
Specification of Execution Management
AUTOSAR AP Release 18-03

Document Title Specification of Execution
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 721

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-03

Document Change History
Date Release Changed by Description

2018-03-29 18-03
AUTOSAR
Release
Management

• Deterministic Execution
• Resource Limitation
• State Management
• Fault Tolerance elaboration

2017-10-27 17-10
AUTOSAR
Release
Management

• State Management elaboration,
introduction of Function Groups
• Recovery actions for Platform Health

Management
• Resource limitation and deterministic

execution

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Table of Contents

1 Introduction and functional overview 6

1.1 What is Execution Management? . 6
1.2 Interaction with AUTOSAR Runtime for Adaptive 6

2 Acronyms and abbreviations 8

3 Related documentation 9

3.1 Input documents . 9
3.2 Related standards and norms . 9
3.3 Related specification . 9

4 Constraints and assumptions 10

4.1 Known limitations . 10
4.2 Applicability to car domains . 10

5 Dependencies to other modules 11

5.1 Platform dependencies . 11
5.1.1 Operating System Interface 11
5.1.2 Persistency . 11

5.2 Other dependencies . 11

6 Requirements tracing 12

7 Functional specification 14

7.1 Technical Overview . 15
7.1.1 Terms . 15
7.1.2 Application . 15
7.1.3 Adaptive Application . 16
7.1.4 Executable . 17
7.1.5 Process . 18
7.1.6 Application Manifest . 18
7.1.7 Machine Manifest . 18
7.1.8 Manifest format . 19

7.2 Execution Management Responsibilities 20
7.3 Process Lifecycle Management . 21

7.3.1 Process States . 21
7.3.2 Startup and Shutdown . 22

7.3.2.1 Ordering . 22
7.3.2.2 Arguments . 23

7.3.3 Startup Sequence . 24
7.3.3.1 Execution Dependency 25

7.4 State Management . 29
7.4.1 Overview . 29
7.4.2 Application State . 29
7.4.3 Machine State . 30

3 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.4.3.1 Startup . 32
7.4.3.2 Shutdown . 33
7.4.3.3 Restart . 33

7.4.4 Function Group State . 34
7.4.5 State Management Architecture 37

7.4.5.1 State Management 37
7.4.5.2 State Interaction . 40

7.4.6 State Change . 41
7.4.7 State Information . 44

7.5 Application Recovery Actions . 46
7.5.1 Overview . 46
7.5.2 Recovery Actions . 46

7.5.2.1 Restart Process . 47
7.5.2.2 Override State . 47

7.6 Deterministic Execution . 48
7.6.1 Determinism . 48

7.6.1.1 Time Determinism 49
7.6.1.2 Data Determinism 49
7.6.1.3 Full Determinism . 49

7.6.2 Redundant Deterministic Execution 50
7.6.3 Cyclic Deterministic Execution 53

7.6.3.1 Control of Cyclic Execution 54
7.6.3.2 Worker Pool . 55
7.6.3.3 Random Numbers 56
7.6.3.4 Time Stamps . 56
7.6.3.5 Real-Time Resources 57
7.6.3.6 Guidelines for implementation of deterministic user

process . 60
7.6.3.7 Implementation of Worker Pool users 60

7.7 Resource Limitation . 62
7.7.1 Resource Configuration . 62
7.7.2 Resource Monitoring . 64
7.7.3 Application-level Resource configuration 65

7.7.3.1 CPU Usage . 65
7.7.3.2 Core Affinity . 65
7.7.3.3 Scheduling Policy . 65
7.7.3.4 Memory Budget and Monitoring 66

7.8 Fault Tolerance . 68
7.8.1 Introduction . 68
7.8.2 Scope . 68
7.8.3 Threat Model . 68

7.9 Handling of Application Manifest . 70
7.9.1 Overview . 70
7.9.2 Execution Dependency . 70
7.9.3 Application Arguments . 70
7.9.4 Machine State and Function Group State 70

4 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.9.5 Scheduling Policy . 71
7.9.6 Scheduling Priority . 71
7.9.7 Application Binary Name . 72

8 API specification 73

8.1 Type definitions . 73
8.1.1 ApplicationState . 73
8.1.2 ApplicationReturnType . 73
8.1.3 ActivationReturnType . 73
8.1.4 ActivationTimeStampReturnType 74

8.2 Class definitions . 74
8.2.1 ApplicationClient class . 74

8.2.1.1 ApplicationClient::ApplicationClient 75
8.2.1.2 ApplicationClient::~ApplicationClient 75
8.2.1.3 ApplicationClient::ReportApplicationState 75

8.2.2 DeterministicClient class . 76
8.2.2.1 DeterministicClient::DeterministicClient 76
8.2.2.2 DeterministicClient::~DeterministicClient 76
8.2.2.3 DeterministicClient::WaitForNextActivation 77
8.2.2.4 DeterministicClient::RunWorkerPool 77
8.2.2.5 DeterministicClient::GetRandom 78
8.2.2.6 DeterministicClient::GetActivationTime 79
8.2.2.7 DeterministicClient::GetNextActivationTime 79

9 Service Interfaces 81

9.1 Service Type definitions . 81
9.1.1 StateStatusType . 81

9.2 State Management Interface . 81
9.2.1 Methods . 81
9.2.2 Events . 82

A Not applicable requirements 83

B Mentioned Class Tables 83

C Interfaces to other Functional Clusters (informative) 87

C.1 Overview . 87
C.2 Interface Tables . 88

C.2.1 State Transition Request . 88
C.2.2 State Override Request . 89
C.2.3 Provide State Information . 90
C.2.4 Process Restart Request . 90

5 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

1 Introduction and functional overview

This document is the software specification of the Execution Management func-
tional cluster within the Adaptive Platform Foundation.

Execution Management is responsible for the management of all aspects of sys-
tem execution including platform initialization and the startup / shutdown of Appli-
cations. Execution Management works with, and configures, the Operating
System to perform run-time scheduling of Applications.

Chapter 7 describes how Execution Management concepts are realized within the
Adaptive Platform.

Chapter 8 documents the Execution Management Application Programming Inter-
face (API). The inter-functional cluster API is described in Appendix C.

1.1 What is Execution Management?

Execution Management is the functional cluster within the Adaptive Platform
Foundation that is responsible for platform initialization and the startup and shutdown
of Applications. It performs these tasks using information contained within one or
more Manifest files such as when and how Executables should be started.

The Execution Management functional cluster is part of the Adaptive Platform.
However, the Adaptive Platform is usually not exclusively used within a single
AUTOSAR System as the vehicle is also equipped with a number of ECUs devel-
oped on the AUTOSAR Classic Platform. The System design for the entire vehicle
will therefore cover both ECUs built using that as well as Machines using the Adap-
tive Platform.

1.2 Interaction with AUTOSAR Runtime for Adaptive

The set of programming interfaces to the Adaptive Applications is called
AUTOSAR Runtime for Adaptive (ARA). The interfaces that constitute ARA include
those of Execution Management specified in Chapter 8. Note that APIs accessed
by Adaptive Platform applications use the inter-functional cluster API is described
in Appendix C which is not part of ARA.

Execution Management, in common with other Applications is assumed to be a
process executed on a POSIX compliant operating system. Execution Management
is responsible for initiating execution of the processes in all the Functional Clusters,
Adaptive AUTOSAR Services, and Adaptive Applications. The launching order
is derived by Execution Management according to the specification defined in this
document to ensure proper startup of the Adaptive Platform.

6 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

The Adaptive AUTOSAR Services are provided via mechanisms provided by the Com-
munication Management functional cluster [1] of the Adaptive Platform Foun-
dation. In order to use the Adaptive AUTOSAR Services, the functional clusters in the
Foundation must be properly initialized beforehand. Please refer to the respective
specifications regarding more information on Communication Management.

7 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

2 Acronyms and abbreviations

All technical terms used throughout this document – except the ones listed here – can
be found in the official [2] AUTOSAR Glossary or [3] TPS Manifest Specification.

Term Description

Process A process is a loaded instance of an Executable to be executed
on a Machine.

Execution Dependency Dependencies between Executable instances can be config-
ured to define a sequence for starting and terminating them.

Execution Management
The element of the Adaptive Platform responsible for the
ordered startup and shutdown of the Adaptive Platform and
the Applications.

State Management

The element of the Execution Management defining modes of
operation for Adaptive Platform. It allows flexible definition
of functions which are active on the platform at any given time.
Architecture and functionality of State Management are still under
dicussion. State Management will be covered by a new functional
cluster in a later release.

Machine State

The element of the State Management which characterize the
current status of the machine. It defines a set of active Ap-
plications for any certain situation. The set of Machine
States is machine specific and it will be deployed in the Ma-
chine Manifest. Machine States are mainly used to con-
trol machine lifecycle (startup/shut-down/restart) and platform-
level processes.

Function Group State

The element of State Management that characterizes the cur-
rent status of a set of (functionally coherent) user-level Appli-
cations. The set of Function Groups and their Function
Group States is machine specific and are deployed as part of
the Machine Manifest.

Time Determinism The results of a calculation are guaranteed to be available before
a given deadline.

Data Determinism The results of a calculation only depend on the input data and
are reproducible, assuming a given initial internal state.

Full Determinism Combination of Time and Data Determinism.

Table 2.1: Technical Terms

8 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

3 Related documentation

3.1 Input documents

The main documents that serve as input for the specification of the Execution Man-
agement are:

[1] Specification of Communication Management
AUTOSAR_SWS_CommunicationManagement

[2] Glossary
AUTOSAR_TR_Glossary

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[4] Requirements on Execution Management
AUTOSAR_RS_ExecutionManagement

[5] Requirements on Operating System Interface
AUTOSAR_RS_OperatingSystemInterface

[6] Requirements on Persistency
AUTOSAR_RS_Persistency

[7] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[8] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, ’Basic
Concepts and Taxonomy of Dependable and Secure Computing’, IEEE Transac-
tions on Dependable and Secure Computing, Vol. 1, No. 1, January-March 2004

[9] Standard for Information Technology–Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7
http://pubs.opengroup.org/onlinepubs/9699919799/

3.2 Related standards and norms

See chapter 3.1.

3.3 Related specification

See chapter 3.1.

9 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

http://pubs.opengroup.org/onlinepubs/9699919799/

Specification of Execution Management
AUTOSAR AP Release 18-03

4 Constraints and assumptions

4.1 Known limitations

This chapter lists known limitations of Execution Management and their relation to
this release of the Adaptive Platform with the intent to provide an indication how
Execution Management within the context of the Adaptive Platform will evolve
in future releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

Section 7.6 Deterministic Execution and Section 7.7 Resource Limitation –
these sections have been expanded in this release but are not complete.
In particular the contents will be expanded with more properties and formal
requirements in the next release.

Section 7.8 Fault Tolerance – this section is incomplete and the topics of error han-
dling within Execution Management will be expanded in a future release.

Section 7.4.5.1 State Management – This section will be removed as soon as a ded-
icated State Management specification document is available.

The following functionality is not specified in this release:

• ECU/VM reset interface ([RS_EM_00110]).

• Application integrity management ([RS_EM_00003].

• Application authentication and authorization ([RS_EM_00004].

• Container Support.

Appendix A details requirements from Execution Management Requirement Spec-
ification [4] that are not elaborated within this specification. The presence of these
requirements in this document ensures that the requirement tracing is complete and
also provides an indication of how Execution Management will evolve in future re-
leases of the Adaptive Platform.

The functionality described above is subject to modification and will be considered for
inclusion in a future release of this document.

4.2 Applicability to car domains

No restrictions to applicability.

10 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

5 Dependencies to other modules

5.1 Platform dependencies

5.1.1 Operating System Interface

Execution Management is dependent on the Operating System Interface [5]. The
OSI is used to control specific aspects of Application execution, for example, to set
scheduling parameters or to execute an Application.

5.1.2 Persistency

Execution Management is dependent on the Persistency [6] functional cluster. Per-
sistency is used to access persistent storage and Manifest information.

5.2 Other dependencies

Currently, there are no other library dependencies.

11 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

6 Requirements tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_EM_00002] Execution Management shall

set-up one process for the
execution of each Executable
instance

[SWS_EM_01014] [SWS_EM_01015]
[SWS_EM_01039] [SWS_EM_01040]
[SWS_EM_01041] [SWS_EM_01042]
[SWS_EM_01043]

[RS_EM_00003] Execution Management shall
support the checking of the
integrity of Executables at
startup of Executable.

[SWS_EM_NA]

[RS_EM_00004] Execution Management shall
support the authentication and
authorization of Executables at
startup of Executable

[SWS_EM_NA]

[RS_EM_00005] Execution Management shall
support the configuration of OS
resource budgets for Executable
and groups of Executables

[SWS_EM_02102] [SWS_EM_02103]
[SWS_EM_02106] [SWS_EM_02107]
[SWS_EM_02108] [SWS_EM_02109]

[RS_EM_00008] Execution Management shall
support the binding of
Executable threads to a
specified set of processor cores.

[SWS_EM_02104]

[RS_EM_00009] Only Execution Management
shall start Executables

[SWS_EM_01030] [SWS_EM_01033]

[RS_EM_00010] Execution Management shall
support multiple instances of
Executables

[SWS_EM_01012] [SWS_EM_01072]
[SWS_EM_01073] [SWS_EM_01074]
[SWS_EM_01075] [SWS_EM_01076]
[SWS_EM_01077]

[RS_EM_00011] Execution Management shall
support self-initiated graceful
shutdown of Executable
instances

[SWS_EM_01005]

[RS_EM_00013] Execution Management shall
support configurable recovery
actions

[SWS_EM_01016] [SWS_EM_01018]
[SWS_EM_01061] [SWS_EM_01062]
[SWS_EM_01063] [SWS_EM_01064]

[RS_EM_00050] Execution Management shall
perform system-wide
coordination of Processes

[SWS_EM_NA]

[RS_EM_00051] Execution Management shall
provide functions to the
Executable for configuring
external trigger conditions for its
activities

[SWS_EM_NA]

[RS_EM_00052] Execution Management shall
provide functions to the
Executable for configuring cyclic
triggering of its activities

[SWS_EM_01301] [SWS_EM_01302]
[SWS_EM_02201] [SWS_EM_02210]
[SWS_EM_02211] [SWS_EM_02215]
[SWS_EM_02216]

12 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_EM_00053] Execution Management shall

provide functions to support
deterministic redundant
execution of Executables

[SWS_EM_01305] [SWS_EM_01308]
[SWS_EM_01310] [SWS_EM_01311]
[SWS_EM_01312] [SWS_EM_01313]
[SWS_EM_02202] [SWS_EM_02210]
[SWS_EM_02211] [SWS_EM_02215]
[SWS_EM_02220] [SWS_EM_02225]
[SWS_EM_02230] [SWS_EM_02235]

[RS_EM_00100] Execution Management shall
support the ordered startup and
shutdown of Executables

[SWS_EM_01000] [SWS_EM_01001]
[SWS_EM_01050] [SWS_EM_01051]

[RS_EM_00101] Execution Management shall
support State Management
functionality

[SWS_EM_01013] [SWS_EM_01023]
[SWS_EM_01024] [SWS_EM_01025]
[SWS_EM_01026] [SWS_EM_01028]
[SWS_EM_01032] [SWS_EM_01033]
[SWS_EM_01034] [SWS_EM_01035]
[SWS_EM_01036] [SWS_EM_01037]
[SWS_EM_01044] [SWS_EM_01058]
[SWS_EM_01059] [SWS_EM_01060]
[SWS_EM_01065] [SWS_EM_01066]
[SWS_EM_01067] [SWS_EM_01068]
[SWS_EM_01107] [SWS_EM_01108]
[SWS_EM_01109] [SWS_EM_01110]
[SWS_EM_01111] [SWS_EM_02044]
[SWS_EM_02049] [SWS_EM_02050]
[SWS_EM_02056] [SWS_EM_02057]
[SWS_EM_02058] [SWS_EM_02070]

[RS_EM_00103] Execution Management shall
support Process lifecycle
management

[SWS_EM_01002] [SWS_EM_01003]
[SWS_EM_01004] [SWS_EM_01005]
[SWS_EM_01006] [SWS_EM_01053]
[SWS_EM_01055] [SWS_EM_01069]
[SWS_EM_01070] [SWS_EM_01071]
[SWS_EM_02000] [SWS_EM_02001]
[SWS_EM_02002] [SWS_EM_02003]
[SWS_EM_02030]

[RS_EM_00110] Execution Management shall
support diagnostic reset cause

[SWS_EM_NA]

13 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7 Functional specification

Execution Management is a functional cluster contained in the Adaptive Plat-
form Foundation. Execution Management is responsible for all aspects of sys-
tem execution management including platform initialization and startup / shutdown of
Applications.

