
Specification of Communication Management
AUTOSAR AP Release 18-03

Document Title Specification of Communication
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 717

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-03

Document Change History
Date Release Changed by Description

2018-03-29 18-03
AUTOSAR
Release
Management

• DDS Network Binding
• Datatype Namespaces changed
• E2E Protected Methods
• Automatic Reconnection of Proxies
• Minor changes and bugfixes

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of Fields
• Introduction of E2E protected

communication
• Introduction of TLV
• Improved specification of SOME/IP

functional behavior
• Minor changes and bugfixes

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Table of Contents

1 Introduction and functional overview 5

2 Acronyms and Abbreviations 6

3 Related documentation 7

3.1 Input documents . 7
3.2 Related standards and norms . 8
3.3 Related specification . 8

4 Constraints and assumptions 9

4.1 Limitations . 9
4.2 Applicability to car domains . 9

5 Dependencies to other functional clusters 10

6 Requirements Tracing 11

7 Functional specification 25

7.1 General description . 25
7.1.1 Architectural concepts . 25
7.1.2 Design decisions . 27
7.1.3 Communication paradigms 28

7.2 End-to-end communication protection 29
7.2.1 Publisher . 30
7.2.2 Subscriber - Update . 32

7.2.2.1 Case 1 - there are one or more serialized samples . 34
7.2.2.2 Case 2 - there are no serialized samples 34

7.2.3 Subscriber - GetCachedSamples 35
7.2.4 Subscriber - Access to E2E information 35

7.3 Network binding . 35
7.3.1 SOME/IP Network binding 37

7.3.1.1 Service Discovery 37
7.3.1.2 Accumulation of SOME/IP messages 44
7.3.1.3 Handling Events . 45
7.3.1.4 Handling Method Calls 48
7.3.1.5 Handling Fields . 56
7.3.1.6 Serialization of Payload 64

7.3.2 DDS Network binding . 81
7.3.2.1 Service Discovery 81
7.3.2.2 Handling Events . 86
7.3.2.3 Serialization of Payload 91

7.4 Security . 93
7.4.1 Access Control . 93
7.4.2 Secure Communication . 94

7.4.2.1 SOME/IP . 94

3 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8 Communication API specification 98

8.1 C++ language binding . 98
8.1.1 API Header files . 98

8.1.1.1 Service header files 98
8.1.1.2 Common header file 101
8.1.1.3 Types header file . 102
8.1.1.4 Implementation Types header files 103

8.1.2 API Data Types . 105
8.1.2.1 Service Identifier Data Types 105
8.1.2.2 Event Related Data Types 109
8.1.2.3 Method Related Data Types 112
8.1.2.4 Generic Data Types 112
8.1.2.5 Communication Payload Data Types 123
8.1.2.6 Error Exception Types 138
8.1.2.7 E2E Related Data Types 140

8.1.3 API Reference . 142
8.1.3.1 Offer service . 143
8.1.3.2 Service skeleton creation 144
8.1.3.3 Send event . 144
8.1.3.4 Provide a service method 145
8.1.3.5 Processing of service methods 146
8.1.3.6 Registering get handlers for fields 147
8.1.3.7 Registering set handlers for fields 148
8.1.3.8 Find service . 149
8.1.3.9 Service proxy creation 150
8.1.3.10 Service event subscription 151
8.1.3.11 Receive event using polling 151
8.1.3.12 Receive event by getting triggered 153
8.1.3.13 Call a service method 153
8.1.3.14 Get method for fields 156
8.1.3.15 Set method for fields 156
8.1.3.16 Update notification events for fields 156

A Mentioned Class Tables 157

B History of Specification Items 218

B.1 Constraint and Specification Item History of this document according
to AUTOSAR Release 17-10 . 218

B.1.1 Added Traceables in 17-10 218
B.1.2 Changed Traceables in 17-10 222
B.1.3 Deleted Traceables in 17-10 223

4 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

1 Introduction and functional overview

This document contains the requirements on the functionality, API and the configura-
tion of the AUTOSAR Adaptive Communication Management as part of the Adaptive
AUTOSAR platform foundation.

The Communication Management realizes Service Oriented Communication between
Adaptive AUTOSAR Applications for all levels of communication, e.g. IntraProcess, In-
terProcess, InterMachine. It consists of potentially generated Service Provider Skele-
tons and Service Requester Proxies and optionally the generic Communication Man-
ager software for central brokering and configuration.

The Communication Management provides a build-in safety mechanism (E2E protec-
tion), which can be used for all levels of communication for events that are received
using polling.

The documentation of the Communication Management consists of two documents:

• the ARAComAPI explanatory document [1], providing explanations of the design
and behavior descriptions of the ara::com API,

• this document, providing the requirements on the ara::com API.

Therefore it is recommended to read the ARAComAPI explanatory document first to
get an overview and understanding, and to read this document afterward.

5 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the AUTOSAR glossary [2].

Abbreviation / Acronym: Description:
CM Communication Management
E2E End-to-end communication protection
SecOC Secure Onboard Communication
DTLS Datagram Transport Layer Security

Term: Description:
serializedSample A serializedSample is the serialization of a C++ object to an array

and consists of the header that is part of e2e protection and the
serialized data.

Service Binding Act of connecting a Service Requester to a concrete Service In-
stance of a Service Provider.

Multi-Binding Multi-Binding describes setups having multiple connections im-
plemented by different technical transport layers and protocol be-
tween different instances of a single proxy or skeleton class, e.g.:

• A proxy class uses different transport/IPC to communicate
with different skeleton instances.

• Different proxy instances for the same skeleton instance
uses different transport/IPC to communicate with this in-
stance: The skeleton instance supports multiple transport
mechanisms to get contacted.

6 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

3 Related documentation

3.1 Input documents

[1] Explanation of ara::com API
AUTOSAR_EXP_ARAComAPI

[2] Glossary
AUTOSAR_TR_Glossary

[3] SOME/IP Protocol Specification
AUTOSAR_PRS_SOMEIPProtocol

[4] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[5] Requirements on Communication Management
AUTOSAR_RS_CommunicationManagement

[6] Requirements on E2E
AUTOSAR_RS_E2E

[7] E2E Protocol Specification
AUTOSAR_PRS_E2EProtocol

[8] SOME/IP Service Discovery Protocol Specification
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol

[9] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[10] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[11] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[12] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[13] Real-time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire Protocol,
Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[14] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[15] ISO/IEC C++ 2003 Language DDS PSM, Version 1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0

[16] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL

7 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-PSM-Cxx/1.0
https://www.omg.org/spec/IDL

Specification of Communication Management
AUTOSAR AP Release 18-03

[17] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[18] General Specification of Adaptive Platform
AUTOSAR_SWS_General

[19] ISO/IEC 14882:2011, Information technology – Programming languages – C++
http://www.iso.org

[20] ISO/IEC TS 19571:2016, Programming Languages – Technical specification for
C++ extensions for concurrency
http://www.iso.org

[21] N4659: Working Draft, Standard for ProgrammingLanguage C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[22] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[23] Guidelines for the use of the C++14 language in critical and safety-related sys-
tems
AUTOSAR_RS_CPP14Guidelines

3.2 Related standards and norms

See chapter 3.1.

3.3 Related specification

See chapter 3.1.

8 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://www.iso.org
http://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

Specification of Communication Management
AUTOSAR AP Release 18-03

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality which is not stan-
dardized and specified within the SWS Communication Management document but
described in Explanation of ara::com API [1] and implemented in the demonstrator
code:

• Local Buffer Overruns
Currently it is not specified what happens if local buffers are full because the
application accesses data slower than they are received over the network.

The E2E communication protection works only for events which are polled and which
are transmitted at least once per fault tolerant time interval. This means, it requires:

• Periodic invocation of the method Update in a polling mode

• Periodic or mixed-periodic invocation of the method Send

In case Update or Send are not invoked periodically, then some communication failure
modes are not detected (loss, delay and possibly also repetition). In this case, if E2E is
used, then additional measures need to be taken at application level to address those
non-detected failure modes.

EndToEndTransformationComSpecProps are not supported.

The following limitations regarding optionality introduced with the Tag-Length-Value
serialization principle described in [3] and [4] apply:

• Optional method arguments
The Specification does not support the existence of optional method arguments.

• Definition of wire types 4 to 7 for Complex Data Types
The definition on sender side of which wire type should be used for Complex
Data Types is implementation defined.

4.2 Applicability to car domains

No restrictions to applicability.

9 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

5 Dependencies to other functional clusters

There are currently no dependencies to other functional clusters.

10 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

6 Requirements Tracing

The following tables reference the requirements specified in the Requirements on Com-
munication Management document [5] and links to the fulfilment of these.

Please note that if a requirement contained in [5] is not mentioned in the below table, it
means that is not fulfilled by this document.

Requirement Description Satisfied by
[RS_CM_00001] The Communication

Management shall provide a
standardized header file
structure for each service.

[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01017]
[SWS_CM_01019] [SWS_CM_01020]
[SWS_CM_10370] [SWS_CM_10372]
[SWS_CM_10373] [SWS_CM_10374]

[RS_CM_00002] The service header files shall
define the namespace for the
respective service.

[SWS_CM_01005] [SWS_CM_01006]
[SWS_CM_01007] [SWS_CM_01008]
[SWS_CM_01009] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01031]
[SWS_CM_10351] [SWS_CM_10375]

[RS_CM_00003] The Communication
Management shall define how
language specific data types are
derived from modeled data
types.

[SWS_CM_00400] [SWS_CM_00401]
[SWS_CM_00402] [SWS_CM_00403]
[SWS_CM_00404] [SWS_CM_00405]
[SWS_CM_00406] [SWS_CM_00407]
[SWS_CM_00408] [SWS_CM_00409]
[SWS_CM_00410] [SWS_CM_00411]
[SWS_CM_00413] [SWS_CM_00414]
[SWS_CM_00415] [SWS_CM_00416]
[SWS_CM_00418] [SWS_CM_00419]
[SWS_CM_00420] [SWS_CM_00421]
[SWS_CM_00422] [SWS_CM_00423]
[SWS_CM_00424] [SWS_CM_00425]
[SWS_CM_00426] [SWS_CM_00427]
[SWS_CM_00428] [SWS_CM_01032]
[SWS_CM_10376]

[RS_CM_00101] Communication Management
shall provide an interface to offer
services

[SWS_CM_00002] [SWS_CM_00101]
[SWS_CM_00102] [SWS_CM_00103]
[SWS_CM_00130] [SWS_CM_00201]
[SWS_CM_00203] [SWS_CM_00302]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]

[RS_CM_00102] Communication Management
shall provide an interface to find
services

[SWS_CM_00004] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00124]
[SWS_CM_00125] [SWS_CM_00131]
[SWS_CM_00202] [SWS_CM_00209]
[SWS_CM_00303] [SWS_CM_00304]
[SWS_CM_00305] [SWS_CM_00312]
[SWS_CM_00383] [SWS_CM_10352]
[SWS_CM_10353] [SWS_CM_10382]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11041]

11 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00103] Communication Management

shall provide an interface to
subscribe to a specific event
provided by an instance of a
certain service

[SWS_CM_00005] [SWS_CM_00141]
[SWS_CM_00205] [SWS_CM_00310]
[SWS_CM_00311] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_11018] [SWS_CM_11019]
[SWS_CM_11020]

[RS_CM_00104] Communication Management
shall provide an interface to stop
the subscription to an event of a
service instance

[SWS_CM_00151] [SWS_CM_00207]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10378]
[SWS_CM_11021]

[RS_CM_00105] Communication Management
shall provide an interface to stop
offering services

[SWS_CM_00111] [SWS_CM_00204]
[SWS_CM_11005]

