00001]
[SWS_UCM_00137]

[RS_UCM_00006] UCM shall verify Software
Package authenticity and
integrity using strong
cryptographic techniques

[SWS_UCM_00028]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00136]

[RS_UCM_00007] UCM shall check that software
dependencies are fulfilled

[SWS_UCM_00026]
[SWS_UCM_00120]
[SWS_UCM_00128]
[SWS_UCM_00136]

11 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Requirement Description Satisfied by
[RS_UCM_00008] UCM shall support a recovery

mechanism in case of failed
update process

[SWS_UCM_00005]
[SWS_UCM_00024]
[SWS_UCM_00095]
[SWS_UCM_00096]
[SWS_UCM_00097]
[SWS_UCM_00107]
[SWS_UCM_00109]
[SWS_UCM_00110]
[SWS_UCM_00111]
[SWS_UCM_00113]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00131]
[SWS_UCM_00142]
[SWS_UCM_00146]

[RS_UCM_00010] UCM shall support reporting of
Software Packages downloaded
for AUTOSAR Adaptive Platform

[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00069]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00131]

[RS_UCM_00011] UCM shall support reporting
software versions which have
been installed and will be
activated when new versions are
activated

[SWS_UCM_00027]
[SWS_UCM_00030]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00131]

[RS_UCM_00012] UCM shall check the
consistency of transferred
Software Package

[SWS_UCM_00029]
[SWS_UCM_00038]
[SWS_UCM_00039]
[SWS_UCM_00040]
[SWS_UCM_00077]
[SWS_UCM_00078]
[SWS_UCM_00079]
[SWS_UCM_00104]
[SWS_UCM_00136]

[RS_UCM_00013] UCM shall check that it has
enough resources to receive,
process and store the Software
Package and associated data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00136]
[SWS_UCM_00140]
[SWS_UCM_00145]

12 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Requirement Description Satisfied by
[RS_UCM_00014] UCM shall check that correct

amount of data has been
transferred for the Software
Package

[SWS_UCM_00136]

[RS_UCM_00015] UCM shall remove all unneeded
data after Software Package
processing has finished

[SWS_UCM_00020]
[SWS_UCM_00131]

[RS_UCM_00017] UCM shall support installing and
updating the persistent data
storage for an Adaptive
Application

[SWS_UCM_00011]
[SWS_UCM_00113]

[RS_UCM_00018] UCM shall announce when an
application has been installed,
updated or uninstalled

[SWS_UCM_00021]
[SWS_UCM_00131]

[RS_UCM_00019] UCM shall support simultaneous
transfers multiple update
packages

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00075]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00093]
[SWS_UCM_00098]
[SWS_UCM_00140]
[SWS_UCM_00141]
[SWS_UCM_00145]

[RS_UCM_00020] UCM shall support cancel of an
update or install operation

[SWS_UCM_00003]

[RS_UCM_00021] UCM shall support atomic
activation of installed or updated
packages

[SWS_UCM_00022]
[SWS_UCM_00025]
[SWS_UCM_00094]
[SWS_UCM_00114]
[SWS_UCM_00131]

[RS_UCM_00022] UCM shall support logging of the
update or installation process

[SWS_UCM_00012]
[SWS_UCM_00041]
[SWS_UCM_00042]
[SWS_UCM_00043]
[SWS_UCM_00131]
[SWS_UCM_00143]
[SWS_UCM_00144]

[RS_UCM_00023] UCM shall provide an interface
to read progress of the update

[SWS_UCM_00018]
[SWS_UCM_00131]

[RS_UCM_00024] UCM shall provide an interface
to read the state of UCM

[SWS_UCM_00019]
[SWS_UCM_00044]
[SWS_UCM_00080]
[SWS_UCM_00081]
[SWS_UCM_00082]
[SWS_UCM_00083]
[SWS_UCM_00084]
[SWS_UCM_00085]
[SWS_UCM_00086]
[SWS_UCM_00131]

13 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Requirement Description Satisfied by
[RS_UCM_00025] UCM shall support efficient

streaming of Software Package
data

[SWS_UCM_00007]
[SWS_UCM_00008]
[SWS_UCM_00010]
[SWS_UCM_00031]
[SWS_UCM_00032]
[SWS_UCM_00087]
[SWS_UCM_00088]
[SWS_UCM_00091]
[SWS_UCM_00092]
[SWS_UCM_00098]
[SWS_UCM_00131]
[SWS_UCM_00140]
[SWS_UCM_00145]

[RS_UCM_00026] UCM shall process installation of
new Software Packages,
updates and removal of existing
Software Packages sequentially

[SWS_UCM_00017]
[SWS_UCM_00044]
[SWS_UCM_00122]

[RS_UCM_00028] UCM shall support updating
Functional Clusters

[SWS_UCM_00100]

[RS_UCM_00029] UCM shall support updating the
underlying Operating System

[SWS_UCM_00101]

[RS_UCM_00030] UCM shall be able to verify the
updated software before
activation

[SWS_UCM_00095]
[SWS_UCM_00096]
[SWS_UCM_00097]
[SWS_UCM_00107]
[SWS_UCM_00108]
[SWS_UCM_00109]
[SWS_UCM_00111]
[SWS_UCM_00126]
[SWS_UCM_00127]
[SWS_UCM_00146]

[RS_UCM_00031] UCM shall prevent installation of
arbitrary previous version of an
adaptive application or the
adaptive platform

[SWS_UCM_00103]

[RS_UCM_00032] UCM shall provide an interface
to return UCM actions history

[SWS_UCM_00115]
[SWS_UCM_00131]
[SWS_UCM_00132]
[SWS_UCM_00133]
[SWS_UCM_00134]
[SWS_UCM_00135]

14 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7 Functional specification

7.1 Technical Overview

One of the declared goals of AUTOSAR Adaptive Platform is the ability to flexibly
update the software and its configuration through over-the-air updates. During the life-
cycle of an AUTOSAR Adaptive Platform, UCM is responsible to perform software
modifications on the machine and to retain consistency of the whole system.

The UCM functional cluster provides a service interface that exposes its functionality to
retrieve AUTOSAR Adaptive Platform software information and consistently exe-
cute software updates. Since ara::com is used, the client using the UCM service inter-
face can be located on the same AUTOSAR Adaptive Platform, but also remote
clients are possible.

The service interface has been primarily designed with the goal to make it possible to
use standard diagnostic services for downloading and installing software updates for
the AUTOSAR Adaptive Platform. However, the methods and fields in the service
interface are designed in such a way that they can be used in principle by any Adaptive
Application. UCM does not impose any specific protocol on how data is transferred to
the AUTOSAR Adaptive Platform and how package processing is controlled. In
particular UCM does not expose diagnostic services.

To illustrate the diagnostic use-case, Figure 7.1 shows a typical architecture with a
Diagnostic Application establishing the link between UCM DM [?,]. The Diagnostic
Client downloads a Software Package by standard UDS services. After decompression
and verification steps inside the OEM-specific Diagnostic Application, the Software
Package is passed to UCM and processed. The result of this package processing can
be made available/readable for diagnostics.

Vehicle

«device»

Adaptive ECU

AUTOSAR Adaptive Platform Services + Foundation

DoIP socketDiagnostic

Manager (DM)

DoIP socket«ServiceProvider»

UCM

AUTOSAR Adaptive Application Layer

App B App ...App A

Diagnostic Application /

OTA Client

Server

Diagnostic Client

«optional»

«optional»

Cloud

Figure 7.1: Architecture overview for diagnostic use case

15 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7.1.1 Software Package Management

The UCM update sequence consists three different phases:

• Software Package transfer: A phase in which, one or several Software Packages
are transferred from the Diagnostic Application Client to the internal buffer of the
UCM. For further information see chapter 7.2.

• Software Package processing: A phase in which the UCM performs the operation
(kInstall, kUpdate, kRemove) on the relevant SoftwareCluster (which
shall be inactivated [not executed] during the operation). For further information
see chapter 7.3.

• Activation: A phase in which the UCM checks the dependencies of the Soft-
wareClusters that have been involved in the operation, then activates them
and finally check that all the SoftwareClusters can be executed properly (via
State Management [5]) prior to finishing the update. For further information see
chapter 7.5

7.1.1.1 Software Package

[SWS_UCM_00122] Software Package utilization d The unit for deployment that the
UCM shall take as input is called Software Package, see [1]. Each Software Package
shall address a single SoftwareCluster. c(RS_UCM_00026)

A SoftwareCluster can act in two roles:

• ‘Sub’-SoftwareCluster : It is a SoftwareCluster without diagnostic target
address, containing processes, executables and further elements

• ‘Root’-SoftwareCluster : It is a SoftwareCluster with a diagnostic target
address that may reference several other ‘Sub’-SoftwareClusters, which thus
form a logical group.

The two roles are expressed by reserved values of the attribute SoftwareClus-
ter.category.

A software package has to be modelled as a so-called SoftwareCluster which de-
scribes the content of a software package that has to be uploaded to the AUTOSAR
Adaptive Platform, see [2].

The term Software Package is used for the "physical", uploadable software package
that is processed by UCM whereas the term SoftwareCluster is used for the mod-
eling element. In the model, the content of a SoftwareCluster shall be determined
by references to all required model elements. The SoftwareCluster and the related
model elements shall be put into a manifest that is part of the Software Package. The
software package format and the update scope are described in chapter "Content of a
Software Package" as well as in [9].

16 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7.1.1.2 Content of a Software Package

Each Software Package addresses a single SoftwareCluster and contains mani-
fests, executables and further data (depending on the role of the SoftwareCluster)
as example sketched in Figure 7.2.

Figure 7.2: Software package content description

A single SoftwarePackage is designed in a way that it could contain one or several
executables of (Adaptive) Applications, kernel or firmware updates, or updated config-
uration and calibration data to be deployed on the AUTOSAR Adaptive Platform.
An exemplary implementation of the adaptive workflow with Software Packages can be
seen in chapter Methodology and Manifest in [9].