Execution Management works in conjunction with the Operating System. In partic-
ular, Execution Management is responsible for configuring the Operating System to
perform run-time scheduling and resource monitoring of Applications.

This chapter describes the functional behaviour of Execution Management.

• Section 7.1 presents an introduction to key terms within Execution Manage-
ment focusing on the relationship between Application, Executable, and
Process.

• Section 7.2 covers the core Execution Management run-time responsibilities
including the start of Applications.

• Section 7.3 describes the lifecycle of Applications including Process state
transitions and startup / shutdown sequences.

• Section 7.4 covers several topics related to State Management within Execu-
tion Management including Machine, Application and Function Group
state management.

• Section 7.5 describes how Application error recovery actions are specified
during integration.

• Section 7.6 documents support provided by Execution Management Deter-
ministic execution such that given the same input and internal state, a calculation
will always produce the same output.

• Section 7.7 describes how Execution Management supports resource man-
agement including the limitation of usage of CPU and memory by an Applica-
tion.

• Section 7.8 provides an introduction to Fault Tolerance strategies in general. This
section will be expanded in a future release to describe how such strategies are
realized within Execution Management.

• Section 7.9 covers development and deployment of Application specific in-
formation within the Manifest used by Execution Management to control
execution of the Application.

14 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.1 Technical Overview

This chapter presents a short summary of the relationship between Application,
Executable, and Process.

7.1.1 Terms

Before discussing the concepts of Application, Executable, and Process it is
useful to present an overview of the terms so that the more detailed dicussions have
the required context.

Application – An implementation that resolves a set of coherent functional require-
ments and is the result of functional development. An Application is the unit
of delivery for Machine specific configuration and integration.

Executable – Part of an Application. It consists of executable code (with exactly
one entry point) created at integation time that can be deployed and installed on
a Machine. An Application may consist of one or more Executables, each
of which can be deployed to different Machines.

Process – Process (which technically is a POSIX process) is a started instance of
an Executable.

Application Manifest – An Application Manifest is created at integration time
and deployed onto a Machine together with the Executable to which it is at-
tached. It supports the integration of the Executable code and describes the
configuration properties (startup parameters, resource group assignment etc.) of
each Process, i.e. started instance of that Executable.

Machine Manifest – The Machine Manifest holds all configuration information
which cannot be assigned to a specific Executable or Process.

7.1.2 Application

Applications are developed to resolve a set of coherent functional requirements.
An Application consists of executable software units, additional execution related
items (e.g. data or parameter files), and descriptive information used for integration
end execution (e.g. a formal model description based on the AUTOSAR meta model,
test cases, etc.).

Applications can be located on user level above the middleware or can implement
functional clusters of the Adaptive Platform (located on the level of the middle-
ware), see [TPS_MANI_01009] in [3].

In general, an Application, whether user-level or platform-level, are treated the
same by Execution Management and can use all mechanisms and APIs provided
by the Operating System and other functional clusters of the Adaptive Platform.

15 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

However in doing so it potentially restricts its portability to other implementations of the
Adaptive Platforms.

7.1.3 Adaptive Application

An Adaptive Application is a specific type of Application. The implementa-
tion of an Adaptive Application fully complies with the AUTOSAR specification,
i.e. it is restricted to the use of APIs standardized by AUTOSAR and needs to follow
specific coding guidelines to allow reallocation between different implementations of
the Adaptive Platform.

Adaptive Applications are always located above the middleware. To allow porta-
bility and reuse, user level Applications should be Adaptive Applications
whenever technically possible.

Figure 7.1 shows the different types of Applications.

platform/
machine

user level

fully AUTOSAR
compliant

OS/hardware
specific

implementation

Adaptive
Application

non portable, e.g.
hardware-dependent

user Application

portable
Adaptive

Application

reusable
platform

Application

typical
functional cluster

Application

Figure 7.1: Types of Applications

An Adaptive Application is the result of functional development and is the unit of
delivery for Machine specific configuration and integration. Some contracts (e.g. con-
cerning used libraries) and Service Interfaces to interact with other Adaptive
Applications need to be agreed on beforehand. For details see [7].

16 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.1.4 Executable

An Executable is a software unit which is part of an Application. It has exactly
one entry point (main function) [SWS_OSI_01300]. An Application can be imple-
mented in one or more Executables [TPS_MANI_01008].

The lifecycle of Executables usually consists of:

Process Step Software Meta Information

Development
and Integration

Linked, configured and calibrated bi-
nary for deployment onto the target
Machine. The binary might contain
code which was generated at integra-
tion time.

Application Manifest, see
7.1.6 and [3], and Service In-
stance Manifest (not used by
Execution Management).

Deployment
and Removal

Binary installed on the target Ma-
chine. Previous version (if any) re-
moved.

Processed Manifests, stored in a
platform-specific format which is effi-
ciently readable at Machine startup.

Execution Process started as instance of the
binary.

The Execution Management uses
contents of the Processed Manifests
to start up and configure each Pro-
cess individually.

Table 7.1: Executable Lifecycle

Executables which belong to the same Adaptive Application might need to be
deployed to different Machines, e.g. to one high performance Machine and one high
safety Machine.

Figure 7.2 shows the lifecycle of an Executable from deployment to execution.

functional
cluster

API

function
cluster

API

application process

Software Package

offboard

machine

OS

installed
executable

process
(loaded executable instance)

API

Update and
Configuration
Management

deployment,
authentication,

installation
Execution

Management
startup, configure OS,

shutdown, …

API

other
functional
clusters

API

data base

application
manifest

processed
manifests

Application
Manifest

executable
(binary)Machine

Manifest

design, development, integration

Service
Instance
Manifest

Figure 7.2: Executable Lifecycle from deployment to execution

17 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.1.5 Process

A Process is a started instance of an Executable. On the Adaptive Platform,
a Process technically is a POSIX process. For details on how Execution Manage-
ment starts and stops Processes see 7.3.

Remark: In this release of this document it is mostly assumed that Processes are
self-contained, i.e. that they take care of controlling thread creation and scheduling
by calling APIs of the Operating System Interface from within the code. Execution
Management only starts and terminates the Processes and while the Processes
are running, Execution Management only interacts with the Processes by pro-
viding State Management mechanisms (see 7.4) or APIs to support Deterministic
Execution (see 7.6.3).

7.1.6 Application Manifest

An Application Manifest is created together with a Service Instance Man-
ifest (not used by Execution Management) at integration time and deployed onto a
Machine together with the Executable it is attached to. It supports the integration
of the Executable code and describes in a standardized way the machine-specific
configuration of Process properties (startup parameters, resource group assignment,
priorities etc.).

The Application Manifest consists of parts of the Application design informa-
tion which is provided by the application developer in an application description, and
additional machine-specific information which is added at integration time. For details
on the Application Manifest contents see Section 7.9. A formal specification can
be found in [3].

Each instance of an Executable binary, i.e. each started Process, is individu-
ally configurable, with the option to use a different configuration set per Machine
State or per Function Group State (see Section 7.4 and [TPS_MANI_01012],
[TPS_MANI_01013], [TPS_MANI_01014], [TPS_MANI_01015], [TPS_MANI_01059],
[TPS_MANI_01017] and [TPS_MANI_01041]).

7.1.7 Machine Manifest

The Machine Manifest is also created at integration time for a specific Machine
and is deployed like Application Manifests whenever its contents change. The
Machine Manifest holds all configuration information which cannot be assigned to
a specific Executable or its instances (the Processes), i.e. which is not already
covered by an Application Manifest or a Service Instance Manifest.

The contents of a Machine Manifest includes the configuration of Machine proper-
ties and features (resources, safety, security, etc.), e.g. configured Machine States

18 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

and Function Group States, resource groups, access right groups, scheduler
configuration, SOME/IP configuration, memory segmentation. For details see [3].

7.1.8 Manifest format

The Application Manifests and the Machine Manifest can be transformed
into a platform-specific format (called Processed Manifest), which is efficiently read-
able at Machine startup. The format transformation can be done either off board at
integration time or at deployment time, or on the Machine (by Update and Configura-
tion Management) at installation time.

19 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.2 Execution Management Responsibilities

Execution Management is responsible for all aspects of Process execution man-
agement. A Process is a loaded instance of an Executable, which is part of an
Application.

Execution Management is started as part of the Adaptive Platform startup
phase and is responsible for starting and terminating Processes.

Execution Management determines when, and possibly in which order, to start or
stop Processes, i.e. instances of the deployed Executables, based on information
in the Machine Manifest and Application Manifests.

[SWS_EM_01030] Start of Process execution d Execution Management shall be
solely responsible for initiating execution of Processes. c(RS_EM_00009)

Depending on the Machine State or on a Function Group State, deployed Ex-
ecutables are started during Adaptive Platform startup or later, however it is not
expected that all will begin active work immediately since many Processes will pro-
vide services to other Processes and therefore wait and “listen” for incoming service
requests.

Execution Management derives an ordering for startup/shutdown of deployed Ex-
ecutables within the contect of machine and/or function group state changes based
on declared Execution Dependencies [SWS_EM_01050]. The dependencies are
described in the Application Manifests, see [TPS_MANI_01041].

Execution Management is not responsible for run-time scheduling of Processes
since this is the responsibility of the Operating System. However, Execution Man-
agement is responsible for initialization / configuration of the OS to enable it to perform
the necessary run-time scheduling and resource management based on information
extracted by Execution Management from the Machine Manifest and Appli-
cation Manifests.

20 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.3 Process Lifecycle Management

7.3.1 Process States

From the execution point of view, Process States characterize the lifecycle of any Pro-
cess, i.e. of each instance of an Executable. Note that each Process is indepen-
dent and therefore has its own Process State.

[SWS_EM_01002] Idle Process State d The Idle Process State shall be the Process
State prior to creation of the Process and to resource allocation. c(RS_EM_00103)

[SWS_EM_01003] Starting Process State d The Starting Process State shall ap-
ply when the Process has been created and resources have been allocated. c
(RS_EM_00103)

[SWS_EM_01004] Running Process State d The Running Process State shall apply
to a Process after it has been scheduled and it has reported kRunning to Execu-
tion Management. c(RS_EM_00103)

[SWS_EM_01005] Terminating Process State d The kTerminating Process State
shall apply either after a Process has received the termination indication from Execu-
tion Management, or after it has decided to self-terminate and informed Execution
Management. c(RS_EM_00103, RS_EM_00011)

The kTerminating and kRunning Process State indications from Application
to Execution Management use the ReportApplicationState API (see Sec-
tion 8.2.1.3).

On entering the kTerminating Process State, the Process is expected to save per-
sistent data, free all used Process internal resources and exit.

[SWS_EM_01006] Terminated Process State d The Terminated Process State shall
apply after the Process has terminated and the Process resources have been freed.
c(RS_EM_00103)

For [SWS_EM_01006], Execution Management observes the exit status of all Pro-
cesses. The mechanism is implementation dependent but could, for example, use the
POSIX waitpid() command.

From the resource allocation point of view, the Terminated Process State is similar to
the Idle Process State – there is no Process running and no resources are allocated.
However from the execution point of view, the Terminated Process State is different
from Idle as it tells Execution Management that the Process has already been
executed, terminated and can no longer run. This is relevant for one shot Processes
which are supposed to run and terminate on their own as once they have reached their
Terminated Process State they are to return to the Idle Process State without any
external trigger.

[SWS_EM_01069] One-shot Process State d After a one-shot Process has termi-
nated, Execution Management shall immediately set its Process State to Idle. c
(RS_EM_00103)

21 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

ExecuteIdle

Starting

process

created,

resources

allocated

Terminated

process

resources

freed

TerminatingTerminateRunningSchedule

Figure 7.3: Process Lifecycle

7.3.2 Startup and Shutdown

7.3.2.1 Ordering

Execution Management can derive an ordering for the startup and shutdown of
Processes within the State Management framework based on the declared Exe-
cution Dependencies. An Execution Dependency defines the provider of ser-
vice(s) required by a Process before that Process can provide its own services.
Hence Execution Management ensures the dependent Processes are in the state
defined by the Execution Dependency before the Process with the dependency is
started.

Execution Dependencies are described in the Application Manifests
[TPS_MANI_01041].

Example 7.1

Consider a Process, DataLogger, which has an Execution Dependency on an-
other Process, Storage. For startup this means DataLogger has a Execution De-
pendency on Storage so the latter must be started by Execution Management be-
fore DataLogger so that DataLogger can store its data.

[SWS_EM_01050] Start Dependent Processes d During startup, Execution Man-
agement shall respect Execution Dependencies by ensuring that any Pro-
cesses upon which the Process to be started depends have reached the requested
state before starting the Process. c(RS_EM_00100)

The same Execution Dependencies used to define the startup order are also used
to define the shutdown order. However the situation is reversed as Execution Man-
agement must ensure that dependent processes are shutdown after the process to
ensure that the services required remain available until no longer required.

[SWS_EM_01051] Shutdown Processes d During shutdown, Execution Manage-
ment shall respect Execution Dependencies by ensuring that any Processes

22 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

upon which the Process to be shutdown depends are not terminated before shutting
down the Process. c(RS_EM_00100)

Example 7.2

Consider the same Process, DataLogger, as above which has an Execution
Dependency on another Process, Storage. For shutdown the Execution De-
pendency indicates Execution Management must only shutdown Storage after
DataLogger so the latter can flush its data during shutdown.

Note that [SWS_EM_01051] merely requires Execution Management to not termi-
nate the dependent process(s) before shutting down a process. it is not an error if the
Process has self-terminated so is not be available to be terminated.

If no Execution Dependencies are specified between two Processes then no
order is imposed and they can be started or shutdown in an arbitrary order.

7.3.2.2 Arguments

Execution Management provides argument passing for a Process containing
one or more ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig. This permits different Processes to be started with different
arguments.

[SWS_EM_01012] Application Argument Passing d At the initiation of startup of
a Process, the aggregated StartupOptions of the StartupConfig referenced
by the ModeDependentStartupConfig shall be passed to the call of the exec-
family based POSIX interface to start the Process by the Operating System based
on [SWS_EM_01072], [SWS_EM_01073], [SWS_EM_01074], [SWS_EM_01075],
[SWS_EM_01076] and [SWS_EM_01077]. c(RS_EM_00010)

The first argument on the command-line passed by Execution Management is the
name of the Executable.

[SWS_EM_01072] Application Argument Zero d Argument 0 shall be set to name of
the Executable. c(RS_EM_00010)

Execution Management supports simple arguments that take no value. All sim-
ple arguments begin with a single dash (-) which is not include in the StartupOp-
tion.optionName.

[SWS_EM_01073] Simple Arguments d For each aggregated StartupOption at
position n with StartupOption.optionKind = commandLineSimpleForm the nth
argument shall be StartupOption.optionArgument. c(RS_EM_00010)

Execution Management supports short form arguments which are typically single
characters. All short form arguments begin with a single dash (-) which is not included
in the StartupOption.optionName.

23 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_01074] Short form arguments with option value d For each aggregated
StartupOption at position n with StartupOption.optionKind = commandLi-
neShortForm and with multiplicity of StartupOption.optionArgument = 1 the
nth argument shall be ’-’ + StartupOption.optionName + ’ ’ + StartupOp-
tion.optionArgument c(RS_EM_00010)

[SWS_EM_01075] Short form Arguments without option value d For each aggre-
gated StartupOption at position n with StartupOption.optionKind = comman-
dLineShortForm and with multiplicity of StartupOption.optionArgument = 0
the nth argument shall be ’-’ + StartupOption.optionName c(RS_EM_00010)

Execution Management supports long form arguments which are typically more
meaningful to the user than short-form arguments. To distinguish long form arguments
from short form the former begin with a double dash (--) which is not included in the
StartupOption.optionName.