[RS_CM_00106] Communication Management
shall provide a means to monitor
the state of the subscription to
an event

[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00316]
[SWS_CM_11022] [SWS_CM_11027]
[SWS_CM_11028]

[RS_CM_00107] Communication Management
shall provide a means to
automatically update a proxy
instance in case of restart of the
offered service

[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10382]

[RS_CM_00200] The Communication
Management shall transform
Fully Qualified Service IDs to
communication protocol specific
Service IDs

[SWS_CM_00102] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00205]
[SWS_CM_01010] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10323] [SWS_CM_10325]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10346]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11041]
[SWS_CM_90403] [SWS_CM_90409]
[SWS_CM_90414]

12 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00201] Communication Management

shall provide an API to send
events to other applications

[SWS_CM_00003] [SWS_CM_00162]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00262]
[SWS_CM_00263] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00308]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10040]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10243] [SWS_CM_10244]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10286]
[SWS_CM_10287] [SWS_CM_10288]
[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10294]
[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10361] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11017]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11045]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11262]
[SWS_CM_11263] [SWS_CM_90437]
[SWS_CM_90438]

13 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00202] Communication Management

shall provide an API to the
application to poll received
events

[SWS_CM_00172] [SWS_CM_00173]
[SWS_CM_00174] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00260]
[SWS_CM_00262] [SWS_CM_00263]
[SWS_CM_00264] [SWS_CM_00265]
[SWS_CM_00266] [SWS_CM_00300]
[SWS_CM_00306] [SWS_CM_00307]
[SWS_CM_10016] [SWS_CM_10017]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10169] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10243]
[SWS_CM_10244] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10286]
[SWS_CM_10295] [SWS_CM_10327]
[SWS_CM_10361] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11045] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11262] [SWS_CM_11263]

[RS_CM_00203] Communication Management
shall trigger the application on
reception of an event

[SWS_CM_00181] [SWS_CM_00182]
[SWS_CM_00183] [SWS_CM_00300]
[SWS_CM_00306] [SWS_CM_00307]
[SWS_CM_00309] [SWS_CM_10296]
[SWS_CM_10328] [SWS_CM_10379]
[SWS_CM_10380] [SWS_CM_11025]
[SWS_CM_11026]

14 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00204] The Communication

Management shall map the
protocol independent Service
Oriented Communication to the
configured protocol binding and
shall execute the protocol
accordingly.

[SWS_CM_00201] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00204]
[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_00207] [SWS_CM_00208]
[SWS_CM_00209] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00262]
[SWS_CM_00263] [SWS_CM_00264]
[SWS_CM_01044] [SWS_CM_01045]
[SWS_CM_01046] [SWS_CM_01047]
[SWS_CM_01048] [SWS_CM_01049]
[SWS_CM_10000] [SWS_CM_10013]
[SWS_CM_10016] [SWS_CM_10017]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10040]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10169] [SWS_CM_10172]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10243] [SWS_CM_10244]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10262]
[SWS_CM_10264] [SWS_CM_10265]
[SWS_CM_10266] [SWS_CM_10267]
[SWS_CM_10268] [SWS_CM_10269]
[SWS_CM_10270] [SWS_CM_10271]
[SWS_CM_10272] [SWS_CM_10273]
[SWS_CM_10274] [SWS_CM_10275]
[SWS_CM_10276] [SWS_CM_10277]
[SWS_CM_10278] [SWS_CM_10279]
[SWS_CM_10280] [SWS_CM_10281]
[SWS_CM_10282] [SWS_CM_10283]
[SWS_CM_10284] [SWS_CM_10285]
[SWS_CM_10286] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]

15 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10305]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10337] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10347] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10359] [SWS_CM_10361]
[SWS_CM_10377] [SWS_CM_10378]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10381] [SWS_CM_10387]
[SWS_CM_10388] [SWS_CM_10389]
[SWS_CM_10390] [SWS_CM_11000]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11005] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11013] [SWS_CM_11014]
[SWS_CM_11015] [SWS_CM_11016]
[SWS_CM_11017] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11021] [SWS_CM_11022]

16 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[SWS_CM_11023] [SWS_CM_11024]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11027] [SWS_CM_11028]
[SWS_CM_11041] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11045] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11262] [SWS_CM_11263]

[RS_CM_00205] The Communication
Management shall realize the
SOME/IP service discovery
protocol, the SOME/IP protocol
and the E2E supervision (E2E
protocol).

[SWS_CM_01032] [SWS_CM_01033]
[SWS_CM_01034] [SWS_CM_01035]
[SWS_CM_01036] [SWS_CM_01037]
[SWS_CM_01038] [SWS_CM_01039]
[SWS_CM_01040] [SWS_CM_01041]
[SWS_CM_01042] [SWS_CM_01043]
[SWS_CM_01044] [SWS_CM_01045]
[SWS_CM_01046] [SWS_CM_01047]
[SWS_CM_01048] [SWS_CM_01049]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058] [SWS_CM_10000]

[RS_CM_00211] Communication Management
shall provide an interface to
provide methods to other
applications

[SWS_CM_00191] [SWS_CM_00198]
[SWS_CM_00199] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00260]
[SWS_CM_00262] [SWS_CM_00263]
[SWS_CM_00264] [SWS_CM_00265]
[SWS_CM_00301] [SWS_CM_00400]
[SWS_CM_00401] [SWS_CM_00402]
[SWS_CM_00403] [SWS_CM_00404]
[SWS_CM_00405] [SWS_CM_00406]
[SWS_CM_00407] [SWS_CM_00408]
[SWS_CM_00409] [SWS_CM_00410]
[SWS_CM_00411] [SWS_CM_00412]
[SWS_CM_00413] [SWS_CM_00414]
[SWS_CM_00415] [SWS_CM_00416]
[SWS_CM_00417] [SWS_CM_00418]
[SWS_CM_00419] [SWS_CM_00420]
[SWS_CM_00421] [SWS_CM_00422]
[SWS_CM_00423] [SWS_CM_00424]
[SWS_CM_00425] [SWS_CM_00426]
[SWS_CM_00427] [SWS_CM_00428]
[SWS_CM_00448] [SWS_CM_00449]

17 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10243] [SWS_CM_10244]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10286]
[SWS_CM_10354] [SWS_CM_10355]
[SWS_CM_10356] [SWS_CM_10361]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10376] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11045] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11262] [SWS_CM_11263]

[RS_CM_00212] Communication Management
shall provide an interface to call
methods of other applications
synchronously

[SWS_CM_00006] [SWS_CM_00192]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10305]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]

18 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10337]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10359]
[SWS_CM_10362] [SWS_CM_10371]

[RS_CM_00213] Communication Management
shall provide an interface to call
service methods asynchronously

[SWS_CM_00006] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00196]
[SWS_CM_00197] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10305]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10337]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10359]
[SWS_CM_10362] [SWS_CM_10371]

[RS_CM_00214] Communication Management
shall provide an interface to
query the result of an
asynchronously called service
method

[SWS_CM_00193] [SWS_CM_00320]
[SWS_CM_00321] [SWS_CM_00322]
[SWS_CM_00323] [SWS_CM_00324]
[SWS_CM_00325] [SWS_CM_00326]
[SWS_CM_00327] [SWS_CM_00328]
[SWS_CM_00329] [SWS_CM_00330]
[SWS_CM_00332] [SWS_CM_00340]
[SWS_CM_00341] [SWS_CM_00342]
[SWS_CM_00343] [SWS_CM_00344]
[SWS_CM_00345] [SWS_CM_00346]
[SWS_CM_00347] [SWS_CM_00348]
[SWS_CM_10362] [SWS_CM_10371]

19 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00215] Communication Management

shall trigger the application on
completion of an asynchronously
called service method

[SWS_CM_00197] [SWS_CM_00321]
[SWS_CM_00331] [SWS_CM_00340]
[SWS_CM_00341] [SWS_CM_00342]
[SWS_CM_00343] [SWS_CM_00344]
[SWS_CM_00345] [SWS_CM_00346]
[SWS_CM_00347] [SWS_CM_00348]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10349] [SWS_CM_10350]

[RS_CM_00216] Communication Management
shall provide an interface which
aggregates methods to receive
an event as well as explicitly
getting and setting the field value

[SWS_CM_00008] [SWS_CM_01031]

[RS_CM_00217] Communication Management
shall provide a method to
remotely set the field value

[SWS_CM_00113] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]

[RS_CM_00218] Communication Management
shall provide a method to
remotely get the field value

[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00119]
[SWS_CM_00120] [SWS_CM_00128]
[SWS_CM_00129] [SWS_CM_00132]
[SWS_CM_00133] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]

[RS_CM_00219] Communication Management
shall provide an interface which
aggregates methods to send an
event and to register a get and
set function for the field value

[SWS_CM_00007]

[RS_CM_00220] Communication Management
shall trigger the set method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340]

[RS_CM_00221] Communication Management
shall trigger the get method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340]

[RS_CM_00222] The Communication
Management shall transform
Fully Qualified Service IDs, its
instance and Event ID to E2E
Data ID.

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90414]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90430] [SWS_CM_90431]
[SWS_CM_90433]

[RS_CM_00223] Communication Management
shall protect the transmission of
data using E2E protocol, hidden
behind the event API.

[SWS_CM_90433]

20 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_CM_00225] Communication Management

shall provide an interface to call
fire&forget service methods

[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90436]

[RS_CM_00315] The Communication
Management shall support a
change of the configured
protocol binding without
requiring a re-compilation of the
adaptive application

[SWS_CM_10384] [SWS_CM_10385]
[SWS_CM_10386]

[RS_E2E_08534] E2E Protocol shall provide error
information for the detected
communication failure

[SWS_CM_90411] [SWS_CM_90413]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90420] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90423]
[SWS_CM_90424] [SWS_CM_90431]

[RS_E2E_08540] E2E protocol shall support
protected periodic/mixed
periodic communication

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90414]
[SWS_CM_90415] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90430]
[SWS_CM_90433]

[RS_SEC_03002] No description [SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003]

[RS_SEC_03003] No description [SWS_CM_90004]
[RS_SEC_03005] No description [SWS_CM_90004]
[RS_SEC_03008] No description [SWS_CM_90001] [SWS_CM_90002]

[SWS_CM_90003]
[RS_SEC_03010] No description [SWS_CM_90001] [SWS_CM_90002]

[SWS_CM_90003]
[RS_SEC_04001] Secure communication shall be

performed through secure
channels

[SWS_CM_90101] [SWS_CM_90102]
[SWS_CM_90103] [SWS_CM_90104]
[SWS_CM_90105] [SWS_CM_90106]
[SWS_CM_90107] [SWS_CM_90108]
[SWS_CM_90109] [SWS_CM_90110]

[RS_SEC_04003] The assignment of
communication to secure
channels shall be defined

[SWS_CM_90102]

[RS_SEC_05019] Access to Adaptive AUTOSAR
Foundation and Services

[SWS_CM_90004]

[RS_SOMEIPSD_00006]SOME/IP Service Discovery
Protocol shall define the format
of the Service Discovery
message

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10381]

[RS_SOMEIPSD_00015]SOME/IP Service Discovery
Protocol shall support to
subscribe to events

[SWS_CM_00206]

[RS_SOMEIPSD_00016]SOME/IP Service Discovery
Protocol shall support to deny
subscriptions

[SWS_CM_00208]

21 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_SOMEIPSD_00024]SOME/IP Service Discovery

shall support configurable
timings

[SWS_CM_00201] [SWS_CM_00209]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00004] SOME/IP protocol shall support
event communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10379]
[SWS_CM_10380]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10319]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10305]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10314]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10305]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10337] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10359]

22 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_SOMEIP_00008] SOME/IP protocol shall support

error handling of RPC
communication

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10317] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10359]

