
Specification of State Management
AUTOSAR AP Release 18-10

Document Title Specification of State
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 908

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-10

Document Change History
Date Release Changed by Description

2018-10-31 18-10
AUTOSAR
Release
Management

• Initial release

1 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Table of Contents

1 Introduction and functional overview 6

1.1 What is State Management? . 6
1.2 Interaction with AUTOSAR Runtime for Adaptive 6

2 Acronyms and Abbreviations 7

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10

5 Dependencies to other modules 11

5.1 Platform dependencies . 11
5.1.1 Operating System Interface 11
5.1.2 Execution Manager Interface 11
5.1.3 Persistency . 11
5.1.4 Adaptive Diagnostics . 11
5.1.5 Update And Config Management 11
5.1.6 Network Management . 11

5.2 Other dependencies . 12

6 Requirements Tracing 13

7 Functional specification 14

7.1 Technical Overview . 15
7.1.1 Terms . 15

7.2 State Management Responsibilities . 16
7.2.1 Machine State . 17

7.2.1.1 Startup . 18
7.2.1.2 Shutdown . 19
7.2.1.3 Restart . 19

7.2.2 Function Group State . 19
7.2.3 State Management Architecture 21

7.3 State Management and Components 22
7.4 Interaction with Adaptive Diagnostics 24
7.5 Interaction with Update and Config Management 25
7.6 Interaction with Network Management 26
7.7 Interaction with Execution Management 27
7.8 State Management in a virtualized environment 28

8 API specification 29

8.1 Type definitions . 29

3 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

8.1.1 ComponentState . 29
8.1.2 ComponentClientReturnType 29
8.1.3 RequestMode . 31
8.1.4 StateUpdateMode . 31

8.2 Function definitions . 32
8.2.1 ComponentClient class . 32

8.2.1.1 ComponentClient::ComponentClient 32
8.2.1.2 ComponentClient::~ComponentClient 32
8.2.1.3 ComponentClient::SetStateUpdateHandler 32
8.2.1.4 ComponentClient::GetComponentState 33
8.2.1.5 ComponentClient::ConfirmComponentState 33

9 Service Interfaces 34

9.1 Type definitions . 34
9.2 Provided Interfaces . 34

9.2.1 FunctionGroupState . 34
9.2.1.1 Port . 34
9.2.1.2 Service Interface . 35
9.2.1.3 Methods . 35
9.2.1.4 Fields . 35
9.2.1.5 Events . 35

9.2.2 DiagnosticReset . 36
9.2.2.1 Port . 36
9.2.2.2 Service Interface . 36
9.2.2.3 Methods . 36

9.2.3 DiagnosticCommunicationControl 36
9.2.3.1 Port . 36
9.2.3.2 Service Interface . 36
9.2.3.3 Methods . 36

9.3 Required Interfaces . 37
9.3.1 Adaptive Diagnostics . 37
9.3.2 Update and Config Management 37

9.3.2.1 Port . 37
9.3.2.2 Service Interface . 37
9.3.2.3 Fields . 37

9.3.3 Network Management . 38
9.3.3.1 Port . 38
9.3.3.2 Service Interface . 38
9.3.3.3 Fields . 38

9.4 Application Errors . 38
9.4.1 Application Error Domain . 39

9.4.1.1 FunctionGroupStateErrors 39
9.4.2 Application Error Set . 39

9.4.2.1 FunctionGroupStateErrorSet 39

A Used Interfunctional Cluster Interfaces 40

4 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

B Not applicable requirements 40

5 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

1 Introduction and functional overview

This document is the software specification of the State Management functional
cluster within the Adaptive Platform Services.

State Management is responsible for determination of the overall operation state of
the Adaptive AUTOSAR Platform. Additionally State Management takes care to set
Components into an internal Component State which depends on the determined
Operational State and on other project specific requirements. The idea behind
Component States is to control Processs in a more fine-grained way without the
need of restarting them with a different set of command-line parameters.

State Management interacts with the Execution Management to request Func-
tion Groups and the Machine State to enter specific states that are determined
to project requirements.

Chapter 7 describes how State Management concepts are realized within the Adap-
tive Platform.

Chapter 8 documents the State Management Application Programming Interface (API).

1.1 What is State Management?

State Management is the functional cluster within the Adaptive Platform Ser-
vices that is responsible to determine the operation state, based on information re-
ceived or gathered from other Adaptive Platform Applications or Adaptive Appli-
cations.

1.2 Interaction with AUTOSAR Runtime for Adaptive

The set of programming interfaces to the Adaptive Applications is called AUTOSAR
Runtime for Adaptive (ARA). The interfaces that constitute ARA include those of State
Management specified in Chapter 8 . Note that APIs accessed by State Manage-
ment using the inter-functional cluster API that is described in Appendix A which is
not part of ARA.

The Adaptive AUTOSAR Services are provided via mechanisms provided by the Com-
munication Management functional cluster [1] of the Adaptive Platform Foundation

6 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the State Man-
agement module that are not included in the AUTOSAR glossary[2].

Terms: Description:
State Management The element defining modes of operation for AUTOSAR Adap-

tive Platform. It allows flexible definition of functions which
are active on the platform at any given time.

Execution Management [3] A Functional Cluster within the Adaptive Platform
Foundation

Communication Management
[1]

A Functional Cluster within the Adaptive Platform
Foundation

Network Management [4] A Functional Cluster within the Adaptive Platform
Services. Part of Communication Management.

Adaptive Diagnostics [5] A Functional Cluster within the Adaptive Platform
Services

Update And Config Manage-
ment [6]

A Functional Cluster within the Adaptive Platform
Services

Network Handle Network Handles are provided by Network Management. A
handle represents a set of (partial) networks.

Process A process is a loaded instance of an Executable to be executed
on a Machine.

Function Group A Function Group is a set of coherent Processes, which
need to be controlled consistently. Depending on the state of
the Function Group, Processes are started or terminated.

Component Element of a Process. Processes are comprised of one or
more SW-entities that provide a particular function or group of
related functions called Component. Please note that the term
’Component’ is not yet fixed for this scope.

Function Group State The element of State Management that characterizes the cur-
rent status of a set of (functionally coherent) user-level Appli-
cations. The set of Function Groups and their Function
Group States is machine specific and are configured in the
Machine Manifest [7].

Machine State The state of Function Group "MachineState" with some
predefined states (Startup/Shutdown/Restart).