[SWS_EM_01076] Long form Arguments with option value d For each aggregated
StartupOption at position n with StartupOption.optionKind = commandLine-
LongForm and with multiplicity of StartupOption.optionArgument = 1 the nth
argument shall be ’--’ + StartupOption.optionName + ’=’ + StartupOption.op-
tionArgument c(RS_EM_00010)

[SWS_EM_01077] Long form Arguments without option value d For each aggre-
gated StartupOption at position n with StartupOption.optionKind = comman-
dLineLongForm and with multiplicity of StartupOption.optionArgument = 0 the
nth argument shall be ’--’ + StartupOption.optionName c(RS_EM_00010)

7.3.3 Startup Sequence

When the Machine is started, the OS will be initialized first and then Execution
Management is launched as one of the OS’s initial Processes1. Other functional
clusters and platform-level Applications of the Adaptive Platform Founda-
tion are then launched by Execution Management. After the Adaptive Plat-
form Foundation is up and running, Execution Management continues to launch
user-level Applications.

Please note that an Application consists of one or more Executables. There-
fore to launch an Application, Execution Management starts Processes as
instances of each Executable.

[SWS_EM_01000] Startup order d The startup order of the platform-level Processes
is determined by Execution Management, based on Machine Manifest and Ap-
plication Manifest information. c(RS_EM_00100)

Please see Section 7.9.1.

Figure 7.4 shows the overall startup sequence.
1Typically the init process

24 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

OS boot

OS starts the Execution Management

The Execution Management reads the processed manifests

and determines the application startup order based on the

dependency description.

Processes of Application Executables are instantiated

based on the startup order.

Other Adaptive Platform Foundation modules are also

started as they are Applications described with

Manifests

Figure 7.4: Startup sequence

7.3.3.1 Execution Dependency

Execution Management provides support to the Adaptive Platform for ordered
startup and shutdown of Applications. This ensures that Applications are
started before dependent Applications use the services that they provide and, like-
wise, that Applications are shutdown only when their provided services are no
longer required. In this release, this only applies to platform-level Applications at
machine startup and shutdown, see [constr_1484] in [3].

The Execution Dependencies, see [TPS_MANI_01041], are configured in the Ap-
plication Manifests, which are created at integration time based on information
provided by the Application developer.

User-level Applications use service discovery mechanisms of the Communica-
tion Management and should not rely on Execution Dependencies. Which
Processes are running depends on the current Machine State and on the cur-
rent Function Group States, see 7.4. The integrator must ensure that all service
dependencies are mapped to State Management configuration, i.e. that all dependent
Processes are running when needed.

In real life, specifying a simple dependency to a Process might not be sufficient to
ensure that the depending service is actually provided. Since some Processes shall
reach a certain Application State (see 7.4.2) to be able to offer their services to other
Processes, the dependency information shall also refer to Application State of the
Process specified as dependency. With that in mind, the dependency information
may be represented as a pair like: <Process>.<ApplicationState>. For more
details regarding the Application States refer to Section 7.4.2.

25 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

The following dependency use-cases have been identified:

• In case Process B has a simple dependency on Process A, the Running Ap-
plication State of Process A is specified in the dependency section of Process
B’s Application Manifest.

• In case Process B depends on One-Shot Process A, the Terminated Applica-
tion State of Process A is specified in the dependency section of Process B’s
Application Manifest.

Version information within the Application Manifest is required since a consum-
ing Executable and its required services might not be compatible with all versions of
the producing Executable and its provided services. This also applies to the Pro-
cesses which are instantiated from these Executables. An example for the defi-
nition of the version information attached to several Executables can be found in
Listing 7.1.

Listing 7.1: Example for Executable versions
<AR-PACKAGE>

<SHORT-NAME>Executables</SHORT-NAME>
<ELEMENTS>

<EXECUTABLE>
<SHORT-NAME>RadarSensorVR</SHORT-NAME>
<VERSION>1.0.3</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>RadarSensorVL</SHORT-NAME>
<VERSION>1.0.4</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>Diag</SHORT-NAME>
<VERSION>1.0.0</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<VERSION>1.0.2</VERSION>

</EXECUTABLE>
</ELEMENTS>

</AR-PACKAGE>

An example for the definition of the Process dependency information can be found in
Listing 7.2

Listing 7.2: Example for Executable dependency
<PROCESS>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<EXECUTABLE-REF DEST="EXECUTABLE">/Executables/SensorFusion</EXECUTABLE-

REF>
<MODE-DEPENDENT-STARTUP-CONFIGS>

<MODE-DEPENDENT-STARTUP-CONFIG>
<EXECUTION-DEPENDENCYS>

<EXECUTION-DEPENDENCY>
<APPLICATION-MODE-IREF>

26 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-
DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVR/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVL/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/Diag/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>

</EXECUTION-DEPENDENCYS>
<STARTUP-CONFIG-REF DEST="STARTUP-CONFIG">/StartupConfigSets/

StartupConfigSet_AA/SensorFusion_Startup</STARTUP-CONFIG-REF>
</MODE-DEPENDENT-STARTUP-CONFIG>

</MODE-DEPENDENT-STARTUP-CONFIGS>
</PROCESS>

Processes are only started by Execution Management if they reference a re-
quested Machine State or Function Group State, but not because of config-
ured Execution Dependencies. Execution Dependencies are only used to
control a startup or terminate sequence at state transitions or at machine startup/shut-
down.

[SWS_EM_01001] Execution Dependency error d If an Execution Dependency
is configured in a ModeDependentStartupConfig of a starting or already running
Process which references a Process that is not already in the Running Application
State or being started at a Machine State or Function Group State transition
(simple dependency), or that is not in the Terminated Application State (One-Shot Ap-
plication dependency), or if two or more Processes have mutual dependencies, this
shall be considered to be a configuration error. c(RS_EM_00100)

Example 7.3

27 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Assume Process “A” depends on the Running Application State of a Process “B”.
At a Machine State transition, Process “A” shall be started, because it references
the new Machine State. However, Process “B” does not reference that Machine
State, so it is not started. Due to the Execution Dependency between the two
Processes, Process “A” would never start running in the new Machine State be-
cause it waits forever for Process “B”, which shall be considered a configuration error.

28 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.4 State Management

7.4.1 Overview

State Management provides a mechanism to define the operational state of an
Adaptive Platform. The Application Manifest allows to define in which
states the Processes have to run (see [3]). As mentioned before, a Process is
an instance of an Executable, which is part of an Application. State Manage-
ment grants full control over the set of Applications to be executed and ensures
that Processes are only executed (and hence resources allocated) when actually
needed.

Four different states are relevant for Execution Management:

• Application State, see 7.4.2

• Process State

Process States are managed by an Execution Management internal state ma-
chine. For details see Section 7.3.1.

• Machine State, see 7.4.3

• Function Group State, see 7.4.4

An example for the interaction between these states will be shown in section 7.4.5.2.

7.4.2 Application State

The Application State characterizes the internal lifecycle of any Process. The states
are defined by the ApplicationState enumeration.

Initializing

application

data

initialization

Running

perform main

functionality

Terminating

 store data,

free resources,

exit

Terminate

create process

allocate

resources

Figure 7.5: Application States

[SWS_EM_01053] Application State Running d Execution Management shall
consider Process initialization complete when the state kRunning is reported. c
(RS_EM_00103)

Please note that Service Discovery can introduce non-deterministic delays and
thus is advised to be done after reporting kRunning state thus the Process may not
have completed all its initialization when the kRunning state is reported.

29 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_01055] Initiation of Process termination d Execution Management
shall initiate termination by sending the SIGTERM signal to a Process. c
(RS_EM_00103)

Note that from the perspective of Execution Management, requirement
[SWS_EM_01055] only requests the initiation of the steps necessary for ter-
mination. On receipt of SIGTERM, a Process acknowledges the request (by
reporting the new state to Execution Management using the Application-
Client::ReportApplicationState interface) and then commences the actual
termination.

[SWS_EM_01070] Acknowledgement of termination request d On reception of
SIGTERM, the Process shall acknowledge the state change request by reporting
kTerminating to Execution Management. c(RS_EM_00103)

[SWS_EM_01071] Initiation of Process self-termination d A Process shall initiate
self-termination by reporting the kTerminating state to Execution Management.
c(RS_EM_00103)

During the Terminating state, the Process is expected to free internally used re-
sources. The Process indicates completion of the Terminating state by simply exit-
ing (with an appropriate exit code). Execution Management as the parent process
can detect termination of the child process and take the appropriate platform-specific
actions. For details on the response to “fault” error-codes, e.g. a non-zero exit code,
will be defined in Section 7.8 in a future release of this document.

7.4.3 Machine State

Requesting and reaching a Machine State is, besides using Function Group
States (see 7.4.4), one way to define the current set of running Processes. It is
significantly influenced by vehicle-wide events and modes.

Each Application can declare in its Application Manifest in which Machine
States it has to be running.

There are several mandatory Machine States specified in this document
([SWS_EM_01023], [SWS_EM_01024] and [SWS_EM_01025]) that have to be
present on each machine. Additional Machine States can be defined on a machine
specific basis and are therefore not standardized.

A ModeDeclaration for each required Machine State has to be defined in the
Machine Manifest [TPS_MANI_03066].

[SWS_EM_01032] Machine States Obtainment d Execution Management shall
obtain the Machine States from the Machine Manifest. c(RS_EM_00101)

[SWS_EM_01044] Machine States Identification d The API specification shall use
the shortName for identification of the Machine State. c(RS_EM_00101)

30 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

The Machine States are determined and requested by the State Management
functional cluster, see 7.4.5.1. For details on state change management see 7.4.6.

The start-up sequence from initial state Startup to the point where State Man-
agement, SM, requests the initial running machine state Driving is illustrated in Fig-
ure 7.6.

EMOS

main()

CreateProcess(SM)

SM

ApplicationClient::
ReportApplicationState(kRunning)

SetState("MachineState", Driving)

loop

All Platform Applications

Execution Management

Startup to Initial Driving State

kSuccess

kSuccess

Figure 7.6: Start-up Sequence – from Startup to initial running state Driving

An arbitrary state change sequence to machine state StateXYZ is illustrated in Fig-
ure 7.7. Here, on receipt of the state change request, Execution Management ter-
minates running Processes and then starts Processes active in the new state before
confirming the state change to State Management.

31 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

EM SM

SetState("MachineState",StateXYZ)

App1

SIGTERM

ApplicationClient::ReportApplicationState(kTerminating)

App2

ApplicationClient::ReportApplicationState(kRunning)

kSuccess

loop

Shutdown

Execution Management

Transition to Machine State <<StateXYZ>>

WaitForTermination(App1)

kSuccess

CreateProcess(App2)

loop

Startup

Figure 7.7: State Change Sequence – Transition to machine state StateXYZ

7.4.3.1 Startup

[SWS_EM_01023] Machine State Startup d The Startup Machine State shall
be the first state to be active after the startup of Execution Management. c
(RS_EM_00101)

[SWS_EM_01037] Machine State Startup behavior d The following behavior applies
for the Startup Machine State:

• All Processes of platform-level Applications configured for Startup shall
be started. Processes configured for Startup are based on the reference
from the Processes to the ModeDependentStartupConfig in the role Pro-
cess.modeDependentStartupConfig with the instanceRef to the ModeDec-
laration in the role ModeDependentStartupConfig.machineMode that
belongs to the Startup Machine State.

• For startup of Processes, the startup requirements of section 7.3 apply.

• Execution Management shall wait for all started Processes until their Ap-
plication State Running is reported.

32 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• If that is the case, Execution Management shall notify State Management
that the Startup Machine State is ready to be changed.

• Execution Management shall not change the Machine State by itself until
a new state is requested by State Management.

c(RS_EM_00101)

7.4.3.2 Shutdown

[SWS_EM_01024] Machine State Shutdown d The Shutdown Machine State
shall be active after the Shutdown Machine State is requested by State Man-
agement. c(RS_EM_00101)

[SWS_EM_01036] Machine State Shutdown behavior d The following behavior ap-
plies for the Shutdown Machine State:

• All Processes, including those of platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Processes, the shutdown requirements of section 7.3 apply.

• When Process State of all Processes is Idle or Terminated, all Pro-
cesses configured for Shutdown shall be started. Processes configured for
Shutdown are based on the reference from the Processes to the ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupCon-
fig with the instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to the Shutdown Machine
State.

c(RS_EM_00101)

[SWS_EM_01058] Shutdown of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartupCon-
fig.machineMode that belongs to the Shutdown Machine State. This Appli-
cation shall contain the actual mechanism(s) to initiate shutdown of the Operating
System. c(RS_EM_00101)

7.4.3.3 Restart

[SWS_EM_01025] Machine State Restart d The Restart Machine State shall be
active after the Restart Machine State is requested by State Management. c
(RS_EM_00101)

[SWS_EM_01035] Machine State Restart behavior d The following behavior applies
for the Restart Machine State:

33 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• All Processes, including those of platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Processes, the shutdown requirements of Section 7.3 apply.

• When Process State of all Processes is Idle or Terminated, all Pro-
cesses configured for Restart shall be started. Processes configured for
Restart are based on the reference from the Processes to the ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupCon-
fig with the instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to the Restart Machine
State.

c(RS_EM_00101)

[SWS_EM_01059] Restart of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartupCon-
fig.machineMode that belongs to the Restart Machine State. This Applica-
tion shall contain the actual mechanism(s) to initiate restart of the Operating System.
c(RS_EM_00101)

7.4.4 Function Group State

If more than one group of functionally coherent Applications is installed on the
same machine, the Machine Statemechanism is not flexible enough to control these
functional clusters individually, in particular if they have to be started and terminated
with interleaving lifecycles. Many different Machine States would be required in this
case to cover all possible combinations of active functional clusters.

To support this use case, Function Group States can be configured in addition to
Machine States. Other use cases where starting and terminating individual groups
of Processes might be necessary include diagnostics and error recovery.

In general, Machine States are used to control machine lifecycle (startup/shut-
down/restart) and Processes of platform level Applications while Function
Group States individually control Processes which belong to groups of function-
ally coherent user level Applications.

Figure 7.8 shows an example state change sequence where several Processes refer-
ence Machine States and Function Group States of two Function Groups
FG1 and FG2. For simplicity, only the three static Process States Idle, Running, and
Terminated are shown for each process.

34 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

FG1:Off

t

StartupMachine State Running Diagnostics Shutdown

FG2:Off FG2:Diag

Function Group 1
State

FG2:Fallback

FG1:Off FG1:Running

Function Group 2
State

FG2:
Off

FG2:Off

Idle
Running

Terminated

Idle
Running

Terminated

Idle
Running

Terminated

A B C

Idle
Running

Terminated

A

B

C

D

D

FG2:Running

Idle
Running

Terminated

E

Idle
Running

Terminated

F

E

F

reference

one shot

dependency

state
transitionprocess

different
StartupOptions

Process State

Figure 7.8: State dependent process control

• Process A references the Machine State Startup. It is a one shot Pro-
cess, i.e. it terminates after executing once.

• Process B references Machine States Startup and Running. It depends
on the termination of Process A, i.e. an Execution Dependency has been
configured, as described in 7.3.3.1

• Process C references Machine State Running only. It terminates when Ma-
chine State Diagnostics is requested by State Management.

• Process D references Function Group State FG1:Running only.

• Process E references FG1:Running and FG2:Running. Because it refer-
ences states of different Function Groups, it must use the same startup
configuration (StartupConfig) in all states to avoid sequence dependent be-
haviour.

35 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• Process F references FG2:Running and FG2:Fallback. It has different
startup configurations assigned to the two states, therefore it terminates at the
state transition and starts again, using a different startup configuration.

System design and integration must ensure that enough resources are available on
the machine at any time, i.e. the added resource consumption of all Processes which
reference simultaneously active states must be considered.

The Function Group States are determined and requested by the State Man-
agement functional cluster, see 7.4.5.1. For details on state change management see
7.4.6.

[SWS_EM_01107] Function Group name d A unique name for each Function
Group has to be defined in the Machine Manifest. Execution Management
shall obtain the name of the Function Group from the Machine Manifest to set-
up the Function Group specific state management. c(RS_EM_00101)

[SWS_EM_01108] Function Group State d A ModeDeclaration for each required
Function Group State has to be defined in the Machine Manifest. Each
Function Group State must be assignable to a specific Function Group. Ex-
ecution Management shall obtain the Function Group States from the Ma-
chine Manifest. The API specification shall use the shortName for identification
of the Function Group State. c(RS_EM_00101)

[SWS_EM_01109] State References d Each Process references in its Applica-
tion Manifest one or more Function Group States of the same or of different
Function Groups and/or one or several Machine States. In the event of a mis-
configured system, Execution Management shall not start an instance which does
not reference at least one state. c(RS_EM_00101)

[SWS_EM_01110] Off States d Each Function Group has an Off State which shall
be used by Execution Management as default Function Group State, if no
other state is requested. c(RS_EM_00101)

[SWS_EM_01111] No reference to Off State d The Off Function Group States
shall not be referenced in any Application Manifest. c(RS_EM_00101)

Processes reference in their Application Manifest the states in which they want
to be executed. A state can be a Function Group State or a Machine State.
For details see [3].