[RS_SOMEIP_00009] SOME/IP protocol shall support
field communication

[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10337] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10380]

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[SWS_CM_10288] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10320]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10341] [SWS_CM_10342]

[RS_SOMEIP_00012] SOME/IP protocol shall support
session handling

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00014] SOME/IP protocol shall support
handling of protocol errors on
receiver side

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

[RS_SOMEIP_00017] SOME/IP protocol shall support
grouping events into
eventgroups

[SWS_CM_10287] [SWS_CM_10319]

[RS_SOMEIP_00018] SOME/IP protocol shall support
grouping fields in eventgroups

[SWS_CM_10319]

[RS_SOMEIP_00019] SOME/IP protocol shall identify
services using unique identifiers

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

[RS_SOMEIP_00021] SOME/IP protocol shall identify
RPC methods of services using
unique identifiers

[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]

[RS_SOMEIP_00022] SOME/IP protocol shall identify
events of services using unique
identifiers

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]

[RS_SOMEIP_00025] SOME/IP protocol shall support
the identification of callers of an
RPC using unique identifiers

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

23 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Requirement Description Satisfied by
[RS_SOMEIP_00026] SOME/IP protocol shall define

the endianness of header and
payload

[SWS_CM_10013] [SWS_CM_10172]

[RS_SOMEIP_00028] SOME/IP protocol shall specify
the serialization algorithm for
data

[SWS_CM_10034] [SWS_CM_10294]
[SWS_CM_10304] [SWS_CM_10316]
[SWS_CM_10326] [SWS_CM_10336]
[SWS_CM_10348] [SWS_CM_10359]

[RS_SOMEIP_00041] SOME/IP protocol shall provide
support of multiple versions of
the protocol

[SWS_CM_10291] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00042] SOME/IP protocol shall support
unicast and multicast based
event communication

[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10321] [SWS_CM_10322]

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data
structs

[SWS_CM_01032] [SWS_CM_01033]
[SWS_CM_01034] [SWS_CM_01035]
[SWS_CM_01036] [SWS_CM_01037]
[SWS_CM_01038] [SWS_CM_01039]
[SWS_CM_01040] [SWS_CM_01041]
[SWS_CM_01042] [SWS_CM_01043]
[SWS_CM_01044] [SWS_CM_01045]
[SWS_CM_01046] [SWS_CM_01047]
[SWS_CM_01048] [SWS_CM_01049]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058]

[TPS_MANI_01101] Size-constrained allocation of
memory

[SWS_CM_00450]

[TPS_MANI_01102] Specification of a namespace for
an
ImplementationDataType of
category VECTOR

[SWS_CM_00451]

24 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

7 Functional specification

7.1 General description

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Communication Management (CM) for AUTOSAR
Adaptive is such a functional cluster and is part of "AUTOSAR Runtime for Adaptive
Applications" - ARA. It is responsible for the construction and supervision of communi-
cation paths between applications, both local and remote.

The CM provides the infrastructure that enables communication between Adaptive
AUTOSAR Applications within one machine and with software entities on other ma-
chines, e.g. other Adaptive AUTOSAR applications or Classic AUTOSAR SWCs. All
communication paths can be established at design- , start-up- or run-time.

This specification includes the syntax of the API, the relationship of API to the model
and describes semantics, e.g. through state machines, and assumption of pre-, post-
conditions and use of APIs. The specification does not provide constraints on the SW
architecture of a platform implementation, so there is no definition of basic software
modules and no specification of implementation or internal technical architecture of
the Communication Management.

7.1.1 Architectural concepts

The Communication management of AUTOSAR Adaptive can be logically divided into
the following sub-parts:

• Language binding

• End-to-end communication protection

• Communication / Network binding

• Communication Management software

25 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Communication Management

Adaptive Application

Ethernet Driver

TCP/IP

SOME/IP

Transport

IPC

Transport

IPC

Dispatching and Discovery

ara::com API

Execution Management

API

C++ 11 Language Binding

Communication Binding

Figure 7.1: Technical Architecture of Communication Management

In the context of Communication Management, the following types of interfaces are
defined:

• Public Interface: Part of the Adaptive AUTOSAR API and specified in the SWS.
This is the standardized ara::com API.

• Protected Interface: Interaction between functional clusters. Not normative, in-
tended to make specification more readable and to support integration of SW
into demonstrator. (dotted arrow in 7.1)

• Private Interface: Interaction between elements within a functional cluster. Not
used in specifications, so it is a non-standardized interface. Used for communi-
cation inside Communication Management software (grey arrow in 7.1)

Please note, that Language Binding and Communication Binding depend on a specific
configuration by the integrator, but they need to be deployed within the application
binary. This results in the fact that the serialization of the Communication Binding will
run in the execution context of the Adaptive Application.

For the design of ARA API the following constraints apply:

• Support the independence of application software components

• Use of Service-oriented communication without dependency on a specific com-
munication protocol

• Make the API as lean as possible, neither supporting very specific use cases
which could also be done on top of the API, nor supporting component model
or higher level concepts. The API is restricted to support core communication
mechanisms.

• Support for both static and dynamic communication:

26 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

– Full static configuration, service discovery not needed at all as the server
knows all clients and clients know the server

– No discovery by application middleware, the clients know the server but the
Server does not know the clients. Event subscription is the only dynamic
communication pattern in the application.

– Full service discovery in the application. No communication paths are known
at configuration time. An API for Service discovery allows the application
code to choose the service instance.

• Support both Event/Callback and Polling style usage of the API to enable classic
RTE style paradigms. To support high determinism demands in case of callback-
based / event-based interaction, there shall be the possibility to avoid uncontrolled
context switches.

• Support both synchronous callback-based communication and asynchronous
communication philosophy.

• Support of client/server communication

• Support of sender/receiver communication with both last-is-best and queued se-
mantics. In case of queued communication, the receiver caches are configurable.

• Support of selection of trigger conditions for task activation

• Extensions for security and Quality Of Service QOS

• Scalability for real-time systems

• Support of built-in end-to-end communication protection, where a use-case-
specific behavior can be done on top of ARA API.

7.1.2 Design decisions

The design of the ARA API covers the following principles:

• It uses the Proxy/Skeleton pattern:

– The (service) proxy is the representative of the possibly remote (i.e. other
process, other core, other node) service. It is an instance of a C++ class
local to the application/client, which uses the service.

– The (service) skeleton is the connection of the user provided service imple-
mentation to the middleware transport infrastructure. Service implementa-
tion is sub-classing the (service) skeleton.

– Beside proxies/skeletons, there might exist a so-called "Runtime" (singleton)
class to provide some essentials to manage proxies and skeletons. But
this is communication management software implementation specific and

27 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

therefore not specified in this document, but may be specified in a future
version.

• It supports callback mechanisms on data reception

• The API has zero-copy capabilities including the possibility for memory manage-
ment in the middleware

• It supports filtering of received data

• It is aligned with the AUTOSAR service model (services, instances, events, meth-
ods, ...) to allow the generation of proxies and skeletons out of this model

• Full discovery and service instance selection support on API level

• Client/Server Communication uses concepts introduced by C++11 language, e.g.
std::future, std::promise, to fully support method calls between different contexts.

• Abstract from SOME/IP specific behavior, but support SOME/IP service mecha-
nisms, as methods, events and fields

• Support/implement the standard end-to-end protection protocols, as specified in
[6] and [7]

• Support Event and Polling style usage of the API equally to enable classic RT
style paradigms

• Fully exploit C++11/14 features in API design to provide usability and comfort for
the application developer.

See ARAComAPI explanatory [1] for more details and explanations on the ARA API
design.

7.1.3 Communication paradigms

Service-Oriented Communication (SoC) is the main communication pattern for Adap-
tive AUTOSAR Applications. It allows establishing communication paths both at
design- and run-time, so it can be used to build up both static communication with
known numbers of participants and dynamic communication with unknown number of
participants. Figure 7.2 shows the basic operation principle of Service-Oriented Com-
munication.

28 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Service
Registry

Application 1
Service provider

offer

call

Service
Registry

Application 2
Service requester

find

Figure 7.2: Service-Oriented Communication

Service Discovery decides whether external and internal service-oriented communi-
cation is established. The discovery strategy shall allow either returning a specific
service instance or all available instances providing the requested service at the time
of the request, no matter if they are available locally or remote. The Communication
Management software should provide an optimized implementation for both the Ser-
vice discovery and the communication connection, depending on the location where
the service provider resides.

The Communication Management software using Service-Oriented Communication
will not achieve hard real time requirements, as the implementation will behave like a
virtual ethernet including latencies of communication. This behavior must be respected
with the design of the overall ECU and SW system.

The service class is the central element of the Service-Oriented Communication pat-
tern applied in Adaptive AUTOSAR. It represents the service by collecting the methods
and events which are provided or requested by the applications implementing the con-
crete service functionality.

7.2 End-to-end communication protection

This section specifies the integration of E2E protection in ara::com for processing
periodic events, that are polled by the Subscriber. Note that there are limitations in
the released E2E functionality, the limitations are documented in chapter 4.1.

[SWS_CM_90402] d An e2e-protected event shall have its options config-
ured in End2EndEventProtectionProps and E2EProfileConfiguration. c
(RS_CM_00222, RS_E2E_08540)

29 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_90433] d The E2E functions mentioned in this section - E2EProtect and
E2ECheck - shall comply with the E2E protection protocol as specified in [6] and [7]. c
(RS_CM_00222, RS_E2E_08540, RS_CM_00223)

7.2.1 Publisher

[SWS_CM_90401] d For e2e-protected events, E2E protection shall be performed
within the context of Send, by means of Send invoking E2ECheck. c(RS_CM_00222,
RS_E2E_08540)

Figure 7.3 shows an overview of the interaction of components involved during the E2E
protection.

30 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Figure 7.3: E2E Publisher

[SWS_CM_90430] d For e2e-protected events, Send shall serialize the sample ac-
cording to the agreed serialization protocol, resulting with sample. c(RS_CM_00222,
RS_E2E_08540)

[SWS_CM_90403] d For e2e-protected events, Send shall determine dataID,
based on Service ID, Instance ID and Event ID of this Event instance. c
(RS_CM_00222, RS_CM_00200, RS_E2E_08540)

[SWS_CM_90404] d For e2e-protected events, Send shall provide the serialized-
Sample to E2ECheck, where serializedSample is made of (1) the header that is
part of e2e protection and (2) the serialized data. c(RS_CM_00222, RS_E2E_08540)

31 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_90405] d For e2e-protected events, after the e2e protection is done, Send
shall add the non-e2e-protected header (if any) and trigger the transmission. c
(RS_CM_00222, RS_E2E_08540)

7.2.2 Subscriber - Update

[SWS_CM_90406] d For e2e-protected events, E2E Check [7] shall be performed
within the context of Update. c(RS_CM_00222, RS_E2E_08540)

Figure 7.4 shows an overview of the interaction of components involved during the E2E
check.

32 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Figure 7.4: E2E Subscriber

33 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_90407] d For e2e-protected events, Update shall first get the collection of
all SerializedSamples that appeared after the last triggering of this Update func-
tion. c(RS_CM_00222, RS_E2E_08540)

7.2.2.1 Case 1 - there are one or more serialized samples

For e2e-protected events, in case one or more SerializedSamples are received,
then for each SerializedSample, the following steps are to be done:

[SWS_CM_90408] d For the given e2e-protected SerializedSample, Update
shall process the non-e2e protected header (if any) of the serializedSample. c
(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90409] d Update shall determine the DataID based on Service ID,
Service Instance ID, Event ID of this Event instance. c(RS_CM_00222,
RS_CM_00200, RS_E2E_08540)

[SWS_CM_90410] d For the given e2e-protected SerializedSample, Update shall
invoke the E2ECheck, providing to it dataID and serializedSample. c(RS_CM_00222,
RS_E2E_08540)

[SWS_CM_90411] d In return, for the given e2e-protected SerializedSample,
E2ECheck shall provide E2EResult containing E2EState and E2ECheckStatus.
c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90412] d For the given e2e-protected SerializedSample, Update shall
deserialize it, resulting with deserialized sample. c(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90413] d For the given e2e-protected SerializedSample, Update shall
store the pair sample and e2eCheckStatus in the application cache and it shall
update/overwrite event.e2eState with e2eResult.e2eState. c(RS_CM_00222,
RS_E2E_08540, RS_E2E_08534)

7.2.2.2 Case 2 - there are no serialized samples

In case no e2e-protected SerializedSamples are received, the steps are simpler
and E2E works as a timeout detection.