[SWS_UCM_00112] Software Cluster and version d SoftwareCluster’s man-
ifest shall include a name and a version following semantic versioning 2.0.0
(https://semver.org/). A time stamp shall be trailing the Major.Minor.Patch version. c
(RS_UCM_00002)

[SWS_UCM_00130] Software Cluster and version error d If SoftwareCluster’s
manifest does not contain any version as specified in [SWS_UCM_00112], UCM shall
raise the ApplicationError InvalidManifest. c(RS_UCM_00002)

7.1.1.3 Applications Persisted Data

[SWS_UCM_00011] Updating persisted data d The UCM shall be able to create, up-
date or remove any persistency data that is contained in the SoftwareCluster. c
(RS_UCM_00017)

Further details on the persistent data can be found in Persistency Specification [10].

[SWS_UCM_00113] Rollback of persisted data d The UCM shall be able to roll-
back changes done to persistent data during update process. c(RS_UCM_00017,
RS_UCM_00008)

17 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7.1.2 Runtime dependencies

Both ’Sub’ and ’Root’ SoftwareCluster can have execution dependencies toward
other SoftwareClusters.

Dependencies are described in the SoftwareCluster metamodel, see [2].

[SWS_UCM_00120] Execution dependencies check d UCM shall check execution
dependencies in the end of the update process before activating/switching to the new
software version. c(RS_UCM_00007)

The rationale is, if UCM has to process several Software Packages, then execution
dependencies may not be fulfilled at all times during the Software Packages process
but must be fulfilled before changes can be activated.

[SWS_UCM_00128] d If dependency check fails, UCM shall raise the Application-
Error MissingDependencies and change its state from kActivating to kReady.
c(RS_UCM_00007)

7.1.3 Update scope and state management

Software package processed by UCM can contain Adaptive Applications, updates to
AUTOSAR Adaptive Platform itself or to the underlying OS. Update type depends
on the content of the Software Package.

[SWS_UCM_00099] Update of Adaptive Application d UCM shall be able to update
Adaptive Applications c(RS_UCM_00001)

[SWS_UCM_00100] Update of Functional Clusters d UCM shall be able to update all
Functional Clusters, including UCM itself. c(RS_UCM_00028)

[SWS_UCM_00101] Update of Host d UCM shall be able to update the underlying
Operating System hosting the AUTOSAR Adaptive Platform. c(RS_UCM_00029)

Definition of a safe state with respect to the system setup is the OEM responsibility.
Based on the system setup and the application, the system might need to be switched
into an update state, to free resource to speed up the update, to block normal us-
age of software which might cause interruptions to update process and to block using
functionality which might be interrupted by the update sequence.

[SWS_UCM_00102] Update state d For the updates of software components included
into Machine State Function Group, UCM shall check that system is set to update state.
c(RS_SM_00001)

In update state only the applications required for the Update process are executed.
This way system is more robust, more resources are free and user is blocked from
using applications, of which failure could cause safety risk to the user.

It is the responsibility of the OEM Diagnostic Application to request the transition to
update state, using suitable interfaces of Adaptive State Management [5].

18 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00124] Verify State d As minimal check UCM shall check that updated
software is able to reach kRunning state. For checking if the updated system can
reach the kRunning state, the system shall be set into verify state. c(RS_SM_00001)

It is the responsibility of the OEM Diagnostic Application to request the transition to
verify state, using suitable interfaces of Adaptive State Management [5]. Then, State
Management [5] will return a successful state change only if all the relevant processes
have reached the kRunning state. This gives a chance to perform a Rollback if some
processes fails to reach the kRunning state.

Update of some components require a Machine reset to be performed. These com-
ponents should be configured to be part of Machine State function group, as the up-
date sequence of Machine State function group includes a Machine reset. Execution
Manager, State Manager, Communication Manager and UCM itself are good examples
which probably require a Machine reset to activate the update. Other such compo-
nents could be applications involved in the update sequence or applications involved
in safety monitoring. Further details on Machine State function group can be found in
State Management [5].

7.2 Transferring Software Packages

To speed up the overall data transmission time, the package transfer is decoupled
from the processing and activation process. This section describes requirements for
initiation of a data transfer, the data transmission and ending of the data transmission.

Each Software Package gets its own state as soon as it is being transferred to UCM.
The state machine in Fig. 7.3 specifies the lifecycle of a Software Package that is trans-
ferred to and processed by UCM. During this lifecycle, a Software Package is uniquely
identified with a id that UCM provides to the client.

PackagesToProcess

TRANSFERRING TRANSFERRED PROCESSING

Final

Initial PROCESSED

TransferStart

TransferData GetProcessProgress

DeleteTransfer
ProcessingFinished
/CurrentStatus ==

READY

TransferExit

Cancel

ProcessSwPackage
/CurrentStatus ==

BUSY

DeleteTransfer

DeleteTransfer

Figure 7.3: State Machine for transferring packages using service interface PackageM-
anagement

19 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00007] Data transfer at any time d UCM shall provide support to trans-
fer Software Packages at any time when UCM is running. Transferring is decoupled
from the UCM Package Management states. c(RS_UCM_00013, RS_UCM_00019,
RS_UCM_00025)

[SWS_UCM_00088] Preparation of data transfer d Data transfer shall be prepared
with the method TransferStart. In the preparation step the number of bytes to be
transferred is provided by the client and UCM assigns a id for the Software Package to
be transferred. c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00140] UCM insufficient memory d TransferStart method shall
raise the ApplicationError InsufficientMemory if the UCM buffer has
not enough resources to store the corresponding ProcessSwPackage. c
(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00008] Executing the data transfer d After preparing of the data trans-
fer, the transmission of the Software Package block-wise shall be supported by the
method TransferData.c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00145] Sequential order of data transfer d The method Transfer-
Data shall support the parameter blockCounter that shall start with 0x01 and in-
cremented by one for each subsequent block. c(RS_UCM_00013, RS_UCM_00019,
RS_UCM_00025)

[SWS_UCM_00010] End of data transfer d After transmission of a Software Pack-
age is completed, the transmission can be finished with method TransferExit. c
(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00087] Insufficient amount of data transferred d During Transfer-
Exit UCM shall check if all blocks of the software package have been transferred
according to the size parameter of TransferStart. If not UCM shall return
ApplicationError InsufficientData. c(RS_UCM_00013, RS_UCM_00019,
RS_UCM_00025)

[SWS_UCM_00092] Package manifest consistency d During TransferExit UCM
shall raise the ApplicationError InvalidManifest if the manifest integrity check
fails c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00028] Package Authentication d UCM shall authenticate the Software
Package. c(RS_UCM_00006)

Content of the manifest shall contain signatures of the Software Package and Trans-
ferExit shall use hash algorithms and cryptographic signatures to validate the pack-
age authenticity as defined in [11].

[SWS_UCM_00098] Package Authentication failure d During TransferExit UCM
shall raise the ApplicationError AuthenticationFailed, if the data authenti-
cation check fails. c(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

20 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00091] Successful data transfer dDuring TransferExit UCM shall not
raise any ApplicationError if the transfer of data could be successfully finished. c
(RS_UCM_00013, RS_UCM_00019, RS_UCM_00025)

[SWS_UCM_00075] Multiple data transfers in parallel d Handling of multiple data
transfers in parallel shall be supported by UCM. c(RS_UCM_00019)

[SWS_UCM_00141] UCM insufficient memory for parallel data transfer d While
a software package is being transferred, if UCM receives a subsequent Transfer-
Start call targeting another software package, UCM shall make sure that the sum of
the size of both software packages (the one being transferred and the one requested to
be transferred) does not exceed the size of the UCM buffer. Otherwise, the Transfer-
Start shall raise the ApplicationError InsufficientMemory and the newly
requested transmission shall be rejected. c(RS_UCM_00019)

If UCM provides enough buffering resources for Software Packages, several packages
could be transferred (in parallel) before they are processed one after the other. The
processing (i.e. unpacking and actually applying changes to the AUTOSAR Adaptive
Platform) of Software Packages described by the state kProcessing is further de-
tailed in Sect. 7.3.

[SWS_UCM_00021] Deleting transferred Software Packages d UCM shall provide a
method DeleteTransfer that shall delete the targeted Software Package and free
the resources reserved to store that Software Package. c(RS_UCM_00018)

[SWS_UCM_00093] Transfer sequence d If TransferData or TransferExit is
called without prior call to TransferStart UCM shall raise the ApplicationError
OperationNotPermitted. c(RS_UCM_00019)

[SWS_UCM_00069] Report information on Software Packages d UCM shall pro-
vide a method GetSwPackages of the interface service PackageManagement to
provide the identifiers, names and versions of Software Packages of any state.c
(RS_UCM_00010)

If software package is in kTransferring state, it is not possible to get versions or
names as manifest could not be complete or accessible, therefore method GetSw-
Packages should return empty values except for identifiers at this particular state.

7.3 Processing Software Packages

In contrast to package transmission, only one Software Package can be processed at
the same time to ensure consistency of the system. In the following, a software or
package processing can involve any combination of an installation, update or removal
of applications, configuration data, calibration data or manifests. It is up to the vendor-
specific metadata inside a Software Package to describe the tasks UCM has to perform
for its processing. For a removal, this might involve metadata describing which data
shall be deleted. Nevertheless, the communication sequence between the triggering
application of the software modification and UCM shall be the same in any case. For an

21 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

update of an existing application, the Software Package can contain only partial data,
e.g. just an updated version of the execution manifest.

[SWS_UCM_00001] Starting the package processing d UCM shall provide a method
ProcessSwPackage to process transferred Software Package. id correspond-
ing to Software Package shall be provided for this method. c(RS_UCM_00001,
RS_UCM_00004, RS_UCM_00005)

[SWS_UCM_00137] Processing several update software packages d UCM shall
support processing of several Software Packages by calling method ProcessS-
wPackage several times in sequence. c(RS_UCM_00001, RS_UCM_00004,
RS_UCM_00005)

During package processing, the progress is provided.