If a Process references Function Group States which belong to more than one
Function Group, or if it references both Machine States and Function Group
States, then only one startup configuration (StartupConfig) shall be configured,
which is then valid for all referenced states.

This restriction prevents undefined behaviour, because if a Process references states
of different Function Groups, which can be active simultaneously, the used startup
configurations would depend on the sequence of the referenced Function Group
States, if different startup configurations were used. Process E in Figure 7.8 is an
example for such a Process.

36 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

If different startup configurations are needed for different Function Groups, then
one or more instances of the same Executable can be configured per Function
Group.

The arbitrary state change sequence as shown in Figure 7.7 also applies to state
changes of a Function Group - just replace "MachineState" by "Function-
Group". On receipt of the state change request, Execution Management termi-
nates no longer needed Processes and then starts Processes active in the new
Function Group State before confirming the state change to State Manage-
ment.

7.4.5 State Management Architecture

7.4.5.1 State Management

Remark: The contents of this section is preliminary. This section will be removed as
soon as a dedicated State Management specification document is available.

State Management is the functional cluster which is responsible for determining the
current set of active Machine State and Function Group States, and for initiat-
ing State transitions by requesting them from Execution Management. Execution
Management performs the State transitions and controls the actual set of running Pro-
cesses, depending on the current States.

State Management is the central point where new Machine States and Func-
tion Group States can be requested and where the requests are arbitrated, in-
cluding coordination of contradicting requests from different sources. Additional data
and events might need to be considered for arbitration.

The State change requests can be issued by:

• Platform Health Management to trigger error recovery, e.g. to activate fallback
functionality

• Diagnostics, to switch the system into diagnostic states

• Update and Configuration Management to switch the system into states where
software or configuration can be updated

• Network Management to coordinate required functionality and network state

• authorized applications, e.g. a vehicle state manager which might be located in a
different machine or on a different ECU

State Change requests can be issued by other Functional Clusters via Inter Functional
Cluster (IFC) Interfaces, or ara::com service interfaces can be used to interact with
State Management.

37 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Since State Management functionality is critical, access from other Functional Clus-
ters or Applications must be secured, e.g. by IAM (Identity and Access Management).
State Management is monitored and supervised by Platform Health Management.

State Management provides interfaces to request information about current states.

State Management functionality is highly project specific, and AUTOSAR decided
against specifying functionality like the Classic Platforms BswM for the Adaptive Plat-
form. It is planned to only specify IFC interfaces and a set of basic service interfaces,
and to encapsulate the actual arbitration logic into project specific code (e.g. a library),
which can be plugged into the State Management framework and has standardized
interfaces between framework and arbitration logic, so the code can be reused on dif-
ferent platforms.

The arbitration logic code might be individually developed or (partly) generated, based
on standardized configuration parameters. These and other design decisions are still
under discussion, and details will be provided at a later point in time.

An overview of the interaction of State Management, Execution Management
and Applications is shown in Figure 7.9.

38 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Figure 7.9: State Management Architecture

Additional interfaces, e.g. to Platform Health Management, are not shown in this
figure.

39 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.4.5.2 State Interaction

Figure 7.10 shows a simplified example for the interaction between different types of
states. One can see the state transitions of a Function Group and the Process
and Application States of one Process which references one state of this Func-
tion Group, ignoring possible delays and dependencies if several Processes were
involved. The interaction is identical if the Process references a Machine State
instead of a Function Group State.

Application Process

Execution Management

Application State

Process State

Execute

FG1 State

Idle
(Application

Manifest
references

FG1:State2)

Starting
process
created,

resources
allocated

Terminated
process

resources
freed

Initializing
application

data
initialization

Running
perform main
functionality

Terminating
store data,

free resources,
exit

Start()

Terminate()
ReportApplicationState

(Running)
ReportApplicationState
(Terminating)

TerminatingTerminate

“waitpid”

process
terminated

FG1:State1
initial state of

Function
Group “FG1“

(example)

FG1:State2 FG1:State3

State Management
Arbitration of input data (e.g. state requests, events) to determine current target states

State Transition State Transition

SetState(FG1, State2) *SetState*(FG1, State3)return
(success)

vehicle management, error management, diagnostics, authorized applications, etc.

Running

Process Lifecycle
managed by EM

State Transitions
managed by EM

confirm

trigger

optional

Terminatecreate process
allocate

resources

schedule

Schedule

ara::com

return
(success)

Figure 7.10: Interaction between states

40 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.4.6 State Change

State Management can request to change one or several Function Group
States and/or the Machine State from Execution Management by passing
pairs of <Function Group><requested State> as parameters, with Machine State
being treated like any Function Group State.

[SWS_EM_01026] State Change d A state change request by State Management
shall lead to immediate state transitions and hereof a state change to the requested
Machine State and/or Function Group States. c(RS_EM_00101)

State Management can request multiple Machine State and Function Group
State changes sequentially by issuing several individual state change requests, or
atomically within the same state change request, which leads to multiple coherent state
changes. However, the following restriction applies to avoid undefined behaviour while
the state transitions are performed by Execution Management:

[SWS_EM_01034] Deny State Change Request d Execution Management shall
deny state change requests, that are received before all previously requested Machine
State and/or Function Group State transitions are completed. If a request is
denied, Execution Management shall return an error code to the requester of the
state transition. c(RS_EM_00101)

[SWS_EM_02058] State Transition Timeout d If a timeout is detected when stopping
or starting Processes at a state transition, Execution Management shall return an
error code to the requester of the state changes c(RS_EM_00101)

This implies that the state change request blocks until the state transitions are com-
pleted or until an error is detected.

[SWS_EM_02056] State Change Failed d Execution Management shall return an
error code to the requester of the state changes when other or unspecified errors occur
at a state transition. c(RS_EM_00101)

[SWS_EM_02057] State Change Successful d When Execution Management
succeeds with the requested state transitions, a success code shall be returned to
the requester of the state changes. c(RS_EM_00101)

A table that summarized the requirements of this section can be found in Appendix
C.2.1.

In the following requirements, the term

"the Process references a State"

means that a Process has in its Application Manifest an aggregation from the
Process containing a ModeDependentStartupConfig in the role Process.mod-
eDependentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.machineMode or in the role ModeDepen-
dentStartupConfig.functionGroupMode that belongs to that State.

41 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

A State can be a Machine State or a Function Group State dependent on the
used reference to a ModeDeclaration.

CurrentStates is the collection of the Function Group States of all configured
Function Groups and the Machine State at the point in time before one or sev-
eral parallel state transitions start.

RequestedStates is the collection of the Function Group States of all configured
Function Groups and the Machine State at the point in time when all ongoing
state transitions are finished. (Remember that new state change requests are rejected
until this point in time, see [SWS_EM_01034])

A SingleReferenceProcess references in its Application Manifest either Ma-
chine States or states of one Function Group only. In Figure 7.8 this would
apply to all Processes except Process E.

A MultiReferenceProcess references in its Application Manifest more than one
type of states, e.g. Machine States and Function Group States, or states of
more than one Function Group. In Figure 7.8 this would apply to Process E. As
explained in section 7.4.4, different startup configurations are not permitted in this case.

On a state change Execution Management is required to shutdown no longer active
Processes ([SWS_EM_01060]). For shutdown the requirements of Section 7.3 apply.

[SWS_EM_01060] Shutdown state change behavior d

For each SingleReferenceProcess, that

• references exactly one of the CurrentStates, and

• references none of the RequestedStates, and

• has a Process State different than [Idle or Terminated]

or

• references exactly one of the CurrentStates, and

• references exactly one of the RequestedStates, and

• has different aggregated StartupOptions in the role StartupConfig.star-
tupOption, referenced by the ModeDependentStartupConfigs in the role
ModeDependentStartupConfig.startupConfig

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode or ModeDependentStartupCon-
fig.functionGroupMode that belongs to the referenced CurrentState,
and

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode or ModeDependentStartupCon-
fig.functionGroupMode that belongs to the referenced RequestedState.

and, for each MultiReferenceProcess, that

42 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• references at least one of the CurrentStates, and

• references none of the RequestedStates, and

• has a Process State different than [Idle or Terminated]

the Process shall be shutdown. c(RS_EM_00101)

Execution Management monitors the time required by the Processes to terminate.
The default value of the Process termination timeout is defined by the system integra-
tor in the Machine Manifest, see [TPS_MANI_03151]. This value may be overwrit-
ten for individual Processes by defining the Process termination timeout parameter
in the Application Manifest, see [TPS_MANI_03150].

Execution Management waits until the Process State of all affected Processes
is Idle or Terminated.

[SWS_EM_01065] Shutdown state timeout monitoring behavior d

Execution Management shall monitor the time required by the Processes to ter-
minate – that is the Process State of the Process is Idle or Terminated. In
case of a timeout ([TPS_MANI_03151]) the following set of actions shall be performed
by Execution Management:

• Platform Health Management is notified about the timeout to initiate appro-
priate recovery actions.

• The timeout condition is reported back to the requester of the State transition to
notify that the State change request cannot be fulfilled, see [SWS_EM_02058].

c(RS_EM_00101)

On a state change Execution Management is required to start Processes active in
the new state. For startup the requirements of section 7.3 apply ([SWS_EM_01066]).

[SWS_EM_01066] Start state change behavior d

For each SingleReferenceProcess, that

• references none of the CurrentStates, and

• references exactly one of the RequestedStates, and

• has a Process State that is [Idle or Terminated]

or

• references exactly one of the CurrentStates, and

• references exactly one of the RequestedStates, and

• has different aggregated StartupOptions in the role StartupConfig.star-
tupOption, referenced by the ModeDependentStartupConfigs in the role
ModeDependentStartupConfig.startupConfig

43 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode or ModeDependentStartupCon-
fig.functionGroupMode that belongs to the referenced CurrentState,
and

– and with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode or ModeDependentStartupCon-
fig.functionGroupMode that belongs to the referenced RequestedState.

and, for each MultiReferenceProcess, that

• references none of the CurrentStates, and

• references at least one of the RequestedStates, and

• has a Process State that is [Idle or Terminated]

the Process shall be started. c(RS_EM_00101)

Execution Management monitors the time required by the Processes to start. The
default value of the Process start-up timeout is defined by the system integrator in the
Machine Manifest, see [TPS_MANI_03149].

Execution Management waits until the Process State of all affected Processes
is Running.

Execution Management shall monitor the time required by the Processes to reach
the Running state. For definition of the Process start-up timeout parameters in the
Application Manifest see [TPS_MANI_03149].

[SWS_EM_01067] Confirm State Changes d In case the Processes report the
Running state within the defined timeout interval ([TPS_MANI_03146]), Execution
Management shall send a confirmation of the state change to the initiator of the state
change. c(RS_EM_00101)

[SWS_EM_01068] Report start-up timeout d In case of a timeout the following set of
actions shall be performed by Execution Management:

• Platform Health Management is notified about the timeout to initiate appro-
priate recovery actions.

• The timeout condition is reported back to the requester of the State transition to
notify that the State change request cannot be fulfilled, see [SWS_EM_02058].

c(RS_EM_00101)

7.4.7 State Information

[SWS_EM_01028] Get State Information d Execution Management shall provide
an interface to retrieve the current Machine State or a Function Group State

44 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

by passing a Function Group identifier as parameter, with “MachineState” being treated
like any Function Group. c(RS_EM_00101)

As well as potentially returning the requested state information the interface to retrieve
the current Machine State or a Function Group State also returns information
on whether or not the requested information can be provided. The possible responses
are specified by [SWS_EM_02044], [SWS_EM_02049] and [SWS_EM_02050].

[SWS_EM_02044] State Change in Progress d If Execution Management per-
forms a state change of the Machine State or Function Group State for which
state information is requested, Execution Management shall return to the re-
quester of the state information that it’s busy and cannot provide a current state. c
(RS_EM_00101)

[SWS_EM_02049] State Change Failed d If the last state change of the Function
Group State or of the Machine State, for which state information is requested,
failed, then Execution Management shall return an error code to the requester of
the state information. c(RS_EM_00101)

[SWS_EM_02050] State Information Success d If Execution Management can
successfully provide the requested state information, Execution Management shall
return a success code to the requester of the state information. c(RS_EM_00101)

A table that summarized the requirements of this chapter can be found in Appendix
C.2.3.

45 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.5 Application Recovery Actions

7.5.1 Overview

Execution Management is responsible for the state dependent management of
Process start/stop, so it has to have the special right to start and stop Processes.

The Platform Health Management monitors Processes and could trigger a Re-
covery Action in case any Process behaves not within the specified parameters.

The Recovery Actions are defined by the integrator based on the software archi-
tecture requirements for the Platform Health Management and configured in the
Application Manifest.

7.5.2 Recovery Actions

Figure 7.11: Adaptive Platform - Recovery Action Architecture

46 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.5.2.1 Restart Process

[SWS_EM_01016] Restart Process d Execution Management shall provide an in-
ter functional cluster interface to restart a specific Process on the request from the
Platform Health Management. c(RS_EM_00013)

[SWS_EM_01062] Restart Process Behavior d Execution Management shall
restart a specific Process on the request from the Platform Health Management
with the exact same startupConfig of the modeDependentStartupConfig that
belongs to the to be restarted Process. c(RS_EM_00013)

[SWS_EM_01063] Process Restart Failed d Execution Management shall return
an error code to the requester of the Process restart when the Process restart could
not be finished successfully. c(RS_EM_00013)

[SWS_EM_01064] Process Restart Successful d When Execution Management
succeeds with restarting the Process, a success code shall be returned to the re-
quester of the Process restart. c(RS_EM_00013)

7.5.2.2 Override State

[SWS_EM_01018] Override State d Execution Management shall provide an in-
ter functional cluster interface to force Execution Management to switch to specific
Function Group States and/or to a specific Machine State on the request from
the Platform Health Management. c(RS_EM_00013)

[SWS_EM_01061] Override State Interrupt d An Override State request shall stop
any currently "ongoing" state transition and process the "override" state changes. c
(RS_EM_00013)

Please note that [SWS_EM_02056], [SWS_EM_02057] and [SWS_EM_02058] also
apply for Override State requests.

Machine State and Function Group State changes can be requested individu-
ally or in parallel by the Platform Health Management.

The rules for state transitions as described in [SWS_EM_01060], [SWS_EM_01065],
[SWS_EM_01066], [SWS_EM_01067], and [SWS_EM_01068] also apply for Override
State requests. Please note that a termination request that may be required to be send
to a Process, should be delayed until this Process reports its Running Application
State.

47 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.6 Deterministic Execution

7.6.1 Determinism

In real-time systems, deterministic execution often means, that a calculation of a given
set of input data always produces a consistent output within a bounded time, i.e. the
behavior is reproducible.

In the context of Execution Management, the term “calculation” can apply to ex-
ecution of a thread, a Process, or a group of Processes. The calculation can be
event-driven or cyclic; i.e. time-driven.

It is also worthwile to note that determinism must be distinguished from other non-
functional qualities like reliability or availability, which all deal in different ways with the
statistical risk of failures. Determinism does not provide such numbers, it only defines
the behavior in the absence of errors.

There are multiple elements in determinism and here we distinguish them as follows:

• Time Determinism: The output of the calculation is always produced before a
given deadline (a point in time).

• Data Determinism: Given the same input and internal state, the calculation al-
ways produces the same output.

• Full Determinism: Combination of Time and Data Determinism as defined above.

In particular, deterministic behavior is important for safety-critical systems, which may
not be allowed to deviate from the specified behavior at all. Whether Time Determin-
ism, or in addition Data Determinism is necessary to provide the required functionality
depends on the system and on the safety goals.

Expected use cases of the Adaptive Platform where such determinism is required
include:

• Software Lockstep: To execute ASIL C/D applications with high computing perfor-
mance demands, specific measures, such as software lockstep are required, due
to high transient hardware error rates of high performance microprocessors. Soft-
ware lockstep is a technique where the calculation is done redundantly through
two different execution paths and the results are compared. To make the re-
dundant calculations comparable, software lockstep requires a fully deterministic
calculation. For details see 7.6.2.