[SWS_CM_90414] d In case no e2e-protected SerializedSamples are received,
Update shall determine the DataID based on Service ID, Service In-
stance ID, Event ID of this Event instance. c(RS_CM_00222, RS_CM_00200,
RS_E2E_08540)

[SWS_CM_90415] d In case no e2e-protected SerializedSamples are received,
Update shall invoke the E2ECheck, providing to it dataID and null sample. c
(RS_E2E_08540)

34 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_90416] d In case no e2e-protected SerializedSamples are re-
ceived, in return, E2ECheck shall provide E2EResult containing E2EState and
E2ECheckStatus. c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90417] d In case no e2e-protected SerializedSamples are received,
Update shall store the pair sample and e2eCheckStatus in the application cache
and it shall update/overwrite event.e2eState with e2eResult.e2eState. c
(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

7.2.3 Subscriber - GetCachedSamples

[SWS_CM_90418] d GetCachedSamples shall provide a collection of smart pointers
to pairs made of (sample and e2eCheckStatus), where the collection contains the
samples determined/provided in the most recent invocation of Update according to
the selected cache policy. c(RS_CM_00222, RS_E2E_08534)

7.2.4 Subscriber - Access to E2E information

[SWS_CM_90419] d Each sample shall have a getter function GetE2ECheckStatus
allowing to access e2eCheckStatus of each Sample. c(RS_CM_00222,
RS_E2E_08534)

[SWS_CM_90431] d Each Event shall have a getter function GetE2EState allowing
to access e2eState that was determined by the last run of E2ECheck function invoked
during the last Update of the Event. c(RS_CM_00222, RS_E2E_08534)

7.3 Network binding

The following chapters describe the requirements according to specific network proto-
col bindings.

Since the selection of a particular network protocol binding is an integrator driven de-
ployment decision, any change in the selection of a particular network protocol binding
or changes in the various attributes and parameters of a particular network protocol
binding shall be possible without requiring a re-compilation of the involved adaptive
applications. The required changes to the involved adaptive application shall be limited
to a re-linking (either static or dynamic) of the involved adaptive application.

[SWS_CM_10384] Change of Service Interface Deployment d A change of the ser-
vice interface deployment shall be possible without re-compiling the involved adaptive
applications. – This means that the following changes in the service interface deploy-
ment shall be possible without the need for a re-compilation of the adaptive applica-
tions:

35 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• changes to the concrete type of ServiceInterfaceDeployment and the com-
posed ServiceMethodDeployment, ServiceFieldDeployment, and Ser-
viceEventDeployment (e.g., changing a SomeipServiceInterfaceDe-
ployment to a UserDefinedServiceInterfaceDeployment)

• changes to one or more attributes of meta classes derived from Servi-
ceInterfaceDeployment, ServiceMethodDeployment, ServiceField-
Deployment, and ServiceEventDeployment (e.g., changing the value of
SomeipEventDeployment.separationTime)

Note that changes to SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServiceInterfaceVersion.ma-
jorVersion indicates an incompatible change of the ServiceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. c(RS_CM_00315)

[SWS_CM_10385] Change of Service Instance Deployment d A change of the ser-
vice instance deployment shall be possible without re-compiling the involved adaptive
applications. – This means that the following changes in the service instance deploy-
ment shall be possible without the need for a re-compilation of the adaptive applica-
tions:

• changes to the concrete type of ProvidedApServiceInstance and/or Re-
quiredApServiceInstance (e.g., changing a ProvidedSomeipService-
Instance to a ProvidedUserDefinedServiceInstance and a Required-
SomeipServiceInstance to a RequiredUserDefinedServiceInstance)

• changes to one or more attributes of meta class derived from ProvidedApSer-
viceInstance and/or RequiredApServiceInstance (e.g., changing the
value of the SomeipProvidedEventGroup.multicastThreshold or the
SomeipSdServerServiceInstanceConfig.serviceOfferTimeToLive).

Note that changes to SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServiceInterfaceVersion.ma-
jorVersion indicates an incompatible change of the ServiceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. c(RS_CM_00315)

[SWS_CM_10386] Change of Network Configuration d A change of the network
configuration shall be possible without re-compiling the involved adaptive applications.
– This means that the following changes in the network configuration shall be possible
without the need for a re-compilation of the adaptive applications:

• changes to one or more attributes of a concrete ServiceInstance-
ToMachineMapping (e.g., changing the value of the SomeipService-
InstanceToMachineMapping.udpPort or the SomeipServiceInstance-
ToMachineMapping.tcpPort.

c(RS_CM_00315)

36 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

7.3.1 SOME/IP Network binding

[SWS_CM_10000] d The SOME/IP network binding shall implement the SOME/IP
Protocol and the SOME/IP Service Discovery Protocol defined in [3] and [8]. c(
RS_CM_00204, RS_CM_00205)

[SWS_CM_10013] d All headers shall be encoded in network byte order Big Endian
(MostSignificantByteFirst) [RFC 791]. c(RS_CM_00204, RS_SOMEIP_00026)

This means that Length and Type fields shall be always in network byte order.

[SWS_CM_10172] d The byte order of the parameters inside the payload shall be
defined by byteOrder of ApSomeipTransformationProps. c(RS_CM_00204,
RS_SOMEIP_00026)

7.3.1.1 Service Discovery

[SWS_CM_00201] Start of service discovery protocol on Server side d The reg-
istration of a new offered service which is bound to SOME/IP shall trigger the start of
the initial wait phase of the SOME/IP service discovery protocol. c(RS_CM_00204,
RS_CM_00101, RS_SOMEIPSD_00024)

The different phases of SOME/IP Service Discovery on the Server side are configured
in the Manifest in the ProvidedSomeipServiceInstance element. The configura-
tion is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03012] (Initial Wait Phase),

• [TPS_MANI_03013] (Repetition Wait Phase),

• [TPS_MANI_03014] (Main Phase).

[SWS_CM_00209] Start of service discovery protocol on Client side d The search
for a new service which is bound to SOME/IP shall trigger the start of the initial wait
phase of the SOME/IP service discovery protocol. c(RS_CM_00204, RS_CM_00102,
RS_SOMEIPSD_00024)

The different phases of SOME/IP Service Discovery on the Client side are configured in
the Manifest in the RequiredSomeipServiceInstance element. The configuration
is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03026] (Initial Wait Phase),

• [TPS_MANI_03027] (Repetition Wait Phase).

[SWS_CM_00202] SOME/IP FindService message d The entries in the SOME/IP
FindService message shall be as follows:

• The entry type shall be set to FindService (0x00).

37 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Required-
SomeipServiceInstance element defines the requiredServiceInstan-
ceId for the SomeipServiceInterfaceDeployment that is referenced by
the RequiredSomeipServiceInstance in the role serviceInterface. If
the requiredServiceInstanceId is set to "ANY" then 0xFFFF shall be used.

• Major Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the RequiredSomeipServiceInstance
in the role requiredServiceVersion defines the majorVersion. If the ma-
jorVersion is set to "ANY" then 0xFF shall be used.

• Minor Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the RequiredSomeipServiceInstance
in the role requiredServiceVersion defines the minorVersion. If the mi-
norVersion is set to "ANY" then 0xFFFF FFFF shall be used.

• TTL shall be derived from the Manifest where the SomeipSdClientService-
InstanceConfig element that is aggregated by the RequiredSomeipServi-
ceInstance in the role sdClientConfig defines the serviceFindTimeTo-
Live.

• Configuration Option shall be used in the find message if at least one capabil-
ityRecord is defined in the SomeipSdClientServiceInstanceConfig el-
ement that is aggregated by the RequiredSomeipServiceInstance in the
role sdClientConfig. The content of the Configuration Option shall be derived
from the key/value pairs defined in each capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102, RS_SOMEIPSD_00006)

[SWS_CM_00203] SOME/IP OfferService message d The entries in the SOME/IP
OfferService message shall be as follows:

• The entry type shall be set to OfferService (0x01).

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Provided-
SomeipServiceInstance element defines the serviceInstanceId for the
SomeipServiceInterfaceDeployment that is referenced by the Provid-
edSomeipServiceInstance in the role serviceInterface.

• Major Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the majorVersion.

38 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Minor Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the minorVersion .

• TTL shall be derived from the Manifest where the SomeipSdServerService-
InstanceConfig element that is aggregated by the ProvidedSomeipServi-
ceInstance in the role sdServerConfig defines the serviceOfferTime-
ToLive.

• IPv4 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv4
Address is configured in theIpv4Configuration element.

• IPv6 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv6
Address is configured in theIpv6Configuration element.

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipServiceIn-
stanceToMachineMapping element that maps the ProvidedSomeipServi-
ceInstance to an EthernetCommunicationConnector of a Machine de-
fines the TP and PortNumber.

– UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured.

– TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured.

• Configuration Option shall be used in the offer message if at least one capa-
bilityRecord is defined for the ProvidedSomeipServiceInstance in the
aggregated SomeipSdServerServiceInstanceConfig. The content of the
Configuration Option shall be derived from the key/value pairs defined in each
capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_SOMEIPSD_00006)

[SWS_CM_00204] SOME/IP StopOffer message d The entries in the SOME/IP
StopOffer message shall be as follows:

• The entry type shall be set to StopOfferService (0x01).

• ServiceId shall be set to the same value as in the OfferService message.

• InstanceId shall be set to the same value as in the OfferService message.

• Major Version shall be set to the same value as in the OfferService message.

39 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Minor Version shall be set to the same value as in the OfferService message.

• Eventgroup ID shall be set to the same value as in the OfferService message.

• TTL shall be set to 0x000000 value.

• IPv4 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• IPv6 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• Configuration Option shall be set to the same value as in the OfferService mes-
sage.

c(RS_CM_00204, RS_CM_00105, RS_SOMEIPSD_00006)

[SWS_CM_10377] Sending SOME/IP SubscribeEventgroup messages - initial
d The subscription to at least one Event (ServiceInterface.event) of an
Eventgroup (SomeipEventGroup) by invoking the Subscribe method (see
[SWS_CM_00141]) of the specific Event class of the ServiceProxy class shall
cause the sending of a SOME/IP SubscribeEventgroup messages in case there is
no active subscription for the particular Eventgroup (either because there was no
previous subscription to this particular Eventgroup or the TTL of every received Sub-
scribeGroupAck message (see [SWS_CM_00206]) for the particular Eventgroup has
already expired).

The subscription to at least one Event of an Eventgroup by invoking the Subscribe
method (see [SWS_CM_00141]) of the specific Event class of the ServiceProxy
class shall not cause the sending of a SOME/IP SubscribeEventgroup messages in
case there is an active subscription for the particular Eventgroup (because there
was some previous subscription to this particular Eventgroup and the TTL of at least
one received SubscribeGroupAck message (see [SWS_CM_00206]) for the particular
Eventgroup has not yet expired). c(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD_00006)

[SWS_CM_10381] Sending SOME/IP SubscribeEventgroup messages - renewal
d If the TTL of an active subscription for a particular Eventgroup is about to ex-
pire and there is at least one active subscription for an Event of this Eventgroup,
a SubscribeEventgroup message shall be sent to refresh the active subscription
to the particular Eventgroup. c(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD_00006)

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message d The en-
tries in the SOME/IP SubscribeEventgroup message shall be as follows:

• The entry type shall be set to SubscribeEventgroup (0x06).