[SWS_UCM_00018] Providing Progress Information d UCM shall provide a method
GetSwProcessProgress to query the package processing progress. Parameter
progress shall be set to a value representing the progress between 0% and 100%
(0x00 ... 0x64). c(RS_UCM_00023)

[SWS_UCM_00029] Consistency Check of Manifest d UCM shall validate the content
of the manifest against the schema defined for the meta-data(eg: for missing parameter
or for value out of range of the parameter) and shall raise the ApplicationError
InvalidManifest. c(RS_UCM_00012)

[SWS_UCM_00104] Consistency Check of Package d UCM shall raise the Appli-
cationError PackageInconsistent in case the package to be processed is not
consistent. c(RS_UCM_00012)

[SWS_UCM_00003] Cancelling the package processing d UCM shall provide a
method Cancel to cancel the running package processing. UCM shall then imme-
diately abort the current package processing task, undo any changes and free any
reserved resources. c(RS_UCM_00020)

[SWS_UCM_00024] Revert all processed Software Packages d UCM shall provide a
method RevertProcessedSwPackages to revert all changes done with ProcessS-
wPackage. c(RS_UCM_00008)

Depending on the capabilities of UCM and of the updated target, Cancel and Re-
vertProcessedSwPackages shall revert all the changes that have been applied by
ProcessSwPackage. For example, if an application with large resource files is up-
dated “in place” (i.e. in the same partition) then it might not be feasible to revert the
update. In this case, to perform a rollback the triggering application could download a
Software Package to restore a stable version of the application.

22 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7.4 Status Reporting

Once Software Packages are transferred to UCM, they are ready to be processed to
finally apply changes to the AUTOSAR Adaptive Platform. In contrast to the trans-
mission, the processing and activation tasks have to happen in a strict sequential order.

To give an overview of the update sequence, the global state of UCM is described in
this section. The details of the processing and activation phases and the methods are
specified in the 7.3 and 7.5.

The global state of UCM can be queried using the field CurrentStatus. The state
machine for CurrentStatus is shown in Fig. 7.4.

[SWS_UCM_00019] Status Field of Package Management d The global state of UCM
shall be provided using the field CurrentStatus c(RS_UCM_00024)

PackageManagerStatus

BUSY

do / process SW package

READYACTIVATING

do / activate

Initial

IDLE

ACTIVATEDROLLING-BACK

do / roll back to old version

ROLLED-BACK CLEANING_UP

do / clean up

FAILED

on Success

ProcessSwPackage()

RevertProcessedSwPackages()

Rollback()

CancelFinish()

on
ErrorDuringActivation Activate

Rollback()
ProcessSwPackage()

RevertProcessedSwPackages()

Finish()

Figure 7.4: State Machine for the package processing using service interface: Package-
Management

UCM supported method calls for each value of field CurrentStatus are shown in
Fig. 7.4.

[SWS_UCM_00086] Unsupported method calls d Unsupported method calls shall
raise the ApplicationError OperationNotPermitted. c(RS_UCM_00024)

23 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00080] Idle state of Package Management d kIdle shall be the default
state. Once ProcessSwPackage is performed successfully, this state shall only be
entered if a Clean-up has been performed successfully. c(RS_UCM_00024)

[SWS_UCM_00081] Busy state of Package Management d kBusy state shall be
set only if ProcessSwPackage has been called. This shall only be possible, if Cur-
rentStatus is reported as kIdle or kReady. c(RS_UCM_00024)

[SWS_UCM_00017] Sequential Software Package Processing d Once method
ProcessSwPackage has been called by a client, further calls to the same
method shall be rejected with ApplicationError GeneralReject as long
as CurrentStatus is different than kIdle or kReady. c(RS_UCM_00001,
RS_UCM_00003, RS_UCM_00026)

[SWS_UCM_00082] Exit from Busy state of Package Management d kBusy state
shall be exited when processing of called method ProcessSwPackage or Revert-
ProcessedSwPackages has finished or when the processing of the package has
been interrupted by calling Cancel. Following state reported by CurrentStatus is
kCleaning-up in case of a RevertProcessedSwPackages call or kReady in case
of a ProcessSwPackage completion or in case of a Cancel call. c(RS_UCM_00024)

[SWS_UCM_00083] Ready state of Package Management d kReady state shall be
reported

• after the package processing is finished successfully or

• Cancel has been performed.

• when Activate fails due to an ApplicationError MissingDependencies.

c(RS_UCM_00024)

[SWS_UCM_00084] Activating state of Package Management d kActivating
shall be set when Activate is called. This prepares the updated software to be
executed in the next restart of the system or Function Group. c(RS_UCM_00024)

After Activate was performed successfully (all dependencies are satisfied), the sys-
tem has to be restarted in case a A/B partition is used. In case the A/B partition is
not used, all affected Function Groups or the platform could be restarted. Immediately
after the processed Software Cluster has been restarted, a system check has to be
performed in order to make sure the system is able to start up as expected. With this
check it is verified that other safety relevant software like Functional Cluster Platform
Health Manager is running and user can be protected from any issues caused by the
update after the update has finished.

[SWS_UCM_00085] Activated state of Package Management d kActivated state
shall be set when system or all impacted Function Groups have been successfully
restarted into verify Function Group state. c(RS_UCM_00024)

UCM monitors FunctionGroupStates from State Management [5] to conclude if activa-
tion was successful. kActivated state gives the client controlling the update pro-
cess a chance to perform verification test, though functionality in verification state can

24 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

be limited. Client can also coordinate the results over several AUTOSAR Adaptive
Platforms and still perform a Rollback if verification indicates the need for it.

If the system check is successful, the client can decide either to Rollback the current
active processing so that the previous processed working software gets started, or to
perform Finish so that the changes of processed software become permanent. By
calling Finish a clean-up is initiated and in case of A/B partition, a swap between
the partitions happens and the newly inactive partition becomes a copy of the newly
active partition. In case Finish succeeds (including the clean-up), the current Cur-
rentStatus changes to kIdle.

For Rollback the update software needs to be deactivated and possibly reactivated
from original version. e.g. self-update of UCM. For this reason Rollback is also
performed through two states, similarly as activation. Calling Rollback sets UCM
into kRollingBack state where original software version is made executable and
where original software is activated by the State Management [5], then UCM goes to
kRolledBack state. In this state all the changes introduced during update process
have been deactivated and can be cleaned by calling Finish.

[SWS_UCM_00126] Entering the RollingBack state d kRollingBack shall be set
when Rollback is called. This prepares the original software to be executed in the
next restart of the system or Function Group. c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00111] Entering the Rolled-back state d UCM shall switch the state
into kRolledBack when State Management FunctionGroupState field indicates that
all the software updated have been restarted or shutdown. c(RS_UCM_00008,
RS_UCM_00030)

[SWS_UCM_00146] Entering the Cleaning-up state d UCM shall switch the state into
kCleaning-up state when Finish or RevertProcessedSwPackages is called. At
that point of the sequence, UCM shall clean up all temporary data of the processed
packages (e.g. remove the "physical" software package [e.g. zip file] used to transport
the the SoftwareCluster to the UCM). c(RS_UCM_00008, RS_UCM_00030)

[SWS_UCM_00127] Finishing update sequence d kIdle shall be set when Finish
is called and the clean-up has been successfully performed. This finishes the update
sequence and next sequence can be started. c(RS_UCM_00008, RS_UCM_00030)

7.5 Activation and Rollback

[SWS_UCM_00108] Execution of the update software d UCM shall only commit up-
dates which have been successfully executed. As part of Activation sequence a con-
text switch to updated software is performed and updated software is executed, before
update sequence can be successfully Finished. c(RS_UCM_00030)

[SWS_UCM_00027] Notification of Activation or Rollback d UCM shall notify the
activation or rollback of software packages to other Functional Clusters of the AUTOSAR
Adaptive Platform. c(RS_UCM_00011)

25 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Vendor specific solution dictates to which modules this information shall be made avail-
able, in which form and if this is done directly when change is done or when change is
executed.

7.5.1 Activation

The SoftwareCluster state kPresent does not express whether a Soft-
wareCluster is currently executed or not.

[SWS_UCM_00107] Activated state d UCM state kActivated shall express that
new version of updated SoftwareCluster is executed. c(RS_UCM_00008,
RS_UCM_00030)

The state management on the level of execution is handled by the UCM’s client control-
ling the update process.

UCM has to be able to update several SoftwareClusters for an update campaign.
However, these SoftwareClusters could have dependencies not satisfied if updates
are processed and activated one by one. Therefore, UCM splits the activation action
from the general package processing.

[SWS_UCM_00026] Dependency Check d At activation (i.e. when Activate is
called), UCM shall check that dependencies described in the SoftwareClusters
are all fulfilled. Unfulfilled dependencies shall raise the ApplicationError Miss-
ingDependencies. c(RS_UCM_00007)

[SWS_UCM_00025] Activation of SoftwareClusters d UCM shall offer method Ac-
tivate to enable execution of any pending changes from the previously processed
Software Packages. After Activate the new set of SoftwareClusters can be
started. Activation covers all the processed Software Packages for all the clients. c
(RS_UCM_00021)

[SWS_UCM_00022] Shared Activation of Software Packages d UCM shall activate
all the processed Software Packages when Activate is called. c(RS_UCM_00021)

The activation method could either lead to a full system reset or restart of Function
Groups impacted by the Software Package. When Software Package updates under-
lying OS, AUTOSAR Adaptive Platform or any Application which is configured to
be part of Machine State function group, the execution of updated software occurs
through System Reset. In other cases function group restarts can be used to execute
the updated software. Meta-data of Software Package defines the activation method,
but it can be overruled using an optional input argument indicating if a system reset or
Function Group restart will occur.