Operational State The element of State Management that characterizes the cur-
rent internal state of the State Management. The Opera-
tional State is machine specific and depends on multiple
events from somewhere within the system.

Component State The element of State Management that characterizes the cur-
rent state of Components within an Adaptive Application.
The Component State is Adaptive Application specific and
therefore it has to be described in the respective Execution
Manifest. Every Adaptive Application provides at least
an "On" and an "Off" State.

Execution Manifest Manifest file to configure execution of an Adaptive Appli-
cation.

Machine Manifest Manifest file to configure a Machine.

Table 2.1: Acronyms and Abbreviations

7 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

The following technical terms used throughout this document are defined in the official
[2] AUTOSAR Glossary or [7] TPS Manifest Specification – they are repeated here for
tracing purposes.

Term Description

Adaptive Application see [2] AUTOSAR Glossary
Application see [2] AUTOSAR Glossary
AUTOSAR Adaptive Platform see [2] AUTOSAR Glossary
Adaptive Platform Foundation see [2] AUTOSAR Glossary
Adaptive Platform Services see [2] AUTOSAR Glossary
Manifest see [2] AUTOSAR Glossary
Executable see [2] AUTOSAR Glossary
Functional Cluster see [2] AUTOSAR Glossary
Machine see [2] AUTOSAR Glossary
Service see [2] AUTOSAR Glossary
Service Interface see [2] AUTOSAR Glossary
Service Discovery see [2] AUTOSAR Glossary

Table 2.2: Glossary-defined Technical Terms

8 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

3 Related documentation

3.1 Input documents & related standards and norms

The main documents that serve as input for the specification of the State Manage-
ment are:

[1] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[2] Glossary
AUTOSAR_TR_Glossary

[3] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[4] Specification for Network Management
AUTOSAR_SWS_NetworkManagement

[5] Specification of Diagnostics
AUTOSAR_SWS_Diagnostics

[6] Specification of Update and Configuration Management
AUTOSAR_SWS_UpdateAndConfigManagement

[7] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[8] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[9] Requirements on Persistency
AUTOSAR_RS_Persistency

[10] Requirements of State Management
AUTOSAR_RS_StateManagement

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [8, SWS BSW
General], which is also valid for State Management.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for StateManagement

9 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

4 Constraints and assumptions

4.1 Limitations

This section lists known limitations of State Management and their relation to this
release of the AUTOSAR Adaptive Platform with the intent to provide an indication
how State Management within the context of the AUTOSAR Adaptive Platform
will evolve in future releases.

The following functionality is mentioned within this document but is not (fully) specified
in this release:

• Section 7.3 Component States are partially discussed. Information which
should be available from Execution Manifest to enable Component func-
tionality is not yet modeled. Model information for Components and Component
States will be available in the next release.

• Section 7.4 Communication Control for Diagnostic reasons this is not yet dis-
cussed with Adaptive Diagnostics. It will be expanded in the next release.

• Section 7.4 RequestRestart for Diagnostic reasons this is discussed with Adap-
tive Diagnostics, but some interface details are not yet finalized. It will be
expanded in a next release.

4.2 Applicability to car domains

If a superior State Management instance to the one from the ECU is available in
a hierarchical car context, the State Management of the ECU shall also evaluate
events generated by the superior instance of State Management. Section 7.8 will
give further details.

10 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

5 Dependencies to other modules

5.1 Platform dependencies

5.1.1 Operating System Interface

State Management has no direct interface to the Operating System. All OS depen-
dencies are abstracted by the Execution Management and Persistency.

5.1.2 Execution Manager Interface

State Management is dependent on Execution Management to start and stop
processes - as part of the defined Function Groups or Machine States.

5.1.3 Persistency

State Management is dependent on the Persistency [9] functional cluster. Persis-
tency is used to access persistent storage.

5.1.4 Adaptive Diagnostics

State Management is dependent on the Adaptive Diagnostics [5] functional
cluster. Adaptive Diagnostics provides information about an ongoing diagnostics
session. This information is evaluated by State Management to prevent shutdown
of the system when a diagnostics session is ongoing.

5.1.5 Update And Config Management

State Management is dependent on the Update and Config Management [6]
functional cluster. Update and Config Management provides information about
an ongoing update session. This information is evaluated by State Management to
prevent shutdown of the system when an update session is ongoing.

5.1.6 Network Management

State Management is dependent on the Network Management [4] functional clus-
ter. Network Management provides multiple NetworkHandle fields which represents
a set of (partial) networks. State Management evaluates this fields to set Function
Groups to the corresponding Function Group State defined in Manifest and

11 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

vice versa. Additionally State Management shall prevent system from shutting down
during an update session is ongoing.

5.2 Other dependencies

Currently, there are no other library dependencies.

12 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

6 Requirements Tracing

The following tables reference the requirements specified in [10] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_SM_00001] State Management shall

support Function Group
state change requests.

[SWS_SM_0001] [SWS_SM_0002]
[SWS_SM_0003] [SWS_SM_0004]
[SWS_SM_0005] [SWS_SM_0006]
[SWS_SM_0400] [SWS_SM_0401]
[SWS_SM_0402]

[RS_SM_00002] State Management shall
support Component State
change requests.

[SWS_SM_0010] [SWS_SM_0011]
[SWS_SM_0012] [SWS_SM_0013]
[SWS_SM_0014] [SWS_SM_0015]
[SWS_SM_0102]

[RS_SM_00100] State Management shall
support ECU reset

[SWS_SM_0100] [SWS_SM_0101]
[SWS_SM_0102] [SWS_SM_0103]
[SWS_SM_0104] [SWS_SM_0105]
[SWS_SM_0200] [SWS_SM_0201]

[RS_SM_00101] State Management shall
support diagnostic reset cause

[SWS_SM_0103] [SWS_SM_0104]
[SWS_SM_0105]

[RS_SM_00200] State Management shall
provide an interface between
State Management instances.

[SWS_SM_0500] [SWS_SM_0501]

[RS_SM_00201] State Management shall
provide the interface over
ara::com .

[SWS_SM_0500] [SWS_SM_0501]

[RS_SM_00300] State Management shall
support variant handling based
on calibration data.

[SWS_SM_0005] [SWS_SM_0006]

[RS_SM_00400] State Management shall
establish communication paths
dynamically.