• The Service ID shall be taken from the offer message.

• The Instance ID shall be taken from the offer message.

40 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Major Version shall be derived from the offer message.

• Minor Version shall be derived from the offer message.

• Eventgroup ID shall be derived from Manifest where the RequiredSomeipSer-
viceInstance element aggregates the SomeipRequiredEventGroup in the
role requiredEventGroup. The SomeipRequiredEventGroup contains the
eventGroup reference to the SomeipEventGroup where the eventGroupId
is defined.

• TTL shall be derived from Manifest where the RequiredSomeipServiceIn-
stance element aggregates the SomeipRequiredEventGroup in the role re-
quiredEventGroup. The SomeipRequiredEventGroup aggregates the sd-
ClientEventTimingConfig where the timeToLive is defined.

• IPv4 Endpoint Option shall be sent if the offer message contains an IPv4 End-
point Option. In this case the IPv4 Address sent in the IPv4 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv4 Address is
configured in theIpv4Configuration element.

• IPv6 Endpoint Option shall be sent if the offer message contains an IPv6 End-
point Option. In this case the IPv6 Address sent in the IPv6 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv6 Address is
configured in theIpv6Configuration element.

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipEventGroup
points either to SomeipEventDeployments where the transportProtocol
is set to udp or to tcp. The SomeipServiceInstanceToMachineMapping
element that maps the RequiredSomeipServiceInstance to an Ethernet-
CommunicationConnector of a Machine defines the TP and PortNumber.

– UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set to
udp. The UDP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.udpPort.

– TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set to

41 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

tcp. The TCP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.tcpPort.

c(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_SOMEIPSD_00006)

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message d The entries in
the SOME/IP SubscribeEventgroupAck message shall be as follows:

• The entry type shall be set to SubscribeEventgroupAck (0x07).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupAck message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Minor Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message.

• TTL shall be set to the same value as in the SubscribeEventgroup message that
is answered by this SubscribeEventgroupAck message.

• IPv4 Multicast Option shall shall be derived from the Manifest if a multicast-
Threshold with a value greater 0 is defined for the SomeipProvidedEvent-
Group and a ipv4MulticastIpAddress is defined in the SomeipService-
InstanceToMachineMapping that maps the ProvidedSomeipServiceIn-
stance that aggregates the SomeipProvidedEventGroup to an Ethernet-
CommunicationConnector of a Machine.

• IPv6 Multicast Option shall shall be derived from the Manifest if a multicast-
Threshold with a value greater 0 is defined for the SomeipProvidedEvent-
Group and a ipv6MulticastIpAddress is defined in the SomeipService-
InstanceToMachineMapping that maps the ProvidedSomeipServiceIn-
stance that aggregates the SomeipProvidedEventGroup to an Ethernet-
CommunicationConnector of a Machine.

• The Transport Layer Protocol shall be set to UDP. Only UDP is supported as
transport layer protocol in the IPv4 Multicast Option and/or IPv6 Multicast Option.

• The UDP Port shall be derived from the the Manifest where the Provid-
edSomeipServiceInstance that aggregates the SomeipProvidedEvent-
Group is mapped with the SomeipServiceInstanceToMachineMapping to
an EthernetCommunicationConnector of a Machine. The SomeipServi-
ceInstanceToMachineMapping defines the eventMulticastUdpPort.

c(RS_CM_00204, RS_SOMEIPSD_00015, RS_SOMEIPSD_00006)

42 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message d The entries in
the SOME/IP SubscribeEventgroupNack message shall be as follows:

• The entry type shall be set to SubscribeEventgroupNack (0x07).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupNack message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Minor Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupNack message.

• TTL shall be set to the 0x000000 value.

c(RS_CM_00204, RS_SOMEIPSD_00016, RS_SOMEIPSD_00006)

[SWS_CM_10378] Sending SOME/IP StopSubscribeEventgroup messages d
Stopping the subscription of an Event (ServiceInterface.event) of an
Eventgroup (SomeipEventGroup) by invoking the Unsubscribe method (see
[SWS_CM_00151]) of the specific Event class of the ServiceProxy class shall not
cause the sending of a SOME/IP StopSubscribeEventgroup message if there are still
active subscriptions for other Events of the same Eventgroup.

Stopping the subscription of the last Event of an Eventgroup by invoking the Un-
subscribe method (see [SWS_CM_00151]) of the specific Event class of the Ser-
viceProxy class shall cause the sending of a SOME/IP StopSubscribeEventgroup
message. c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006)

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message d The
entries in the SOME/IP StopSubscribeEventgroup message shall be as follows:

• The entry type shall be set to StopSubscribeEventgroup (0x06).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Minor Version shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message.

43 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• TTL shall be set to the 0x000000 value.

• IPv4 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

• IPv6 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006)

7.3.1.2 Accumulation of SOME/IP messages

[SWS_CM_10387] Data accumulation for UDP data transmission d To allow for
the transmission of multiple SOME/IP event, method request and method response
messages within a single UDP datagram, data accumulation for UDP data transmission
shall be supported. c(RS_CM_00204)

[SWS_CM_10388] Enabling of data accumulation for UDP data transmission d
Data accumulation for UDP data transmission over the udpPort and unicast-
NetworkEndpoint defined on the EthernetCommunicationConnector that is
referenced by a SomeipServiceInstanceToMachineMapping shall be enabled
if the attribute SomeipServiceInstanceToMachineMapping.udpMinTxBuffer-
Size is set to a value. In this case all event and method messages that are configured
for data accumulation shall be aggregated in a buffer until a transmission trigger (see
[SWS_CM_10389] and [SWS_CM_10390]) arrives and the data transmission starts. c
(RS_CM_00204)

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedServi-
ceInstance for transmission over UDP d For a ProvidedServiceInstance all
method responses and events for which the udpCollectionTrigger is set to
never shall be aggregated in a buffer until a trigger arrives that starts the data trans-
mission.

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpMinTxBufferSize is reached.

c(RS_CM_00204)

[SWS_CM_10390] Configuration of a data accumulation on a Required-
SomeipServiceInstance for transmission over UDP d For a Required-
SomeipServiceInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

44 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpMinTxBufferSize is reached.

c(RS_CM_00204)

In the following sections the term "sending of a SOME/IP message shall be requested"
will be used to describe that fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_10389], and [SWS_CM_10390].

7.3.1.3 Handling Events

[SWS_CM_10287] Conditions for sending of a SOME/IP event message d The
sending of a SOME/IP event message shall be requested by invoking the Send
method of the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437])
if there is at least one active subscriber and the offer of the service containing the
event has not been stopped (either because the TTL contained in the SOME/IP Of-
ferService message (see [SWS_CM_00203]) has expired or because the StopOf-
ferService method (see [SWS_CM_00111]) of the ServiceSkeleton class has
been called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Event class (see [SWS_CM_00141]) and
has not canceled the subscription by invoking the Unsubscribe method of the re-
spective Event class (see [SWS_CM_00151]) and where the subscription has not
yet expired since the TTL contained in the SOME/IP SubscribeEventgroup mes-
sage (see [SWS_CM_00205]) has been exceeded. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00017)

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message
d The SOME/IP event message shall be transmitted using UDP if the threshold de-
fined by the multicastThreshold attribute of the SomeipProvidedEventGroup
that is aggregated by the ProvidedSomeipServiceInstance in the role event-
Group in the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The
SOME/IP event message shall be transmitted using the transport protocol defined by
the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans-
portProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]). c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00010)

[SWS_CM_10289] Source of a SOME/IP event message d The SOME/IP event
message shall use the unicast IP address and port taken from the IPv4/v6 End-
point Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService message

45 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

([SWS_CM_00203]) as source address and source port for the transmission. c
(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10290] Destination of a SOME/IP event message d The SOME/IP
event message shall use the multicast IP address and the port taken from the
IPv4/v6 Multicast Option (see [PRS_SOMEIPSD_00322]) of the SOME/IP Sub-
scribeEventgroupAck message (see [SWS_CM_00206]) as destination address and
destination port for the transmission if the threshold defined by the multi-
castThreshold attribute of the SomeipProvidedEventGroup that is aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in
the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The SOME/IP
event message shall use the unicast IP address and the port taken from the
IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP Sub-
scribeEventgroup message ([SWS_CM_00205]) as destination address and des-
tination port for the transmission if this threshold has not been reached (see
[PRS_SOMEIPSD_00134]). In case multiple Endpoint Options have been contained in
the SOME/IP SubscribeEventgroup message, the one matching the selected transport
protocol (see [SWS_CM_10289]) shall be used. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10291] Content of the SOME/IP event message d The entries in the
SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

46 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Variable-
DataPrototype composed by the ServiceInterface in role event) accord-
ing to section 7.3.1.6.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041,
RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004)

[SWS_CM_10292] Checks for a received SOME/IP event message d Upon recep-
tion of a SOME/IP event message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to NOTIFI-
CATION (0x02) to determine that the received SOME/IP message is actually a
SOME/IP event messages.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP event message shall be
discarded and an Unchecked Exception shall be raised. c(RS_CM_00204,
RS_CM_00200, RS_CM_00201, RS_SOMEIP_00019, RS_SOMEIP_00022,
RS_SOMEIP_00003, RS_SOMEIP_00004, RS_SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10293] Identifying the right event d Using the Service ID (see
[PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Event ID (see

47 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipEventDeploy-
ments of the SomeipServiceInterfaceDeployment, the right event shall be
identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00022)

[SWS_CM_10379] Silently discarding SOME/IP event messages for unsub-
scribed events d If the event identified according to [SWS_CM_10293] does not have
an active subscription because the Subscribe method (see [SWS_CM_00141]) of
the specific Event class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Event class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10294], [SWS_CM_10295],
and [SWS_CM_10296] shall not be performed). c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

[SWS_CM_10294] Deserializing the payload d Based on the event determined
according to [SWS_CM_10293] the Payload of the SOME/IP event message (i.e.,
the serialized VariableDataPrototype composed by the ServiceInterface in
role event) shall be deserialized according to section 7.3.1.6. c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00028)

[SWS_CM_10295] Store the received event data d The deserialized payload
containing the event data shall be stored for retrieval via the Update (see
[SWS_CM_00172]), GetCachedSamples (see [SWS_CM_00173]), and Cleanup
methods (see [SWS_CM_00174]) of the respective Event class for the event
determined according to [SWS_CM_10293]. c(RS_CM_00204, RS_CM_00202,
RS_SOMEIP_00004)

[SWS_CM_10296] Invoke receive handler d In case a receive handler was reg-
istered using the SetReceiveHandler method (see [SWS_CM_00181]) of the
respective Event class for the event determined according to [SWS_CM_10293]
this registered receive handler shall be invoked. c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

7.3.1.4 Handling Method Calls

[SWS_CM_10297] Conditions for sending of a SOME/IP request message d The
sending of a SOME/IP request message shall be requested by invoking the function
call operator (operator()) of the respective Method class (see [SWS_CM_00196])
if the providing service instance has not stopped offering the service (either because
the TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203])
has expired or because the StopOfferService method (see [SWS_CM_00111]) of
the ServiceSkeleton class has been called). c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

48 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request mes-
sage d The SOME/IP request message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10299] Source of a SOME/IP request message d The SOME/IP re-
quest message shall use the unicast IP address defined in the Manifest by the
Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint
that is referenced (in role unicastNetworkEndpoint) by the EthernetCom-
municationConnector of a Machine which in turn is mapped to the Re-
quiredSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The udpPort shall
be used as source port for the transmission in case the selected transport protocol
(see [SWS_CM_10298]) is UDP. The tcpPort shall be used as source port for the
transmission in case the selected transport protocol (see [SWS_CM_10298]) is TCP. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00010)

[SWS_CM_10300] Destination of a SOME/IP request message d The SOME/IP
request message shall use the unicast IP address and port taken from the IPv4/v6
Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService mes-
sage ([SWS_CM_00203]) as destination address and destination port for the trans-
mission. In case multiple Endpoint Options have been contained in the SOME/IP
OfferService message, the one matching the selected transport protocol (see
[SWS_CM_10298]) shall be used. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10301] Content of the SOME/IP request message d The entries in the
SOME/IP request message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. - This may be achived by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of a particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see

49 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[PRS_SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RE-
QUEST_NO_RETURN (0x01) in case the ClientServerOperation referenced
by methodDeployment.method contains a fireAndForget attribute which is
set to true. The Message Type shall be set to REQUEST (0x00) otherwise.