• Reuse of verified software: The deterministic subsystem shows the same be-
havior on different platforms which satisfy the performance and resource needs
of the subsystem, regardless of other differences in each environment, such as
existence of unrelated applications. Examples include the different development
and simulation platforms. Due to reproducible functional behavior, many results
of testing, configuration and calibration of the subsystem are valid in each envi-
ronment where the subsystem is deployed on and don’t need to be repeated.

48 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.6.1.1 Time Determinism

Each time a calculation is started, its results are guaranteed to be available before
a specified deadline. To achieve this, sufficient and guaranteed computing resources
(processor time, memory, service response times etc.) must be assigned to the soft-
ware entities that perform the calculation. For more information on resources see
chapter 7.7.

Non-deterministic “best-effort” Processes can request guaranteed minimum re-
sources for basic functionality, and additionally can have maximum resources speci-
fied for monitoring. However, if Time Determinism is requested, the resources must be
guaranteed at any time, i.e. minimum and maximum resources are identical.

If the assumptions for deterministic execution are violated, e.g. due to a deadline
miss, this must be treated as an error and recovery actions must be initiated. In non-
deterministic “best-effort” subsystems such deadline violations or other deviations from
normal behavior sometimes can be tolerated and mitigated without dedicated error
management.

Fully-Deterministic behavior additionally requires Data Determinism, however in many
cases Time Determinism is sufficient.

7.6.1.2 Data Determinism

For Data Determinism, each time a calculation is started, its results only depend on the
input data. For a specific sequence of input data, the results always need to be exactly
the same, assuming the same initial internal state.

A common approach to verify Data Determinism in a safety context is the use of
lockstep mechanisms, where execution is done simultaneously through two different
paths and the result is compared to verify consistency. Hardware lockstep means that
the hardware has specific equipment to make this double-/multi-execution transparent.
Software lockstep is another technique that allows providing a similar property without
requiring the use of dedicated hardware.

Depending on the Safety Level, as well as the Safety Concept employed, software lock-
step may involve executing multiple times the same software, in parallel or sequentially,
but may also involve running multiple separate implementations of the same algorithm.

7.6.1.3 Full Determinism

For Full Determinism, each time a calculation is started, its results are available before
a specified deadline and only depend on the input data, i.e. both Time and Data
Determinism must be guaranteed.

49 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Currently, only Full Deterministic behavior of one Process is specified. Determinism
of a cluster of Processes on one or even several machines needs extensions of the
Communication Management, which have not been specified yet.

Non-deterministic behavior may arise from different reasons; for example insufficient
computing resources, uncoordinated access of data, potentially by multiple threads
running on multiple processor cores. The order in which the threads access such data
will affect the result, which makes it non-deterministic (“race condition”).

A fully deterministic calculation must be designed, implemented and integrated in a
way such that it is independent of processor load, sporadic unrelated events, race
conditions, etc.

7.6.2 Redundant Deterministic Execution

As explained in 7.6.1, future systems need high computing performance in combina-
tion with high ASIL safety goals. In this chapter we specify mechanisms which support
deterministic multithread execution to support high performance software lockstep so-
lutions. Here are some additional rationales behind it:

• Safety goals for Highly Automated Driving (HAD) systems can be up to ASIL D.

• High Performance Computing (HPC) demands can only be met by non
automotive-grade, e.g. consumer electronics (CE), microprocessors, which have
high transient hardware error rates compared to automotive-grade microcon-
trollers. Most likely no such microprocessor is available for ASIL above B, at
least for the parts relevant to the design.

• To deal with high error rates, ASIL C/D HAD applications require specific mea-
sures, in particular software lockstep, where execution is done redundantly
through two different paths and the result is compared to detect errors.

• To make these redundant calculations comparable, software lockstep requires
a fully deterministic calculation which must be designed, implemented and inte-
grated in a way such that it is independent of processor load caused by other
functions and calculations, sporadic unrelated events, race conditions, deviating
random numbers etc., i.e. for the same input and initial conditions it always pro-
duces the same result within a given time.

• To meet HPC demands, highly predictable and reliable multi-threading must be
supported

Figure 7.12 shows a simplified example for a possible software lockstep architecture.

Two redundant Processes, which run in an internal cycle, get in each cycle the same
input data via regular interfaces of the Communication Management and produce
(in the absence of errors) the same results, due to full deterministic execution.

50 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Execution Management provides DeterministicClient APIs to support control of the
process-internal cycle, a deterministic worker pool, activation time stamps and ran-
dom numbers. In case of software lockstep, the DeterministicClient interacts with an
optional software lockstep framework to ensure identical behavior of the redundantly
executed Processes. DeterministicClient interacts with Communication Manage-
ment to synchronize data handling with cycle activation.

For each execution cycle, the software lockstep framework synchronizes input data in
cooperation with Communication Management, makes sure that random numbers
and activation time stamps are identical for the redundantly executed Processes,
synchronizes triggering of execution, and compares the output to detect failures (e.g.
transient processor core or memory errors due to radiation) in one of the redundant
Processes. This infrastructure layer can span over multiple hardware instances and
is implementation specific.

Details of the software lockstep framework are out of scope of the Adaptive Platform
specification. The interaction with DeterministicClient and Communication Manage-
ment depends on hardware architecture and specific platform design and is a USP of
platform providers; so this can only be partly specified in later releases.

Communication Management

user process

software lockstep framework

synchronize input and redundant execution, compare output

input data output data

redundant user process

DeterministicClient

Communication Management

DeterministicClient

details not yet
specified

user process
producing

data

user process
consuming

data

data flow

synchronization with
activation cycle

synchronization with
activation cycle

Figure 7.12: Software Lockstep in a typical data flow processing

In case of restart of one of the Processes as an error recovery due to detected errors
in the result comparison, the internal states (i.e. internal memory) need to be resyn-
chronized. To do so, both redundant Processes might need to be re-initialized or even
restarted.

Figure 7.13 zooms into one of the redundantly executed Processes.

51 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

The Adaptive Platform needs to provide some library functions to support redun-
dant deterministic execution with sufficient isolation. The library functions (Determinis-
ticClient) run in the context of the user Process.

user process

worker

RunWorkerPool()

GetActivationTime()
GetNextActivationTime()

GetRandom()

WaitForNextActivation()

DeterministicClient
provide activation cycle control, worker pool, random numbers, activation time

Service
Discovery

Init

Terminate

Run

worker

worker

worker

workerRegister
Services

no
interaction

Communication Management
service registration and discovery, provide stable input data, receive output data

ara::com ara::com

access input data publish output datasynchronization with
activation cycle

RunWorkerPool()

details not yet
specified

workers
joining

Figure 7.13: Cyclic Deterministic Execution

Cyclic Process behavior is controlled by a wait point API. The API returns a code
to control the process mode (register services/ service discovery/ init/ run/ terminate).
The execution is triggered by the DeterministicClient, depending on a defined period or
on received events. Within a Process, all input data is available via ara::com (polling-
based access only) when execution starts and stable over one execution cycle. For
details see 7.6.3.1.

The workload can be deployed to a worker pool API, which allows deterministic parallel
execution of application functions (workers), which are not allowed to exchange any
information while they are running, i.e. they don’t access data which can be altered by
other workers to avoid race conditions. The workers can physically run in parallel or
sequentially in any order. For details see 7.6.3.2.

Additional DeterministicClient APIs provide random numbers and activiation time
stamps. Common HAD algorithms use particle filters which require random numbers.
The random numbers are assigned to specific workers to allow deterministic redun-
dant execution. The activation time stamps don’t change until the Process reaches
its next wait point. For deterministic redundant execution, random number seeds and
time stamps need to be synchronized. For details see 7.6.3.3 and 7.6.3.4.

52 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

At the end of the execution cycle, the Process returns to the wait point and waits for
the next activation.

The APIs of DeterministicClient are standardized and provide abstraction of the appli-
cation deployment on the actual hardware. The implementation is vendor specific and
needs to be configured at integration time individually for each Process which uses it.

Different variants of the DeterministicClient might work in a software lockstep environ-
ment or stand-alone, to support cyclic execution and deterministic worker pools.

Figure 7.14: Deterministic Execution Interface

7.6.3 Cyclic Deterministic Execution

This section describes the APIs shown in Figure 7.13, and how they need to be used
by a Process to execute deterministically, so the Process can be transparently inte-
grated into a software lockstep environment.

53 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.6.3.1 Control of Cyclic Execution

Execution Management provides an API to trigger and control recurring, i.e. cyclic
execution of the main thread code within a Process. A return value controls the
internal lifecycle (e.g. init, run, terminate) of the Process, see Figure 7.13.

[SWS_EM_01301] Cyclic Execution d Execution Management shall provide a
blocking wait point API DeterministicClient::WaitForNextActivation. The
Process executes one cycle when the wait point API returns and then calls the API
again to wait for the next activation. c(RS_EM_00052)

The activation behavior can be realized by Execution Management together with
the Communication Management as required by the safety concept. Execution is
triggered via two distinct mechanisms.

• Periodic activation means that Deterministic-
Client::WaitForNextActivation returns periodically based on a defined
period.

• Event-triggered activation means that Deterministic-
Client::WaitForNextActivation returns based on the communication-
event-triggers that are configured for the Process from the outside via
Communication Management, e.g. by external units, events generated due
to the arrival of data or timer events. Details are out of scope of the Adaptive
Platform specification.

[SWS_EM_01302] Cyclic Execution Control d Deterministic-
Client::WaitForNextActivation shall return a code to control the execution
mode of the calling Process. Possible modes are “Register Services”, “Service
Discovery”, “Init”, “Run”, and “Terminate”. c(RS_EM_00052)

The return codes are used to synchronize the behavior of the Processes in
case of redundant execution. The Processes return to Deterministic-
Client::WaitForNextActivation after each of the usual sequential steps

• Register Services: The Process registers communication services (this must be
the only occasion for performing service registering).

• Service Discovery: The Process does communication service discovery (this
must be the only occasion for performing service discovery).

• Init: The Process initializes its internal data structures (once).

• Run: The Process performs one cycle of its normal cyclic execution.

• Terminate: The Process terminates.

This cyclic behavior can be used in a software lockstep environment to initialize and
trigger execution of redundant Processes and compare the results after a cycle has
finished. For redundant execution, the execution behavior and its budget (activation
timing, computing time, computing resources) must be explicitly visible for Execution
Management.

54 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Execution Management together with Communication Management initiate ser-
vice discovery so that in total the behavior is deterministic. Optionally, e.g. if necessary
for a software lockstep implementation, all input data as received via Communication
Management must be available when a cycle starts and guaranteed to be determinis-
tically consistent.

Configuration details (e.g. activation period) will be provided in a later release.

7.6.3.2 Worker Pool

[SWS_EM_01305] Worker Pool d Execution Management shall provide a blocking
API DeterministicClient::RunWorkerPool to run a deterministic worker pool
to be used within the Process execution cycle. c(RS_EM_00053)

The worker pool is triggered by the main-thread of the Process in a sequential order.
DeterministicClient::RunWorkerPool is blocking and therefore there is no parallelism
between the main-thread and the worker pool. The user Process is not allowed to
create threads on its own by using normal POSIX mechanisms to avoid the risk of
inducing indeterministic behavior.

The implementation and size of the worker pool is hidden from the user. The Integrator
decides about the size (a configuration parameter “NumberOfWorkers” will be added in
the next release of the Adaptive Platform specification) and the implementation.

If the number of required workers exceeds the number of threads in the deterministic
worker pool, Execution Management can use the threads of the pool several times
sequentially (with unrestricted interleaving), which shall be transparent to the user of
the thread-pool.

To achieve Data Determinism, the parallel workers within a Process need to satisfy
certain implementation properties, e.g. no exchange of data is allowed between the
workers. For details see section 7.6.3.6. Other, more complex solutions which allow in-
teraction between the workers would be possible, but they increase complexity, reduce
utilization and transparency, and are error-prone regarding the deterministic behavior.

The worker pool runs within the Process context of the caller of this API. It is de-
signed as part of Execution Management to guarantee the deterministic behavior by
incorporating it in the DeterministicClient::WaitForNextActivation-cycle,
where also the seeds for the pseudo random generation are provided (see 7.6.3.3).

DeterministicClient::RunWorkerPool registers a “worker” runnable object,
along with its parameter object. The parameter contains a set of objects, which are
processed in parallel by the same runnable object invoked from multiple workers in
the pool. This means, the deterministic worker pool is used to process a set of con-
tainer elements, which are the parameters to the worker. Each element in the container
represents a job to be computed. (e.g. based on POSIX threads.) The deterministic
distribution of the elements to individual workers is done by using the container iterator.

55 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

An example for the implementation of a “worker” runnable object can be found in sec-
tion 7.6.3.7

The aim is to abstract the data processing as far as possible, irrespective of the actual
number of available parallel execution paths. Example: a task with N similar subtasks
(e.g. N Kalman-filters). The task is assigned to the worker pool and the worker pool
processes it using a given worker-runable-object (here the worker-runable-object would
be e. g. the Kalman-filter).

The worker pool cannot be used to process multiple different tasks in parallel. The use
of multiple potentially different explicit functions (workers) could add unnecessary com-
plexity and can lead to extremely heterogeneous runtime utilization, as each worker
may have different computing time. This would complicate the planning of resource
deployment, which is necessary for black-box integration.

7.6.3.3 Random Numbers

[SWS_EM_01308] Random Numbers d Execution Management shall provide an
API DeterministicClient::GetRandom which provides “Deterministic” random
numbers. ‘Deterministic” means, that the provided random numbers are identical for
Processes which are executed redundantly, including within workers being processed
by a worker pool (see [SWS_EM_01305]). c(RS_EM_00053)

The random numbers are assigned to specific workers to allow deterministic redundant
execution.

For the cyclic behavior of the workers, Execution Management uses a deterministic
and unique pseudo random number concept.

7.6.3.4 Time Stamps

The deterministic user Process might need timing information while cyclically (see
7.6.3.1) processing its input data. The used time value may have an influence on the
calculated results. Therefore, Execution Management returns deterministic times-
tamps that represent the points in time when the current cycle was activated and when
the next cycle will be activated, if this value is known. The timestamps must be identical
for Processes which are executed redundantly, e.g. in a lockstep environment (see
7.6.2).

[SWS_EM_01310] Get Activation Time d Execution Management shall provide an
API DeterministicClient::GetActivationTime which provides a determinis-
tic timestamp that represents the point in time when the current cycle was activated
by DeterministicClient::WaitForNextActivation (see [SWS_EM_01301]).
Deterministic means, that the timestamps are identical for Processes which are exe-
cuted redundantly. Subsequent calls within a cycle shall always return the same value.
c(RS_EM_00053)

56 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_01311] Activation Time Unknown d In case no previous call of Deter-
ministicClient::WaitForNextActivation with return value kRun has occured
when calling DeterministicClient::GetActivationTime, Execution Man-
agement shall return kNotAvailable. c(RS_EM_00053)

[SWS_EM_01312] Get Next Activation Time d Execution Management shall
provide an API DeterministicClient::GetNextActivationTime which pro-
vides a deterministic timestamp that represents the point in time when the next cy-
cle will be activated by DeterministicClient::WaitForNextActivation (see
[SWS_EM_01301]). Deterministic means, that the timestamps are identical for Pro-
cesses which are executed redundantly. Subsequent calls within a cycle shall always
return the same value. c(RS_EM_00053)

[SWS_EM_01313] Next Activation Time Unknown d In case the next activation time
is not known when calling DeterministicClient::GetNextActivationTime,
e.g. because of non-equidistant cycle timing, Execution Management shall return
kNotAvailable. c(RS_EM_00053)

7.6.3.5 Real-Time Resources

To ensure Time Determinism (see 7.6.1.1), i.e. to make sure that a cyclic deterministic
execution within a Process (see 7.6.3.1) is finished at a given deadline we need:

• Execution Management supports deterministic multithreading to meet high
performance demand, see 7.6.3.2

• The integrator needs to assign appropriate resources to the Process.

• The integrator needs to assign appropriate scheduling policies. Details and op-
tions other than standard POSIX scheduling policies (see [SWS_EM_01014])
heavily depend on the used Operating System, are vendor specific, and are for
now out of scope of the Adaptive Platform specification.

• The integrator needs to configure deadline monitoring, possibly execution bud-
get monitoring, and appropriate recovery actions in case of violations. For more
details on resources see 7.7.