[SWS_SM_0300] [SWS_SM_0301]
[SWS_SM_0302] [SWS_SM_0303]
[SWS_SM_0304]

13 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

7 Functional specification

State Management is a functional cluster contained in the Adaptive Platform
Services. State Management is responsible for all aspects of Operation State
Management including handling of incoming events or requests, prioritization of these
events/requests and setting the Operational State. The State Management
can also register to properties of other Adaptive Platform or Adaptive Applica-
tions to be informed about changes. These changes can also trigger a transition in
the Operational State machine.

Additionally the State Management takes care of not shutting down the system as
long as any diagnostic or update session is active as part of its internal Operational
State.

In dependency of the current Operational States, State Managementmight de-
cide to request Function Groups or Machine State to enter specific state by us-
ing interfaces of Execution Management.

State Management is responsible for en- and disabling (partial) networks by means
of Network Management. Network Management provides ara::com fields (Net-
workHandle) where each of the fields represents a set of (partial) networks. State
Management can influence these fields in dependency of Function Groups states
and - vice versa - can set Function Groups to a defined state depending on the
value of Network Managements NetworkHandle fields.

From the State Management internal Operational States more fine grained
Adaptive Application and AUTOSAR Adaptive Platform Application internal
states can be derived. They are called Component States.

This chapter describes the functional behaviour of State Management and the re-
lation to other Adaptive Platform Applications State Management interacts
with.

• Section 7.1 presents an introduction to key terms within State Management
focusing on the relationship between Processes, Components, Operational
States and Component States.

• Section 7.2 covers the core State Management run-time responsibilities includ-
ing the start of Applications.

• Section 7.3 describes what Components and Component States are and how
they are used.

• Section 7.4 covers several topics related to Adaptive Diagnostics including
shutdown prevention and executing of different reset types

• Section 7.5 describes how Update and Config Management interacts with
State Management

14 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

• Section 7.6 documents support provided by Network Management to de-
/activate (partial) networks in dependency of Function Group States and
vice versa.

• Section 7.7 describes how Execution Management is used to change Func-
tion Group State or Machine State.

• Section 7.8 provides an introduction to how State Management will work within
a virtualized environment.

7.1 Technical Overview

This chapter presents a short summary of the relationship between State Manage-
ment, and all AUTOSAR Adaptive Platform Applications which are mentioned in
the dependency section 5 of this document.

7.1.1 Terms

Before discussing the concepts of Operational State, Components, and Compo-
nent States it is useful to present an overview of the terms so that the more detailed
discussions have the required context.

Operational State – An internal state within State Management derived from mul-
tiple events in the system. TheOperational State may be used to determine
other states in the State Management e.g. Component States and Func-
tion Group States

Component – A Process is comprised of one or more Components. Components
are SW-entities that provide a particular function or group of related functions.

Component State – Component State is the internal state of Components. It is
used to enable Applications to be controlled in a more fine-grained way without
the need of restarting Applications with a different parameter set. Compo-
nent States are derived from Operational State or other project specific
requirements by State Managements internal logic. At least ON and OFF state
shall be supported.

ON – full functionality provided.

OFF – no external functionality provided, all persisted data stored, ready to be
terminated.

15 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

7.2 State Management Responsibilities

State Management is the functional cluster which is responsible for determining
the current Operational State, and for initiating Function Group and Machine
State transitions by requesting them from Execution Management.

State Management grants full control over the set of Applications to be executed
and ensures that Processes are only executed (and hence resources allocated) when
actually needed.

State Management is the central point where any operation event is received that
might have an influence to the Operational State. The State Management is
responsible to evaluate these events and decide based on

• Event type (defined in project specific implementation based on project specific
requirements).

• Event priority (defined in project specific implementation based on project specific
requirements).

• Application identifier (Application identifier is not supported in this release. It is
under discussion with FT-SEC if such an identifier could be provided by Iden-
tity and Access Management).

If an Operational State change is triggered Execution Management may be
requested to set Function Groups or Machine State into new States.

The state change request for Function Groups can be issued by several AUTOSAR
Applications, e.g.:

• Platform Health Management to trigger error recovery, e.g. to activate fall-
back Functionality

• Adaptive Diagnostics, to switch the system into diagnostic states

• Update and Config Management to switch the system into states where
software or configuration can be updated

• Network Management to coordinate required functionality and network state

• authorized applications, e.g. a vehicle state manager which might be located in a
different machine or on a different ECU

AUTOSAR Applications may provide their own property or event via an ara com
interface, where the State Management is subscribing to, to trigger State Man-
agement internal events. Since State Management functionality is critical, access
from other AUTOSAR Applications must be secured, e.g. by Identity and Ac-
cess Management.

• State Management may be monitored and supervised by Platform Health
Management.

16 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

• State Management provides interfaces to request information about current
states

State Management is responsible for handling the following states:

• Machine State see 7.2.1

• Function Group State see 7.2.2

7.2.1 Machine State

A Machine State is a specific type of Function Group State (see 7.2.2). Ma-
chine States and all other Function Group States are determined and re-
quested by the State Management functional cluster, see 7.2.3. The set of active
States is significantly influenced by vehicle-wide events and modes which are evalu-
ated into State Managements internal Operational States.

The Function Group States, including the Machine State, define the current
set of running Processes. Each Application can declare in its Execution Man-
ifests in which Function Group States its Processes have to be running.

The start-up sequence from initial state Startup to the point where State Manage-
ment, SM, requests the initial running machine state Driving is illustrated in Figure 7.1
as an example Driving State is no mandatory State.

Figure 7.1: Start-up Sequence – from Startup to initial running state Driving

17 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

An arbitrary state change sequence to machine state StateXYZ is illustrated in Fig-
ure 7.2. Here, on receipt of the state change request, Execution Management ter-
minates running Processes and then starts Processes active in the new state before
confirming the state change to State Management.

Figure 7.2: State Change Sequence – Transition to machine state StateXYZ

7.2.1.1 Startup

Execution Management will be controlled by State Management and therefore
it should not execute any Function Group State changes on its own. This cre-
ates some expectations towards system configuration. The shall be done in this way
that State Management will run in every Machine State (this includes Startup,
Shutdown and Restart). Above expectation is needed in order to ensure that there
is always a software entity that can introduce changes in the current state of the Ma-
chine. If (for example) system integrator doesn’t configure State Management to
be started in Startup Machine State, then Machine will never be able transit to
any other state and will be stuck forever in it. This also applies to any other Machine
State state that doesn’t have State Management configured.