The UCM does not trigger the restart of processed software. This needs to be per-
formed by the client application. This is due to the fact that such restart might need
to be synchronized between several Platforms/ECUs (e.g. during an update campaign
where several dependent Software Packages from several ECUs have to be updated).

26 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00109] Entering the Activated state d UCM shall switch from kActi-
vating state to kActivated when the State Management [5] FunctionGroupState
field notifies that the updated software is executed successfully i.e. when verify state
is reported by State Management [5]. c(RS_UCM_00008, RS_UCM_00030)

7.5.2 Rollback

[SWS_UCM_00005] Rollback to the software prior to Finish the update process d
UCM shall provide a method Rollback to recover from an activation that went wrong.
c(RS_UCM_00008)

Rollback can be called in the case of A/B partitions or UCM uses some other solution to
maintain backups of updated or removed Software Packages.

[SWS_UCM_00110] Rolling-back the software update d During Rolling-Back UCM
shall disable the changes done by the software update. c(RS_UCM_00008)

[SWS_UCM_00142] Prevent software from blocking the Rollback operation d
While Rolling-Back, UCM can forcefully shutdown the newly processed software (i.e
the one that needs to be the Rolled-back), if needed, in order to avoid this software
blocking the Rollback operation. c(RS_UCM_00008)

7.5.3 Boot options

During update process the executed software is switched from original software to up-
dated software and in case of rollback back, from updated software to original version.
Which version of software is executed is dependent on the UCM state and this is man-
aged by the UCM. In case of platform and OS update the switch between software
versions occurs through system reset and depending on the system design the Exe-
cution Management [3] might be started before UCM. In this case there can’t be direct
interface between UCM and Execution Management [3] to define which versions of soft-
ware would be executed. Instead this would be controlled through persistent controls
which are referred as Boot options in this document.

[SWS_UCM_00094] Management of executable software d UCM shall manage which
version of software is available for the Execution Management [3] to launch. c
(RS_UCM_00021)

During the kActivating state UCM modifies the Boot options so that in the next
restart for the updated software the new versions will be executed. In the kRolling-
Back state UCM modifies the Boot options so that in the next restart of the updated
software the original versions will be executed. Successful exit from kActivating
and kRollingBack states is triggered by the FunctionGroupState from State Man-
agement.

27 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

[SWS_UCM_00095] Entering the Activated state d UCM shall switch from kActi-
vating state into the kActivated state when FunctionGroupState from State Man-
agement [5] indicates that updated software has successfully reached the Application
state kRunning (i.e. when State Management report that the FunctionGroup that is
mapped to the updated Software has reached the verify state). c(RS_UCM_00008,
RS_UCM_00030)

[SWS_UCM_00096] Entering the Rolled-back state d UCM shall switch from
kRollingBack state into the kRolledBack state when FunctionGroupState from
State Management [5] indicates that original software has successfully reached the
Application state kRunning. c(RS_UCM_00008, RS_UCM_00030)

7.5.4 Failing Activation

[SWS_UCM_00097] Entering the Failed state d UCM shall switch from kActivat-
ing state to kFailed state when FunctionGroupState from State Management [5]
indicates that updated software has not successfully reached the Running state (i.e.
when State Management reports that the FunctionGroup that is mapped to the updated
Software has not been able to reach the Verify state because one [or more] process
of the updated software has not successfully reach the Process state kRunning). c
(RS_UCM_00008, RS_UCM_00030)

7.5.5 Boot monitoring

Activation failure during OS and Platform-self updates can lead to state that system
isn’t able to reach point where UCM and the client are able to function as expected and
are able to execute the rollback. For these cases system should include component
which is responsible to monitor that the OS and Platform will start up correctly. In case
of failure, the Boot monitoring component should trigger a reset or modify the Boot
options to trigger a rollback.

7.5.6 Finishing activation

[SWS_UCM_00020] Finishing the packages activation d UCM shall provide a method
Finish to commit all the changes and clean up all temporary data of the packages
processed.

UCM should also remove Software Packages, logs or any older versions of changed
software to save storage space. It is up to implementer to remove or not the software
packages. c(RS_UCM_00015)

For UCM to be able to free all unneeded resources while processing the Finish re-
quest, it is up to the vendor and platform specific implementation to make sure that
obsolete versions of changed SoftwareClusters aren’t executed anymore.

28 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

7.6 Logging and history

[SWS_UCM_00012] Log message retrieving d UCM shall provide a method Get-
Log to retrieve all log messages that have been stored by UCM for specific id. c
(RS_UCM_00022)

[SWS_UCM_00143] Log level setting d UCM shall provide a method SetLogLevel
to provide a log level for all subsequent log messages that are stored by UCM. c
(RS_UCM_00022)

[SWS_UCM_00144] Log error d GetLog and SetLogLevel shall be provided only in
the context of a id, otherwise an ApplicationError InvalidTransferId shall
be raised. c(RS_UCM_00022)

[SWS_UCM_00115] History d UCM shall provide a method GetHistory to retrieve all
actions that have been performed by UCM. c(RS_UCM_00032)

7.7 Version Reporting

[SWS_UCM_00004] Report software information d UCM shall provide a method
GetSwClusterInfo of the interface service PackageManagement to provide the
identifiers and versions of the SoftwareClusters that are in state kActivated. c
(RS_UCM_00002)

[SWS_UCM_00030] Report changes d UCM shall provide a method GetSwCluster-
ChangeInfo of the interface service PackageManagement to provide the identifiers
and versions of the SoftwareCluster that are in state kAdded, kUpdated or kRe-
moved. c(RS_UCM_00011)

7.8 SoftwareCluster lifecycle

Initial

ADDED PRESENT

UPDATED

REMOVED

Final

Finish RevertProcessedSwPackages

RevertProcessedSwPackages

Finish

ProcessSwPackage

RevertProcessedSwPackages

FinishProcessSwPackage

Figure 7.5: State Machine for a SoftwareCluster

The state machine in Fig. 7.5 describes the states of a SoftwareCluster. After pro-
cessing a Software Package with a new SoftwareCluster that was not yet existing

29 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

on the AUTOSAR Adaptive Platform, the new SoftwareCluster starts its lifecy-
cle with state kAdded. After finishing update process with method Finish, it is in state
kPresent. In another update process, by processing a Software Package with new
data for the SoftwareCluster, it changes to kUpdated and returns to kPresent
once update process has finished. If a Software Package is processed and it involves
the deletion of an existing SoftwareCluster the state changes to kRemoved. Fin-
ish commits the change and the removed SoftwareCluster is not reported by UCM
any more. The state machine in Fig. 7.5 describes the states of a SoftwareCluster.
After processing a Software Package with a new SoftwareCluster that was not yet
existing on the AUTOSAR Adaptive Platform, the new SoftwareCluster starts
its lifecycle with state kAdded. After finishing update process with method Finish,
it is in state kPresent. In another update process, by processing a Software Pack-
age with new data for the SoftwareCluster, it changes to kUpdated and returns
to kPresent once update process has finished. If a Software Package is processed
and it involves the deletion of an existing SoftwareCluster the state changes to
kRemoved. Finish commits the change and the removed SoftwareCluster is not
reported by UCM any more.

7.9 Securing Software Updates

UCM provides service interface using ara::com. There is no authentication of the client
in UCM’s update sequence.

UCM shall authenticate the Software Package. You can refer to 7.2

[SWS_UCM_00103] Update to older software cluster version than currently
present d In order to avoid an attacker to install an old software cluster version hav-
ing known security flaws, UCM shall prohibit its processing. In case of such attempt,
UCM TransferExit shall raise the ApplicationError OldVersion, keep within
history this tentative and delete old Software Package. c(RS_UCM_00031)

30 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

8 API specification

There are no APIs defined in this release.

31 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

9 Service Interfaces

9.1 Type definitions

This chapter lists all types provided by the UCM.

9.1.1 TransferIdType

[SWS_UCM_00031] TransferIdType table d

Name TransferIdType

Kind TYPE_REFERENCE

Derived from uint32_t

Description Represents a handle identifier used to reference a particular transfer request.

Table 9.1: Implementation Data Type - TransferIdType

c(RS_UCM_00019, RS_UCM_00025)

9.1.2 SwInfoName

[SWS_UCM_00071] SwInfoName table d

Name SwInfoName

Kind STRING

Derived from -

Description SoftwareCluster name.

Table 9.2: Implementation Data Type - SwInfoName

c(RS_UCM_00002)

9.1.3 ByteVectorType

[SWS_UCM_00032] ByteVectorType table d

Name ByteVectorType

Kind VECTOR

Subelements uint8_t

Derived from -

Description Byte vector representing raw data.

Table 9.3: Implementation Data Type - ByteVectorType

c(RS_UCM_00025)

32 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

9.1.4 SwPackageStateType

[SWS_UCM_00038] SwPackageStateType table d
Name SwPackageStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of a Software Package on the Platform.

Range / Symbol Limit Description

kTransferring 0x00 Software package is being transferred, i.e. not completely received.

kTransferred 0x01 Software package is completely transferred and ready to be
processed.

kProcessing 0x02 Software package is currently being processed.

kProcessed 0x03 Software package processing finished.

Table 9.4: Implementation Data Type - SwPackageStateType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

9.1.5 SwPackageInfoType

[SWS_UCM_00039] SwPackageInfoType table d

Name SwPackageInfoType

Kind STRUCTURE

Subelements Name SwInfoName

Version StringType

TransferID TransferIdType

Size uint8_t

State SwPackageStateType

Derived from -

Description Represents the information of a Software Package.

