
Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Document Title
Specification of Platform Health
Management for Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 851

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-10

Document Change History
Date Release Changed by Description

2018-10-31 18-10
AUTOSAR
Release
Management

• Described the interfaces with
functional clusters execution
management and state management

2018-03-29 18-03
AUTOSAR
Release
Management

• Initial release

1 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Table of Contents

1 Introduction and functional overview 5

2 Acronyms and abbreviations 6

3 Related documentation 8

3.1 Input documents & related standards and norms 8
3.2 Related specification . 8

4 Constraints and assumptions 9

4.1 Limitations . 9
4.2 Applicability to car domains . 9

5 Dependencies to other modules 10

5.1 Platform dependencies . 10
5.1.1 Dependencies on Execution Management 10
5.1.2 Dependencies on State Management 10
5.1.3 Dependencies on Watchdog Interface 10
5.1.4 Dependencies on other Functional Clusters 10

6 Requirements Tracing 11

7 Functional specification 14

7.1 General description . 14
7.2 Supervision of Supervised Entities . 14
7.3 Supervision Modes . 14
7.4 Recovery actions . 14

8 Platform Health Management API specification 16

8.1 C++ language binding . 16
8.1.1 API Header files . 16

8.1.1.1 Generated header file(s) 16
8.1.1.2 Non-generated header files 19

8.1.2 API Types . 21
8.1.2.1 Generated Types . 21
8.1.2.2 Non-generated types 25
8.1.2.3 Daisy Chaining Related Types (Non-generated) . . . 28
8.1.2.4 Error and Exception Types 28
8.1.2.5 E2E Related Data Types 28

8.1.3 API Reference . 29
8.1.3.1 SupervisedEntity API 29
8.1.3.2 HealthChannel API 31
8.1.3.3 PHM API . 32
8.1.3.4 Forward supervision state (daisy-chain) 34

A Not applicable requirements 35

3 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

B Interfaces to other Functional Clusters (informative) 35

B.1 Interface Tables . 35
B.1.1 Process State Transition Event 35

C Example implementation of ara::phm 36

C.1 Application . 36
C.2 PHM Generated code . 39
C.3 PHM Non-generated code . 42

D Mentioned Class Tables 47

4 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

1 Introduction and functional overview

This document is the software specification of the Platform Health Management func-
tional cluster within the Adaptive Platform [1].

The specification implements the requirements specified in [2, RS Platform Health
Management].

It also implements the general functionality described in the Foundation documents [3,
RS Health Monitoring] and [4, SWS Health Monitoring].

Health Monitoring is required by [5, ISO 26262] (under the terms control flow
monitoring, external monitoring facility, watchdog, logical monitoring, temporal moni-
toring, program sequence monitoring) and this specification is supposed to address all
relevant requirements from this standard.

5 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

2 Acronyms and abbreviations

The glossary below includes acronyms and abbreviations relevant to the specification
or implementation of Health Monitoring that are not included in the [6, AUTOSAR
glossary].

Abbreviation: Description:
CM AUTOSAR Adaptive Communication Management
DM AUTOSAR Adaptive Diagnostic Management
E2E AUTOSAR End to End communication protection mechanism
PHM Platform Health Management
SE Supervised Entity

Acronym: Description:

Alive Supervision Mechanism to check the timing constraints of cyclic Supervised
Entitys to be within the configured min and max limits.

Checkpoint A point in the control flow of a Supervised Entity where the
activity is reported.

Daisy chaining Chaining multiple instances of Health Monitoring

Deadline Supervision Mechanism to check that the timing constraints for execution of
the transition from a to a corresponding are within the configured
min and max limits.

Global Supervision Status Status that summarizes the Local Supervision Status of
all Supervised Entitys of a software subsystem.

Graph A set of Checkpoints connected through Transitions, where at
least one of Checkpoints is an Initial Checkpoint and there is
a path (through Transitions) between any two Checkpoints of
the Graph.

Health Channel Channel providing information about the health status of a
(sub)system. This might be the Global Supervision Sta-
tus of an application, the result any test routine or the status
reported by a (sub)system (e.g. voltage monitoring, OS kernel,
ECU status, ...).

Health Monitoring Supervision of the software behaviour for correct timing and se-
quence.

Health Status A set of states that are relevant to the supervised software (e.g.
the Global Supervision Status of an application, a Volt-
age State, an application state, the result of a RAM monitoring
algorithm).

6 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Logical Supervision Kind of online supervision of software that checks if the software
(Supervised Entity or set of Supervised Entities) is executed
in the sequence defined by the programmer (by the developed
code).

Local Supervision Status Status that represents the current result of Alive Supervi-
sion, Deadline Supervision and Logical Supervision
of a single Supervised Entity.

Platform Health Management Health Monitoring for the Adaptive Platform

Supervised Entity A software entity which is included in the supervision. A Super-
vised Entity denotes a collection of Checkpoints within a soft-
ware component. There may be zero, one or more Supervised
Entities in a Software Component. A Supervised Entity may
be instantiated multiple times, in which case each instance is in-
dependently supervised.

Table 2.1: Acronyms

7 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

3 Related documentation

3.1 Input documents & related standards and norms

[1] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[2] Requirements on Platform Health Management for Adaptive Platform
AUTOSAR_RS_PlatformHealthManagement

[3] Requirements on Health Monitoring
AUTOSAR_RS_HealthMonitoring

[4] Specification of Health Monitoring
AUTOSAR_SWS_HealthMonitoring

[5] ISO 26262 (Part 1-10) – Road vehicles – Functional Safety, First edition
http://www.iso.org

[6] Glossary
AUTOSAR_TR_Glossary

[7] Specification of Execution Management
AUTOSAR_SWS_ExecutionManagement

[8] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[9] Guidelines for the use of the C++14 language in critical and safety-related sys-
tems
AUTOSAR_RS_CPP14Guidelines

3.2 Related specification

See section 3.1.

8 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

http://www.iso.org

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

4 Constraints and assumptions

4.1 Limitations

[SWS_PHM_00110] dDaisy chaining (i.e. forwarding Supervision Status, Check-
point or Health channel information to an entity external to PHM or another PHM
instance) is currently not supported in this document release. c(RS_PHM_00108,
RS_PHM_00109)

[SWS_PHM_00111] dPlatform Health Management configuration related to Super-
vision Modes is not fully supported in this document release. c(RS_PHM_00104,
RS_HM_09253)

[SWS_PHM_00112] dAn API to inform Supervised Entities about the Supervision
states is available only in polling mode. No API using notification mode is available
in this release. c(RS_HM_09237)

Interface with the Diagnostic Manager is not specified in this release.

4.2 Applicability to car domains

No restriction

9 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

5 Dependencies to other modules

5.1 Platform dependencies

The interfaces within AUTOSAR Platform are not standardized.

5.1.1 Dependencies on Execution Management

The Platform Health Management functional cluster is dependent on the Execution
Management Interface [7]. The Execution Management Interfaces are used by Plat-
form Health Manager for error recovery to request restarting a Process associated to
an Application or to force entering a predefined safe state. The Platform Health Man-
ager can also request the Execution Manager to provide the state of all processes
currently running on the Machine. The inter functional cluster interface between Plat-
form Health Manager and the Execution Manager is also used for notifying a state
change of a process.

5.1.2 Dependencies on State Management

The Platform Health Management functional cluster has an interface also with the State
Management: the Platform Health Manager can request the State Manager to switch
to a specific Machine, Function Group or Application State and the State Manager can
signal the Platform Helath Manager about a Machine, Function Group or Application
State change. This interface is provided by the public API of the State Manager, using
ara::com.

5.1.3 Dependencies on Watchdog Interface

The Platform Health Management functional cluster is dependent also on the Watch-
dog Interface.

5.1.4 Dependencies on other Functional Clusters

It is possible for all functional clusters to use the Supervision mechanisms provided by
the Platform Health Management by using Checkpoints and the Health Channels
as the other Applications.

10 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

6 Requirements Tracing

The following tables reference the requirements specified in [2] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_HM_09237] Health Monitoring shall provide

an interface to Supervised
Entities informing them about
their Supervision State.

[SWS_PHM_00112]
[SWS_PHM_01134]
[SWS_PHM_01135]
[SWS_PHM_01136]
[SWS_PHM_01137]

[RS_HM_09240] Health Monitoring shall support
multiple occurrences of the
same Supervised Entity.

[SWS_PHM_00457]
[SWS_PHM_01116]
[SWS_PHM_01120]
[SWS_PHM_01121]
[SWS_PHM_01123]
[SWS_PHM_01133]

[RS_HM_09241] Health Monitoring shall support
multiple instances of
Checkpoints in a Supervised
Entity occurrence.

[SWS_PHM_01116]
[SWS_PHM_01120]
[SWS_PHM_01121]
[SWS_PHM_01133]

[RS_HM_09253] Health Monitoring shall support
mode-dependent behavior of
Supervised Entities and it shall
support the supervision on the
transitions between Checkpoints
belonging different Supervision
Modes.

[SWS_PHM_00111]

[RS_HM_09254] Health Monitoring shall provide
an interface to Supervised
Entities to report the currently
reached Checkpoint.