To make sure that all Processes which use the DeterministicClient APIs get enough
computing resources and can finish their cycle in time, it is in particular important to
know when the worker pool (DeterministicClient::RunWorkerPool) is needed
within a cycle. Also, a good computing resource utilization can only be achieved if us-
age of the workers (i.e. of available cores) can be distributed evenly over time. If the
application code is known to the integrator, it should not be a problem to analyze the
behavior and configure the system accordingly. However, if third party “black box” appli-
cations are delivered for integration, their resource demands need to be described in a
standardized way, so the integrator has a rough idea about the distribution of resource
consumption within a DeterministicClient::WaitForNextActivation-cycle.

57 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

To describe budget needs, we use a normalized value #Instructions to specifiy runtime
consumption on the target system.

#Instructions = runtime in sec * clock frequency / 1sec

#Instructions does not reflext the actual number of code instructions, but allows the
description of comparative resource needs.

The following parameters are relevant for describing the computing time budget needs
of a Process which uses DeterministicClient::RunWorkerPool. They will be
formally specified in the next release of the Adaptive Platform specification.

• NumberOfInstructions [#Instructions]

This is the normalized runtime consumption on the target system within one cy-
cle, assuming the “worst-case” runtime where the workers would be executed
sequentially.

• NumberOfWorkers

The most workers which can be used in parallel to speed up calculation, assum-
ing enough physical worker cores were available on the machine.

• Speedup = sequental runtime / parallelized runtime

Defines how much faster the calculations within one cycle can be finished if Num-
berOfWorkers are physically available.

• SequentialInstructionsBegin [#Instructions]

This is the normalized sequential runtime at the beginning of the cycle (which
mostly cannot be parallelized), before the main usage of the worker pool starts.

• SequentialInstructionsEnd [#Instructions]

This is the normalized sequential runtime at the end of the cycle (which mostly
cannot be parallelized), after the main usage of the worker pool has ended.

Examples

Example 7.4

The Process uses the worker pool mainly in the middle of the cycle. The first 100
(normalized) instructions are mostly sequential, the next 275 instructions have a benefit
when using the worker pool, and the last 125 instructions are mostly sequential again.
The average speedup, over the complete 500 instructions is 1.3.

• NumberOfInstructions = 500

• NumberOfWorkers = 2

• Speedup = 1.3

58 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• SequentialInstructionsBegin = 100

• SequentialInstructionsEnd = 125

#Instructions

begin of
cycle

end of
cycle

0 500375

workers main
thread

100

main
thread

Figure 7.15: Worker pool used in middle of cycle

Example 7.5

The Process runs sequentially throughout most of the cycle and does not benefit in
using the worker pool, i.e. the overhead of using the worker pool compensates the
parallelization gain.

• NumberOfInstructions = 200

• NumberOfWorkers = 2

• Speedup = 1

• SequentialInstructionsBegin = 200

• SequentialInstructionsEnd = 0

#Instructions

begin of
cycle

end of
cycle

0 200

main thread

Figure 7.16: No benefit from worker pool

Example 7.6

The Process fully utilizes the worker pool throughout the cycle.

• NumberOfInstructions = 200

• NumberOfWorkers = 3

59 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• Speedup = 2.9

• SequentialInstructionsBegin = 0

• SequentialInstructionsEnd = 0

#Instructions

begin of
cycle

end of
cycle

0 200

workers

Figure 7.17: Full utilization of worker pool

7.6.3.6 Guidelines for implementation of deterministic user process

If the worker pool (see 7.6.3.2) is used, the container elements, i.e. the jobs to be
computed, need to satisfy certain implementation rules to ensure Data Determinism.

• No exchange of data between workers, i.e. no communication. Individual workers
must not access data that is influenced by other workers to avoid race conditions.

Rationale: Timing between individual workers is not guaranteed. The Operating
System is scheduling threads individually. Concurrent influencing of the same
data will result in indeterminate results.

• No locks and synchronization points except common joins for all workers. (e.g.
no Semaphores/Mutexes, no locking/blocking).

Rationale: locking/blocking makes Process runtime in-deterministic. Workers
are used to increase utilisation of runtime. If synchronization is needed, an explicit
join of all workers is necessary.

The user Process is not allowed to create threads on its own by using normal POSIX
mechanisms to avoid the risk of inducing indeterministic behavior.

To ensure deterministic behavior, only a “deterministic subset” of all available POSIX
PSE51 APIs and ara::com mechanisms are allowed to be used in a deterministic user
Process. A detailed list of such APIs and mechanisms will be provided at a later point
in time.

7.6.3.7 Implementation of Worker Pool users

Example of a worker-runnable:

60 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

1 class MyWorker1
2 : public DeterministicClient::WorkerrunableBase<myContainer::

value_type, MyWorker1>
3 {
4 public:
5 void worker_runable(myContainer::value_type& container_element,

DeterministicClient::WorkerThread& t)
6 {
7 // Get a unique and deterministic pseudo-random number}
8 uint64_t random_number = t.GetRandom();
9 }

10 };

Worker-thread object:
1 class DeterministicClient::WorkerThread
2 {
3 // returns a deterministic pseudo-random number}
4 // which is unique for each worker}
5 uint64_t GetRandom();
6

7 ...
8 };

61 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.7 Resource Limitation

Despite the correct behavior of a particular Adaptive Application in the system, it
is important to ensure any potentially incorrect behavior, as well as any unforeseen in-
teractions cannot cause interference in unrelated parts of the system [RS_EM_00002].
As Adaptive Platform also strives to allow consolidation of several functions on the
same machine, ensuring Freedom From Interference is a key property to maintain.

However, Adaptive Platform cannot support all mechanisms as described in this
overview chapter in a standardized way, because the availability highly depends on the
used Operating System.

In addition, it is important to consider that Execution Management is only respon-
sible for the correct configuration of the Machine. However, enforcing the associated
restrictions is usually done by either the Operating System or another Applica-
tion like the Persistency service.

Some mechanisms that could be standardized will not yet be defined in this release.

7.7.1 Resource Configuration

This section provides an overview on resource assignment to Processes. The re-
sources considered in this specification are:

• RAM (e.g. for code, data, thread stacks, heap)

• CPU time

Other resources like persistent storage or I/O usage are also relevant, but are currently
out of scope for this specification.

In general, we need to distinguish between two resource demand values:

• Minimum resources, which need to be guaranteed so the process can reach its
Running state and perform its basic functionality.

• Maximum resources, which might be temporarily needed and shall not be ex-
ceeded at any time, otherwise an error can be assumed.

The following stakeholders are involved in resource management:

• Application Developer

The Application developer should know how much memory (RAM) and comput-
ing resources the Processes need to perform their tasks within a specific time.
This needs to be specified in the Application description (which can be the pre-
integration stage of the Application Manifest) which is handed over to the
integrator. Additional constraints like a deadline for finishing a specific task, e.g.
cycle time, will usually also be configured here.

However, the exact requirements may depend on the specific use case, e.g.

62 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

– The RAM consumption might depend on the intended use, e.g. a video filter
might be configurable for different video resolutions, so the resource needs
might vary within a range.

– The computing power required depends on the processor type. i.e. the re-
source demands need to be converted into a computing time on that specific
hardware. Possible parallel thread execution on different cores also needs
to be considered here.

Therefore, while the Application developer should be able to bring estimates re-
garding the resource consumption, a precise usage cannot be provided out of
context.

• Integrator

The integrator knows the specific platform and its available resources and con-
straints, as well as other applications which may run at the same time as the
Processes to be configured. The integrator must assign available resources to
the applications which can be active at the same time, which is closely related to
State Management configuration, see section 7.4. If not enough resources are
available at any given time to fulfill the maximum resource needs of all running
Processes, assuming they are actually used by the Processes, several steps
have to be considered:

– Assignment of resource criticality to Processes, depending on safety and
functional requirements.

– Depending on the Operating System, maximum resources which cannot be
exceeded by design (e.g. Linux cgroups) can be assigned to a process or a
group of Processes.

– A scheduling policy has to be applied, so threads of Processes with high
criticality get guaranteed computing time and finish before a given deadline,
while threads of less critical Processes might not. For details see section
7.7.3.1.

– If the summarized maximum RAM needs of all Processes, which can be
running in parallel at any given time, exceeds the available RAM, this cannot
be solved easily by prioritization, since memory assignment to low critical
Processes cannot just be removed without compromising the Process.
However, it must be ensured that Processes with high criticality have ready
access to their maximum resources at any time, while lower criticality Pro-
cesses need to share the remaining resources. For details see 7.7.3.4.

Based on the above, all the resource configuration elements are to be configured dur-
ing platform integration, most probably by the Integrator. To group these configuration
elements, we define a ResourceGroup. It may have several properties configured
to enable restricting Applications running in the group. Subsequently, each Pro-
cess must belong to a ResourceGroup, clarifying how the Application will be
constrained at the system level.

63 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_02102] Memory control d Execution Management shall configure the
maximum amount of RAM available globally for all Processes belonging to each Re-
sourceGroup when defined in the configuration, before loading a Process from this
ResourceGroup. c(RS_EM_00005)

If a ResourceGroup does not have a configured RAM limit, then the Processes are
only bound by their implicit memory limit.

[SWS_EM_02103] CPU usage control d Execution Management shall configure
the maximum amount of CPU time available globally for all Processes belonging to
each ResourceGroup when defined in the configuration, before loading a Process
from this ResourceGroup. c(RS_EM_00005)

If ResourceGroup does not have a configured CPU usage limit, then the Processes
are only bound by their implicit CPU usage limit (priority, scheduling scheme...).

7.7.2 Resource Monitoring

As far as technically possible, the resources which are actually used by a Process
should be controlled at any given time. For the entire system, the monitoring part of
this activity is fulfilled by the Operating System. For details on CPU time monitoring
see 7.7.3.1. For RAM monitoring see 7.7.3.4. The monitoring capabilities depend on
the used Operating System. Depending on system requirements and safety goals,
an appropriate Operating System has to be chosen and configured accordingly, in
combination with other monitoring mechanisms (e.g. for execution deadlines) which
are provided by Platform Health Management.

Resource monitoring can serve several purposes, e.g.

• Detection of misbehavior of the monitored Process to initiate appropriate re-
covery actions, like Process restart or state change, to maintain the provided
functionality and guarantee functional safety.

• Protection of other parts of the system by isolating the erroneous Processes
from unaffected ones to avoid resource shortage.

For Processes which are attempting to exceed their configured maximum resource
needs (see 7.7.1), one of the following alternatives is valid:

• The resource limit violation or deadline miss is considered a failure and recovery
actions may need to be initiated. Therefore the specific violation gets reported to
the Platform Health Management, which then starts recovery actions which have
been configured beforehand. This will be the standard option for deterministic
subsystems (see 7.6.1).

• For Processes without hard deadlines, resource violations sometimes can be
mitigated without dedicated error recovery actions, e.g. by interrupting execution
and continue at a later point in time.

64 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

• If the OS provides a way to limit resource consumption of a Process or a group
of Processes by design, explicit external monitoring is usually not necessary
and often not even possible. Instead, the limitation mechanisms make sure that
resource availability for other parts of the system is not affected by failures within
the enclosed Processes. When such by-design limitation is used, monitoring
mechanisms may still be used for the benefit of the platform, but are not required.
Self-monitoring and out-of-process monitoring is currently out-of-scope in Adap-
tive Platform.

7.7.3 Application-level Resource configuration

We need to be able to configure minimum, guaranteed resources (RAM, computing
time) and maximum resources. In case Time or Full Determinism is required, the
maximum resource needs are guaranteed.

7.7.3.1 CPU Usage

CPU usage is represented in a Process by its threads. Generally speaking, Operat-
ing Systems use some properties of each thread’s configuration to determine when
to run it, and additionally constrain a group of threads to not use more than a defined
amount of CPU time. Because threads may be created at runtime, only the first thread
can be configured by Execution Management.

7.7.3.2 Core Affinity

[SWS_EM_02104] Core affinity d Execution Management shall configure the Core
affinity of the Process initial thread restricting it to a sub-set of cores in the system. c
(RS_EM_00008)

Requirement [SWS_EM_02104] permits the initial thread (the “main” thread of the
Process) to be bound to certain cores [SWS_OSI_01012]. Depending on the capabil-
ities of the Operating System the sub-set could be a single core. If the Operating
System does not support binding to specific cores then the only supported sub-set is
the entire set of cores.

7.7.3.3 Scheduling Policy

Currently available POSIX-compliant Operating Systems offer the scheduling poli-
cies required by POSIX, and in most cases additional, but different and incompatible
scheduling strategies. This means for now, the required scheduling properties need to
be configured individually, depending on the chosen OS.

65 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Moreover, scheduling strategy is defined per thread and the POSIX standard al-
lows for modifying the scheduling policy at runtime for a given thread, using
pthread_setschedparam(). It is therefore not currently possible for the Adaptive
Platform to enforce a particular scheduling strategy for an entire Process, but only
for its first thread.

Refer to requirement [SWS_EM_01014] regarding Sheduling Policy configuration by
Execution Management.

While scheduling policies are not a sufficient method to guarantee Full Determinism,
they contribute to improve it. While the aim is to limit CPU time for a Process, schedul-
ing policies apply to threads.

Note that while Execution Management will ensure the proper configuration for the
first thread (that calls the main() function), it is the responsibility of the Process itself
to properly configure secondary threads.

7.7.3.3.1 Resource Management

In general, for deterministic behavior the required computing time is guaranteed and
violations are treated as error, while best-effort subsystems are more robust and might
be able to mitigate sporadic violations, e.g. by continuing the calculation at the next
activation, or by providing a result of lesser quality. This means, if time (e.g. deadline
or runtime budget) monitoring is in place, the reaction on deviations is different for
deterministic and best-effort subsystems.

In fact, it may not even be necessary to monitor best-effort subsystems, since they by
definition are doing only a function that may not succeed. This leads to an architecture
where monitoring is a voluntary, configured property.

The remaining critical property however is to guarantee that a particular process or set
of Processes cannot adversely affect the behavior of other Processes.

To guarantee Full Determinism for the entire system, it is important to ensure Freedom
from Interference, which the ResourceGroup contribute to ensure.

[SWS_EM_02106] ResourceGroup assignment d Execution Management shall
configure the Process according to its ResourceGroup membership. c
(RS_EM_00005)

7.7.3.4 Memory Budget and Monitoring

To render a function, a Process requires the availability of some amount of memory
for its usage (mainly code, data, heap, thread stacks). Over the course of its execution
however, not all of this memory is required at all times, such that an OS can take
advantage of this property to make these ranges of memory available on-demand, and
provide them to other Processes when the memory is no longer used.

66 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

While this has clear advantages in terms of system flexibility as well as memory ef-
ficiency, it is also in the way of both Time Determinism and Full Determinism: when
a range of memory that was previously unused must now be made available, the OS
may have to execute some amounts of potentially-unbounded activities to make this
memory available. Often, the reverse may also be happening, removing previously
available (but unused) memory from the Process under scope, to make it available to
other Processes. This is detrimental to an overall system determinism.

Execution Management should ensure that the entire memory range that determin-
istic Processes may be using is available at the start and for the whole duration of the
respective Process execution.

Applications not configured to be deterministic may be mapped on-demand.

In order to provide sufficient memory at the beginning of the execution of a Process,
some properties may need to be defined for each Process.

[SWS_EM_02107] Maximum heap d Execution Management shall configure the
Maximum heap usage for the Process. c(RS_EM_00005)

Heap memory is used for dynamic memory allocation inside a Process e.g. through
malloc()/free() and new/delete.

[SWS_EM_02108] Maximum system memory usage d Execution Manage-
ment shall configure the Maximum system memory usage of the Process. c
(RS_EM_00005)

System memory can be used to create extra resources like file handles or semaphores,
as well as creating new threads.

[SWS_EM_02109] Process pre-mapping d Execution Management shall pre-
map a Process if required by the corresponding Application Manifest. c
(RS_EM_00005)

Fully pre-mapping a Process ensures that code and data execution is not going to be
delayed at its first execution by demand-loading. This helps providing Time Determin-
ism during system startup and first execution phases, but also helps with safety where
code handling error cases can be preloaded and made guaranteed to be available. In
addition, pre-mapping avoids late issues where filesystem may be corrupted and part
of the Process may not be loadable anymore.

67 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.8 Fault Tolerance

7.8.1 Introduction

What is Fault-Tolerance?

The method of coping with faults within a large-scale software system is termed fault
tolerance.

The model adopted for Execution Management is outlined in [8].

This section provides context to the application of fault tolerance concepts with respect
to Execution Management and perspective on how this contributes in overall plat-
form instance’s dependability.