Table 9.5: Implementation Data Type - SwPackageInfoType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

9.1.6 SwPackageInfoVectorType

[SWS_UCM_00040] SwPackageInfoVectorType table d

33 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name SwPackageInfoVectorType

Kind VECTOR

Subelements SwPackageInfoType

Derived from -

Description Represents a dynamic size array of Software Packages

Table 9.6: Implementation Data Type - SwPackageInfoVectorType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

9.1.7 SwClusterStateType

[SWS_UCM_00077] SwClusterStateType table d

Name SwClusterStateType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of a SoftwareCluster on the adaptive platform.

Range / Symbol Limit Description

kPresent 0x00 State of a SoftwareCluster that is installed on the adaptive platform
and installation has finished.

kAdded 0x01 State of a SoftwareCluster that has been newly installed.

kUpdated 0x02 State of a SoftwareCluster that has been updated.

kRemoved 0x03 State of a SoftwareCluster that has been removed.

Table 9.7: Implementation Data Type - SwClusterStateType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

9.1.8 SwClusterInfoType

[SWS_UCM_00078] SwClusterInfoType table d

Name SwClusterInfoType

Kind STRUCTURE

Subelements Name SwInfoName

Version StringType

State SwClusterStateType

Derived from -

Description Represents the information of a SoftwareCluster.

Table 9.8: Implementation Data Type - SwClusterInfoType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

34 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

9.1.9 SwClusterInfoVectorType

[SWS_UCM_00079] SwClusterInfoVectorType table d
Name SwClusterInfoVectorType

Kind VECTOR

Subelements SwClusterInfoType

Derived from -

Description Represents a dynamic size array of SoftwareClusters

Table 9.9: Implementation Data Type - SwClusterInfoVectorType

c(RS_UCM_00002, RS_UCM_00006, RS_UCM_00010, RS_UCM_00011,
RS_UCM_00012)

9.1.10 LogLevelType

[SWS_UCM_00041] LogLevelType table d

Name LogLevelType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the severity of the log messages.

Range / Symbol Limit Description

kOff 0x00 Logging is deactivated.

kFatal 0x01 Only fatal messages are logged.

kError 0x02 Only messages up to error level are logged.

kWarning 0x03 Only messages up to warning level are logged.

kInfo 0x04 Only messages up to info level are logged.

kDebug 0x05 Only messages up to debug level are logged.

kVerbose 0x06 Only messages up to verbose level are logged.

Table 9.10: Implementation Data Type - LogLevelType

c(RS_UCM_00022)

9.1.11 LogEntryType

[SWS_UCM_00042] LogEntryType table d

35 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name LogEntryType

Kind STRUCTURE

Subelements LogLevel LogLevelType

Message StringType

Derived from -

Description Represents a single log message with a log level.

Table 9.11: Implementation Data Type - LogEntryType

c(RS_UCM_00022)

9.1.12 LogVectorType

[SWS_UCM_00043] LogVectorType table d

Name LogVectorType

Kind VECTOR

Subelements LogEntryType

Derived from -

Description Represents a list of log messages.

Table 9.12: Implementation Data Type - LogVectorType

c(RS_UCM_00022)

9.1.13 PackageManagerStatusType

[SWS_UCM_00044] PackageManagerStatusType table d

Name PackageManagerStatusType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the state of UCM.

Range / Symbol Limit Description

kIdle 0x00 UCM is ready to start processing if software packages are present.

kReady 0x01 UCM has processed one or several packages and waits for additional
packages, activation or reversion of processed packages.

kBusy 0x02 UCM is currently in the middle of processing a Software Package, i.e.
a client has called ProcessSwPackage.

kActivating 0x03 UCM is activating the processed packages.

kActivated 0x04 Software changes introduced with processed Software Packages has
been activated and executed.

kRollingBack 0x05 UCM is reverting changes introduced with processed packages.

kRolledBack 0x06 Software changes introduced with processed Software Packages has
been deactivated and original software is executed.

5

36 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
kCleaningUp 0x07 Making sure that the system is in a clean state.

kFailed 0x08 Activation failed.

Table 9.13: Implementation Data Type - PackageManagerStatusType

c(RS_UCM_00024, RS_UCM_00026)

9.1.14 ActivateOptionType

[SWS_UCM_00114] ActivateOptionType table d

Name ActivateOptionType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the option parameter type of the Activate method.

Range / Symbol Limit Description

kDefault 0x00 No override, default behaviour.

kFunctionGroupRestart 0x01 Request restart of the functional group.

kSystemReset 0x02 Request reset of the system.

Table 9.14: Implementation Data Type - ActivateOptionType

c(RS_UCM_00021)

9.1.15 ActionType

[SWS_UCM_00132] ActionType table d

Name ActionType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the UCM action.

Range / Symbol Limit Description

kUpdate 0x00 Update of a SoftwareCluster.

kInstall 0x01 Installation of a new SoftwareCluster.
kRemove 0x02 Removal of a SoftwareCluster.

Table 9.15: Implementation Data Type - ActionType

c(RS_UCM_00032)

9.1.16 ResolutionType

[SWS_UCM_00133] ResolutionType table d

37 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name ResolutionType

Kind TYPE_REFERENCE

Derived from uint8_t

Description Represents the result of UCM action.

Range / Symbol Limit Description

kSuccessfull 0x00 UCM’s action was successful.
kFailed 0x01 UCM’s action failed.

Table 9.16: Implementation Data Type - ResolutionType

c(RS_UCM_00032)

9.1.17 GetHistoryType

[SWS_UCM_00134] GetHistoryType table d

Name GetHistoryType

Kind STRUCTURE

Subelements Time uint64_t

Name SwInfoName

Version StringType

Action ActionType

Resolution ResolutionType

Derived from -

Description Time (UTC) in milliseconds of UCM’s action resolution since 01.01.1970.

Table 9.17: Implementation Data Type - GetHistoryType

c(RS_UCM_00032)

9.1.18 GetHistoryVectorType

[SWS_UCM_00135] GetHistoryType table d

Name GetHistoryVectorType

Kind VECTOR

Subelements GetHistoryType

Derived from -

Description Represents a list of UCM actions

Table 9.18: Implementation Data Type - GetHistoryVectorType

c(RS_UCM_00032)

38 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

9.2 Service Interfaces

9.2.1 Provided Service Interfaces

This chapter lists all provided service interfaces of the UCM.

9.2.1.1 Package Management

Port

[SWS_UCM_00073] ProvidedPort PackageManagement d

Name PackageManagement

Kind ProvidedPort Interface PackageManagement

Description

Variation

Table 9.19: Port - PackageManagement

c(RS_UCM_00001)

Service Interface

[SWS_UCM_00131] ProvidedInterface PackageManagement d

Name PackageManagement

NameSpace ara::ucm::pkgmgr

Table 9.20: Service Interfaces - PackageManagement

Fields

Name CurrentStatus

Description The current status of UCM.

Type PackageManagerStatusType

HasGetter true

HasNotifier true

HasSetter false

Table 9.21: Service Interface PackageManagement - Field: CurrentStatus

Methods

39 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name GetSwClusterInfo

Description This method returns a list of SoftwareClusters that are in state kPresent.

FireAndForget false

SwInfo

Description List of installed SoftwareClusters that are in state kPresent.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Table 9.22: Service Interface PackageManagement - Method: GetSwClusterInfo

Name GetSwClusterChangeInfo

Description This method returns a list pending changes to the set of SoftwareClusters on the adaptive platform. The
returned list includes all SoftwareClusters that are to be added, updated or removed. The list of changes
is extended in the course of processing Software Packages.

FireAndForget false

SwInfo

Description List of SoftwareClusters that are in state kAdded,kUpdated or kRemoved.

Type SwClusterInfoVectorType

Variation

Parameter

Direction OUT

Table 9.23: Service Interface PackageManagement - Method: GetSwClusterChangeInfo

Name GetSwPackages

Description This method returns the Software Packages that available in UCM.

FireAndForget false

Packages

Description List of Software Packages.

Type SwPackageInfoVectorType

Variation

Parameter

Direction OUT

Table 9.24: Service Interface PackageManagement - Method: GetSwPackages

Name TransferStart

Description Start the transfer of a Software Package. The size of the Software Package to be transferred to UCM
must be provided. UCM will generate a Transfer ID for subsequent calls to TransferData, TransferExit,
ProcessSwPackage, DeleteTransfer, GetLog and SetLogLevel.

FireAndForget false

size

Description Size (in bytes) of the Software Package to be transferred.

Type uint32_t

Variation

Parameter

Direction IN
5

40 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
id

Description Return TransferId.

Type TransferIdType

Variation

Parameter

Direction OUT

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Table 9.25: Service Interface PackageManagement - Method: TransferStart

Name TransferData

Description Block-wise transfer of a Software Package to UCM.

FireAndForget false

id

Description Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

data

Description Data block of the Software Package.

Type ByteVectorType

Variation

Parameter

Direction IN

blockCounter

Description Block counter value of the current block.

Type uint32_t

Variation

Parameter

Direction IN

Application
Errors

Incorrect-
Block

The block counter value is not as expected.

Application
Errors

Incorrect-
Size

The size of the Software Package exceeds the provided size in TransferStart.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.26: Service Interface PackageManagement - Method: TransferData

Name TransferExit

Description Finish the transfer of a Software Package to UCM.

FireAndForget false

Parameter id
5

41 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Direction IN

Application
Errors

Insuffi-
cientData

TransferExit has been called but total transferred data size does not match expected
data size provided with TransferStart call.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Authentica-
tionFailed

Software Package authentication failed.

Application
Errors

OldVersion Software Package version is too old.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.27: Service Interface PackageManagement - Method: TransferExit

Name DeleteTransfer

Description Delete a transferred Software Package.

FireAndForget false

id

Description Transfer ID of the currently running request.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

GeneralRe-
ject

General reject.

Application
Errors

GeneralMemo-
ryError

A general memory error occured.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.28: Service Interface PackageManagement - Method: DeleteTransfer

Name ProcessSwPackage

Description Process a previously transferred Software Package.

FireAndForget false

id

Description The Transfer ID of this Software Package.