[SWS_PHM_00321]
[SWS_PHM_00424]
[SWS_PHM_00425]
[SWS_PHM_00458]
[SWS_PHM_01010]
[SWS_PHM_01123]
[SWS_PHM_01124]
[SWS_PHM_01125]
[SWS_PHM_01127]
[SWS_PHM_01131]
[SWS_PHM_01132]

[RS_HM_09257] Health Monitoring shall provide
an interface to Supervised
Entities for report their health
status.

[SWS_PHM_00321]
[SWS_PHM_00457]
[SWS_PHM_00458]
[SWS_PHM_01010]
[SWS_PHM_01118]
[SWS_PHM_01119]
[SWS_PHM_01122]
[SWS_PHM_01124]
[SWS_PHM_01126]
[SWS_PHM_01128]
[SWS_PHM_01131]

11 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Requirement Description Satisfied by
[RS_PHM_00001] The Platform Health

Management shall provide a
standardized header file
structure for each service.

[SWS_PHM_01002]
[SWS_PHM_01013]
[SWS_PHM_01020]
[SWS_PHM_01101]
[SWS_PHM_01114]
[SWS_PHM_01115]

[RS_PHM_00002] The service header files shall
define the namespace for the
respective service.

[SWS_PHM_01005]
[SWS_PHM_01018]
[SWS_PHM_01113]

[RS_PHM_00003] The Platform Health
Management shall define how
language specific data types are
derived from modeled data
types.

[SWS_PHM_00424]
[SWS_PHM_00425]
[SWS_PHM_01116]
[SWS_PHM_01118]
[SWS_PHM_01119]
[SWS_PHM_01120]
[SWS_PHM_01121]
[SWS_PHM_01122]
[SWS_PHM_01132]
[SWS_PHM_01133]

[RS_PHM_00101] Platform Health
Management shall provide a
standardized C++ interface for
the reporting of Checkpoints .

[SWS_PHM_00321]
[SWS_PHM_00424]
[SWS_PHM_00425]
[SWS_PHM_00458]
[SWS_PHM_01010]
[SWS_PHM_01123]
[SWS_PHM_01124]
[SWS_PHM_01125]
[SWS_PHM_01127]
[SWS_PHM_01131]
[SWS_PHM_01132]
[SWS_PHM_01134]
[SWS_PHM_01135]

[RS_PHM_00102] Platform Health
Management shall provide a
standardized C++ interface for
the reporting of Health
Channel .

[SWS_PHM_00321]
[SWS_PHM_00457]
[SWS_PHM_00458]
[SWS_PHM_01010]
[SWS_PHM_01118]
[SWS_PHM_01119]
[SWS_PHM_01122]
[SWS_PHM_01124]
[SWS_PHM_01126]
[SWS_PHM_01128]
[SWS_PHM_01131]

[RS_PHM_00104] Platform Health
Management shall realize the
Supervision Mode as a tuple of
Execution Management states.

[SWS_PHM_00111]

[RS_PHM_00105] Platform Health
Management shall support
different allocations/distributions
of a Supervised Entity
through threads and processes.

[SWS_PHM_NA]

12 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Requirement Description Satisfied by
[RS_PHM_00106] Platform Health

Management shall support
allocating of multiple
Supervised Entitys to the
same process or thread.

[SWS_PHM_NA]

[RS_PHM_00107] Platform Health
Management shall support
multiple instantiation.

[SWS_PHM_NA]

[RS_PHM_00108] Platform Health
Management shall provide a
standardized interface between
Platform Health
Management components used
in a daisy chain.

[SWS_PHM_00110]

[RS_PHM_00109] Platform Health
Management shall provide the
Daisy chaining interface
over ara::com .

[SWS_PHM_00110]

13 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

7 Functional specification

7.1 General description

The Platform Health Management supervises the Applications and could trigger a Re-
covery Action in case any Supervised Entity fails. The Recovery Actions are de-
fined by the integrator based on the software architecture requirements for the Platform
Health Management and configured in the Manifests. The Execution Management is
responsible for the state dependent management of Application start/stop. All the al-
gorithms and the procedures for the Platform Health Management are described in the
Autosar Foundation document [4] and are not specified here: only the Autosar Adap-
tive specificities, including the interfaces with the other functional clusters, are shown
here below. The interfaces of Health Management to other Functional Cluster are only
informative and not standardized.

7.2 Supervision of Supervised Entities

In order to determine if a Supervised Entity is activated or deactivated at the
specific time, the Platform Health Management uses the interface with the Execution
Manager: the Platform Health Management requests the state of all processes by
invoking GetAllProcessState() and it is notified by the Execution Manager by a change
in a process state by ProcessChanged() internal interface (for example when a process
state has changed from running to terminating).

7.3 Supervision Modes

A Supervision Mode represents an overall state of a machine or a group of Applica-
tions. It is identified by a tuple <machine state, function group state, application state>.
The Platform Health Management uses the interface provided by the State Manager
(StateChage() API) to be notified when one of the states has changed.

7.4 Recovery actions

The following recovery actions are available for an Autosar Adaptive Platform:

• Request the State Manager to switch to a specified Machine, FunctionGroup or
Application state (RequestState API).

• Request the Execution Manager to force switching to a specified Machine or
FunctionGroup State (EnterSafeState API). This action shall be configured in-
stead of the corresponding API with the State Manager if the State Manager has
issues detected by the supervision mechanisms.

14 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

• Request the Execution Manager to restart a specified process (ProcessRestart
API).

• Request the Watchdog driver to perform a watchdog reset (implementor specific
API).

• Report error information to the Diagnostic Manager: not specified in this release.

• Forward error information to another PHM entity or an Application: not specified
in this release.

Figure 7.1: Platform Health Management and the environment

15 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8 Platform Health Management API specification

8.1 C++ language binding

Note that in this release (2018-10) the C++ language binding uses generated types
that are made available to the application (e.g. enumerations with checkpoints), which
is generated by AUTOSAR toolchain based on the AUTOSAR manifest. It is possible
that this approach will be modified in upcoming AUTOSAR releases.

8.1.1 API Header files

This section describes the header files of the ara::phm API.

The input for the generated header files of Platform Health Management are the
AUTOSAR metamodel classes within the PlatformHealthManagementContribu-
tion description, as defined in the AUTOSAR Adaptive Methodology Specification [8].

8.1.1.1 Generated header file(s)

The generated header files provide the generated types for Supervised Entitys
and Health Channels to use the platform health management.

8.1.1.1.1 Supervised Entity

For each Supervised Entity, a separate namespace is generated.

Namespaces are used to separate the definition of services from each other to prevent
name conflicts and they allow to use reasonably short names. It is recommended to
define the namespace unique, e.g. by using the company domain name.

[SWS_PHM_01005] Namespace of generated header files for a Supervised En-
tity d Based on the symbol attributes of the ordered SymbolProps aggregated by
PhmSupervisedEntityInterface, the C++ namespace of a Supervised En-
tity shall be:

1 namespace ara {
2 namespace phm {
3

4 namespace supervised_entities {
5

6 namespace <PhmSupervisedEntityInterface.namespace[0].symbol> {
7 namespace <PhmSupervisedEntityInterface.namespace[1].symbol> {
8 namespace <...> {
9 namespace <PhmSupervisedEntityInterface.namespace[n].symbol> {

10

11 namespace <PhmSupervisedEntityInterface.shortName> {

16 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

12 ...
13 } // namespace <PhmSupervisedEntityInterface.shortName>
14

15 } // namespace <PhmSupervisedEntityInterface.namespace[n].symbol>
16 } // namespace <...>
17 } // namespace <PhmSupervisedEntityInterface.namespace[1].symbol>
18 } // namespace <PhmSupervisedEntityInterface.namespace[0].symbol>
19

20 } // namespace supervised_entities
21

22 } // namespace phm
23 } // namespace ara

with all namespace names converted to lower-case letters. c(RS_PHM_00002)

So example namespace could be e.g.

ara::phm::supervised_entities::oem:body::headlights::low_beam

with low_beam being the name of the Supervised Entity and body, headlights
and low_beam are namespaces used to organize uniquely identify the Supervised
Entity.

[SWS_PHM_01020] Folder structure for Supervised Entity files d The gener-
ated header files defined by [SWS_PHM_01002] shall be located within the folder:

<folder>/ara/phm/supervised_entities/<namespace[0]>/.../<namespace[n]>/

where:
<folder> is the start folder for the ara::phm header files specific for a project or
platform vendor,
<namespace[0]> ... <namespace[n]> are the namespace names as defined in
[SWS_PHM_01005]. c(RS_PHM_00001)

[SWS_PHM_01002] Generated header files for Supervised Entities d The Plat-
form health management shall provide one Supervised Entity header file for
each PhmSupervisedEntityInterface defined in the input by using the file name
<name>.h, where <name> is the PhmSupervisedEntityInterface.shortName c
(RS_PHM_00001)

So effectively, for each Supervised Entity, there is a separate generated file.
There can be several Supervised Entitys in the same namespace, which results
with several files in the same folder.

8.1.1.1.2 Health Channel

The generation of files/namespaces for Health Channels is similar to the one of
Supervised Entity.