18 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

7.2.1.2 Shutdown

As mentioned in 7.2.1.1 AUTOSAR assumes that State Management will be config-
ured to run in Shutdown. State transition is not a trivial system change and it can fail
for a number of reasons. When ever this happens you may want State Management
to be still alive, so you can report an error and wait for further instructions. Please
note that very purpose of this state is to shutdown Machine (this includes State
Management) in a clean manner. Unfortunately this means that at some point State
Management will no longer be available and it will not be able to report errors anymore.
Those errors will be handled in a implementation specific way.

7.2.1.3 Restart

As mentioned in 7.2.1.1 AUTOSAR assumes that State Management will be config-
ured to run in Restart. The reasons for doing so are the same as for 7.2.1.2.

7.2.2 Function Group State

If more than one group of functionally coherent Applications is installed on the
same machine, the Machine Statemechanism is not flexible enough to control these
functional clusters individually, in particular if they have to be started and terminated
with interleaving lifecycles. Many different Machine States would be required in this
case to cover all possible combinations of active functional clusters.

To support this use case, additional Function Groups and Function Group
States can be configured. Other use cases where starting and terminating individual
groups of Processes might be necessary including diagnostice and error recovery.

In general, Machine States are used to control machine lifecycle (startup/shut-
down/restart) and Processes of platform level Applications while other Function
Group States individually control Processes which belong to groups of functionally
coherent user level Applications.

[SWS_SM_0001] Available Function Group (states) d State Management shall
obtain available Function Groups and their potential states from the Ma-
chine Manifest to set-up the Function Group specific state management. c
(RS_SM_00001)

Processes reference in their Execution Manifest the states in which they want
to be executed. A state can be any Function Group State, including a Machine
State. For details see [7], especially "Mode-dependent Startup Configuration" chapter
and "Function Groups" chapter.

The arbitrary state change sequence as shown in Figure 7.2 applies to state changes of
any Function Group - just replace "MachineState" by the name of the Function
Group. On receipt of the state change request, Execution Management terminates

19 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

not longer needed Processes and then starts Processes active in the new Func-
tion Group State before confirming the state change to State Management.

[SWS_SM_0002] Function Group State Change Request d State Management
shall implement functionality to enable Adaptive Applications and Adaptive
Platform Applications to change the Function Group State of Function
Groups c(RS_SM_00001)

It might be that State Management declines or delays the request to change a
Function Groups state, based on State Management internal Operational
State or another Adaptive Application or Adaptive Platform Applica-
tion with higher priority that has the ownership of a Function Group. As per cur-
rent specification several Adaptive Applications or Adaptive Platform Ap-
plications use the service interface of State Management e.g. Update and
Config Management and a superior Function Group Manager. To ensure that the
decision to set Function Groups into a dedicated Function Group State of a
”more important” application is not ”undermined” by a ”less important” application, the
application with a higher priority (project specific) get the ownership of the requested
Function Groups as long as it does not release the request.

[SWS_SM_0003] Function Group State Retrieval d State Management shall im-
plement functionality to enable Adaptive Applications and Adaptive Plat-
form Applications to retrieve the Function Group State of Function
Groups and State of Machine State c(RS_SM_00001)

[SWS_SM_0004] Function Group State Change Request Result d State Man-
agement shall return an appropriate result to the Adaptive Applications and
Adaptive Platform Applications which has requested a Function Group
State change. c(RS_SM_00001)

The system might contain calibration data for variant handling. This might include that
some of the Function Groups configured in the Machine Manifest are not in-
tended to be executed on this system. therefore State Management has to evaluate
calibration data to gather information about Function Groups not configured for the
system variant

[SWS_SM_0005] Function Group Calibration Support d State Management shall
receive information about deactivated Function Groups from calibration data. c
(RS_SM_00001, RS_SM_00300)

The storage and reception of calibration data is implementation specific.

[SWS_SM_0006] Function Group Calibration Support d State Management shall
decline the request of Adaptive Applications and Adaptive Platform Ap-
plications to change the Function Group State of a Function Group which
is not configured to run in this variant. c(RS_SM_00001, RS_SM_00300)

20 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

7.2.3 State Management Architecture

State Management is the functional cluster which is responsible for determining the
current set of active Function Group States, including the Machine State, and
for initiating State transitions by requesting them from Execution Management. Ex-
ecution Management performs the State transitions and controls the actual set of
running Processes, depending on the current States.

State Management is the central point where new Function Group States can
be requested and where the requests are arbitrated, including coordination of contra-
dicting requests from different sources. Additional data and events might need to be
considered for arbitration.

State Management functionality is highly project specific, and AUTOSAR decided
against specifying functionality like the Classic Platforms BswM for the Adaptive Plat-
form. It is planned to only specify set of basic service interfaces, and to encapsu-
late the actual arbitration logic into project specific code (e.g. a library), which can
be plugged into the State Management framework and has standardized interfaces
between framework and arbitration logic, so the code can be reused on different plat-
forms.

The arbitration logic code might be individually developed or (partly) generated, based
on standardized configuration parameters.

An overview of the interaction of State Management, Execution Management
and Applications is shown in Figure 7.3.

21 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Figure 7.3: State Management Architecture

7.3 State Management and Components

Please note that the term ’Component’ is not yet finally decided and therefore subject
of change!

A single process is comprised of one or multiple Components. A component is e.g.
a thread. To fulfill the needs of a resource optimized system it is necessary to control
Processs and therefore their Components in a more fine-grained way than it is possi-
ble by Execution Management. When the internal behavior of a Process should be
changed by Execution Management it is needed to unload Process from memory
(including high latency due to persisting) and reload the Executable from filesys-
tem to memory. This behavior is resource consuming with respect to (flash-)memory
bandwidth, CPU load and execution time.

So therefore Components and their corresponding states are introduced. The Com-
ponent States are derived by State Management from internal Operational
States and from project specific requirements.

22 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

One important use-case is the ’late-wakeup’, where a new wakeup reason is found
during a running shutdown. With the current approach the shutdown can’t be inter-
rupted and all Processs have to be unloaded and newly loaded. With the Compo-
nent States it is possible to switch all Components to their ’OFF’ state, where all
e.g. persisting should be done (like when a Process gets termination request from
Execution Management), but they will stay in memory and can continue their work
immediately when they are set into Component State ’ON’ again by State Man-
agement.