Type TransferIdType

Parameter

Variation

5

42 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
Direction IN

Application
Errors

ServiceBusy Another processing is already ongoing and therefore the current processing request
has to be rejected.

Application
Errors

InvalidMani-
fest

Package manifest could not be read.

Application
Errors

PackageIn-
consistent

Package integrity check failed.

Application
Errors

Insuffi-
cientMemory

Insufficient memory to perform operation.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.29: Service Interface PackageManagement - Method: ProcessSwPackage

Name RevertProcessedSwPackages

Description Revert the changes done by processing (ProcessSwPackage) of one or several software packages.

FireAndForget false

Application
Errors

NothingToRe-
vert

RevertProcessedSwPackages has been called without prior processing of a
Software Package.

Application
Errors

NotAbleToRe-
vertPackages

RevertProcessedSwPackages failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.30: Service Interface PackageManagement - Method: RevertProcessedSwPack-
ages

Name GetSwProcessProgress

Description Get the progress (0 - 100%) of the currently processed Software Package.

FireAndForget false

id

Description The Transfer ID of the Software Package.

Type TransferIdType

Variation

Parameter

Direction IN
progress

Description The progress of the current package processing (0% - 100%). 0x00 ... 0x64, 0xFF
for "’No information available"’

Type uint8_t

Variation

Parameter

Direction OUT

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.31: Service Interface PackageManagement - Method: GetSwProcessProgress

43 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name Cancel

Description This method aborts an ongoing processing of a Software Package.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

Application
Errors

CancelFailed Cancel failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.32: Service Interface PackageManagement - Method: Cancel

Name Rollback

Description Rollback the system to the state before the packages were processed.

FireAndForget false

Application
Errors

Nothing-
ToRollback

Rollback cannot be performed due to no rollback data available.

Application
Errors

NotAble-
ToRollback

Rollback failed.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.33: Service Interface PackageManagement - Method: Rollback

Name Activate

Description This method activates the processed components.

FireAndForget false

option

Description The option of the activate.

Type ActivateOptionType

Variation

Parameter

Direction IN

Application
Errors

Error-
DuringActi-
vation

Activate failed.

Application
Errors

Er-
rorNoValid-
Processing

Activate cannot be performed because previous processing is invalid.

Application
Errors

MissingDe-
pendencies

Activate cannot be performed because of missing dependencies.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.34: Service Interface PackageManagement - Method: Activate

44 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name Finish

Description This method finishes the processing for the current set of processed Software Packages. It does a
cleanup of all data of the processing including the sources of the Software Packages.

FireAndForget false

Application
Errors

GeneralRe-
ject

General reject.

Application
Errors

Opera-
tionNotPer-
mitted

The operation is not supported in the current context.

Table 9.35: Service Interface PackageManagement - Method: Finish

Name SetLogLevel

Description This method sets the log level for a package.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

logLevel

Description The new log level to be used.

Type LogLevelType

Variation

Parameter

Direction IN

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.36: Service Interface PackageManagement - Method: SetLogLevel

Name GetLog

Description Getter method to poll for the log messages of the current Session.

FireAndForget false

id

Description The Transfer ID.

Type TransferIdType

Variation

Parameter

Direction IN

log

Description The log messages.

Type LogType

Variation

Parameter

Direction OUT

Application
Errors

Invalid-
TransferId

The Transfer ID is invalid.

Table 9.37: Service Interface PackageManagement - Method: GetLog

45 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Name GetHistory

Description Getter method to retrieve all actions that have been performed by UCM.

FireAndForget false

history

Description The history of all actions that have been performed by UCM.

Type GetHistoryVectorType

Variation

Parameter

Direction OUT

Table 9.38: Service Interface PackageManagement - Method: GetHistory

c(RS_UCM_00001, RS_UCM_00002, RS_UCM_00008, RS_UCM_00010,
RS_UCM_00011, RS_UCM_00015, RS_UCM_00018, RS_UCM_00021,
RS_UCM_00022, RS_UCM_00023, RS_UCM_00024, RS_UCM_00025,
RS_UCM_00032)

9.3 Application Errors

This chapter lists all application errors of the UCM.

9.3.1 Application Error Domain

9.3.1.1 UCMErrorDomain

[SWS_UCM_00136] UCMErrorDomain d

Name Code Description

InsufficientMemory 1 Insufficient memory to perform operation.

IncorrectBlock 2 The block counter value is not as expected.

IncorrectSize 3 The size of the Software Package exceeds the provided size in
TransferStart.

InvalidTransferId 4 The Transfer ID is invalid.

OperationNotPermitted 5 The operation is not supported in the current context.

InsufficientData 6 TransferExit has been called but total transferred data size does not
match expected data size provided with TransferStart call.

PackageInconsistent 7 Package integrity check failed.

AuthenticationFailed 8 Software Package authentication failed.

OldVersion 9 Software Package version is too old.

GeneralReject 10 General reject.

GeneralMemoryError 11 A general memory error occured.

ServiceBusy 12 Another processing is already ongoing and therefore the current
processing request has to be rejected.

5

46 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
InvalidManifest 13 Package manifest could not be read.

NothingToRevert 14 RevertProcessedSwPackages has been called without prior
processing of a Software Package.

NotAbleToRevertPackages 15 RevertProcessedSwPackages failed.

CancelFailed 16 Cancel failed.
NothingToRollback 17 Rollback cannot be performed due to no rollback data available.

NotAbleToRollback 18 Rollback failed.
ErrorDuringActivation 19 Activate failed.

ErrorNoValidProcessing 20 Activate cannot be performed because previous processing is
invalid.

MissingDependencies 21 Activate cannot be performed because of missing dependencies.

Table 9.39: Application Errors of UCMErrorDomain

c(RS_UCM_00006, RS_UCM_00007, RS_UCM_00012, RS_UCM_00013,
RS_UCM_00014)

47 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

10 Sequence diagrams

10.1 Update process

sd Update

Diagnostic Application (OEM
specific)

«ServiceProvider»

:UCM

ref
Data transmission

ref
Processing

ref
Activation

Figure 10.1: Sequence diagram showing the update process

48 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

10.2 Data transmission

sd Data transmission

«ServiceProvider»

:UCM

Diagnostic Application (OEM
specific)

loop for each sw-package

loop for each segment of a sw-package

opt

:GeneralResponseType

:TransferExitReturnType

storeData
(byteVector)

SetLogLevel(TransferId, LogLevel): GeneralResponseType

TransferExit(TransferId): TransferExitReturnType

TransferData(TransferId, ByteVectorType, uint32): TransferDataReturnType

checkTransferredPackage()

:TransferDataReturnType

TransferStart(uint32): TransferStartReturnType

:TransferStartReturnType

Figure 10.2: Sequence diagram showing the data transmission

49 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

10.3 Package processing

«ServiceProvider»

:External Reference

Diagnostic Application (OEM
specific)

opt

opt

opt continously

GetSwProcessProgress(TransferId):
uint8

CurrentStatus= :BUSY

:progress = 100, SUCCESS

:ProcessSwPackageReturnType

GetSwProcessProgress(TransferId):
uint8

ProcessSwPackage(TransferId): ProcessSwPackageReturnType

SetLogLevel(TransferId, LogLevel)

CurrentStatus= :READY

:
SwPackageInfoVectorType

CurrentStatus= :IDLE

:progress

GetSwPackages(): SwPackageInfoVectorType

Subscribe(CurrentStatus)

Figure 10.3: Sequence diagram showing the package processing

50 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

10.4 Activation

Diagnostic Application (OEM
specific)

«ServiceProvider»

:External Reference

«ServiceSwCompo...

State Management

FunctionGroupState_{Function Group}
(Verify)

CurrentStatus(Activating)

CurrentStatus(Activated)

:ActivateReturnType

:FinishReturnType

checkPackageDependencies()

Activate(): ActivateReturnType

Cleanup()

:READY

Finish(): FinishReturnType

Subscribe(FunctionGroupState_{Function Group})

Subscribe(CurrentStatus)