[SWS_PHM_01113] Namespace of generated header files for a Health Chan-
nel d Based on the symbol attributes of the ordered SymbolProps aggregated by

17 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

PhmHealthChannelInterface in role, the C++ namespace of the Health Chan-
nel shall be:

1 namespace ara {
2 namespace phm {
3 namespace health_channels {
4

5 namespace <PhmHealthChannelInterface.namespace[0].symbol> {
6 namespace <PhmHealthChannelInterface.namespace[1].symbol> {
7 namespace <...> {
8 namespace <PhmHealthChannelInterface.namespace[n].symbol> {
9

10 namespace <PhmHealthChannelInterface.shortName> {
11 ...
12 } // namespace <PhmHealthChannelInterface.shortName>
13

14 } // namespace <PhmHealthChannelInterface.namespace[n].symbol>
15 } // namespace <...>
16 } // namespace <PhmHealthChannelInterface.namespace[1].symbol>
17 } // namespace <PhmHealthChannelInterface.namespace[0].symbol>
18

19 } // namespace health_channels
20

21 } // namespace phm
22 } // namespace ara

with all namespace names converted to lower-case letters. c(RS_PHM_00002)

So example namespace could be e.g.

ara::phm::health_channels::oem::drivetrain::wheels:pressure

with pressure being the name of the Health Channel and oem, drivetrain and
wheels are namespaces used to organize uniquely identify the Health Channel.

[SWS_PHM_01114] Folder structure for Supervised Entity files d The gener-
ated header files defined by [SWS_PHM_01002] shall be located within the folder:

<folder>/ara/phm/health_channels/<namespace[0]>/.../<namespace[n]>/

where:
<folder> is the start folder for the ara::phm header files specific for a project or
platform vendor,
<namespace[0]> ... <namespace[n]> are the namespace names as defined in
[SWS_PHM_01113]. c(RS_PHM_00001)

[SWS_PHM_01115] Generated header files for Health Channels d The plat-
form health management shall provide one Health Channel header file for each
HealthChannel defined in the input by using the file name <name>.h, where
<name> is the HealthChannel.shortName c(RS_PHM_00001)

So effectively, for each Health Channel, there is a separate generated file. There
can be several Health Channels in the same namespace, which results with several
files in the same folder.

18 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.1.2 Non-generated header files

The Non-generated header files include the types that provide the ara::phm API.
Such type definitions are used in the standardized interfaces defined in chapter 8.1.3.

There are following classes:

1. PHM - existing in one instance per application, providing supervisions executed
locally and providing the communication with remote PHM components.

2. LocalSupervisionStatus - an enum class representing Local Supervi-
sion Status.

3. GlobalSupervisionStatus - an enum class representing Global Super-
vision Status.

4. SupervisedEntity - a class to report Checkpoints.

5. HealthChannel - a class to report Health Statuses.

[SWS_PHM_01101] Folder structure for non-generated files d The Non-generated
header files shall be located within the folder:

<folder>/ara/phm/

where:
<folder> is the start folder for the ara::phm header files specific for a project or
platform vendor. c(RS_PHM_00001)

[SWS_PHM_01018] Non-generated header file namespace d The C++ namespace
for the data type definitions included by the Non-generated header file shall be:

1 namespace ara {
2 namespace phm {
3 ...
4 } // namespace phm
5 } // namespace ara

c(RS_PHM_00002)

[SWS_PHM_01013] Non-generated header file existence d The platform health
management shall provide the following non-generated header files:

1. PHM.hpp and PHM.cpp

2. LocalSupervisionStatus

3. GlobalSupervisionStatus.hpp

4. SupervisedEntity.hpp

5. HealthChannel.hpp

c(RS_PHM_00001)

19 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Note that in the current demonstrator SupervisedEntity.cpp and HealthChannel.cpp are
not needed as they are implemented as class templates.

It is not mandatory that all data type definitions are located directly in the Non-
generated header file. Health Management implementation can also distribute the
definitions into different header files, but at least all those header files need to be in-
cluded into the Non-generated header file.

20 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.2 API Types

This chapter describes the standardized types provided by the ara::phm API, both
the ones generated from the description based on the AUTOSAR Metamodel and the
specific ones that are non-generated.

8.1.2.1 Generated Types

The types described in this chapter will exist only if there is a related PhmSu-
pervisedEntityInterface or PhmHealthChannelInterface configured by the
user, i.e. they are fully dependent on the input configuration. These types are intended
to be used for the unique, configuration-dependent identification of Supervised En-
titys and Health Channels.

An Enumeration is not a plain primitive data type, but a structural description defined
with a set of custom identifiers known as enumerators representing the possible values.
In C++, an enumeration is a first-class object and can take any of these enumerators
as a value.

8.1.2.1.1 Generated code for PhmSupervisedEntityInterface

The following three items are generated for each Supervised Entity, within the
namespace:

1. An enumeration with the Checkpoints

2. A type identifying this Supervised Entity

3. A type identifying each Supervised Entity prototype

[SWS_PHM_00424] Enumeration for Supervised Entity d For each PhmSuper-
visedEntityInterface, there shall exist the corresponding type declaration as:

enum class Checkpoints : EnumUnderlyingType {
<enumerator-list>

};

where:

<enumerator-list> are the enumerators as defined by [SWS_PHM_00425].

EnumUnderlyingType defines the standardized underlying type for the Id.

c(RS_PHM_00003, RS_PHM_00101, RS_HM_09254)

[SWS_PHM_00425] Definition of enumerators of Supervised Entitys d For
each PhmCheckpoint contained in the PhmSupervisedEntityInterface, there
shall exist the corresponding enumeration nested in the declaration defined by
[SWS_PHM_00424] as:

21 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

<enumeratorLiteral> = <initializer><suffix>,

where:

<enumeratorLiteral> is PhmCheckpoint.shortName

<initializer> is the PhmCheckpoint.checkpointId

<suffix> shall be "U".

c(RS_PHM_00003, RS_PHM_00101, RS_HM_09254)

For example, this can generate:

enum class Checkpoints : EnumUnderlyingType
{

Initializing = 0U,
StartupTest = 1U,
InitializingFinished = 2U

};

[SWS_PHM_01116] Definition of an identifier for a Supervised Entitys d For
each Supervised Entity there shall exist a corresponding declaration as:

template <PrototypeType PrototypeId>
using SE = Identifier<<supervisedEntityId><suffix>,

PrototypeId,
Checkpoints>;

where:

<supervisedEntityId> is PhmSupervisedEntityInterface.super-
visedEntityId

<suffix> shall be "U"

PrototypeType defines the standardized underlying type for a prototype

Identifer is a class template provided by Platform Health Management.

c(RS_PHM_00003, RS_HM_09240, RS_HM_09241)

For example, this can generate (with 100U being the Supervised Entity ID):

template <PrototypeType PrototypeId>
using SE = Identifier<100U, PrototypeId, Checkpoints>;

[SWS_PHM_01133] Definition of an identifier for a Supervised Entity Prototype
d For each RPortPrototype of Supervised Entity Prototype that is typed by Phm-
SupervisedEntityInterface there shall exist a list of corresponding declarations
as:

using Prototype<prototypeId> = SE<<prototypeId><suffix>>;

where:

22 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

<prototypeId> is RPortPrototype.shortName.

<suffix> shall be "U".

c(RS_PHM_00003, RS_HM_09240, RS_HM_09241)

For example, this can generate, for a Supervised Entity that has 2 prototypes:

using Prototype0 = SE<0U>;
using Prototype1 = SE<1U>;

8.1.2.1.2 Enumeration for PhmHealthChannelInterface

The generation for Health Channels is similar to the one of Supervised Enti-
tys.

Items are generated for each Health Channel, within the namespace:

1. An enumeration with the Health Statuses

2. A type identifying this Health Channel

3. A type identifying each possible Health Channel prototype.

[SWS_PHM_01118] Enumeration for Health Channel d For each
PhmHealthChannelInterface, there shall exist the corresponding type dec-
laration as:

enum class HealthStatuses : EnumUnderlyingType {
<enumerator-list>

};

where:

<enumerator-list> are the enumerators as defined by [SWS_PHM_01119]

EnumUnderlyingType defines the standardized underlying type for the Id.

c(RS_PHM_00003, RS_PHM_00102, RS_HM_09257)

[SWS_PHM_01119] Definition of enumerators of Health Channels d For each
PhmHealthChannelStatus contained in the PhmHealthChannelInterface,
there shall exist the corresponding enumeration nested in the declaration defined by
[SWS_PHM_00424] as:

<enumeratorLiteral> = <initializer><suffix>,

where:

<enumeratorLiteral> is PhmHealthChannelStatus.shortName

<initializer> is the PhmHealthChannelStatus.statusId

<suffix> shall be "U".

23 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

c(RS_PHM_00003, RS_PHM_00102, RS_HM_09257)

For example, this can generate:

enum class HealthStatuses : EnumUnderlyingType
{

Low = 0U,
High = 1U,
Ok = 2U,
VeryLow = 3,
VeryHigh = 4

};

[SWS_PHM_01120] Definition of an identifier for a Health Channel d For each
HealthChannel there shall exist a corresponding declaration as:

template <PrototypeType PrototypeId>
using HC = Identifier<<HealthChannelId><suffix>, PrototypeId, HealthStatuses>;

where:

<HealthChannelId> is PhmHealthChannelInterface.healthChannelId

<suffix> shall be "U"

PrototypeType defines the standardized underlying type for a prototype

Identifer is a class template provided by Platform Health Management.

c(RS_PHM_00003, RS_HM_09240, RS_HM_09241)

For example, this can generate:

template <PrototypeType PrototypeId>
using HC = Identifier<102U, PrototypeId, HealthStatuses>;

[SWS_PHM_01121] Definition of an identifier for a Health Channel Prototype d For
each Health Channel Prototype there shall exist a list of corresponding declarations as:

using Prototype<prototypeId> = SE<<prototypeId><suffix>>;

where:

<prototypeId> is list of numbers in the range from 0 to PhmHealthChannelIn-
terface.numberOfPrototypes - 1.