Platform-wide Service Oriented Architecture fault tolerance aspects are outside the
scope of this document and are not further addressed.

7.8.2 Scope

Execution Management has a crucial influence on overall system behavior of the
Adaptive Platform.

The effect of erroneous functionality, within Execution Management can have very
different severity depending on operational mode and fault type. For example, a fault
identified by Execution Management may have a local effect, influencing an inde-
pendent process only, or may become a root cause for a Machine wide failures.

It is therefore necessary to not only specify correct behavior but also to introduce alter-
native behavior in case of deviations.

Such mechanisms address a broad spectrum of concerns that emerge during Ma-
chine and Process Life Cycle Management.

The Adaptive Platform architecture is composed of two levels; Application and
Platform Instance. The Application level constitutes cooperative Applica-
tions intended to saticfy overal system’s needs and objectives and represents a ser-
vice level in vehicle context. The Platform Instance level as a reusable asset pro-
viding basic capabilities and platform level services. Fault tolerance within Execution
Management is therefore required to handle both levels.

7.8.3 Threat Model

The main threats which leading to incorrect behavior of software - whether Appli-
cation or Platform Instance - is the presence of systematic defects or faults
i.e. those incorporated during design phase and remaining dormant untill deployment.
Other sources of faults include physical faults, e.g. random hardware failures, that

68 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

might influence resource allocation and correct execution, and interraction faults which
can be a source for incorrect state transition requests.

Figure 7.18: General Fault Tolerance scheme.

From the perspective of Execution Management, fault activation occures when re-
sulting Function Group State or combination of such is requested. Due to the
different nature of faults, these can lead to various types of deviations from expected
functional behavior and finally result in erroneous system functionality either in terms
of correct computational results or timing response.

In general, the implementation of fault tolerance mechanism is based on two consistent
steps - Error Detection and subsequent Error Recovery. The major focus of
Error Detection during Design Phase activities and thus the focus of Fault
Tolerance in this specification is on the analysis of potential Failure Modes and
the consequent error detection mechanisms that should later be incorporated into the
implementation.

In contrast, Error Recovery consists of actions that should be taken in order to
restore the system’s state where the system can once again perform correct service
delivery. Binding of Error Detection and Recovery Actions should be a subject
of platform wide fault tolerance model.

Remark:The remainder of this section is the subject for elaboration for the next release
of this specification. Provision for fault-tolerance mechanisms will consider possible
faults, how they can lead to errors within Execution Management and the mecha-
nisms that must be introduced to ensure error detection.

69 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

7.9 Handling of Application Manifest

7.9.1 Overview

The Application Manifest is created at design time by the Application Developer.

The Application Manifest specifies the deployment related information of an Ex-
ecutable running on the Adaptive Platform. An Application Manifest is
bundled with the actual executable code in order to support the integration of the exe-
cutable code onto the Machine.

For more information regarding the Application Manifest specification please
see [3].

To perform its necessary actions, Execution Management imposes a number of
requirements on the content of the Application Manifest. This section serves as
a reference for those requirements.

7.9.2 Execution Dependency

The required dependency information is provided by the Application developer. It
is adapted to the specific Machine environment at integration time and made available
in the Application Manifest.

Execution Management parses the information and uses it to build the startup se-
quence to ensure that the required antecedent Processes have reached a certain
Application State before starting a dependent Process [SWS_EM_01050].

7.9.3 Application Arguments

The set of static arguments required by a Process can either be provided by the Ap-
plication developer or specified at integration time. The integrator then makes the
arguments available in the Application Manifest for use by Execution Man-
agement when starting the Process [SWS_EM_01012].

7.9.4 Machine State and Function Group State

[SWS_EM_01013] Machine State and Function Group State d Execution Man-
agement shall support the execution of specific Processes depending on the current
Machine State and Function Group States, based on information provided in
the Application Manifests. c(RS_EM_00101)

Each Process is assigned to one or several startup configurations (StartupCon-
fig), which each can define the startup behaviour in one or several Machine States
and/or Function Group States. For details see [3]. By parsing this informa-

70 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

tion from the Application Manifests, Execution Management can determine
which Processes need to be launched if a specific Machine State or Function
Group State is entered, and which startup parameters are valid.

[SWS_EM_01033] Application start-up configuration d To enable a Process to
be launched in multiple Machine States or Function Group States, Execu-
tion Management shall be able to configure the Process start-up on every Ma-
chine State or Function Group State change based on information provided
in the Application Manifest. c(RS_EM_00009, RS_EM_00101)

7.9.5 Scheduling Policy

[SWS_EM_01014] Scheduling policy d Execution Management shall support the
configuration of the scheduling policy when lauching a Process, based on information
provided by the Application Manifest. c(RS_EM_00002)

For the detailed definitions of these policies, refer to [9]. Note, SCHED_OTHER shall be
treated as non real-time scheduling policy, and actual behavior of the policy is imple-
mentation specific. It must not be assumed that the scheduling behavior is compatible
between different Adaptive Platform implementations, except that it is a non real-
time scheduling policy in a given implementation.

• [SWS_EM_01041] Scheduling FIFO d Execution Management shall be able
to configure FIFO scheduling using policy SCHED_FIFO. c(RS_EM_00002)

• [SWS_EM_01042] Scheduling Round-Robin d Execution Management
shall be able to configure round-robin scheduling using policy SCHED_RR. c
(RS_EM_00002)

• [SWS_EM_01043] Scheduling Other d Execution Management shall be
able to configure non real-time scheduling using policy SCHED_OTHER. c
(RS_EM_00002)

7.9.6 Scheduling Priority

[SWS_EM_01015] Scheduling priority d Execution Management shall support the
configuration of a scheduling priority when lauching a Process, based on information
provided by the Application Manifest. c(RS_EM_00002)

The available priority range and actual meaning of the scheduling priority depends on
the selected scheduling policy.

[SWS_EM_01039] Scheduling priority range for SCHED_FIFO and SCHED_RR d
For SCHED_FIFO ([SWS_EM_01041]) and SCHED_RR ([SWS_EM_01042]), an integer
between 1 (lowest priority) and 32 (highest priority) shall be used. c(RS_EM_00002)

71 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_01040] Scheduling priority range for SCHED_OTHER d For the non real-
time policy SCHED_OTHER ([SWS_EM_01043]) the scheduling priority shall always be
zero. c(RS_EM_00002)

7.9.7 Application Binary Name

The Application binary name (the name of the Executable) is included within the
Application Manifest [TPS_MANI_01011]. Execution management can use
the name to locate the Executable prior to starting the Process.

72 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

8 API specification

8.1 Type definitions

8.1.1 ApplicationState

Name: ApplicationState
Type: Scoped Enumeration of uint8_t
Range: kRunning 0 --

kTerminating 1 --
Syntax: enum class ApplicationState : uint8_t {

kRunning = 0,
kTerminating = 1
};

Header file: application_client.h
Description: Defines the states of an Application (see 7.4.2).

Table 8.1: ApplicationState

[SWS_EM_02000] ApplicationState Enumeration dTable 8.1 describes the enumer-
ation ApplicationState.c(RS_EM_00103)

8.1.2 ApplicationReturnType

Name: ApplicationReturnType
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kGeneralError 1 --
Syntax: enum class ApplicationReturnType : uint8_t {

kSuccess = 0,
kGeneralError = 1
};

Header file: application_client.h
Description: Defines the error codes for ApplicationClient operations.

Table 8.2: ApplicationReturnType

[SWS_EM_02070] ApplicationReturnType Enumeration dTable 8.2 describes the
enumeration ApplicationReturnType.c(RS_EM_00101)

8.1.3 ActivationReturnType

Name: ActivationReturnType
Type: Scoped Enumeration of uint8_t
Range: kRegisterServices 0 --

kServiceDiscovery 1 --
kInit 2 --

73 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

kRun 3 --
kTerminate 4 --

Syntax: enum class ActivationReturnType : uint8_t {
kRegisterServices = 0,
kServiceDiscovery = 1,
kInit = 2,
kRun = 3,
kTerminate = 4
};

Header file: deterministic_client.h
Description: Defines the return codes for WaitForNextActivation operations.

Table 8.3: ActivationReturnType

[SWS_EM_02201] ActivationReturnType Enumeration dTable 8.3 describes the
enumeration ActivationReturnType.c(RS_EM_00052)

8.1.4 ActivationTimeStampReturnType

Name: ActivationTimeStampReturnType
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kNotAvailable 1 --
Syntax: enum class ActivationTimeStampReturnType : uint8_t {

kSuccess = 0,
kNotAvailable = 1
};

Header file: deterministic_client.h
Description: Defines the return codes for “get activation timestamp” operations.

Table 8.4: ActivationTimeStampReturnType

[SWS_EM_02202] ActivationTimeStampReturnType Enumeration dTable 8.4 de-
scribes the enumeration ActivationTimeStampReturnType.c(RS_EM_00053)

8.2 Class definitions

8.2.1 ApplicationClient class

The Application State API provides the functionality for an Application to report its
state to the Execution Management.

[SWS_EM_02001] d The ApplicationClient class shall be declared in the
application_client.h header file. c(RS_EM_00103)

74 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

8.2.1.1 ApplicationClient::ApplicationClient

Service name: ApplicationClient::ApplicationClient
Syntax: ApplicationClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: Implementation spe-

cific
In case the underlying IPC mechanism fails.

Description: Constructor for ApplicationClient which opens the Execution Man-
agements communication channel (e.g. POSIX FIFO) for reporting the
application state. Each Application shall create an instance of this
class to report its state.

Table 8.5: ApplicationClient::ApplicationClient

[SWS_EM_02030] ApplicationClient::ApplicationClient API dTable 8.5 describes
the interface ApplicationClient::ApplicationClient.c(RS_EM_00103)

8.2.1.2 ApplicationClient::~ApplicationClient

Service name: ApplicationClient::~ApplicationClient
Syntax: ~ApplicationClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: Destructor for ApplicationClient.

Table 8.6: ApplicationClient::~ApplicationClient

[SWS_EM_02002] ApplicationClient::~ApplicationClient API dTable 8.6 describes
the interface ApplicationClient::~ApplicationClient.c(RS_EM_00103)

8.2.1.3 ApplicationClient::ReportApplicationState

Service name: ApplicationClient::ReportApplicationState
Syntax: ApplicationReturnType ReportApplicationState(

ApplicationState state
);

Sync/Async: Sync
Parameters (in): state Value of the Applications state
Parameters (inout): None
Parameters (out): None

75 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Return value: kSuccess Retrieval operation succeeded.
kGeneralError GeneralError

Exceptions: None
Description: Interface for an Application to report the state to Execution Man-

agement.

Table 8.7: ApplicationClient::ReportApplicationState

[SWS_EM_02003] ApplicationClient::ReportApplicationState API dTable 8.7
describes the interface ApplicationClient::ReportApplicationState.c
(RS_EM_00103)

8.2.2 DeterministicClient class

The DeterministicClient class provides the functionality for an Application to
run a cyclic deterministic execution, see 7.6.3. Each Process which needs support
for cyclic deterministic execution has to instantiate this class.

[SWS_EM_02210] d The DeterministicClient class shall be declared in the
deterministic_client.h header file. c(RS_EM_00052, RS_EM_00053)

8.2.2.1 DeterministicClient::DeterministicClient

Service name: DeterministicClient::DeterministicClient
Syntax: DeterministicClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: Implementation spe-

cific
In case the underlying IPC mechanism fails.

Description: Constructor for DeterministicClient which opens the Execution Man-
agements communication channel (e.g. POSIX FIFO) to access a wait
point for cyclic execution, a worker pool, deterministic random numbers
and time stamps.

Table 8.8: DeterministicClient::DeterministicClient

[SWS_EM_02211] DeterministicClient::DeterministicClient API dTable 8.8
describes the interface DeterministicClient::DeterministicClient.c
(RS_EM_00052, RS_EM_00053)

8.2.2.2 DeterministicClient::~DeterministicClient

76 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Service name: DeterministicClient::~DeterministicClient
Syntax: ~DeterministicClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: Destructor for DeterministicClient.

Table 8.9: DeterministicClient::~DeterministicClient

[SWS_EM_02215] DeterministicClient::~DeterministicClient API dTable 8.9
describes the interface DeterministicClient::~DeterministicClient.c
(RS_EM_00052, RS_EM_00053)

8.2.2.3 DeterministicClient::WaitForNextActivation

Service name: DeterministicClient::WaitForNextActivation
Syntax: ActivationReturnType WaitForNextActivation ();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: kRegisterServices application shall register communication services

(this must be the only occasion for performing ser-
vice registering).

kServiceDiscovery application shall do communication service dis-
covery (this must be the only occasion for per-
forming service discovery).

kInit application shall initialize its internal data struc-
tures (once).

kRun application shall perform its normal operation.
kTerminate application shall terminate

Exceptions: None
Description: Blocks and returns with a process control value when the next activation

is triggered by the Runtime.

Table 8.10: DeterministicClient::WaitForNextActivation

[SWS_EM_02216] DeterministicClient::WaitForNextActivation API dTable 8.10
describes the interface DeterministicClient::WaitForNextActivation.c
(RS_EM_00052)

8.2.2.4 DeterministicClient::RunWorkerPool

Service name: DeterministicClient::RunWorkerPool

77 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Syntax: void RunWorkerPool (
Worker &runnableObj,
Container &container
);

Sync/Async: Sync
Parameters (in): runnableObj Object that provides a method called worker-

Runnable (...), which will be called on every con-
tainer element

container C++ container which supports a standard iterator in-
terface with
- begin()
- end()
- operator*()
- operator++

Parameters (inout): None
Parameters (out): None
Return value: void
Exceptions: None
Description: Uses a worker pool to call a method Worker::workerRunnable (...) for

every element of the container. The sequential iteration is guaranteed
by using the container++ operator. The API guarantees that no other
iteration scheme is used.

Table 8.11: DeterministicClient::RunWorkerPool

[SWS_EM_02220] DeterministicClient::RunWorkerPool API dTable 8.11 describes
the interface DeterministicClient::RunWorkerPool.c(RS_EM_00053)

8.2.2.5 DeterministicClient::GetRandom

Service name: DeterministicClient::GetRandom
Syntax: uint64_t GetRandom ();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: uint64_t 64 bit uniform distributed pseudo random number
Exceptions: None
Description: This returns “Deterministic” random numbers. ‘Deterministic” means,

that the returned random numbers are identical within redundant Deter-
ministicClient::WaitForNextActivation() cycles, which are
used within redundantly executed Processes.

Table 8.12: DeterministicClient::GetRandom

[SWS_EM_02225] DeterministicClient::GetRandom API dTable 8.12 describes the
interface DeterministicClient::GetRandom.c(RS_EM_00053)

78 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

8.2.2.6 DeterministicClient::GetActivationTime

Service name: DeterministicClient::GetActivationTime
Syntax: ActivationTimeStampReturnType GetActivationTime

(TimeStamp);
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): std::chrono::

time_point
<Synchronized Time
Base, Duration>&

current activation time

Return value: kSuccess Operation successful
kNotAvailable No previous call of WaitForNextActivation with re-

turn value kRun
Exceptions: None
Description: This provides the timestamp that represents the point in

time when the activation was triggered by Deterministic-
Client::WaitForNextActivation() with return value kRun.
Subsequent calls within an activation cycle will always provide the same
value. The same value will also be provided within redundantly executed
Processes.

Table 8.13: DeterministicClient::GetActivationTime

[SWS_EM_02230] DeterministicClient::GetActivationTime API dTable 8.13
describes the interface DeterministicClient::GetActivationTime.c
(RS_EM_00053)

8.2.2.7 DeterministicClient::GetNextActivationTime

Service name: DeterministicClient::GetNextActivationTime
Syntax: ActivationTimeStampReturnType GetNextActivationTime

(TimeStamp);
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): std::chrono::

time_point
<Synchronized Time
Base, Duration>&

next activation time

Return value: kSuccess Operation successful
kNotAvailable Next activation time unknown

Exceptions: None
Description: This provides the timestamp that represents the point in time

when the next activation will be triggered by Deterministic-
Client::WaitForNextActivation() with return value kRun. Subse-
quent calls within an activation cycle will always provide the same value.
The same value will also be provided within redundantly executed Pro-
cesses.

Table 8.14: DeterministicClient::GetNextActivationTime

79 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

[SWS_EM_02235] DeterministicClient::GetNextActivationTime API dTable 8.14
describes the interface DeterministicClient::GetNextActivationTime.c
(RS_EM_00053)

80 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

9 Service Interfaces

This chapter lists all provided and required service interfaces of the Execution Man-
agement.