[SWS_SM_0010] Component (states) d State Management shall enable Pro-
cesses to change their internal behavior without the need of being reloaded. c
(RS_SM_00002)

[SWS_SM_0011] Component (states) Handling d State Management shall cal-
culate Component States from current Operational State and other project
specific requirements and send the state to the registered Components. c
(RS_SM_00002)

To enable Components to receive Component States they have to register at
State Manager via its API interface (see section 8.2 API function definition). When
Components are not longer interested in receiving Component States they have to
un-register form State Manager, thus these Components are removed from State
Managers internal list. Registration is done by calling the consturctor of Component-
Client, un-registration is done by calling its destructor.

[SWS_SM_0012] Component (states) Registration d State Management shall
provide means to Components to register / un-register for receiving Component
States. c(RS_SM_00002)

Components are allowed to temporary delay the next provided Component State
when it sees a reason to do so (e.g. an OFF state might be delayed due to an ongoing
phone call). therefore each Component has to confirm that it has received the request
to enter a new Component State. This confirmation shall contain the current state
(either the requested one or the previous one) of the Component and a result. For
details see section 8.2.1.5. When the transition to the requested state is delayed State
Management retries to request the Component State after a configured timeout has
exceeded. This retry shall be done a configured number of times. Timeout values and
retry counts shall be retrieved from Execution Manifest

[SWS_SM_0013] Component (states) Configuration d State Management shall
retrieve configuration parameters for Components from Execution Manifest. c
(RS_SM_00002)

[SWS_SM_0014] Component (states) Enforcement d State Management shall
force to enter a Component State when the configured retry count and timeout val-
ues are exceeded. c(RS_SM_00002)

[SWS_SM_0015] Component (states) Transitions d Components must be able to
perform a transition from any Component State into any Component State that
they have defined. c(RS_SM_00002)

23 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Component States are used in conjunction with Adaptive Diagnostics to im-
plement means to handle reset requests. For further details see section 7.4.

7.4 Interaction with Adaptive Diagnostics

Adaptive Diagnostics is responsible for diagnosing and configuring and reset-
ting Function Groups. During any diagnostic is executed it is necessary to prevent
system from shutting down.

[SWS_SM_0100] Prevent Shutdown due to Diagnostic Session d State Manage-
ment shall not shutdown the system during an active diagnostic session. Therefore
State Management has to register to Adaptive Diagnostics to receive informa-
tion about active diagnostic session c(RS_SM_00100)

From Adaptive Diagnostics point of view several different reset types have to be
carried out to fulfill functionality of Adaptive Diagnostics. Because the interpreta-
tion of the reset types (defined in ISO 14229-1)

• hardReset

• keyOffOnReset

• softReset

is done differently by each OEM, parts of the reset functionality have to be delegated
by State Management to Adaptive Applications and Adaptive Platform
Applications.

Here the Component States comes into scope again: The reset types may be car-
ried out by application when the following reset types are ’translated’ by State Man-
agements internal project specific logic to Component States

• hardReset

• softReset

The functionality behind this states is highly Adaptive Application specific. When
an Adaptive Application sees no need to support such functionality this states
may be skipped immediately. A ’hardReset’ could be interpreted e.g. that an Adap-
tive Application has to reset its related hardware(e.g. a tuner application may
reset the tuner hardware by means of the tuner driver). A ’softReset’ may be inter-
preted e.g. that an Adaptive Application has to load its default configuration.

A ’keyOffOnReset’ may be translated by State Managements internal logic to stop
and start the provided Function Groups.

Please note that this behavior is currently under discussion and therefore subject of
change!

[SWS_SM_0101] Diagnostic Reset d State Management shall implement means
to receive reset requests for Function Groups from Adaptive Diagnostics.

24 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

State Management shall carry out the project specific actions for the specific reset
type c(RS_SM_00100)

[SWS_SM_0102] Component States for Reset d State Management shall provide
functionality to enable Components to implement means to execute specific reset
types by using Component States. c(RS_SM_00100, RS_SM_00002)

The Function Group Machine State has to be handled in a different way when
executing reset requests from Adaptive Diagnostics: A ’hardReset’ could be in-
terpreted e.g. that an Adaptive Application has to be launched (by requesting
e.g. Function Group ’reset’ from Execution Management) which carries out the
OS or hardware specific reset. A ’softReset’ could be interpreted by shutting down
all Function Groups and requesting a Machine State ’restart’ from Execution
Management.

But this functionality is project-specific, too. So therefore the correct mapping has to
be done by the OEM code, too.

State Management is the central point in the system, where a reset for the Machine
could be requested. So State Management has to keep track of reset causes and
has to reset the persistent reset cause when it is newly spawned.

[SWS_SM_0103] Diagnostic Reset Last Cause d State Management shall provide
functionality to persist reset type before Machine reset is carried. c(RS_SM_00100,
RS_SM_00101)

[SWS_SM_0104] Diagnostic Reset Last Cause Retrieval d State Management
shall read out the last persisted reset cause when State Management is spawned.
This reset cause has to be provided via its service interface c(RS_SM_00100,
RS_SM_00101)

[SWS_SM_0105] Diagnostic Reset Last Cause Reset d State Management shall
reset the last persisted reset cause immediately after State Management has read
out the current value. c(RS_SM_00100, RS_SM_00101)

7.5 Interaction with Update and Config Management

Update and Config Management is responsible for updating Function
Groups, Manifests (execution or machine manifest) or the whole AUTOSAR
Adaptive Platform. During any update is executed it is necessary to prevent
system from shutting down.

[SWS_SM_0200] Prevent Shutdown due to Update Session d State Manage-
ment shall not shutdown the system during an update session is active. therefore
State Management has to register to Update and Config Management to re-
ceive information about active update session c(RS_SM_00100)

To enable Update and Config Management to fulfill its functionality an update and
a verify state should be available in the Manifests for each Function Group and

25 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

for Machine State. Update and Config Management has to request the corre-
sponding Function Group State from State Management.

[SWS_SM_0201] Reset Execution d State Management shall implement means
to issue a Machine reset when Machine State changes from Function Group
State ’update’ to ’verify’. c(RS_SM_00100)

In case of an update of an Adaptive Applications which does not imply an ECU/-
machine reset (i.e. soft reset), Execution Management needs to be triggered to
reparse the Manifests (execution or machine manifest) of this Adaptive Appli-
cation prior to restarting it (in order to start it with the right (i.e updated) configuration).
Otherwise Execution Management would only reparse the processed Manifests
during the next ECU/machine reset (which is too late). For that purpose, an additional
interface is needed between Update and Config Management, State Manage-
ment and Execution Management.