<suffix> shall be "U".

c(RS_PHM_00003, RS_HM_09240, RS_HM_09241)

For example, this can generate, for a Health Channel that has 4 prototypes:

using Prototype0 = HC<0>;
using Prototype1 = HC<1>;
using Prototype2 = HC<2>;
using Prototype3 = HC<3>;

24 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.2.2 Non-generated types

This section defines the types that are non-generated.

8.1.2.2.1 Data types

[SWS_PHM_00321] Underlying data types d Platform Health Management
shall provide the following data types - InterfaceType, PrototypeType, InstanceType,
EnumUnderlyingType:

using InterfaceType = std::uint16_t;
using PrototypeType = std::uint8_t;
using InstanceType = std::int32_t;
using EnumUnderlyingType = std::uint8_t;

c(RS_PHM_00101, RS_PHM_00102, RS_HM_09254, RS_HM_09257)

This means that a globally unique serialized representation of a Checkpoint or of a
Health Status takes 4 bytes.

8.1.2.2.2 Identifier

[SWS_PHM_01131] Identifier Class Template d Platform Health Management
shall provide a Identifier class, which represents uniquely a prototype of a Su-
pervised Entity Prototype/Health Channel Prototype and it identifies its enumeration
type.

template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
struct Identifier
{

/// definition of the supervised entity Id / health channel Id
constexpr static InterfaceType id = Id;

/// definition of the prototype Id,
constexpr static PrototypeType prototypeId = PrototypeId;

/// definition of all checkpoints/health statuses of this SE
using EnumType = Enum;

};

c(RS_PHM_00101, RS_PHM_00102, RS_HM_09254, RS_HM_09257)

Identifier is used by the generated classes SupervisedEntity and
HealthChannel.

25 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.2.2.3 LocalSupervisionStatus

[SWS_PHM_01136] Definition of enumeration for Local Supervision Sta-
tuss d Platform Health Management shall provide a LocalSupervisionSta-
tus enum class:

enum class LocalSupervisionStatus : uint8_t
{

DEINIT,
DEACTIVATED,
OK,
FAILED,
EXPIRED

};

c(RS_HM_09237)

8.1.2.2.4 GlobalSupervisionStatus

[SWS_PHM_01137] Definition of enumeration for Global Supervision Sta-
tuss d Platform Health Management shall provide a GlobalSupervision-
Status enum class:

enum class GlobalSupervisionStatus : uint8_t
{

DEINIT,
DEACTIVATED,
OK,
FAILED,
EXPIRED,
STOPPED

};

c(RS_HM_09237)

8.1.2.2.5 SupervisedEntity

[SWS_PHM_01132] SupervisedEntity Class Template d Platform Health
Management shall provide a SupervisedEntity class template which shall inherit
from PHM and which shall provide a method to report Checkpoints.

template <InterfaceType InterfaceId, PrototypeType PrototypeId, typename Enum>
class SupervisedEntity<Identifier<InterfaceId, PrototypeId, Enum>>

: private PHM
{

public:

explicit SupervisedEntity(PHM& phm) : PHM{phm} {}

26 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

void ReportCheckpoint(Enum t);

LocalSupervisionStatus GetLocalSupervisionStatus();

GlobalSupervisionStatus GetGlobalSupervisionStatus();
};

c(RS_PHM_00003, RS_PHM_00101, RS_HM_09254)

8.1.2.2.6 HealthChannel

[SWS_PHM_01122] HealthChannel Class Template d Platform Health Man-
agement shall provide a HealthChannel class template which shall inherit from PHM
and which shall provide a method to report the Health Status.

template <InterfaceType InterfaceId, PrototypeType PrototypeId, typename Enum>
class HealthChannel<Identifier<InterfaceId, PrototypeId, Enum>>

: private PHM
{

public:

explicit HealthChannel(PHM& phm) : PHM{phm} {}

void ReportHealthStatus(Enum t);
};

c(RS_PHM_00003, RS_PHM_00102, RS_HM_09257)

8.1.2.2.7 PHM

[SWS_PHM_01010] PHM Class d The Platform Health Management shall provide a
C++ class named PHM, which shall be responsible for the establishment of the com-
munication with the PHM Daemon and the establishment of the supervision executed
locally and which shall contain a copy-constructor and two protected methods (used by
SupervisedEntity and HealthChannel).

1 class PHM
2 {
3 public:
4 PHM() {
5 // implementation-specific
6 }
7

8 PHM(PHM& phm) {
9

10 // implementation-specific, shallow-copy

27 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

11

12 }
13

14 // remaining special member functions and destructor according to C++14
coding guidelines.

15 // It is implementation specific if they are delete, default or have
custom implementation.

16 // Probably the move constructor does not make sense.
17

18 protected:
19 void ReportCheckpoint(InterfaceType supervisedEntityId, PrototypeType

prototypeId, InstanceType instanceId, EnumUnderlyingType checkpointId);
20

21 void ReportHealthStatus(InterfaceType healthChannelId, PrototypeType
prototypeId, InstanceType instanceId, EnumUnderlyingType healthStatusId)
;

22 };
23

c(RS_PHM_00101, RS_PHM_00102, RS_HM_09254, RS_HM_09257)

8.1.2.3 Daisy Chaining Related Types (Non-generated)

Daisy chaining is not supported in this AUTOSAR release.

8.1.2.4 Error and Exception Types

The ara::phm API does not explicitly make use of C++ exceptions. The AUTOSAR
implementer is free to provide an exception-free implementation or an implementation
that uses Unchecked Exceptions. The implementer is however not allowed to define
Checked Exceptions.

ara::phm API does hereby strictly follow [9, AUTOSAR CPP14 guidelines] regarding
exception usage. I.e. there is a clean separation of exception types into Unchecked
Exceptions and Checked Exceptions, which ara::phm API builds upon.

The former ones (i.e., Unchecked Exceptions) can basically occur in any ara::phm API
call, are not formally modeled in the Manifest, and are fully implementation specific.

The latter ones (i.e., Checked Exceptions) are not used by Health Management API.

8.1.2.5 E2E Related Data Types

The usage of E2E communication protection for Health Management is not standard-
ized.

28 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.3 API Reference

8.1.3.1 SupervisedEntity API

SupervisedEntity API can be used to report checkpoints or to query the status
of a SupervisedEntity. It is possible to query a SupervisedEntity for which
Checkpoints are reported, or not. So one can imagine a centralized error handler
that queries all SupervisedEntitys by creating the SupervisedEntity objects
and calling their getter methods.

8.1.3.1.1 Creation of a SupervisedEntity

The Platform Health Management shall provide constructor for class SupervisedEn-
tity accepting the reference to PHM.

SupervisedEntity(PHM& phm): PHM{phm}

[SWS_PHM_01123] d The function ara::phm::SupervisedEntity::SupervisedEntity is
defined in Table 8.1. c(RS_PHM_00101, RS_HM_09254, RS_HM_09240)

Symbol: ara::phm::SupervisedEntity::SupervisedEntity(PHM const &phm)

Kind: function

Scope: class ara::phm::SupervisedEntity

Syntax: explicit inline ara::phm::SupervisedEntity< InterfaceId, PrototypeId,
Enum >::SupervisedEntity (PHM const &phm);

Parameters (in): phm reference to PHM class.

Thread Safety: tbd

Header file: #include "ara/phm/supervised_entity.h"

Description: Creation of a SupervisedEntity.

Table 8.1: function ara::phm::SupervisedEntity::SupervisedEntity

8.1.3.1.2 ReportCheckpoint

The Platform Health Management shall provide a method ReportCheckpoint, provided
by SupervisedEntity.

void ReportCheckpoint(Enum t);

Where Enum is defined by the class template SupervisedEntity

[SWS_PHM_01127] d The function ara::phm::SupervisedEntity::ReportCheckpoint is
defined in Table 8.2. c(RS_PHM_00101, RS_HM_09254)

29 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Symbol: ara::phm::SupervisedEntity::ReportCheckpoint(Enum t)

Kind: function

Scope: class ara::phm::SupervisedEntity

Syntax: void ara::phm::SupervisedEntity< InterfaceId, PrototypeId, Enum
>::ReportCheckpoint (Enum t);

Parameters (in): t checkpoint identifier.

Return value: None

Thread Safety: tbd

Header file: #include "ara/phm/supervised_entity.h"

Description: Reports an occurrence of a Checkpoint.

Table 8.2: function ara::phm::SupervisedEntity::ReportCheckpoint

8.1.3.1.3 GetLocalSupervisionStatus

The Platform Health Management shall provide a method GetLocalSupervisionStatus,
provided by SupervisedEntity.