Figure 10.4: Sequence diagram showing the activation process

51 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

A Not applicable requirements

none

52 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractEvent , AbstractImplementationDataTypeElement , AbstractServiceInstance,
AdaptiveModuleInstantiation, AdaptiveSwcInternalBehavior, ApplicationEndpoint, ApplicationError,
ApplicationPartitionToEcuPartitionMapping, AsynchronousServerCallResultPoint, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance,
BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , BuildActionEnvironment, CanTp
Address, CanTpChannel, CanTpNode, Chapter, CheckpointTransition, ClassContentConditional, ClientId
Definition, ClientServerOperation, Code, CollectableElement , ComManagementMapping, Comm
ConnectorPort , CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds,
ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , CryptoServiceMapping, Data
PrototypeGroup, DataTransformation, DdsRpcServiceDeployment, DependencyOnArtifact, Deterministic
ClientResourceNeeds, DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticData
Element, DiagnosticFunctionInhibitSource, DiagnosticMasterToSlaveEventMapping, DiagnosticRoutine
Subfunction, DoIpLogicAddress, E2EProfileConfiguration, ECUMapping, EOCExecutableEntityRef
Abstract , EcuPartition, EcucContainerValue, EcucDefinitionElement , EcucDestinationUriDef, Ecuc
EnumerationLiteralDef, EcucQuery, EcucValidationCondition, End2EndEventProtectionProps, EndToEnd
Protection, EventMapping, ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeature
MapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeature
Restriction, FMFeatureSelection, FieldMapping, FireAndForgetMapping, FlatInstanceDescriptor, Flexray
ArTpNode, FlexrayTpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, General
Parameter, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave, HealthChannel , HeapUsage, Hw
AttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignalToI
PduMapping, ISignalTriggering, IdentCaption, InterfaceMapping, InternalTriggeringPoint, J1939Shared
AddressCluster, J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, Mac
MulticastGroup, McDataInstance, MemorySection, MethodMapping, ModeDeclaration, ModeDeclaration
Mapping, ModeSwitchPoint, NetworkEndpoint, NmCluster , NmNode, NvBlockDescriptor, Packageable
Element , ParameterAccess, PduToFrameMapping, PduTriggering, PerInstanceMemory, PersistencyFile
Proxy, PersistencyKeyValuePair, PhmAction, PhmActionItem, PhmActionList, PhmArbitration, Phm
LogicalExpression, PhmRule, PhmSupervision, PhysicalChannel , PortGroup, PortInterfaceMapping,
PossibleErrorReaction, ProcessToMachineMapping, Processor, ProcessorCore, PskIdentityToKeySlot
Mapping, ResourceConsumption, ResourceGroup, RestAbstractEndpoint , RestElementDef, Rest
ResourceDef, RootSwComponentPrototype, RootSwCompositionPrototype, RptComponent, Rpt
Container, RptExecutableEntity, RptExecutableEntityEvent, RptExecutionContext, RptProfile, RptService
Point, RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobMapping, SecOcJobRequirement,
SecureComProps, SecureCommunicationAuthenticationProps, SecureCommunicationDeployment ,
SecureCommunicationFreshnessProps, ServerCallPoint , ServiceEventDeployment , ServiceField
Deployment , ServiceInstanceToSignalMapping, ServiceInterfaceElementMapping, ServiceInterface
ElementSecureComConfig, ServiceInterfaceMapping, ServiceMethodDeployment , ServiceNeeds, Signal
BasedFieldToISignalTriggeringMapping, SocketAddress, SomeipEventGroup, SomeipProvidedEvent
Group, SomeipTpChannel, SpecElementReference, StackUsage, StartupConfig, StructuredReq,
SupervisionCheckpoint, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SwcTo
ApplicationPartitionMapping, SwcToEcuMapping, SwcToImplMapping, SystemMapping, TcpOptionFilter
List, TimeBaseResource, TimingCondition, TimingConstraint , TimingDescription, TimingExtension
Resource, TimingModeInstance, TlsCryptoCipherSuite, TlsJobMapping, Topic1, TpAddress, Traceable
Text, TracedFailure, TransformationProps, TransformationPropsToServiceInterfaceElementMapping,
TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, ViewMap, VlanConfig, Wait
Point

Attribute Type Mul. Kind Note

5

53 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
Class Identifiable (abstract)

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags: xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models.
The form of the UUID (Universally Unique Identifier) is
taken from a standard defined by the Open Group (was
Open Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and by
many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed.
If the id namespace is omitted, DCE is assumed.
An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table B.1: Identifiable

54 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Class SoftwareCluster
Package M2::AUTOSARTemplates::AdaptivePlatform::UploadableSoftwarePackage

Note This meta-class represents the ability to define an uploadable software-package, i.e. the SoftwareCluster
shall contain all software and configuration for a given purpose.

Tags: atp.Status=draft
atp.recommendedPackage=SoftwareClusters

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

contained
ARElement

ARElement * ref This reference represents the collection of model
elements that cannot derive from UploadablePackage
Element and that contribute to the completeness of the
definition of the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft

containedFibex
Element

FibexElement * ref This allows for referencing FibexElements that need to be
considered in the context of a SoftwareCluster.

Tags: atp.Status=draft

contained
Package
Element

UploadablePackage
Element

* ref This reference identifies model elements that are required
to complete the manifest content.

Stereotypes: atpSplitable
Tags: atp.Splitkey=containedPackageElement
atp.Status=draft

contained
Process

Process * ref This reference represent the processes contained in the
enclosing SoftwareCluster.

Tags: atp.Status=draft

dependsOn SoftwareCluster
Dependency

* aggr This aggregation can be taken to identify a dependency
for the enclosing SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=dependsOn
atp.Status=draft

design SoftwareClusterDesign * ref This reference represents the identification of all Software
ClusterDesigns applicable for the enclosing Software
Cluster.

Stereotypes: atpUriDef
Tags: atp.Status=draft

diagnostic
Address

SoftwareCluster
DiagnosticAddress

* aggr This aggregation represents the collection of diagnostic
addresses that apply for the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=diagnosticAddress
atp.Status=draft

diagnostic
Extract

DiagnosticContribution
Set

0..1 ref This reference represents the definition of the diagnostic
extract applicable to the referencing SoftwareCluster

Tags: atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* ref This reference identifies AdaptiveModuleInstantiations
that need to be included with the SoftwareCluster in order
to establish infrastructure required for the installation of
the SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=moduleInstantiation
atp.Status=draft

subSoftware
Cluster

SoftwareCluster * ref This reference is used to identify the sub-Software
Clusters of an "umbrella" SoftwareCluster.

Stereotypes: atpSplitable
Tags: atp.Splitkey=subSoftwareCluster
atp.Status=draft

5

55 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

4
Class SoftwareCluster
version String 1 attr This attribute can be used to describe a version

information for the enclosing SoftwareCluster. The format
of the version as well as how to tell a lower from a higher
version is not prescribed by the AUTOSAR standard.

Table B.2: SoftwareCluster

56 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

C Interfaces to other Functional Clusters (informative)

C.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document. In addi-
tion, the standardized public interfaces which are accessible by user space applications
(see chapter 8) can also be used for interaction between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider.

C.2 Interfaces Tables

C.2.1 UCM update notification

UCM shall provide the notification to other Functional Clusters that changes have been
done to the software. This enables other functional clusters to check if updated man-
ifests have changes relevant for the concerned Functional Cluster. This can be done
through the field CurrentStatus provided by the UCM service.

57 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D Packages distribution within vehicle (informative)

D.1 Overview

To prepare next releases of this specification, Update and Configuration Management
team appends to this specification its future image of packages distribution from a
backend within a vehicle and UCMs coordination by sharing sequence diagrams. Inten-
tion of this appendix is to gather comments from Autosar community to ensure future
API’s quality. All described methods have to be later specified.

This vision involves so called UCM master (former Vehicle Update Manager, VUM)
which is communicating with backend through network means that are out of scope
for this work. This UCM master could be replaced by another UCM (UCM slaves) if UCM
master is failing.

UCM master receives a vehicle package manifest container sent by backend which
contains all software cluster descriptions along with campaign orchestration needed
by UCM to distribute the Software Packages within vehicle. After manifest recep-
tion and authentication, UCM master streams the Software Packages to the re-
lated UCM slaves, perform processing and activation according to campaign or-
chestration defined sequence. More details could be found in document [9]

Figure D.1: Vehicle package overview

It is considered that distribution method of packages via internet network into vehicle
could also be performed using diagnostic. For instance, if there would be a car com-
munication issue, we could imagine a technician from a garage would download from

58 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

a backend a vehicle package manifest along software packages that would then be
pushed to UCM master via diagnostic service manager and diagnostic application.

UCM master is generally acting like an application or UCM client, following the already
specified general sequence (transfer, process, activate/rollback, finish).

Figure D.2: Vehicle infrastructure example

D.2 Packages distribution sequence diagrams

D.2.1 UCM slave discovery

For UCM master to distribute software packages to other UCM slaves, UCM master has
to discover other UCM slaves in vehicle. This discovery could be at boot or later but at
least before any communication with backend are engaged. Each UCM has a unique
identifier that is part of SwClusterInfo type to help UCM master streaming packages to
target UCM slaves.

UCM master offers UCM slave discovery service and receives data which are necessary
to transfer packages to certain destinations. UCM slaves send these data by responding
the service from UCM master. The data could be a combination of the destination
information (e.g. IP address, MAC address, port number) but also could be a key
which could link to the destination information by using certain structure (e.g. KVS,
mapping table). UCM slave discovery can be done in a similar process to SOME/IP
Service Discovery [6].

59 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Figure D.3: Discover UCM slaves

D.2.2 Collect information of present SWCLs in vehicle

From a regular basis, UCM master and slaves can collect information of present SWCLs
from the other Adaptive Platforms of the vehicle in order to be used later when com-
municating with backend and then determine if there are new actions (update, remove,
install) required.

60 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Adaptive platform BAdaptive platform A

sd [U seCase] 1. Determine installed SWCL in vehicle [Determine installed SWCL in vehicle]

U CM master

(from Actors)

UCM slave 1

(from Actors)

Diagnostic tool

(from Actors)

:SwClusterInfoV ector

GetSwClusterInfo()

Figure D.4: Collect information of SWCLs present in vehicle from several Adaptive Plat-
forms

D.2.3 Action computation

In order to find out if there is a new update available from backend or the need to install
or remove a SWCL, vehicle and backend have to share their current status and either
backend or vehicle have to compute what UCM action is needed.

Backend will have the possibility to push a package into the vehicle when communica-
tion is established, for instance for security purpose.

Communication trial between backend and UCM master can be done on driver’s request
or from a scheduler.

D.2.3.1 Pull package from backend into vehicle

Case where vehicle is computing the difference between SWCLs versions that are
present in vehicle and the ones available in backend.

61 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Adaptive Platform CAdaptive Platform BAdaptive Platform A

V ehicle

sd [U seCase] 2.1 Pull package from backend [2.1 Pull package from backend]

U CM master

(from Actors)

Backend

(from Actors)

U CM slave 1

(from Actors)

U CM slave 2

(from Actors)

opt Optional

UCM master is trying to
establish communication
with backend based on
scheduler and depending of
platform and vehicle state

SWClusters that can be
updated but also pushed by
backend

UCM Master could regularly
(scheduler or diag trigger) update
whole vehicle installed SWCluters

Add UCM id in
SwClusterInfoVector
type

UCM master should discover at
vehicle boot the other UCM slaves
--> New API

V ehicleSwPackage
()

:CommunicationEstablished

EstablishCommunicationChannel()

MergeSwClusterInfoVectors()

RequestSwClusterPackages
(SwClusterInfoVector)

:SwClusterInfoVector

ComputeU pdatesAndDependencies()

GetSwClusterInfo()

AvailableSwClusters(): SwClusterInfoVector

:SwClusterInfoVector

SendSwClusterInfo(SwClusterInfoVector, VIN)

GetSwClusterInfo()

Figure D.5: Pull package from backend

62 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D.2.3.2 Push package from backend into vehicle

Case where backend is computing the difference between SWCLs versions that are
present in vehicle and the ones available in backend.