• The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the ArgumentDataPro-
totypes of the ClientServerOperation which are not referenced by any
of the ClientServerOperation’s possible ApplicationErrors in role er-
rorContext with direction set to in and inout serialized according to their
order) according to section 7.3.1.6.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041)

[SWS_CM_10302] Checks for a received SOME/IP request message d Upon recep-
tion of a SOME/IP request message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
QUEST_NO_RETURN (0x01) or REQUEST (0x00) to determine that the received
SOME/IP message is actually a SOME/IP request message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to RE-
QUEST_NO_RETURN (0x01) in case the the ClientServerOperation ref-
erenced by methodDeployment.method of the SomeipMethodDeployment
with matching methodId attribute contains a fireAndForget attribute which is
set to true. Verify that the Message Type is set to REQUEST (0x00) otherwise.

50 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall be
discarded and an Unchecked Exception shall be raised. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00019,
RS_SOMEIP_00021, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10303] Identifying the right method d Using the Service ID
(see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-
ments of the SomeipServiceInterfaceDeployment, the right method shall
be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10304] Deserializing the payload d Based on the method determined
according to [SWS_CM_10303] the Payload of the SOME/IP request message shall
be deserialized according to section 7.3.1.6. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00028)

[SWS_CM_10305] Store the received method data d In case a MethodCall-
ProcessingMode of kPoll has been passed to the constructor of the Ser-
viceSkeleton (see [SWS_CM_00130]), the deserialized payload containing the
method data (i.e., method ID and input arguments) shall be stored for later pro-
cessing (see [SWS_CM_10307]). c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10306] Invoke the method - event driven d In case a MethodCall-
ProcessingMode of either kEvent or kEventSingleThread has been passed to
the constructor of the ServiceSkeleton (see [SWS_CM_00130]), the deserialized
payload containing the method data (i.e., method ID and input arguments) shall be
used to invoke the service method (see [SWS_CM_00191]) identified according to
[SWS_CM_10303] of the ServiceSkeleton class as a consequence to the reception
of the SOME/IP request message. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10307] Invoke the method - polling d In case a MethodCall-
ProcessingMode of kPoll has been passed to the constructor of the Ser-
viceSkeleton (see [SWS_CM_00130]), the deserialized payload containing the
method data (i.e., method ID and input arguments) shall be used to invoke the
service method (see [SWS_CM_00191]) identified according to [SWS_CM_10303]
of the ServiceSkeleton class upon a call to the ProcessNextMethodCall
method (see [SWS_CM_00199]) of the ServiceSkeleton class. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

51 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10308] Conditions for sending of a SOME/IP response message
d The sending of a SOME/IP response message shall be requested upon the
return (either via a normal return from the method or via the throwing one of
the possible ApplicationErrors referenced by the ClientServerOperation
in the role possibleError) of the service method (see [SWS_CM_10306] and
[SWS_CM_10307]) in case the Message Type of the corresponding SOME/IP re-
quest message was set to REQUEST (0x00). c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response mes-
sage d The SOME/IP response message shall be transmitted using the transport pro-
tocol defined by the attribute SomeipServiceInterfaceDeployment.methodDe-
ployment.transportProtocol in the Manifest. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10310] Source of a SOME/IP response message d The SOME/IP re-
sponse message shall use the unicast IP address defined in the Manifest by the
Ipv4Configuration/Ipv6Configuration attribute of the NetworkEndpoint
that is referenced (in role unicastNetworkEndpoint) by the EthernetCommu-
nicationConnector of a Machine which in turn is mapped to the Provid-
edSomeipServiceInstance by means of a SomeipServiceInstanceToMa-
chineMapping as source address for the transmission. The udpPort shall be
used as source port for the transmission in case the selected transport protocol
(see [SWS_CM_10309]) is UDP. The tcpPort shall be used as source port for
the transmission in case the selected transport protocol (see [SWS_CM_10309])
is TCP. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00010)

[SWS_CM_10311] Destination of a SOME/IP response message d The SOME/IP
response message shall use the unicast source IP address and the source port
of the corresponding received SOME/IP request message (see [SWS_CM_10299])
as destination address and destination port for the transmission. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10312] Content of the SOME/IP response message d The entries in the
SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

52 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to ERROR (0x81) in
case the ClientServerOperation raised one of the possible Application-
Errors referenced by the ClientServerOperation in role possibleEr-
ror1. The Message Type shall be set to RESPONSE (0x80) otherwise.

• The Return Code (see [PRS_SOMEIP_00040]) shall be filled with the
value of ApplicationError.errorCode increased by 0x1F (see
[PRS_SOMEIP_00191]) in case the ClientServerOperation raised one of
the possible ApplicationErrors referenced by the ClientServerOpera-
tion in role possibleError. The Return Code shall be set to E_OK (0x00)
otherwise.

• The Payload shall contain the serialized payload according to section 7.3.1.6.
– In case of a raised ApplicationError, the ArgumentDataProto-
types referenced by this ApplicationError in role errorContext shall
be serialized according to their order2. The ArgumentDataPrototypes
of the ClientServerOperation which are not referenced by any of the
ClientServerOperation’s possible ApplicationErrors in role error-
Context with direction set to inout and out shall be serialized according
to their order otherwise.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012,
RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041,
RS_SOMEIP_00008)

[SWS_CM_10313] Checks for a received SOME/IP response message d Upon re-
ception of a SOME/IP response message the following checks shall be conducted:

1Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where an
AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which defines
that a Message Type of RESPONSE (0x80) shall be used in case an ApplicationErrors is raised. –
Please consult the release notes of the AUTOSAR classic platform regarding details about this incom-
patibility issue and how to create a project specific work-around.

2Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where an
AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which defines
that all ArgumentDataPrototypes of the ClientServerOperation with direction set to inout
and out shall be serialized according to their order in that case. – Please consult the release notes
of the AUTOSAR classic platform regarding details about this incompatibility issue and how to create a
project specific work-around.

53 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
SPONSE (0x80) or ERROR (0x81) to determine that the received SOME/IP mes-
sage is actually a SOME/IP response message or error response message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) matches the client from the
corresponding SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) matches the client from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

If any of the above checks fails the received SOME/IP response message shall be
discarded and an Unchecked Exception shall be raised. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00003, RS_SOMEIP_00012, RS_SOMEIP_00019,
RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041,
RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10314] Identifying the right method d Using the Service ID
(see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-
ments of the SomeipServiceInterfaceDeployment, the right method shall
be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10315] Discarding orphaned responses d In case the method call has
been canceled according to [SWS_CM_00194] in the mean time, the received re-
sponse/error messages of the canceled methods shall be ignored. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213)

[SWS_CM_10357] Distinguishing errors from normal responses d The Message
Type (see [PRS_SOMEIP_00055]) and the Return Code (see [PRS_SOMEIP_00040])
of the SOME/IP message shall be used to determine whether the received SOME/IP
message is a normal response (Message Type set to RESPONSE (0x80) and Return
Code set to 0x0) or an error response (Message Type set to ERROR (0x81) or Re-

54 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

turn Code set to a value different from 0x0)3 w.r.t. the further processing according
to [SWS_CM_10316], [SWS_CM_10359], and [SWS_CM_10317]. c(RS_CM_00204,
RS_SOMEIP_00008)

[SWS_CM_10316] Deserializing the payload - response messages d Based on
the method determined according to [SWS_CM_10314] the Payload of the response
message shall be deserialized according to section 7.3.1.6. – Therefore the Argu-
mentDataPrototypes which are not referenced by any of the method’s possible
ApplicationErrors in role errorContext with direction set to inout and
out shall be deserialized according to their order. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00028)

[SWS_CM_10358] Identifying the right application error d If the Return Code see
[PRS_SOMEIP_00040]) contains a value larger than 0x1F the corresponding value
of the ApplicationError.errorCode attribute shall be determined by subtracting
0x1F from the Return Code value. Using this computed ApplicationError.error-
Code attribute value and the ApplicationError.errorCode attribute of all Appli-
cationErrors referenced in role possibleError by the ClientServerOpera-
tion corresponding to the method determined according to [SWS_CM_10314], the
right application error shall be identified.

If this computed ApplicationError.errorCode attribute value does not match any
of the ApplicationError.errorCode attributes of all ApplicationErrors refer-
enced in role possibleError by the ClientServerOperation, an Unchecked
Exception shall be raised. c(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10359] Deserializing the payload - error response mesages d Based on
the method determined according to [SWS_CM_10314] and the application error deter-
mined according to [SWS_CM_10358] the Payload of an error response message shall
be deserialized according to section 7.3.1.6. – Therefore the ArgumentDataProto-
types referenced by this ApplicationError in role errorContext shall be dese-
rialized according to their order. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00008, RS_SOMEIP_00028)

[SWS_CM_10317] Making the Future ready d In order to make the Future re-
turned by the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) ready, depending on the type or received message (see
[SWS_CM_10357]) either the set_value operation (see [SWS_CM_00345] and
[SWS_CM_00346]) or the set_exception (see [SWS_CM_00347]) operation of the
Promise corresponding to this Future shall be invoked. This will unblock any block-
ing get, wait, wait_for, and wait_until calls that have been performed on this
Future. – The set_value operation shall be invoked in case of a received normal re-
sponse message using the deserialized payload according to [SWS_CM_10316] as an
argument. The set_exception operation shall be invoked in case of a received er-

3The additional case of SOME/IP response messages with a Return Code (see
[PRS_SOMEIP_00040]) set to a value different from 0x0 is in place for the sake of compatibility
with the AUTOSAR classic platform (i.e., AUTOSAR adaptive platform client and AUTOSAR classic
platform server) which defines that a Message Type of RESPONSE (0x80) shall be used even in case
ApplicationErrors (without errorContext) are raised.