7.6 Interaction with Network Management

To be portable between different ECUs the Adaptive Applications should not
have the need to know which networks are needed to fulfill its functionality, because on
different ECUs the networks could be configured differently. To control the availability of
networks for several Adaptive Applications State Management interacts with
Network Management via a service interface. For details see section 9.3.3.

Network Management provides multiple instances of NetworkHandles, where each
represents a set of (partial) networks.

The NetworkHandles are defined in the Machine Manifest and are there assigned
to a Function Group State.

[SWS_SM_0300] NetworkHandle Configuration d State Management shall re-
ceive information about NetworkHandles and their associated Function Group
States from Machine Manifest. c(RS_SM_00400)

Whenever (partial) networks are activated or deactivated from outside request and this
set of (partial) networks is represented by a NetworkHandle in Machine Manifest
Network Management will change the value of the corresponding NetworkHandle.
State Management is notified about the change, because it has registered to all
availabe NetworkHandle fields. When State Management recognizes a change in
a fields value it sets the corresponding Function Group in the Function Group
State where the NetworkHandle is configured for in the Machine Manifest.

[SWS_SM_0301] NetworkHandle Registration d State Management shall register
for all NetworkHandles provided by Network Managements which are available from
Machine Manifest. c(RS_SM_00400)

[SWS_SM_0302] NetworkHandle to FunctionGroupState d State Management
shall set Function Groups to the corresponding Function Group State which

26 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

is configured in the Machine Manifest for the NetworkHandle when it recognizes a
change in NetworkHandle value. c(RS_SM_00400)

Vice versa State Managements shall change the value of the NetworkHandle when
a Function Group has to change its Function Group State and an associa-
tion between this Function Group State and the Network handle is available in
Machine Manifest. Network Management will recognize this change and will
change the state of the (partial) networks accordingly to the NetworkHandle.

[SWS_SM_0303] FunctionGroupState to NetworkHandle d State Management
shall change the value of NetworkHandle when Function Groups changes its
Function Group State and a NetworkHandle is associated to this Function
Group State in the Machine Manifest. c(RS_SM_00400)

It might be needed that a Function Group stays longer in its Function Group
State when the causing (partial) network set has been switched off or a (partial) net-
work is longer available than the causing Function Group has been switched to
Function Group State ’Off’. This is called ’afterrun’. The corresponding timeout-
value has to be configured in Machine Manifest

[SWS_SM_0304] Network Afterrun d State Management shall support means to
support ’afterrun’ to switch off related Function Groups or (partial) networks. The
timeout value for this ’afterrun’ has to be read from e.g. Machine Manifest. c
(RS_SM_00400)

7.7 Interaction with Execution Management

Execution Management is used to execute the the Function Group State
changes. The decision to change the State of Machine State or the Function
Group State of Function Groups might come from inside of State Manage-
ment based on Operational State (or other project specific requirements) or might
be requested at State Management from an external Adaptive Application.

[SWS_SM_0400] Execution Management d State Management shall use API of
Execution Management to change the State of Machine State or Function
Group State of Function Groups. c(RS_SM_00001)

Execution Management might not be able to carry out the requested Function
Group State change due to several reasons (e.g. corrupted binary). Execution
Management returns the result of the request.

[SWS_SM_0401] Execution Management Results d State Management shall
evaluate the results of request to Execution Management. Based on this results
State Management might decide to do further actions c(RS_SM_00001)

[SWS_SM_0402] Function Group State CHange Results d State Management
shall provide Function Group States based on the results of Function Group

27 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

State change requests to Execution Management via its service interface c
(RS_SM_00001)

7.8 State Management in a virtualized environment

On an ECU several machines might run in a virtualized environment. Each of the
virtual machines might contain an AUTOSAR Adaptive platform. So therefore each
of the virtual machines contain State Management. To have coordinated control
over the several virtual machines there has to be virtual machine which supervises the
whole ECU state.

[SWS_SM_0500] Virtualized State Management d State Management shall be
able to register to a supervising State Management instance to receive information
about the whole ECU state. c(RS_SM_00200, RS_SM_00201)

[SWS_SM_0501] Virtualized State Management Operational State d State Man-
agement shall implement means to calculate its Operational State based on
information from a supervising State Management instance. c(RS_SM_00200,
RS_SM_00201)

28 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

8 API specification

8.1 Type definitions

8.1.1 ComponentState

Name: ComponentState
Type: ara::core::string
Range: kInit ’kInit’ Components

initial state.
Valid till it
receives any
other state
from State
Management

kOff ’kOff’ Component shall
prepare for
shutdown e.g.
persist

kOn ’kOn’ Component shall
operate
normally

kHardReset ’khardReset’ Component shall
perform a hard
reset (when
applicable e.g.
reset tuner
hardware)

kSoftReset ’ksoftReset’ Component shall
perform a soft
reset (when
applicable e.g.
reset
configuration
to factory
default)

kFastOff ’kFastOff’ Component shall
prepare for
shutdown fast
e.g. persist
partially (e.g.
for production
diagnosis)

Syntax: class ComponentState : ara::core::string;
Header file: component_client.h
Description: Defines the mandatory internal states of a Component (see 7.3).

Table 8.1: ComponentState

8.1.2 ComponentClientReturnType

Name: ComponentClientReturnType

29 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 component state

change
successfully
completed

kGeneralError 1 error on
interface

kPending 2 state change
accepted for
processing, but
not accepted
for finally
being carried
out

kInvalid 3 unknown state
kAborted 4 confirm of

aborted state
change due to
other state
change incoming

kRejected 5 immediate (in
handler
function) or
delayed (after
kPending
reporting)
information
that state was
not accepted to
be taken.
State
Management will
have to ask
again for this
state (e.g.
with kForced
set)

kUnchanged 6 State was not
changed since
last request to
get new
Component
State. Only
used for
polling mode in
conjunction
with Component-
Client::GetComponentState()

30 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Syntax: enum class ComponentClientReturnType : uint8_t {
kSuccess = 0,
kGeneralError = 1,
kPending = 2,
kInvalid = 3,
kAborted = 4,
kRejected = 5,
kUnchanged = 6
};

Header file: component_client.h
Description: Defines the error codes for ComponentClient operations.