LocalSupervisionStatus GetLocalSupervisionStatus();

Which shall return the current Local Supervision Status of this Super-
visedEntity.

[SWS_PHM_01134] d The function ara::phm::SupervisedEntity::GetLocalSupervision
Status is defined in Table 8.3. c(RS_PHM_00101, RS_HM_09237)

Symbol: ara::phm::SupervisedEntity::GetLocalSupervisionStatus()

Kind: function

Scope: class ara::phm::SupervisedEntity

Syntax: LocalSupervisionStatus ara::phm::SupervisedEntity< InterfaceId,
PrototypeId, Enum >::GetLocalSupervisionStatus ();

Return value: LocalSupervisionStatus the local supervision status.

Thread Safety: tbd

Header file: #include "ara/phm/supervised_entity.h"

Description: returns the local supervision status that the supervised entity belongs to

the local supervision status.

Table 8.3: function ara::phm::SupervisedEntity::GetLocalSupervisionStatus

8.1.3.1.4 GetGlobalSupervisionStatus

The Platform Health Management shall provide a method GetGlobalSupervisionSta-
tus, provided by SupervisedEntity.

GlobalSupervisionStatus GetGlobalSupervisionStatus();

Which shall return the current Global Supervision Status of this Super-
visedEntity.

30 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

[SWS_PHM_01135] d The function ara::phm::SupervisedEntity::GetGlobalSupervision
Status is defined in Table 8.4. c(RS_PHM_00101, RS_HM_09237)

Symbol: ara::phm::SupervisedEntity::GetGlobalSupervisionStatus()

Kind: function

Scope: class ara::phm::SupervisedEntity

Syntax: GlobalSupervisionStatus ara::phm::SupervisedEntity< InterfaceId,
PrototypeId, Enum >::GetGlobalSupervisionStatus ();

Return value: GlobalSupervisionStatus the global supervision status.

Thread Safety: tbd

Header file: #include "ara/phm/supervised_entity.h"

Description: returns the global supervision status that the supervised entity belongs to

the global supervision status.

Table 8.4: function ara::phm::SupervisedEntity::GetGlobalSupervisionStatus

8.1.3.2 HealthChannel API

8.1.3.2.1 Creation of a HealthChannel

The Platform Health Management shall provide constructor for class HealthChannel
accepting the reference to PHM.

HealthChannel(PHM& phm): PHM{phm}

[SWS_PHM_00457] d The function ara::phm::HealthChannel::HealthChannel is de-
fined in Table 8.5. c(RS_PHM_00102, RS_HM_09257, RS_HM_09240)

Symbol: ara::phm::HealthChannel::HealthChannel(PHM const &phm)

Kind: function

Scope: class ara::phm::HealthChannel

Syntax: explicit inline ara::phm::HealthChannel< InterfaceId, PrototypeId,
Enum >::HealthChannel (PHM const &phm);

Parameters (in): phm reference to PHM class.

Thread Safety: tbd

Header file: #include "ara/phm/health_channel.h"

Description: Creation of a HealthChannel.

Table 8.5: function ara::phm::HealthChannel::HealthChannel

8.1.3.2.2 ReportHealthStatus

The Platform Health Management shall provide a method ReportHealthStatus, pro-
vided by HealthChannel.

void ReportHealthStatus(Enum t);

Where Enum is defined by the class template HealthChannel

31 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

[SWS_PHM_01128] d The function ara::phm::HealthChannel::ReportHealthStatus is
defined in Table 8.6. c(RS_PHM_00102, RS_HM_09257)

Symbol: ara::phm::HealthChannel::ReportHealthStatus(Enum t)

Kind: function

Scope: class ara::phm::HealthChannel

Syntax: void ara::phm::HealthChannel< InterfaceId, PrototypeId, Enum >::Report
HealthStatus (Enum t);

Parameters (in): t the Helath Status.

Return value: None

Thread Safety: tbd

Header file: #include "ara/phm/health_channel.h"

Description: Reports a Health Status.

Table 8.6: function ara::phm::HealthChannel::ReportHealthStatus

8.1.3.3 PHM API

8.1.3.3.1 Creation of PHM service interface

The Platform Health Management shall provide a default constructor for class PHM.

PHM()

[SWS_PHM_00458] d The function ara::phm::PHM::PHM is defined in Table 8.7. c
(RS_PHM_00101, RS_PHM_00102, RS_HM_09254, RS_HM_09257)

Symbol: ara::phm::PHM::PHM()

Kind: function

Scope: class ara::phm::PHM

Syntax: PHM ();

Thread Safety: tbd

Header file: #include "ara/phm/phm.h"

Description: Creation of a PHM object.

Table 8.7: function ara::phm::PHM::PHM

8.1.3.3.2 Copy constructor for the use by SupervisedEntity and by
HealthChannel

The Platform Health Management shall provide a copy default constructor for class
PHM.

PHM(PHM& phm)

[SWS_PHM_01124] d The function ara::phm::PHM::PHM is defined in Table 8.8. c
(RS_PHM_00101, RS_PHM_00102, RS_HM_09254, RS_HM_09257)

32 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Symbol: ara::phm::PHM::PHM(PHM const &other)

Kind: function

Scope: class ara::phm::PHM

Syntax: PHM (PHM const &other);

Parameters (in): other Reference to the PHM object to be copied.

Thread Safety: tbd

Header file: #include "ara/phm/phm.h"

Description: Copy constructor for the use by SupervisedEntity and by HealthChannel.

Table 8.8: function ara::phm::PHM::PHM

8.1.3.3.3 ReportCheckpoint

The Platform Health Management shall provide a protected method ReportCheckpoint,
provided by PHM, used by SupervisedEntity.

void ReportCheckpoint(InterfaceType supervisedEntityId,
PrototypeType prototypeId,
InstanceType instanceId,
EnumUnderlyingType checkpointId);

[SWS_PHM_01125] d The function ara::phm::PHM::ReportCheckpoint is defined in Ta-
ble 8.9. c(RS_PHM_00101, RS_HM_09254)

Symbol: ara::phm::PHM::ReportCheckpoint(InterfaceType supervisedEntityId, PrototypeType prototype
Id, InstanceType instanceId, EnumUnderlyingType checkpointId)

Kind: function

Scope: class ara::phm::PHM

Visibility: protected

Syntax: void ReportCheckpoint (InterfaceType supervisedEntityId, PrototypeType
prototypeId, InstanceType instanceId, EnumUnderlyingType checkpointId)
noexcept;

supervisedEntityId ID of the Supervised Entity.

prototypeId ID of the Supervised Entity Prototype.

instanceId ID of the Supervised Entity Instance.

Parameters (in):

checkpointId ID of the Checkpoint.

Return value: None

Exception Safety: noexcept

Thread Safety: tbd

Header file: #include "ara/phm/phm.h"

Description: Report a checkpoint occurrence to PHM. This method is provided for usage in SupervisedEntity.

Table 8.9: function ara::phm::PHM::ReportCheckpoint

33 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

8.1.3.3.4 ReportHealthStatus

The Platform Health Management shall provide a protected method ReportHealthSta-
tus, provided by PHM, used by HealthChannel.

void ReportHealthStatus(InterfaceType healthChannelId, PrototypeType prototypeId, InstanceType instanceId,
EnumUnderlyingType healthStatusId);

[SWS_PHM_01126] d The function ara::phm::PHM::ReportHealthStatus is defined in
Table 8.10. c(RS_PHM_00102, RS_HM_09257)

Symbol: ara::phm::PHM::ReportHealthStatus(InterfaceType healthChannelId, PrototypeType prototype
Id, InstanceType instanceId, EnumUnderlyingType healthStatusId)

Kind: function

Scope: class ara::phm::PHM

Visibility: protected

Syntax: void ReportHealthStatus (InterfaceType healthChannelId, PrototypeType
prototypeId, InstanceType instanceId, EnumUnderlyingType healthStatus
Id);

healthChannelId ID of the Health Channel.

prototypeId ID of the Health Channel.

instanceId ID of the Health Channel.

Parameters (in):

healthStatusId ID of the Health Status to be reported.

Return value: None

Thread Safety: tbd

Header file: #include "ara/phm/phm.h"

Description: Report a Health Status to PHM. This method is provided for usage in HealthChannel.

Table 8.10: function ara::phm::PHM::ReportHealthStatus

8.1.3.4 Forward supervision state (daisy-chain)

This feature is not supported by this AUTOSAR release.

34 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

A Not applicable requirements

[SWS_PHM_NA] d These requirements are not applicable as they are not within the
scope of this release. c(RS_PHM_00105, RS_PHM_00106, RS_PHM_00107)

B Interfaces to other Functional Clusters (informative)

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document to de-
scribe Inter-Functional Cluster (IFC) interfaces. In addition, the standardized public
interfaces which are accessible by user space applications can also be used for inter-
action between Functional Clusters.

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider. Additional interfaces, parameters and return values can be added.

B.1 Interface Tables

B.1.1 Process State Transition Event

Name Description Requirements
Intended users Execution Manage-

ment
Name proposal *ProcessChanged*
Functionality Notify a change of a

Process State
The process state change notifica-
tion can be used by the Platform
Health Manager to detemine which
Supervision Entity is activated or
deactivated

Parameters (in) Process identifier Unique named identifier of the Pro-
cess that changed state.