9.1 Service Type definitions

9.1.1 StateStatusType

Name StateStatusType

Kind Struct
Description This data structure contains the Function Group State or Machine

State information.
Name Type Description
functionGroup std::string Name of the

Function Group or
the string
"MachineState" in
case of a Machine
State.

Members

state std::string String containing the
current Function
Group State of the
given Function
Group or the current
Machine State.

9.2 State Management Interface

9.2.1 Methods

Name RequestState

Description Requests a new Function Group State or Machine State.
Description Requested Function

Group or the string
"MachineState" to
request a Machine
State.

Type const std::string&

Parameters functionGroup

Direction IN

81 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Description New requested state of
the Function Group
or Machine State.

Type const std::string&

state

Direction IN

Name GetState

Description Retrieves the current state of a Function Group or Machine State.
Description Name of the Function

Group or the string
"MachineState" to
retrieve the current
Machine State.

Type const std::string&

Parameters functionGroup

Direction IN
Description String containing the

current Function
Group State of the
given Function Group
or the current Machine
State.

Type std::string

state

Direction OUT

9.2.2 Events

This service interface provides a notification event triggered by a state change.

Name StateChangeEvent

Description Notification about Function Group State or Machine State
changes. This event is triggered whenever a Function Group
State or Machine State change happens.

Type StateStatusType

82 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

A Not applicable requirements

[SWS_EM_NA] d These requirements are not applicable as they are not within
the scope of this release. c(RS_EM_00003, RS_EM_00004, RS_EM_00050,
RS_EM_00051, RS_EM_00110)

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration CommandLineOptionKindEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This enum defines the different styles how the command line option appear in the

command line.

Tags: atp.Status=draft
Literal Description
command
LineLong
Form

Long form of command line option.

Example:

--version=1.0
--help

Tags: atp.EnumerationValue=1
command
LineShort
Form

Short form of command line option.

Example:

-v 1.0
-h

Tags: atp.EnumerationValue=0
command
LineSimple
Form

In this case the command line option does not have any formal structure. Just the
value is passed to the program.

Tags: atp.EnumerationValue=2

Table B.1: CommandLineOptionKindEnum

83 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Class Executable
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure
Note This meta-class represents an executable program.

Tags: atp.Status=draft; atp.recommendedPackage=Executables
Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, Multilanguage

Referrable, PackageableElement , Referrable
Attribute Type Mul. Kind Note
buildType BuildTypeEnu

m
0..1 attr This attribute describes the buildType of a module

and/or platform implementation.
minimumTi
merGranula
rity

TimeValue 0..1 attr This attribute describes the minimum timer
resolution (TimeValue of one tick) that is required
by the Executable.

Tags: atp.Status=draft
rootSwCom
ponentProto
type

RootSwCompo
nentPrototype

0..1 aggr This represents the root SwCompositionPrototype
of the Executable. This aggregation is required (in
contrast to a direct reference of a
SwComponentType) in order to support the
definition of instanceRefs in Executable context.

Tags: atp.Status=draft
transformati
onPropsMa
ppingSet

Transformation
PropsToServic
eInterfaceElem
entMappingSet

0..1 ref Reference to a set of serialization properties that
are defined for ServiceInterfaces of the
Executable.

Tags: atp.Status=draft
version String 0..1 attr Version of the executable.

Tags: atp.Status=draft

Table B.2: Executable

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined

in the meta-model.

Tags: atp.ManifestKind=ApplicationManifest,MachineManifest
Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,

MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for

generating the source code representation of this
ModeDeclaration.

Table B.3: ModeDeclaration

84 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Class ModeDependentStartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class defines the startup configuration for the process depending on a

collection of machine states.

Tags: atp.ManifestKind=ApplicationManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
executionD
ependency

ExecutionDepe
ndency

* aggr This attribute defines that all processes that are
referenced via the ExecutionDependency shall be
launched and shall reach a certain
ApplicationState before the referencing process is
started.

Tags: atp.Status=draft
functionGro
upMode

ModeDeclarati
on

* iref This represent the applicable functionGroupMode.

Tags: atp.Status=draft
machineMo
de

ModeDeclarati
on

* iref This represent the applicable machineMode.

Tags: atp.Status=draft
resourceGr
oup

ResourceGrou
p

1 ref Reference to an applicable resource group.

Tags: atp.Status=draft
startupConfi
g

StartupConfig 1 ref Reference to a reusable startup configuration with
startup parameters.

Tags: atp.Status=draft

Table B.4: ModeDependentStartupConfig

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class provides information required to execute the referenced executable.

Tags: atp.ManifestKind=ApplicationManifest; atp.Status=draft; atp.recommended
Package=Processes

Base ARElement , ARObject , AtpClassifier , CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
application
ModeMachi
ne

ModeDeclarati
onGroupProtot
ype

0..1 aggr Set of ApplicationStates (Modes) that are defined
for the process.

Tags: atp.Status=draft
design ProcessDesign 0..1 ref This reference represents the identification of the

design-time representation for the Process that
owns the reference.

Tags: atp.Status=draft

85 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

executable Executable 0..1 ref Reference to executable that is executed in the
process.

Stereotypes: atpUriDef
Tags: atp.Status=draft

logTraceDef
aultLogLeve
l

LogTraceDefa
ultLogLevelEn
um

0..1 attr This attribute allows to set the initial log reporting
level for a logTraceProcessId (ApplicationId).

logTraceFil
ePath

UriString 0..1 attr This attribute defines the destination file to which
the logging information is passed.

logTraceLo
gMode

LogTraceLogM
odeEnum

0..1 attr This attribute defines the destination of log
messages provided by the process.

logTracePro
cessDesc

String 0..1 attr This attribute can be used to describe the
logTraceProcessId that is used in the log and trace
message in more detail.

logTracePro
cessId

String 0..1 attr This attribute identifies the process in the log and
trace message (ApplicationId).

modeDepen
dentStartup
Config

ModeDepende
ntStartupConfi
g

* aggr Applicable startup configurations.

Tags: atp.Status=draft

Table B.5: Process

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to

namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClient

ServerEntry, BswVariableAccess, CouplingPortTrafficClassAssignment, Diagnostic
DebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriority
Regeneration, EventHandler, ExclusiveAreaNestingOrder, HwDescriptionEntity ,
ImplementationProps, LinSlaveConfigIdent, ModeTransition, Multilanguage
Referrable, PncMappingIdent, SingleLanguageReferrable, SocketConnectionBundle,
SomeipRequiredEventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mul. Kind Note
shortName Identifier 1 attr This specifies an identifying shortName for the

object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.

Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFra
gment

* aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table B.6: Referrable

86 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Class StartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class represents a reusable startup configuration for processes..

Tags: atp.ManifestKind=ApplicationManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
schedulingP
olicy

SchedulingPoli
cyKindEnum

0..1 attr This attribute represents the ability to define the
scheduling policy for the initial thread of the
application.

schedulingP
riority

Integer 0..1 attr This is the scheduling priority requested by the
application itself.

startupOptio
n

StartupOption * aggr Applicable startup options

Tags: atp.Status=draft

Table B.7: StartupConfig

Class StartupOption
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class represents a single startup option consisting of option name and an

optional argument.

Tags: atp.ManifestKind=ApplicationManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
optionArgu
ment

String 0..1 attr This attribute defines option value.

optionKind CommandLine
OptionKindEnu
m

1 attr This attribute specifies the style how the command
line options appear in the command line.

optionName String 0..1 attr This attribute defines option name.

Table B.8: StartupOption

C Interfaces to other Functional Clusters (informative)

C.1 Overview

AUTOSAR decided not to standardize interfaces which are exclusively used between
Functional Clusters (on platform-level only), to allow efficient implementations, which
might depend e.g. on the used Operating System.

This chapter provides informative guidelines how the interaction between Functional
Clusters looks like, by clustering the relevant requirements of this document. In addi-
tion, the standardized public interfaces which are accessible by user space applications
(see chapters 8 and 9) can also be used for interaction between Functional Clusters.

87 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

The goal is to provide a clear understanding of Functional Cluster boundaries and in-
teraction, without specifying syntactical details. This ensures compatibility between
documents specifying different Functional Clusters and supports parallel implementa-
tion of different Functional Clusters. Details of the interfaces are up to the platform
provider. Additional interfaces, parameters and return values can be added.

Figure C.1: Interfaces between Functional Clusters

C.2 Interface Tables

C.2.1 State Transition Request

Name Description Requirements
Intended users State Management
Name proposal *SetState*

88 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Functionality Requests a change of
Function Group States
and/or Machine States

The state change request shall
lead to one or several state tran-
sitions and hereof state changes
to the requested Machine State
and/or Function Group States

[SWS_EM_01026]
[SWS_EM_01060]
[SWS_EM_01065]
[SWS_EM_01066]
[SWS_EM_01067]
[SWS_EM_01068]

Parameters (in) Function Group Identifier of Function Group (as de-
fined in Machine Manifest) or “Ma-
chineState” to request a Machine
State.

[SWS_EM_01107]

State Requested state of the Function
Group or Machine State. States
are defined in the Machine Mani-
fest.
1..* pairs of <Function
Group><State> can be requested
atomically.

[SWS_EM_01032]
[SWS_EM_01108]

Parameters (inout) None
Parameters (out) None
Return value Operation succeeded [SWS_EM_02057]

Execution Manage-
ment is busy and
cannot accept request

State change requests, that are
received before all previously re-
quested Machine State and/or
Function Group State transitions
are completed

[SWS_EM_01034]

State change request
could not be finished in
time

Timeout detected at state transition [SWS_EM_02058]

general error [SWS_EM_02056]

Table C.1: State Transition Request

C.2.2 State Override Request

Name Description Requirements
Intended users Platform Health Man-

agement
Name proposal *OverrideState*
Functionality Requests a change of

Function Group States
and/or Machine States
and stops any cur-
rently “ongoing” state
changes

The state change request shall im-
mediately lead to one or several
state transitions and hereof state
changes to the requested Machine
State and/or Function Group States

[SWS_EM_01018]
[SWS_EM_01061]

Parameters (in) Function Group Identifier of Function Group (as de-
fined in Machine Manifest) or “Ma-
chineState” to request a Machine
State.

[SWS_EM_01107]

89 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

State Requested state of the Function
Group or Machine State. States
are defined in the Machine Mani-
fest.
1..* pairs of <Function
Group><State> can be requested
atomically.

[SWS_EM_01032]
[SWS_EM_01108]

Parameters (inout) None
Parameters (out) None
Return value Operation succeeded [SWS_EM_02057]

State change request
could not be finished in
time

Timeout detected at state transition [SWS_EM_02058]

general error [SWS_EM_02056]

Table C.2: State Override Request

C.2.3 Provide State Information

Name Description Requirements
Intended users State Management

Platform Health Man-
agement

Name proposal *GetState*
Functionality Get information about

current state
The Execution Management pro-
vides an interface to retrieve the
current Machine State or a Func-
tion Group State.

[SWS_EM_01028]

Parameters (in) Function Group Identifier of Function Group (as de-
fined in Machine Manifest) or “Ma-
chineState” to request a Machine
State.

[SWS_EM_01107]

Parameters (inout) None
Parameters (out) State Current Function Group State of

the given Function Group or the
current Machine State of the given
Function Group name "MachineS-
tate". Empty if retrieval operation
was not successful.

[SWS_EM_01032]
[SWS_EM_01108]

Return value Operation succeeded [SWS_EM_02050]
Execution Manage-
ment is busy and
cannot provide re-
quested information

Execution Management performs a
State transition of the requested
Function Group or Machine State

[SWS_EM_02044]

general error A state transition of the requested
Function Group or Machine State
failed

[SWS_EM_02049]

Table C.3: Provide State Information

C.2.4 Process Restart Request

Name Description Requirements

90 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 18-03

Intended users Platform Health Man-
agement

Name proposal *RestartProcess*
Functionality Request to restart a

process
Restart a specific process on the
request from the Platform Health
Management.

[SWS_EM_01016]
[SWS_EM_01062]

Parameters (in) process identifier Unique identifier of the process to
be restarted.

[SWS_EM_01016]

Parameters (inout) None
Parameters (out) None
Return value Operation succeeded [SWS_EM_01064]

general error process could not be restarted [SWS_EM_01063]

Table C.4: Process Restart Request

91 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

	1 Introduction and functional overview
	1.1 What is Execution Management?
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Platform dependencies
	5.1.1 Operating System Interface
	5.1.2 Persistency

	5.2 Other dependencies

	6 Requirements tracing
	7 Functional specification
	7.1 Technical Overview
	7.1.1 Terms
	7.1.2 Application
	7.1.3 Adaptive Application
	7.1.4 Executable
	7.1.5 Process
	7.1.6 Application Manifest
	7.1.7 Machine Manifest
	7.1.8 Manifest format

	7.2 Execution Management Responsibilities
	7.3 Process Lifecycle Management
	7.3.1 Process States
	7.3.2 Startup and Shutdown
	7.3.2.1 Ordering
	7.3.2.2 Arguments

	7.3.3 Startup Sequence
	7.3.3.1 Execution Dependency

	7.4 State Management
	7.4.1 Overview
	7.4.2 Application State
	7.4.3 Machine State
	7.4.3.1 Startup
	7.4.3.2 Shutdown
	7.4.3.3 Restart

	7.4.4 Function Group State
	7.4.5 State Management Architecture
	7.4.5.1 State Management
	7.4.5.2 State Interaction

	7.4.6 State Change
	7.4.7 State Information

	7.5 Application Recovery Actions
	7.5.1 Overview
	7.5.2 Recovery Actions
	7.5.2.1 Restart Process
	7.5.2.2 Override State

	7.6 Deterministic Execution
	7.6.1 Determinism
	7.6.1.1 Time Determinism
	7.6.1.2 Data Determinism
	7.6.1.3 Full Determinism

	7.6.2 Redundant Deterministic Execution
	7.6.3 Cyclic Deterministic Execution
	7.6.3.1 Control of Cyclic Execution
	7.6.3.2 Worker Pool
	7.6.3.3 Random Numbers
	7.6.3.4 Time Stamps
	7.6.3.5 Real-Time Resources
	7.6.3.6 Guidelines for implementation of deterministic user process
	7.6.3.7 Implementation of Worker Pool users

	7.7 Resource Limitation
	7.7.1 Resource Configuration
	7.7.2 Resource Monitoring
	7.7.3 Application-level Resource configuration
	7.7.3.1 CPU Usage
	7.7.3.2 Core Affinity
	7.7.3.3 Scheduling Policy
	7.7.3.4 Memory Budget and Monitoring

	7.8 Fault Tolerance
	7.8.1 Introduction
	7.8.2 Scope
	7.8.3 Threat Model

	7.9 Handling of Application Manifest
	7.9.1 Overview
	7.9.2 Execution Dependency
	7.9.3 Application Arguments
	7.9.4 Machine State and Function Group State
	7.9.5 Scheduling Policy
	7.9.6 Scheduling Priority
	7.9.7 Application Binary Name

	8 API specification
	8.1 Type definitions
	8.1.1 ApplicationState
	8.1.2 ApplicationReturnType
	8.1.3 ActivationReturnType
	8.1.4 ActivationTimeStampReturnType

	8.2 Class definitions
	8.2.1 ApplicationClient class
	8.2.1.1 ApplicationClient::ApplicationClient
	8.2.1.2 ApplicationClient::~ApplicationClient
	8.2.1.3 ApplicationClient::ReportApplicationState

	8.2.2 DeterministicClient class
	8.2.2.1 DeterministicClient::DeterministicClient
	8.2.2.2 DeterministicClient::~DeterministicClient
	8.2.2.3 DeterministicClient::WaitForNextActivation
	8.2.2.4 DeterministicClient::RunWorkerPool
	8.2.2.5 DeterministicClient::GetRandom
	8.2.2.6 DeterministicClient::GetActivationTime
	8.2.2.7 DeterministicClient::GetNextActivationTime

	9 Service Interfaces
	9.1 Service Type definitions
	9.1.1 StateStatusType

	9.2 State Management Interface
	9.2.1 Methods
	9.2.2 Events

	A Not applicable requirements
	B Mentioned Class Tables
	C Interfaces to other Functional Clusters (informative)
	C.1 Overview
	C.2 Interface Tables
	C.2.1 State Transition Request
	C.2.2 State Override Request
	C.2.3 Provide State Information
	C.2.4 Process Restart Request