V ehicle

sd [U seCase] 2.2 pushed package from backend [2.2 pushed package from backend]

U CM master

(from Actors)

Backend

(from Actors)

U CM slave 1

(from Actors)

U CM slave 2

(from Actors)

Backend is trying to establish
communication with UCM master

opt Optionnal
Backend is requesting installed
SWClusters in vehicle

:SwClusterInfoVector, VIN

GetSwClusterInfo()

V ehicleSwPackage
()

MergeSwClusterInfoVectors()

ComputeU pdatesAndDependencies()

:SwClusterInfoVector

EstablishCommunicationChannel()

:CommunicationEstablished

SendSwClusterInfo()

:SwClusterInfoVector

GetSwClusterInfo()

Figure D.6: Push package from backend

D.2.4 Packages transfer from backend into targeted UCM

To reduce as much as possible the amount of data temporarily stored between back-
end and targeted UCM, package is divided in blocks that are streamed and counted,
allowing easy resume in case of communication loss. Driver should be asked before
downloading package as communication could have safety and cost impact.

63 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

Adaptive platform CAdpative platform BAdaptive Platform A

V ehicle

sd [U seCase] 3 D istribute Software packages to UCM slaves [3 Distribute Software packages to UCM slaves]

U CM master

(from Actors)

U CM slave 1

(from Actors)

Backend

(from Actors)

U CM slave 2

(from Actors)

Driver

(from Actors)

par Transfers could be performed in parallel

loop Streaming of package A

loop Streaming of package B

U CM master creates connection
with UCM slaves

Counter argument for
efficient resume

opt

TemporyStoreV ehiclePackageManifest()

checkAvailableMemory()

BlockDownload(Block): PackageAName, counter

BlockDownload(Block): PackageBName, counter

CheckAvailableMemory()

SendV ehicleSwPackageManifest(VehicleSwPackageManifest)

TransferStart(SWCLPackageASize)

DownloadBlockTrigger(PackageAName, counter)

DownloadBlockTrigger(PackageBName, counter)

TransferStart
(SWCLPackageBSize)

:Approved

transferExit(transferId1)

transferExit(TransferId2)

:transferId1

WaitApproval()

DownloadFinished(PackageAName)

DownloadFinished(PackageBName)

AskDriverForPackageDownload()

:transferDataReturn

:transferDataReturn

ParseSWCLPackageManisfests(): ((UCM Slave1 Id,
SWCLPackageBSize),(UCM slave2 Id, SWCLPackageBSize))

transferData(transferId1, block, blockCounter)

transferData(transferId2, Block, BlockCounter)

:transferId2

Figure D.7: Stream packages blocks from backend into targeted UCM

64 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D.2.5 Package processing

sd [U seCase] 4 Software packages processing [4 Software packages processing]

U CM master

(from Actors)

U CM slave 1

(from Actors)

Driver

(from Actors)

U CM slave 2

(from Actors)

What to do when
failing dependencies ?

par Processes packages in parallel

opt

opt

opt

1. if upgrade, Check
InstalledVersion < NewVersion
2. if delta package, Check
InstalledV ersion=PreviousVersion

What to do if failing ?

loop Until Progress = 100

loop Until Progress = 100

Could be needed starting point if any
preceding interruption

AskDriverForU pdateProcessing()

CheckV ersion(V ersion, PreviousVersion)

GetProcessProgress(transferId1): ProcessingStatusType

:progress=100

CheckSWCLAvailableMemory
(SWCLPayloadSize)

CheckV ehicleSWCLDependencies
(V ehiclePackageDependencies)

PackageIntegrityCheck(PackageSignature)

CheckSWCLAvailableMemory
(SWCLPayloadSize)

GetProcessProgress(transferId2): ProcessingStatusType

CheckV ersion(Version,
PreviousV ersion)

ParseV ehiclePackageManifest(): CampaignOrchestration,
Dependencies

ProcessSwPackage(transferId1): ProcessSwPackageReturnType

PacakgeIntegrityCheck(PackageSignature)

ParseActionFromManifest()

:Idle

GetPackagesToProcess(SwInfoName1): SwInfoVectorType

ProcessSwPackage(transferId2): ProcessSwPacakgeReturnType

DriverApproval()

GetPackagesToProcess(SwInfoName2): SwInfoVectorType

WaitApproval()

:progress=100

ParseActionFromManifest()

Subscribe(CurrentStatus)

Figure D.8: Packages processing by UCMs

65 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D.2.6 Package activation

sd [U seCase] 5 Software packages activation [5 Software packages activation]

U CM master

(from Actors)

U CM slave 1

(from Actors)

Driver

(from Actors)

U CM slave 2

(from Actors)

Checking EMO from all Adaptive platforms

API to be changed
Optional Argument

opt Optional Action

opt Optional Action

par A ctivations could be performed in parallel

Partition activation

Sw restart activation

:READY

Finish()

:ActivateReturn = ACTIVATING

Subscribe(CurrentStatus)

swapPartitionAndSyncThem()

InformBackendU pdateResult():
SWCLV ector:Status

CheckPackageDependencies
(PackageDependencies)

CheckV ehicleState()

:ActivateReturn = ACTIVATING

DefineActivationMethod(PackageContentType or
ActionMethod)

InformDriverU pdateResult()

DriverReady()

CheckPackageDependencies
(PackageDependencies)

Activate(CampaignOrchestration)

Finish()

DefineActivationMethod(PackageContentType or
ActionMethod)

:READY

startN ewSWCLIfNeeded()

Activate(ActivationMethod)

AskDriverForU pdateActivation()

Subscribe(CurrentStatus)

stopOldSWCLIfNeeded()

Figure D.9: Packages activation by UCMs

66 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

Specification of Update and Configuration
Management

AUTOSAR AP Release 18-10

D.2.7 Package rollback

sd [U seCase] 5.1 Software clusters rollback [5.1 Software clusters rollback]

U CM master

(from Actors)

U CM slave 1

(from Actors)

Driver

(from Actors)

Backend

(from Actors)

opt Inform failure to backend or driver

Rollback()

:ERROR

Activation(CampaignOrchestration)

:READY

InformBackendU pdateResult(SwClusterInfoType)

InformDriverU pdateResult
()

:RollbackReturn

Subscribe(CurrentStatus)

Figure D.10: Packages rollback by UCMs

D.2.8 Campaign reporting

After campaign is finished (finish method has been sent to all UCMs), UCM should
report to backend server status of the vehicle, with for instance updated information of
SWCLs present in vehicle.

67 of 67
— AUTOSAR CONFIDENTIAL —
Document ID 888: AUTOSAR_SWS_UpdateAndConfigManagement

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification
	3.3 Further applicable specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	5.1 Interfaces to Adaptive State Management
	5.2 UCM service over ara::com
	5.3 Interfaces to Adaptive Crypto Interface
	5.4 Interfaces to Identity and Access Management

	6 Requirements Tracing
	7 Functional specification
	7.1 Technical Overview
	7.1.1 Software Package Management
	7.1.1.1 Software Package
	7.1.1.2 Content of a Software Package
	7.1.1.3 Applications Persisted Data

	7.1.2 Runtime dependencies
	7.1.3 Update scope and state management

	7.2 Transferring Software Packages
	7.3 Processing Software Packages
	7.4 Status Reporting
	7.5 Activation and Rollback
	7.5.1 Activation
	7.5.2 Rollback
	7.5.3 Boot options
	7.5.4 Failing Activation
	7.5.5 Boot monitoring
	7.5.6 Finishing activation

	7.6 Logging and history
	7.7 Version Reporting
	7.8 SoftwareCluster lifecycle
	7.9 Securing Software Updates

	8 API specification
	9 Service Interfaces
	9.1 Type definitions
	9.1.1 TransferIdType
	9.1.2 SwInfoName
	9.1.3 ByteVectorType
	9.1.4 SwPackageStateType
	9.1.5 SwPackageInfoType
	9.1.6 SwPackageInfoVectorType
	9.1.7 SwClusterStateType
	9.1.8 SwClusterInfoType
	9.1.9 SwClusterInfoVectorType
	9.1.10 LogLevelType
	9.1.11 LogEntryType
	9.1.12 LogVectorType
	9.1.13 PackageManagerStatusType
	9.1.14 ActivateOptionType
	9.1.15 ActionType
	9.1.16 ResolutionType
	9.1.17 GetHistoryType
	9.1.18 GetHistoryVectorType

	9.2 Service Interfaces
	9.2.1 Provided Service Interfaces
	9.2.1.1 Package Management

	9.3 Application Errors
	9.3.1 Application Error Domain
	9.3.1.1 UCMErrorDomain

	10 Sequence diagrams
	10.1 Update process
	10.2 Data transmission
	10.3 Package processing
	10.4 Activation

	A Not applicable requirements
	B Mentioned Class Tables
	C Interfaces to other Functional Clusters (informative)
	C.1 Overview
	C.2 Interfaces Tables
	C.2.1 UCM update notification

	D Packages distribution within vehicle (informative)
	D.1 Overview
	D.2 Packages distribution sequence diagrams
	D.2.1 UCM slave discovery
	D.2.2 Collect information of present SWCLs in vehicle
	D.2.3 Action computation
	D.2.3.1 Pull package from backend into vehicle
	D.2.3.2 Push package from backend into vehicle

	D.2.4 Packages transfer from backend into targeted UCM
	D.2.5 Package processing
	D.2.6 Package activation
	D.2.7 Package rollback
	D.2.8 Campaign reporting