55 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

ror response message using the deserialized payload according to [SWS_CM_10359]
as an argument. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215,
RS_SOMEIP_00007, RS_SOMEIP_00008)

[SWS_CM_10318] Invoke the notification function d If a notification function has
been registered with the Future’s then method (see [SWS_CM_00197]), this notifi-
cation function shall be invoked. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00215, RS_SOMEIP_00007)

7.3.1.5 Handling Fields

[SWS_CM_10319] Conditions for sending of a SOME/IP event message d
The sending of a SOME/IP event message shall be requested by invoking
the Update method of the respective Field class (see [SWS_CM_00119])
or if the Future returned by the SetHandler registered with Register-
SetHandler (see [SWS_CM_00116]) becomes ready if there is at least one
active subscriber and the offer of the service containing the event has not
been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferSer-
vice method (see [SWS_CM_00111]) of the ServiceSkeleton class has been
called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Field class (see [SWS_CM_00120]) and
has not canceled the subscription by invoking the Unsubscribe method of
the respective Field class (see [SWS_CM_00120]) and where the subscription
has not yet expired since the TTL contained in the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has been exceeded. c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00005,
RS_SOMEIP_00017, RS_SOMEIP_00018)

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message
d The SOME/IP event message shall be transmitted using UDP if the threshold
defined by the multicastThreshold attribute of the SomeipProvidedEvent-
Group that is aggregated by the ProvidedSomeipServiceInstance in the role
eventGroup in the Manifest has been reached (see [PRS_SOMEIPSD_00134]).
The SOME/IP event message shall be transmitted using the transport protocol
defined by the attribute SomeipServiceInterfaceDeployment.fieldDeploy-
ment.notifier.transportProtocol in the Manifest if this threshold has not
been reached (see [PRS_SOMEIPSD_00802]). c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10321] Source of a SOME/IP event message d The source ad-
dress and the source port of the SOME/IP event message shall set accord-
ing to [SWS_CM_10289]. c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10322] Destination of a SOME/IP event message d The destination ad-
dress and the destination port of the SOME/IP event message shall be set accord-

56 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

ing to [SWS_CM_10290]. c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10323] Content of the SOME/IP event message d The entries in the
SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
fieldDeployment.notifier.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to section 7.3.1.6.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041,
RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00009)

[SWS_CM_10324] Checks for a received SOME/IP event message d Upon recep-
tion of a SOME/IP event message the checks defined in [SWS_CM_10292] shall be
conducted. If any of the above checks fails the received SOME/IP event message
shall be discarded and an Unchecked Exception shall be raised. c(RS_CM_00204,

57 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

RS_CM_00201, RS_SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00014)

[SWS_CM_10325] Identifying the right event d Using the Service ID (see
[PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Event ID (see
[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipFieldDe-
ployment.notifiers of the SomeipServiceInterfaceDeployment, the
right event shall be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00022)

[SWS_CM_10380] Silently discarding SOME/IP event messages for unsub-
scribed events d If the event identified according to [SWS_CM_10325] does not have
an active subscription because the Subscribe method (see [SWS_CM_00141]) of
the specific Field class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Field class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10326], [SWS_CM_10327],
and [SWS_CM_10328] shall not be performed). c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10326] Deserializing the payload d Based on the event determined
according to [SWS_CM_10325] the Payload of the SOME/IP event message (i.e.,
the serialized Field composed by the ServiceInterface in role field) shall
be deserialized according to section 7.3.1.6. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00028)

[SWS_CM_10327] Store the received event data d The deserialized payload contain-
ing the event data shall be stored for retrieval via the Update, GetCachedSamples,
and Cleanup methods (see [SWS_CM_00120]) of the respective Field class for the
event determined according to [SWS_CM_10325]. c(RS_CM_00204, RS_CM_00202,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10328] Invoke receive handler d In case a ReceiveHandler was
registered using the SetReceiveHandler method (see [SWS_CM_00120]) of the
respective Field class for the event determined according to [SWS_CM_10325]
this registered receive handler shall be invoked. c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10329] Conditions for sending of a SOME/IP request message d The
sending of a SOME/IP request message shall be requested by invoking the Set or Get
method of the respective Field class (see [SWS_CM_00112] and [SWS_CM_00113])
if the providing service instance has not stopped offering the service (either because
the TTL contained in the SOME/IP OfferService message (see [SWS_CM_00203])
has expired or because the StopOfferService method (see [SWS_CM_00111]) of
the ServiceSkeleton class has been called). c(RS_CM_00212, RS_CM_00213,
RS_CM_00217, RS_CM_00218, RS_SOMEIP_00007, RS_SOMEIP_00009)

58 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request mes-
sage d The SOME/IP request message for the Set method shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfaceDeploy-
ment.fieldDeployment.set.transportProtocol in the Manifest. The SOME/IP
request message for the Get method shall be transmitted using the transport protocol
defined by the attribute SomeipServiceInterfaceDeployment.fieldDeploy-
ment.get.transportProtocol respectively. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10331] Source of a SOME/IP request message d The source ad-
dress and the source port of the SOME/IP request message shall be set ac-
cording to [SWS_CM_10299]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10332] Destination of a SOME/IP request message d The destination
address and the destination port of the SOME/IP request message shall be set ac-
cording to [SWS_CM_10300]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10333] Content of the SOME/IP request message d The entries in the
SOME/IP request message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. – This may be achieved by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of the particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see
[PRS_SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

59 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to REQUEST (0x00).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to E_OK (0x00).

• The Payload for the request message for the Set method shall contain the seri-
alized payload (i.e., the serialized Field composed by the ServiceInterface
in role field) according to section 7.3.1.6. The Payload for the request message
for the Get method will be empty.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00003, RS_SOMEIP_00012, RS_SOMEIP_00021,
RS_SOMEIP_00025, RS_SOMEIP_00041)

[SWS_CM_10334] Checks for a received SOME/IP request message d Upon recep-
tion of a SOME/IP request message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to REQUEST
(0x00) to determine that the received SOME/IP message is actually a SOME/IP
request message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to REQUEST
(0x00).

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall be
discarded and an Unchecked Exception shall be raised. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00003, RS_SOMEIP_00019,
RS_SOMEIP_00021, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10335] Identifying the right method d Using the Service ID
(see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see

60 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets of the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10336] Deserializing the payload d Based on the method determined
according to [SWS_CM_10335] the Payload of the SOME/IP request message shall
be deserialized according to section 7.3.1.6. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00028)

[SWS_CM_10337] Store the received method data d The received method data
shall be stored according to [SWS_CM_10305]. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10338] Invoke the registered set/get handlers - event driven d
In case a MethodCallProcessingMode of either kEvent or kEventSin-
gleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the deserialized payload containing the method data (i.e.,
method ID and input arguments) shall be used to invoke a registered SetHandler
resp. GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]) of the Field
class as a consequence to the reception of the SOME/IP request message. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10339] Invoke the registered set/get handlers - polling d In case a
MethodCallProcessingMode of kPoll has been passed to the constructor of
the ServiceSkeleton (see [SWS_CM_00130]), the deserialized payload contain-
ing the method data (i.e., method ID and input arguments) shall be used to invoke
invoke a registered SetHandler resp. GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]) of the Field class upon a call to the ProcessNextMethod-
Call method (see [SWS_CM_00199]) of the ServiceSkeleton class. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10340] Conditions for sending of a SOME/IP response message d
The sending of a SOME/IP response message shall be requested upon the re-
turn of a registered SetHandler resp. GetHandler (see [SWS_CM_00114]
and [SWS_CM_00116]). c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00220, RS_CM_00221, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response mes-
sage d The SOME/IP response message for the Set method shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfaceDeploy-
ment.fieldDeployment.set.transportProtocol in the Manifest. The SOME/IP
response message for the Get method shall be transmitted using the transport protocol
defined by the attribute SomeipServiceInterfaceDeployment.fieldDeploy-
ment.get.transportProtocol respectively. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

61 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10342] Source of a SOME/IP response message d The source ad-
dress and the source port of the SOME/IP response message shall be set ac-
cording to [SWS_CM_10310]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10343] Destination of a SOME/IP response message d The destina-
tion address and the destination port of the SOME/IP response message shall be set
according to [SWS_CM_10311]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10344] Content of the SOME/IP response message d The entries in the
SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the serial-
ized payload (see section 7.3.1.6) in units of bytes incremented by 8 (second part
of the SOME/IP header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RESPONSE
(0x80).

• The Return Code (see [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) which has either been pro-
vided by the value of the Future returned by the registered SetHandler resp.
GetHandler or obtained internally) according to section 7.3.1.6.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217,
RS_CM_00218, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,

62 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041, RS_SOMEIP_00008)

[SWS_CM_10345] Checks for a received SOME/IP response message d Upon
reception of a SOME/IP response message the checks defined in [SWS_CM_10313]
shall be conducted. If any of the above checks fails the received SOME/IP
event message shall be discarded and an Unchecked Exception shall be
raised. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00003, RS_SOMEIP_00012,
RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10346] Identifying the right method d Using the Service ID
(see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets of the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10347] Discarding orphaned responses d Orphaned responses shall
be discarded according to [SWS_CM_10315]. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213)

[SWS_CM_10348] Deserializing the payload d Based on the method determined
according to [SWS_CM_10346] the Payload of the SOME/IP response message
shall be deserialized according to section 7.3.1.6. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00028)

[SWS_CM_10349] Making the Future ready d In order to make the Future returned
by the Set or Get method of the respective Field class (see [SWS_CM_00113]
and [SWS_CM_00112]) ready, the set_value operation (see [SWS_CM_00345]
and [SWS_CM_00346]) of the Promise corresponding to this Future shall be in-
voked using the deserialized payload as an argument. This will unblock any block-
ing get, wait, wait_for, and wait_until calls that have been performed on
this Future. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10350] Invoke the notification function d Any registered notifica-
tion function shall be invoked according to [SWS_CM_10318]. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_00007,
RS_SOMEIP_00009)

63 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

7.3.1.6 Serialization of Payload

[SWS_CM_10034] d The serialization of the payload shall be based on the defi-
nition of the ServiceInterface of the data. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00028)

[SWS_CM_10169] d To allow migration the deserialization shall ignore parame-
ters attached to the end of previously known parameter list. c(RS_CM_00204,
RS_CM_00202)

This means: Parameters that were not defined in the ServiceInterface used to
generate or parametrize the deserialization code but exist at the end of the serialized
data will be ignored by the deserialization.

[SWS_CM_10259] d After the serialized data of a variable data length DataProto-
type a padding for alignment purposes shall be added for the configured alignment
(see [SWS_CM_10260]) if the variable data length DataPrototype is not the last ele-
ment in the serialized data stream. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10260] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.alignment is set for a variable data length data el-
ement, the value of SomeipDataPrototypeTransformationProps.someip-
TransformationProps.alignment shall define the alignment. c(RS_CM_00204,
RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11262] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.alignment is not set for a variable data length data el-
ement, the value of TransformationPropsToServiceInterfaceElementMap-
pingSet.mapping.transformationProps.alignment shall define the alignment.
c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11263] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.alignment and TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.alignment are
both not set for a variable data length data element, no alignment shall be applied. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10263] d After serialized fixed data length data elements, the SOME/IP net-
work binding shall never add automatically a padding for alignment. c(RS_CM_00201,
RS_CM_00211)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the ImplementationDataType.

[SWS_CM_10037] d Alignment shall always be calculated from start of SOME/IP mes-
sage. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

64 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

This attribute defines the memory alignment. The SOME/IP network binding does not
try to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_CM_10016] d If more data than expected shall be deserialized, the unexpected
data shall be discarded. The known fraction shall be considered. c(RS_CM_00204,
RS_CM_00202)

[SWS_CM_10017] d If less data than expected shall be deserialized and the data to be
deserialized belong to a Field, the initValue should be used if it is defined. Oth-
erwise the data shall be discarded and an Unchecked Exception shall be raised. c
(RS_CM_00204, RS_CM_00202)

In the following the serialization of different parameters is specified.

7.3.1.6.1 Basic Datatypes

[SWS_CM_10036] d The SwBaseTypes defined in [9] and according to
[TPS_STDT_00067] placed in the package /AUTOSAR_Platform/BaseTypes (e.g.,
/AUTOSAR_Platform/BaseTypes/uint32) which shall be supported for serial-
ization are listed in Table 7.1. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16
uint32 unsigned Integer 32
uint64 unsigned Integer 64
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
sint64 signed Integer 64
float32 floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
float64 floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

Table 7.1: SwBaseTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of ApSomeip-
TransformationProps.