Table 8.2: ComponentClientReturnType

8.1.3 RequestMode

Name: RequestMode
Type: Scoped Enumeration of uint8_t
Range: kVoluntary 0 Component can

decline state
request

kForced 1 Component has
to carry out
state request

Syntax: enum class RequestMode : uint8_t {
kVoluntary = 0,
kForced = 1
};

Header file: component_client.h
Description: Defines enforcement options for ComponentClient operations.

Table 8.3: RequestMode

8.1.4 StateUpdateMode

Name: StateUpdateMode
Type: Scoped Enumeration of uint8_t
Range: kPoll 0 Component works

in polling
mode(e.g.
safety critical
environment)

kEvent 1 Component works
in event mode

Syntax: enum class StateUpdateMode : uint8_t {
kPoll = 0,
kEvent = 1
};

Header file: component_client.h
Description: Used to determine if ComponentClient operates in polling or event-based

mode.

Table 8.4: StateUpdateMode

31 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

8.2 Function definitions

8.2.1 ComponentClient class

The Component State API provides the functionality for a Component to be controlled
in a more fine grained way by State Management.

8.2.1.1 ComponentClient::ComponentClient

Service name: ComponentClient::ComponentClient
Syntax: ComponentClient ara::core::string &s,

StateUpdateMode mode);
Sync/Async: Sync
Parameters (in): s Unique name of the Component

mode Value of requested operation mode
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: No exceptions thrown
Description: Constructor for ComponentClient which opens the State Manage-

ments communication channel (e.g. POSIX FIFO) for getting and report-
ing the Component State. Each Component shall create an instance of
this class to get and report its state.

Table 8.5: ComponentClient::ComponentClient

8.2.1.2 ComponentClient::~ComponentClient

Service name: ComponentClient::~ComponentClient
Syntax: ~ComponentClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: No exceptions thrown
Description: Destructor for ComponentClient.

Table 8.6: ComponentClient::~ComponentClient

8.2.1.3 ComponentClient::SetStateUpdateHandler

Service name: ComponentClient::SetStateUpdateHandler
Syntax: ComponentClientReturnType SetStateUpdateHandler(

std::function <ComponentClientReturnType(
ComponentState &, RequestMode &)> f);

Sync/Async: Sync
Parameters (in): f callback handler for evaluating state changes in

event based working mode

32 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Parameters (inout): None
Parameters (out): None
Return value: kSuccess Registration of Component handler was successful

kInvalid Registration of Component handler failed due to
previous handler registration

kGeneralError Registration of Component handler was not suc-
cessful

Exceptions: No exceptions thrown
Description: Interface for a Component to register its handler to State Management

for retival of further Component States in event based working mode.

Table 8.7: ComponentClient::SetStateUpdateHandler

8.2.1.4 ComponentClient::GetComponentState

Service name: ComponentClient::GetComponentState
Syntax: ComponentClientReturnType GetComponentState(

ComponentState state,
RequestMode mode);

Sync/Async: Sync
Parameters (in): None
Parameters (inout): state Value of the Component State

mode used to determine if a Component can decline re-
quested state or not

Parameters (out): None
Return value: kSuccess Getting new Component State from State

Management was successful
kUnchanged Getting new Component State from State

Management returned no new state
kGeneralError Getting new Component State from State

Management was failed
Exceptions: No exceptions thrown
Description: Interface for a Component to receive its next internal state from State

Management. When mode parameter is set to kForced Component has
to enter the provided state(when it is valid). Used only in ’poll’ working
mode.

Table 8.8: ComponentClient::GetComponentState

8.2.1.5 ComponentClient::ConfirmComponentState

Service name: ComponentClient::ConfirmComponentState
Syntax: ConfirmComponentState(

ComponentState &state,
ComponentClientReturnType &status);

Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): state Value of the currently reported Component State

status Result of a previously Component State request
Return value: None
Exceptions: No exceptions thrown

33 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

Description: Interface for a Component to report result of Component State re-
quest to State Management.

Table 8.9: ComponentClient::ConfirmComponentState

9 Service Interfaces

9.1 Type definitions

This chapter lists all types used in service interfaces of the State Management.

Name FunctionGroupState

Kind TYPE REFERENCE

Derived from ara::core::string

Description Default FunctionGroup states

Range Limit Description

kOff ’kOff’ FunctionGroup is in Off state

kRunning ’kRunning’ FunctionGroup is in running state

kUpdate ’kUpdate’ FunctionGroup is in Update state

kVerify ’kVerify’ FunctionGroup is in Verify state

Table 9.1: Implementation Data Type - FunctionGroupState

9.2 Provided Interfaces

This chapter lists all provided service interfaces of the State Management.

9.2.1 FunctionGroupState

9.2.1.1 Port

Name State_{FunctionGroup}

Kind Provided Port Interface FunctionGroupState

Description Provides handling of FunctionGroupStates

Variation

Table 9.2: Port Function Group State - State_{FunctionGroup}

34 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

9.2.1.2 Service Interface

Name FunctionGroupState

NameSpace ara::sm

Table 9.3: Service Interface State Management - FunctionGroupState

9.2.1.3 Methods

Name RequestState

Description Requests a new Function Group State or Machine State and gathers the ownership for
this Function Group

Function Group State or Machine State

Description Function Group State or Machine State to be set.

Type FunctionGroupState

Parameter

Direction IN

Application Error Set FunctionGroupStateErrorSet

Table 9.4: Service Interface FunctionGroupState - Method RequestState

Name ReleaseRequest

Description Releases the current ownership of a Function Group or Machine State.

Parameter -

Application Error Set FunctionGroupStateErrorSet

Table 9.5: Service Interface FunctionGroupState - Method ReleaseRequest

9.2.1.4 Fields

Name FunctionGroupState

Description Contains the current status of the Function Group {Function Group}

Type FunctionGroupState

HasGetter true

HasNotifier true

HasSetter false

Init-Value ’kOff’

Table 9.6: Service Interface FunctionGroupState - Field FunctionGroupState

9.2.1.5 Events

Due to the ara field type of Function Group State an event is generated when a
Function Group State of a Function Group or the State of Machine State
is changed.

35 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

9.2.2 DiagnosticReset

9.2.2.1 Port

Name DiagnosticReset

Kind Provided Port Interface DiagnosticReset

Description Provides handling of Adaptive Diagnostic reset request

Variation

Table 9.7: Port Adaptive Diagnostics - DiagnosticReset

9.2.2.2 Service Interface

Name Diagnostic Reset

NameSpace ara::sm

Table 9.8: Service Interface State Management - Diagnostic Reset

9.2.2.3 Methods

Please note that the method to carry out request the diagnostic reset is not yet agreed
between Adaptive Diagnostics and State Management .