State New state of the specified process.
Parameters (inout) None
Parameters (out) None
Return value None

Table B.1: Process State Transition Event

35 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

C Example implementation of ara::phm

This chapter provides an example implementation of ara::phm API. This chapter is
informative. It can be used as a user manual, as an implementation hint or as an initial
demonstrator.

C.1 Application

The following listing shows an example adaptive application. It has:

1. Engine Supervised Entity that is a single instance

2. Wheel Supervised Entity that is in four instances

3. WheelPressure Health Channel that is in four instances

There are no explicit integer identifiers in the application code (for supervised entity,
instance, enum), this is cleanly encapsulated by the API.

1 #include "ara/phm/HealthChannel.hpp"
2 #include "ara/phm/PHM.hpp"
3 #include "ara/phm/SupervisedEntity.hpp"
4

5 // generated files with the Supervised Entities and Health Channels.
6 #include "ara/phm/health_channels/TyrePressure.hpp"
7 #include "ara/phm/supervised_entities/Engine.hpp"
8 #include "ara/phm/supervised_entities/Wheel.hpp"
9

10 // this file is just for the purpose of the demonstration, they are not
needed in production code

11 #include <typeinfo>
12

13 // namespace with non-generated phm code
14 using namespace ara::phm;
15

16 // namespaces with the generated code
17 using namespace ara::phm::supervised_entities;
18 using namespace ara::phm::health_channels;
19

20 int main()
21 {
22

23 std::cout << std::endl
24 << "PHM Demo" << std::endl
25 << "for each supervised entity prototype, e.g. engine::

Prototype0, there is "
26 << "a type with 3 attributes, available for the application:

" << std::endl;
27 std::cout << "Id of engine Supervised Entity: " << engine::Prototype0::

interfaceId << std::endl;
28 std::cout << "Id of engine0 Supervised Entity Prototype: " <<

static_cast<int>(engine::Prototype0::prototypeId)
29 << std::endl;

36 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

30 std::cout << "Enum type for engine: " << typeid(engine::Prototype0::
EnumType).name() << std::endl;

31

32 std::cout << std::endl << "Creating phm" << std::endl;
33 PHM phm{};
34

35 // example 1: single prototype of SE (engine0) with 3 checkpoints
36 std::cout << std::endl << "example 1: single prototype of SE (engine)

with 3 checkpoints" << std::endl;
37 SupervisedEntity<engine::Prototype0> engine0{phm};
38

39 std::cout << "- prototype 0" << std::endl;
40 engine0.ReportCheckpoint(engine::Checkpoints::Initializing);
41 engine0.ReportCheckpoint(engine::Checkpoints::StartupTest);
42 engine0.ReportCheckpoint(engine::Checkpoints::InitializingFinished);
43

44

45 // example 2: four prototypes of the same SE, each with 2 checkpoints
46 std::cout << std::endl << "example 2: four prototypes of the same SE (

wheel), each with 4 checkpoints" << std::endl;
47 SupervisedEntity<wheel::Prototype0> wheel0{phm};
48 SupervisedEntity<wheel::Prototype1> wheel1{phm};
49 SupervisedEntity<wheel::Prototype2> wheel2{phm};
50 SupervisedEntity<wheel::Prototype3> wheel3{phm};
51

52 std::cout << "- prototype 0" << std::endl;
53 wheel0.ReportCheckpoint(wheel::Checkpoints::Started);
54 wheel0.ReportCheckpoint(wheel::Checkpoints::Finished);
55

56 std::cout << "- prototype 1" << std::endl;
57 wheel1.ReportCheckpoint(wheel::Checkpoints::Started);
58 wheel1.ReportCheckpoint(wheel::Checkpoints::Finished);
59

60 std::cout << "- prototype 2" << std::endl;
61 wheel2.ReportCheckpoint(wheel::Checkpoints::Started);
62 wheel2.ReportCheckpoint(wheel::Checkpoints::Finished);
63

64 std::cout << "- prototype 3" << std::endl;
65 wheel3.ReportCheckpoint(wheel::Checkpoints::Started);
66 wheel3.ReportCheckpoint(wheel::Checkpoints::Finished);
67

68 // example 3: four prototypes of the type wheel pressure health status
69 std::cout << std::endl << "example 3: four prototypes of the type (

wheel pressure health status)" << std::endl;
70 HealthChannel<tyre_pressure::Prototype0> tyre0{phm};
71 HealthChannel<tyre_pressure::Prototype1> tyre1{phm};
72 HealthChannel<tyre_pressure::Prototype2> tyre2{phm};
73 HealthChannel<tyre_pressure::Prototype3> tyre3{phm};
74

75

76 std::cout << "- prototype 0 - with 2 health statuses reported" << std::
endl;

77 tyre0.ReportHealthStatus(tyre_pressure::HealthStatuses::Low);
78 tyre0.ReportHealthStatus(tyre_pressure::HealthStatuses::Ok);
79

80 std::cout << "- prototype 1" << std::endl;

37 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

81 tyre1.ReportHealthStatus(tyre_pressure::HealthStatuses::Ok);
82

83 std::cout << "- prototype 2" << std::endl;
84 tyre2.ReportHealthStatus(tyre_pressure::HealthStatuses::High);
85

86 std::cout << "- prototype 3" << std::endl;
87 tyre3.ReportHealthStatus(tyre_pressure::HealthStatuses::VeryLow);
88

89

90

91 // example 4: access to local and global supervision status:
92 std::cout << std::endl << "example 4: SE access to local and global

supervision status" << std::endl;
93

94 LocalSupervisionStatus localSupervisionStatus = engine0.
GetLocalSupervisionStatus();

95 // underlying type uint8_t casted to uit32_t to be able to print it
96 std::cout << " Local supervision status: " << static_cast<uint32_t>(

localSupervisionStatus) << std::endl;
97

98 GlobalSupervisionStatus globalSupervisionStatus = engine0.
GetGlobalSupervisionStatus();

99 // underlying type uint8_t casted to uit32_t to be able to print it
100 std::cout << " Global supervision status: " << static_cast<uint32_t>(

globalSupervisionStatus) << std::endl;
101

102

103 return 0;
104 }

This example application generates the following text output:
1

2 PHM Demo
3 for each supervised entity prototype, e.g. engine::Prototype0, there is a

type with 3 attributes, available for the application:
4 Id of engine Supervised Entity: 100
5 Id of engine0 Supervised Entity Prototype: 0
6 Enum type for engine: N3ara3phm19supervised_entities6engine11CheckpointsE
7

8 Creating phm
9

10 example 1: single prototype of SE (engine) with 3 checkpoints
11 - prototype 0
12 Received checkpoint. Supervised entity:100 Prototype:0 Instance:86521

Checkpoint:0
13 Received checkpoint. Supervised entity:100 Prototype:0 Instance:86521

Checkpoint:1
14 Received checkpoint. Supervised entity:100 Prototype:0 Instance:86521

Checkpoint:2
15

16 example 2: four prototypes of the same SE (wheel), each with 4 checkpoints
17 - prototype 0
18 Received checkpoint. Supervised entity:101 Prototype:0 Instance:86521

Checkpoint:0

38 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

19 Received checkpoint. Supervised entity:101 Prototype:0 Instance:86521
Checkpoint:1

20 - prototype 1
21 Received checkpoint. Supervised entity:101 Prototype:1 Instance:86521

Checkpoint:0
22 Received checkpoint. Supervised entity:101 Prototype:1 Instance:86521

Checkpoint:1
23 - prototype 2
24 Received checkpoint. Supervised entity:101 Prototype:2 Instance:86521

Checkpoint:0
25 Received checkpoint. Supervised entity:101 Prototype:2 Instance:86521

Checkpoint:1
26 - prototype 3
27 Received checkpoint. Supervised entity:101 Prototype:3 Instance:86521

Checkpoint:0
28 Received checkpoint. Supervised entity:101 Prototype:3 Instance:86521

Checkpoint:1
29

30 example 3: four prototypes of the type (wheel pressure health status)
31 - prototype 0 - with 2 health statuses reported
32 Received health status. Health channel:102 Prototype:0 Instance:86521

Health status:0
33 Received health status. Health channel:102 Prototype:0 Instance:86521

Health status:2
34 - prototype 1
35 Received health status. Health channel:102 Prototype:1 Instance:86521

Health status:2
36 - prototype 2
37 Received health status. Health channel:102 Prototype:2 Instance:86521

Health status:1
38 - prototype 3
39 Received health status. Health channel:102 Prototype:3 Instance:86521

Health status:3
40

41 example 4: SE access to local and global supervision status
42 Local supervision status: 1
43 Global supervision status: 1

C.2 PHM Generated code

The following information is generated out of the configuration files:

1. namespace of Supervised Entity or Health Channel

2. a separate type for each Supervised Entity or Health Channel

3. a separate enumeration for the list of possible Checkpoints or Health Sta-
tuses

4. a separate type for each instance of Supervised Entity or Health Chan-
nel.