9.2.3 DiagnosticCommunicationControl

9.2.3.1 Port

Name DiagnosticCommunicationControl

Kind Provided Port Interface DiagnosticCommunicationControl

Description Provides handling of Adaptive Diagnostic communication control request

Variation

Table 9.9: Port Adaptive Diagnostics - DiagnosticCommunicationControl

9.2.3.2 Service Interface

Name Diagnostic Communication Control

NameSpace ara::sm

Table 9.10: Service Interface State Management - Diagnostic Communication Control

9.2.3.3 Methods

Please note that the method to carry out request the communication control is not yet
agreed between Adaptive Diagnostics and State Management .

36 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

9.3 Required Interfaces

This chapter lists all required service interfaces of the State Management.

9.3.1 Adaptive Diagnostics

Please note that no interface to Adaptive Diagnostics to be informed if a Diag-
nostic session is ongoing is available in this release.

9.3.2 Update and Config Management

9.3.2.1 Port

Name PackageManagement

Kind Required Port Interface PackageManagement

Description provides information about current status of update session

Variation

Table 9.11: Port Update and Config Management - PackageManagement

9.3.2.2 Service Interface

Name PackageManagement

NameSpace ara::ucm::pkgmgr

Table 9.12: Service Interface Update and Config Management - PackageManagement

9.3.2.3 Fields

Name CurrentStatus

Description Set to kIdle by Update and Config Management when not active. Any other
value is usedto prevent shutdown of the system during active update
session

Type PackageManagerStatusType

HasGetter true

HasNotifier true

HasSetter false

Init-Value false

Table 9.13: Service Interface Update and Config Management - Field CurrentStatus

37 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

9.3.3 Network Management

9.3.3.1 Port

Name NetworHandle_{NmNode}

Kind Required Port Interface NetworkHandle

Description contains information about active network handle

Variation

Table 9.14: Port Network Management - NetworkHandle

9.3.3.2 Service Interface

Name NetworkHandle

NameSpace ara::nm

Table 9.15: Service Interface Network Management - NetworkHandle

9.3.3.3 Fields

Please note that this field is not yet finally discussed and therefore subject of change.

Name NetworkHandle

Description Set to true by Network Management when (partial) networks are active or
by State Management to activate (partial) networks

Type BooleanType

HasGetter true

HasNotifier true

HasSetter true

Init-Value false

Table 9.16: Service Interface Network Management - Field NetworkHandle

9.4 Application Errors

This chapter lists all application errors of State Management.

38 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

9.4.1 Application Error Domain

9.4.1.1 FunctionGroupStateErrors

Name Code Description

kSuccess 0 FunctionGroup State
change request was
executed successfully

kInvalid 1 FunctionGroup State
change request was
invalid e,g, unknown
state

kFailed 2 FunctionGroup State
change request failed
due to other reason

kDelay 3 FunctionGroup State
change request was
delayed due to ownership

Table 9.17: Application Errors of FunctionGroupState

9.4.2 Application Error Set

9.4.2.1 FunctionGroupStateErrorSet

Error Set Name FunctionGroupStateError

Description The potential errors values returned using State Managements
Function Group State change service interface

Reference kInvalid, kFailed, kDelay

Table 9.18: Application Error Set of FunctionGroupState

39 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

Specification of State Management
AUTOSAR AP Release 18-10

A Used Interfunctional Cluster Interfaces

B Not applicable requirements

40 of 40
— AUTOSAR CONFIDENTIAL —

Document ID 908: AUTOSAR_SWS_StateManagement

	1 Introduction and functional overview
	1.1 What is State Management?
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Platform dependencies
	5.1.1 Operating System Interface
	5.1.2 Execution Manager Interface
	5.1.3 Persistency
	5.1.4 Adaptive Diagnostics
	5.1.5 Update And Config Management
	5.1.6 Network Management

	5.2 Other dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Technical Overview
	7.1.1 Terms

	7.2 State Management Responsibilities
	7.2.1 Machine State
	7.2.1.1 Startup
	7.2.1.2 Shutdown
	7.2.1.3 Restart

	7.2.2 Function Group State
	7.2.3 State Management Architecture

	7.3 State Management and Components
	7.4 Interaction with Adaptive Diagnostics
	7.5 Interaction with Update and Config Management
	7.6 Interaction with Network Management
	7.7 Interaction with Execution Management
	7.8 State Management in a virtualized environment

	8 API specification
	8.1 Type definitions
	8.1.1 ComponentState
	8.1.2 ComponentClientReturnType
	8.1.3 RequestMode
	8.1.4 StateUpdateMode

	8.2 Function definitions
	8.2.1 ComponentClient class
	8.2.1.1 ComponentClient::ComponentClient
	8.2.1.2 ComponentClient::~ComponentClient
	8.2.1.3 ComponentClient::SetStateUpdateHandler
	8.2.1.4 ComponentClient::GetComponentState
	8.2.1.5 ComponentClient::ConfirmComponentState

	9 Service Interfaces
	9.1 Type definitions
	9.2 Provided Interfaces
	9.2.1 FunctionGroupState
	9.2.1.1 Port
	9.2.1.2 Service Interface
	9.2.1.3 Methods
	9.2.1.4 Fields
	9.2.1.5 Events

	9.2.2 DiagnosticReset
	9.2.2.1 Port
	9.2.2.2 Service Interface
	9.2.2.3 Methods

	9.2.3 DiagnosticCommunicationControl
	9.2.3.1 Port
	9.2.3.2 Service Interface
	9.2.3.3 Methods

	9.3 Required Interfaces
	9.3.1 Adaptive Diagnostics
	9.3.2 Update and Config Management
	9.3.2.1 Port
	9.3.2.2 Service Interface
	9.3.2.3 Fields

	9.3.3 Network Management
	9.3.3.1 Port
	9.3.3.2 Service Interface
	9.3.3.3 Fields

	9.4 Application Errors
	9.4.1 Application Error Domain
	9.4.1.1 FunctionGroupStateErrors

	9.4.2 Application Error Set
	9.4.2.1 FunctionGroupStateErrorSet

	A Used Interfunctional Cluster Interfaces
	B Not applicable requirements