39 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

The following two files show the generated types for the example application for Su-
pervised Entitys:

Engine:
1 #ifndef _ARA_PHM_SUPERVISED_ENTITIES_ENGINE_HPP
2 #define _ARA_PHM_SUPERVISED_ENTITIES_ENGINE_HPP
3

4 #include "ara/phm/PHM.hpp"
5

6 namespace ara
7 {
8 namespace phm
9 {

10

11 namespace supervised_entities
12 {
13

14 namespace engine
15 {
16

17 // definition of all health statuses of this SE
18 enum class Checkpoints : EnumUnderlyingType
19 {
20 Initializing = 0U,
21 StartupTest = 1U,
22 InitializingFinished = 2U
23 };
24

25 template <PrototypeType PrototypeId>
26 using SE = Identifier<100U, PrototypeId, Checkpoints>;
27

28 // definition of the supervised entity prototype - with prototype ID
29 using Prototype0 = SE<0U>;
30 } // namespace engine
31 } // namespace supervised_entities
32 } // namespace phm
33 } // namespace ara
34

35 #endif // _ARA_PHM_SUPERVISED_ENTITIES_ENGINE_HPP

Wheel:
1 #ifndef _ARA_PHM_SUPERVISED_ENTITIES_WHEEL_HPP
2 #define _ARA_PHM_SUPERVISED_ENTITIES_WHEEL_HPP
3

4 #include "ara/phm/PHM.hpp"
5

6 namespace ara
7 {
8 namespace phm
9 {

10

11 namespace supervised_entities
12 {
13

14 namespace wheel

40 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

15 {
16

17 // definition of all checkpoints of this SE
18 enum class Checkpoints : EnumUnderlyingType
19 {
20 Started = 0U,
21 Finished = 1U
22 };
23

24 template <PrototypeType PrototypeId>
25 using SE = Identifier<101U, PrototypeId, Checkpoints>;
26

27 using Prototype0 = SE<0>;
28 using Prototype1 = SE<1>;
29 using Prototype2 = SE<2>;
30 using Prototype3 = SE<3>;
31 } // namespace wheel
32 } // namespace supervised_entities
33 } // namespace phm
34 } // namespace ara
35

36 #endif // _ARA_PHM_SUPERVISED_ENTITIES_WHEEL_HPP

A similar code is generated for Health Channels:
1 #ifndef _ARA_PHM_HEALTH_CHANNELS_TYREPRESSURE_HPP
2 #define _ARA_PHM_HEALTH_CHANNELS_TYREPRESSURE_HPP
3

4 #include "ara/phm/PHM.hpp"
5

6 namespace ara
7 {
8 namespace phm
9 {

10

11 namespace health_channels
12 {
13

14 namespace tyre_pressure
15 {
16

17 // definition of all possible health statuses
18 enum class HealthStatuses : EnumUnderlyingType
19 {
20 Low = 0U,
21 High = 1U,
22 Ok = 2U,
23 VeryLow = 3,
24 VeryHigh = 4
25 };
26

27 // definition of the supervised entity - with the SE ID
28 template <PrototypeType PrototypeId>
29 using HC = Identifier<102U, PrototypeId, HealthStatuses>;
30

31 // definition of the supervised entity prototype - with prototype ID

41 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

32 using Prototype0 = HC<0>;
33 using Prototype1 = HC<1>;
34 using Prototype2 = HC<2>;
35 using Prototype3 = HC<3>;
36 } // namespace tyre_pressure
37 } // namespace health_channels
38 } // namespace phm
39 } // namespace ara
40

41 #endif // _ARA_PHM_HEALTH_CHANNELS_TYREPRESSURE_HPP

C.3 PHM Non-generated code

Class PHM provides supervision checks executed locally and it provides a communi-
cation with remote PHM daemons. It sees Checkpoints/Health Statuses as a
tuples of 3 integers (id, instance id, serialized enum value), taking together 4 bytes.

PHM operates fully based on the xml/json configuration.

PHM.hpp (simplified):
1 #ifndef _ARA_PHM_PHM_HPP
2 #define _ARA_PHM_PHM_HPP
3

4 #include <cstdint>
5 #include <iostream>
6 #include <type_traits>
7 #include <unistd.h>
8

9 // non-generated code
10 namespace ara
11 {
12 namespace phm
13 {
14

15 using InterfaceType = uint16_t;
16 using PrototypeType = uint8_t;
17 using InstanceType = int32_t;
18 using EnumUnderlyingType = uint8_t;
19

20 class PHM
21 {
22 public:
23 PHM() : instanceId{getpid()} {}
24

25 PHM(PHM& phm) : instanceId{phm.instanceId} {}
26

27 ~PHM() = default;
28

29 protected:
30 void ReportCheckpoint(InterfaceType supervisedEntityId,
31 PrototypeType prototypeId,
32 InstanceType instanceId,

42 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

33 EnumUnderlyingType checkpointId);
34

35 void ReportHealthStatus(InterfaceType healthChannelId,
36 PrototypeType prototypeId,
37 InstanceType instanceId,
38 EnumUnderlyingType healthStatusId);
39

40 InstanceType GetInstanceId() { return instanceId; };
41

42 private:
43 InstanceType instanceId;
44 };
45

46 // An identifier for each Supervised Entity prototype or Health Channel
prototype

47 template <InterfaceType InterfaceId, PrototypeType PrototypeId, typename
Enum>

48 struct Identifier
49 {
50

51 /// definition of the supervised entity Id / health channel Id
52 constexpr static InterfaceType interfaceId = InterfaceId;
53

54 /// definition of the prototype Id,
55 constexpr static PrototypeType prototypeId = PrototypeId;
56

57 /// definition of all checkpoints/health statuses of this SE
58 using EnumType = Enum;
59 };
60

61 template <typename T>
62 struct DependentFalse : std::false_type
63 {
64 };
65 } // namespace phm
66 } // namespace ara
67

68 #endif // _ARA_PHM_PHM_HPP

PHM.cpp (simplified - the methods only print out the identifiers):
1 #include "ara/phm/PHM.hpp"
2

3 namespace ara
4 {
5 namespace phm
6 {
7

8 void PHM::ReportCheckpoint(InterfaceType supervisedEntityId,
9 PrototypeType prototypeId,

10 InstanceType instanceId,
11 EnumUnderlyingType checkpointId)
12 {
13

14 std::cout << " Received checkpoint. "

43 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

15 << "Supervised entity:" << +supervisedEntityId << " Prototype
:" << static_cast<int>(prototypeId)

16 << " Instance:" << static_cast<int>(instanceId)
17 << " Checkpoint:" << static_cast<int>(checkpointId) << std::

endl;
18 }
19

20 void PHM::ReportHealthStatus(InterfaceType healthChannelId,
21 PrototypeType prototypeId,
22 InstanceType instanceId,
23 EnumUnderlyingType healthStatusId)
24 {
25

26 std::cout << " Received health status. "
27 << "Health channel:" << +healthChannelId << " Prototype:" <<

static_cast<int>(prototypeId)
28 << " Instance:" << static_cast<int>(instanceId)
29 << " Health status:" << static_cast<int>(healthStatusId) <<

std::endl;
30 }
31 } // namespace phm
32 } // namespace ara

The class PHM is used by classes SupervisedEntity and HealthChannel, which are
template classes over the generated types. Moreover, they also inherit from PHM to
have a access it its protected methods (it is a has-a relationship realized with private
inheritance).

The class LocalSupervisionStatus provides the strongly typed enum with the possible
values of Local Supervision Status.

LocalSupervisionStatus.hpp:
1 #ifndef _ARA_PHM_LOCALSUPERVISIONSTATUS_HPP
2 #define _ARA_PHM_LOCALSUPERVISIONSTATUS_HPP
3

4 #include <cstdint>
5

6 /// Enumeration of local supervision status.
7 enum class LocalSupervisionStatus : uint8_t
8 {
9 DEINIT,

10 DEACTIVATED,
11 OK,
12 FAILED,
13 EXPIRED
14 };
15

16 #endif // _ARA_PHM_LOCALSUPERVISIONSTATUS_HPP

The class GlobalSupervisionStatus provides the strongly typed enum with the possible
values of Global Supervision Status.

GlobalSupervisionStatus.hpp:
1 #ifndef _ARA_PHM_GLOBALSUPERVISIONSTATUS_HPP

44 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

2 #define _ARA_PHM_GLOBALSUPERVISIONSTATUS_HPP
3

4 #include <cstdint>
5

6 /// Enumeration of global supervision STATUS.
7 enum class GlobalSupervisionStatus : uint8_t
8 {
9 DEINIT,

10 DEACTIVATED,
11 OK,
12 FAILED,
13 EXPIRED,
14 STOPPED
15 };
16

17 #endif // _ARA_PHM_GLOBALSUPERVISIONSTATUS_HPP

SupervisedEntity.hpp:
1 #ifndef _ARA_PHM_SUPERVISEDENTITY_HPP
2 #define _ARA_PHM_SUPERVISEDENTITY_HPP
3

4 #include <cstdint>
5 #include <iostream>
6 #include <type_traits>
7

8 #include "ara/phm/PHM.hpp"
9

10 #include <ara/phm/GlobalSupervisionStatus.hpp>
11 #include <ara/phm/LocalSupervisionStatus.hpp>
12

13 using namespace ara::phm;
14

15 namespace ara
16 {
17 namespace phm
18 {
19

20 template <typename T>
21 class SupervisedEntity
22 {
23 static_assert(DependentFalse<T>::value, "SupervisedEntity must be

created using Identifier template");
24 };
25

26 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
27 class SupervisedEntity<Identifier<Id, PrototypeId, Enum>> : private PHM
28 {
29 public:
30 explicit SupervisedEntity(PHM& phm) : PHM{phm} {}
31

32 void ReportCheckpoint(Enum t);
33

34

35 LocalSupervisionStatus GetLocalSupervisionStatus();
36

45 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

37 GlobalSupervisionStatus GetGlobalSupervisionStatus();
38

39 };
40

41 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
42 void SupervisedEntity<Identifier<Id, PrototypeId, Enum>>::ReportCheckpoint(

Enum t)
43 {
44 auto checkpointId = static_cast<std::underlying_type_t<Enum>>(t);
45

46 PHM::ReportCheckpoint(Id, PrototypeId, GetInstanceId(), checkpointId);
47 }
48

49

50

51 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
52 LocalSupervisionStatus SupervisedEntity<Identifier<Id, PrototypeId,

Enum>>::GetLocalSupervisionStatus() {
53

54 return LocalSupervisionStatus::DEACTIVATED;
55

56 }
57

58 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
59 GlobalSupervisionStatus SupervisedEntity<Identifier<Id, PrototypeId,

Enum>>::GetGlobalSupervisionStatus() {
60

61 return GlobalSupervisionStatus::DEACTIVATED;
62

63

64 }
65

66

67 } // namespace phm
68 } // namespace ara
69

70 #endif

HealthChannel.hpp (right now looking similar, but we assume that new use cases will
introduce differences to SupervisedEntity):

1 #ifndef _ARA_PHM_HEALTHCHANNEL_HPP
2 #define _ARA_PHM_HEALTHCHANNEL_HPP
3

4 #include <cstdint>
5 #include <iostream>
6 #include <type_traits>
7

8 #include <ara/phm/PHM.hpp>
9

10 namespace ara
11 {
12 namespace phm
13 {
14

15 template <typename T>

46 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

16 class HealthChannel
17 {
18 static_assert(DependentFalse<T>::value, "HealthChannel must be created

using Identifier template");
19 };
20

21 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
22 class HealthChannel<Identifier<Id, PrototypeId, Enum>> : private PHM
23 {
24 public:
25 explicit HealthChannel(PHM& phm) : PHM{phm} {}
26

27 void ReportHealthStatus(Enum t);
28 };
29

30 template <InterfaceType Id, PrototypeType PrototypeId, typename Enum>
31 void HealthChannel<Identifier<Id, PrototypeId, Enum>>::ReportHealthStatus(

Enum t)
32 {
33 auto healthStatusId = static_cast<std::underlying_type_t<Enum>>(t);
34

35 PHM::ReportHealthStatus(Id, PrototypeId, GetInstanceId(),
healthStatusId);

36 }
37 } // namespace phm
38 } // namespace ara
39 #endif

D Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class HealthChannel (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement

Note This element defines the source of a health channel.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses HealthChannelExternalStatus, HealthChannelSupervision

Attribute Type Mul. Kind Note
– – – – –

Table D.1: HealthChannel

47 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

Base ARObject , Referrable

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mul. Kind Note

symbol CIdentifier 1 attr The symbol to be used as (depending on the concrete
case) either a complete replacement or a prefix.

Table D.2: ImplementationProps

Class PhmCheckpoint

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a checkpoint for interaction with the Platform Health
Management Supervised Entity.

Tags: atp.Status=draft

Base ARObject , AtpFeature, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

checkpointId PositiveInteger 1 attr Defines the numeric value which is used to indicate the
reporting of this Checkpoint to the Phm.

Tags: atp.Status=draft

Table D.3: PhmCheckpoint

Class PhmHealthChannelInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for interaction with the Platform Health
Management Health Channel.

Tags: atp.Status=draft
atp.recommendedPackage=PlatformHealthManagementInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PlatformHealthManagementInterface, Port
Interface, Referrable

Attribute Type Mul. Kind Note

healthChannel
Id

PositiveInteger 1 attr Defines the numeric value which is used to indicate the
reporting of this Health Channel to the Phm.

Tags: atp.Status=draft

status PhmHealthChannel
Status

* aggr Defines the possible set of status information available to
the health channel.

Tags: atp.Status=draft

Table D.4: PhmHealthChannelInterface

48 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Class PhmHealthChannelStatus
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note The PhmHealthChannelStatus specifies one possible status of the health channel.

Tags: atp.Status=draft

Base ARObject , AtpFeature, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

statusId PositiveInteger 1 attr Defines the numeric value which is used to indicate the
indication of this status the Phm.

Tags: atp.Status=draft

Table D.5: PhmHealthChannelStatus

Class PhmSupervisedEntityInterface

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the ability to implement a PortInterface for interaction with the Platform Health
Management Supervised Entity.

Tags: atp.Status=draft
atp.recommendedPackage=PlatformHealthManagementInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PlatformHealthManagementInterface, Port
Interface, Referrable

Attribute Type Mul. Kind Note

checkpoint PhmCheckpoint * aggr Defines the set of checkpoints which can be reported on
this supervised entity.

Tags: atp.Status=draft

supervised
EntityId

PositiveInteger 1 attr Defines the numeric value which is used to interact with
this Supervised Entity when calling the Phm.

Tags: atp.Status=draft

Table D.6: PhmSupervisedEntityInterface

Class PlatformHealthManagementContribution

Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::PlatformHealthManagement

Note This element defines a contribution to the Platform Health Management.

Tags: atp.ManifestKind=ExecutionManifest
atp.Status=draft
atp.recommendedPackage=PlatformHealthManagementContributions

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

action PhmAction * aggr Collection of Actions and ActionLists in the context of a
PlatformHealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=60

5

49 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

4
Class PlatformHealthManagementContribution

arbitration PhmArbitration * aggr Collection of Arbitrations in the context of a Platform
HealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=50

checkpoint SupervisionCheckpoint * aggr Collection of checkpoints in the context of a Platform
HealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=10

global
Supervision

GlobalSupervision * aggr Collection of GlobalSupervisions in the context of a
PlatformHealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=30

healthChannel HealthChannel * aggr Collection of HealthChannels in the context of a Platform
HealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=40

local
Supervision

LocalSupervision * aggr Collection of LocalSupervisions in the context of a
PlatformHealthManagementContribution.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft
xml.sequenceOffset=20

Table D.7: PlatformHealthManagementContribution

Class PlatformHealthManagementInterface (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class provides the abstract ability to define a PortInterface for the interaction with Platform
Health Management.

Tags: atp.Status=draft

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Subclasses PhmHealthChannelInterface, PhmSupervisedEntityInterface

Attribute Type Mul. Kind Note
– – – – –

Table D.8: PlatformHealthManagementInterface

50 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

Specification of Platform Health Management for
Adaptive Platform

AUTOSAR AP Release 18-10

Class RPortPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note Component port requiring a certain port interface.

Base ARObject , AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable,
MultilanguageReferrable, PortPrototype, Referrable

Attribute Type Mul. Kind Note

required
Interface

PortInterface 1 tref The interface that this port requires, i.e. the port depends
on another port providing the specified interface.

Stereotypes: isOfType

Table D.9: RPortPrototype

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticDebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriorityRegeneration, Event
Handler, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfigIdent,
ModeTransition, MultilanguageReferrable, NetworkConfiguration, PncMappingIdent, SingleLanguage
Referrable, SocketConnectionBundle, SomeipRequiredEventGroup, TimeSyncServerConfiguration, Tp
ConnectionIdent

Attribute Type Mul. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Tags: xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table D.10: Referrable

Class SymbolProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This meta-class represents the ability to attach with the symbol attribute a symbolic name that is conform
to C language requirements to another meta-class, e.g. AtomicSwComponentType, that is a potential
subject to a name clash on the level of RTE source code.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table D.11: SymbolProps

51 of 51
— AUTOSAR CONFIDENTIAL —

Document ID 851: AUTOSAR_SWS_PlatformHealthManagement

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Platform dependencies
	5.1.1 Dependencies on Execution Management
	5.1.2 Dependencies on State Management
	5.1.3 Dependencies on Watchdog Interface
	5.1.4 Dependencies on other Functional Clusters

	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.2 Supervision of Supervised Entities
	7.3 Supervision Modes
	7.4 Recovery actions

	8 Platform Health Management API specification
	8.1 C++ language binding
	8.1.1 API Header files
	8.1.1.1 Generated header file(s)
	8.1.1.2 Non-generated header files

	8.1.2 API Types
	8.1.2.1 Generated Types
	8.1.2.2 Non-generated types
	8.1.2.3 Daisy Chaining Related Types (Non-generated)
	8.1.2.4 Error and Exception Types
	8.1.2.5 E2E Related Data Types

	8.1.3 API Reference
	8.1.3.1 SupervisedEntity API
	8.1.3.2 HealthChannel API
	8.1.3.3 PHM API
	8.1.3.4 Forward supervision state (daisy-chain)

	A Not applicable requirements
	B Interfaces to other Functional Clusters (informative)
	B.1 Interface Tables
	B.1.1 Process State Transition Event

	C Example implementation of ara::phm
	C.1 Application
	C.2 PHM Generated code
	C.3 PHM Non-generated code

	D Mentioned Class Tables