65 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

7.3.1.6.2 Enumeration Datatypes

[SWS_CM_10361] d Enumeration datatypes shall be serialized according to [
SWS_CM_10036] based on their underlying basic datatype (i.e., the Primitive
Implementation Data Type according to [SWS_CM_00424]) c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.3.1.6.3 Structured Datatypes (structs)

[SWS_CM_10042] d A struct shall be serialized in order of depth-first traversal. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

The SOME/IP network binding doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP network binding shall not automatically add such padding.

So if for example a struct includes a uint8 and a uint32, they are just written sequentially
into the buffer. This means that there is no padding between the uint8 and the first byte
of the uint32; therefore, the uint32 might not be aligned. So the system designer has
to consider to add padding elements to the data type to achieve the required alignment
or set it globally.

Warning about unaligned structs or similar shall not be done in the SOME/IP network
binding but only in the tool chain used to generate the SOME/IP network binding.

The SOME/IP network binding does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_CM_00252] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStructLengthField is set to a
value equal to 0, no length field shall be inserted in front of the serialized struct for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10252] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStructLengthField is set to a
value greater 0, a length field shall be inserted in front of the serialized struct for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10268] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.byteOrder is set this attribute shall define
the byte order for the length field that shall be inserted in front of the serialized struct

66 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00253] d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StructLengthField is set to a value equal to 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.size-
OfStructLengthField is not set, no length field shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00254] d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StructLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10269] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is set
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.byteOrder is not set, the attribute TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.byte-
Order shall define the byte order for the length field that shall be inserted in front
of the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00255] d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StructLengthField is not set and attribute SomeipDataPrototypeTrans-
formationProps.someipTransformationProps.sizeOfStructLengthField
is not set, no length field shall be inserted in front of the serialized struct. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10270] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.byteOrder is not set, a byte order of mostSignificantByte-
First (i.e., big endian) shall be used for the length field that shall be inserted in front
of the serialized associative struct. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

67 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10253] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.sizeOfStructLengthField defines the the data type for
the length field of a struct, the data shall be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00256] d If TransformationPropsToServiceInterfaceEle-
mentMappingSet.mapping.transformationProps.sizeOfStructLength-
Field defines the the data type for the length field of a struct, the data shall
be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10218] d The serializing SOME/IP network binding shall write the size (in
bytes) of the serialized struct (without the size of the length field) into the length field of
the struct. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10219] d If the length is greater than the expected length of a struct
(as specified in the data type definition) a deserializing SOME/IP network binding
shall only interpret the expected data and skip the unexpected. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

68 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 7.5: Serialization of Structs without Length Fields (Example)

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint16 lf1

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

uint32 a

uint16 lf2

uint16 lf3

Figure 7.6: Serialization of Structs with Length Fields (Example)

[SWS_CM_01044] d To define a record element as optional on ServiceInterface
level see [TPS_MANI_01083], [TPS_MANI_01084] and [TPS_MANI_01085] for de-
tails. c(RS_CM_00204, RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01045] Every record element inside a struct that contains at least
one optional record element shall be serialized based on the Tag-Length-Value
principle. d The serialization of optional record elements shall use the Tag-Length-
Value principle, see [3] (chapter 4.1.4.3) for details. c(RS_CM_00204, RS_CM_00205,
RS_SOMEIP_00050)

69 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_01046] Regarding the definition of tlvDataId see [TPS_MANI_01097]
and [constr_1532] for details. d c(RS_CM_00204, RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01049] The tlvDataIds shall be synchronized between the inter-
acting proxy and skeleton instances. d The tlvDataId is defined in the con-
text of SomeipDataPrototypeTransformationProps over the attribute Someip-
DataPrototypeTransformationProps.dataPrototype.tlvDataId. In other
words, the definition is done on the level of specific port instances. Therefore,
the tlvDataIds need to be shared between the interacting proxy and skeleton
instances, see [TPS_MANI_01097] for details. c(RS_CM_00204, RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01047] Every record element shall have a wire type assigned when
the optionality is used for at least one record element inside the struct. d
The wire type determines the wire type (e.g. Base Datatype, Complex Datatype)
of the corresponding record element, see [PRS_SOMEIP_00205] for details. c
(RS_CM_00204, RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01048] Every record element shall have a tag assigned when
the optionality is used for at least one record element inside the struct.
d The tag shall consist of the wire type and tlvDataId and will be
added in front of every optional record element during serialization, see
[PRS_SOMEIP_00203] and [TPS_MANI_01097] for details. c(RS_CM_00204,
RS_CM_00205, RS_SOMEIP_00050)

7.3.1.6.4 Strings

[SWS_CM_10053] d Strings shall be encoded using Unicode and terminated with a
"\0"-character. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10054] d Different Unicode encoding shall be supported including UTF-8,
UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length of bytes per
character, the maximum length in bytes is up to three times the length of characters
in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length of the
characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character can be up to 6 bytes
and an UTF-16 character can be up to 4 bytes. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10285] Responsibility of proper string encoding d It is the re-
sponsibility of the application to provide the string in the encoding de-
fined by AutosarDataType.swDataDefProps.swTextProps.baseType.base-
TypeDefinition.baseTypeEncoding of the respective DataPrototype. The
proper encoding will not be checked by the sending SOME/IP network binding im-
plementation during run-time. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

70 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10286] Encoding mismatch in input configurations d The ara::com
generator shall reject input configurations where the SomeipDataPrototypeTrans-
formationProps.networkRepresentation.swTextProps.baseType.base-
TypeDefinition.baseTypeEncoding is different from the BaseType.base-
TypeDefinition.baseTypeEncoding of the AutosarDataType which is
referenced by SomeipDataPrototypeTransformationProps.dataPrototype.
c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10055] d UTF-16LE and UTF-16BE strings shall be zero terminated with
a "\0" character. This means they shall end with (at least) two 0x00 Bytes. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10056] d UTF-16LE and UTF-16BE strings shall have an even length. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10057] d For UTF-16LE and UTF-16BE strings having an odd length the
last byte shall be silently removed by the receiving SOME/IP network binding. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10248] d In case of UTF-16LE and UTF-16BE strings having an odd
length, after removal of the last byte, the two bytes before shall be 0x00 bytes (ter-
mination) for a string to be valid. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10058] d All strings shall always start with a Byte Order Mark (BOM). c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

For the specification of BOM, see [10] and [11]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_CM_10059] d The receiving SOME/IP network binding implementation shall
check the BOM and handle a missing BOM or a malformed BOM as an error by rais-
ing an Unchecked Exception. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10060] d The BOM shall be added by the SOME/IP sending net-
work binding implementation. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10242] UTF-8 Strings d An UTF-8 String shall be represented by an Im-
plementationDataType

• with category equal to STRING

• which may be mapped to an ApplicationDataType with category equal to
STRING using a DataTypeMap

• with ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType.baseTypeDefinition.baseTypeEncoding set
to UTF-8

71 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• or with ImplementationDataType.swDataDefProps.baseType.base-
TypeDefinition.baseTypeEncoding set to UTF-8 in case that the
DataTypeMap to an ApplicationDataType is missing.

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10243] UTF-16BE Strings d An UTF-16BE String shall be represented by
an ImplementationDataType

• with category equal to STRING

• which may be mapped to an ApplicationDataType with category equal
to STRING using a DataTypeMap where the referenced ApplicationPrim-
itiveDataType has its ApplicationPrimitiveDataType.swDataDef-
Props.swTextProps.baseType.baseTypeDefinition.baseTypeEncod-
ing attribute set to UTF-16 and BaseTypeDirectDefinition.byteOrder
set to ByteOrderEnum.mostSignificantByteFirst

• or with ImplementationDataType.swDataDefProps.baseType.base-
TypeDefinition.baseTypeEncoding set to UTF-16 and BaseTypeDi-
rectDefinition.byteOrder set to ByteOrderEnum.mostSignificant-
ByteFirst in case that the DataTypeMap to an ApplicationDataType is
missing.

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10244] UTF-16LE Strings d An UTF-16LE String shall be represented by
an ImplementationDataType

• with category equal to STRING

• which may be mapped to an ApplicationDataType with category equal
to STRING using a DataTypeMap where the referenced ApplicationPrim-
itiveDataType has its ApplicationPrimitiveDataType.swDataDef-
Props.swTextProps.baseType.baseTypeDefinition.baseTypeEncod-
ing attribute set to UTF-16 and BaseTypeDirectDefinition.byteOrder
set to ByteOrderEnum.mostSignificantByteLast

• or with ImplementationDataType.swDataDefProps.baseType.base-
TypeDefinition.baseTypeEncoding set to UTF-16 and BaseTypeDi-
rectDefinition.byteOrder set to ByteOrderEnum.mostSignificant-
ByteLast in case that the DataTypeMap to an ApplicationDataType is
missing.

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

According to SOME/IP serialized strings start with a length field of 8, 16 or 32 bit which
preceeds the actual string data. The value of this length field holds the length of the
string including the BOM and any string termination in units of bytes.

[SWS_CM_10271] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStringLengthField is set to a

72 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

value greater 0, a length field shall be inserted in front of the serialized string for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10272] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.byteOrder is set this attribute shall define
the byte order for the length field that shall be inserted in front of the serialized string
for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10273] d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StringLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10274] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is set
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.byteOrder is not set, the attribute TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.byte-
Order shall define the byte order for the length field that shall be inserted in front
of the serialized string for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10275] d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StringLengthField is not set or set a value of 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set or set to a value of 0, a length field of 4 bytes with the
data type uint32 shall be inserted in front of the serialized string. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10276] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.byteOrder is not set, a byte order of mostSignificantByte-
First (i.e., big endian) shall be used for the length field that shall be inserted in
front of the serialized string. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

73 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10277] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.sizeOfStringLengthField defines the the data type for
the length field of a string, the data shall be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10278] d If TransformationPropsToServiceInterfaceEle-
mentMappingSet.mapping.transformationProps.sizeOfStringLength-
Field defines the the data type for the length field of a string, the data shall
be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10245] Serialization of strings d Serialization of strings shall consist of
the following steps:

1. Add the Length Field - The value of the length field shall be filled with the number
of bytes needed for the string (i.e., the result of std::string::length()),
including the BOM and any string termination that needs to be added.

2. Appending BOM right after the length field, if BOM is not already available in the
first 3 (UTF-8) or 2 (UTF-16) bytes of the to be serialized array containing the
string. If the BOM is already present, simply copy the BOM into the output buffer

3. Copying the string data into the output buffer, optionally performing a conver-
sion between UTF-16LE and UTF-16BE between platform and network byte or-
der if BaseTypeDirectDefinition.byteOrder and ApSomeipTransfor-
mationProps.byteOrder have different values

4. Termination of the string with 0x00(UTF-8) or 0x0000 (UTF-16) if not terminated
yet by appending 0x00(UTF-8) or 0x0000 (UTF-16).

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10247] Deserialization of strings d Deserialization of strings shall consist
of the following steps:

1. Check whether the string starts with a BOM. If not, an Unchecked Exception
shall be raised

2. Check whether BOM has the same value as ApSomeipTransformation-
Props.byteOrder. If not, an Unchecked Exception shall be raised

74 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

3. Remove the BOM

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length (in bytes)

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, an Unchecked Exception shall be raised

6. Copy the string data (i.e., everything but the BOM and any string termination
added during serialization), optionally performing a conversion between UTF-
16LE and UTF-16BE between network and ECU byte order if BaseTypeDi-
rectDefinition.byteOrder and ApSomeipTransformationProps.by-
teOrder have different values

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.3.1.6.5 Vectors and arrays

SOME/IP supports arrays with static and dynamic length but there is no definition of
vectors on this abstraction level. Therefore, vectors are mapped to arrays with dynamic
length. The SOME/IP specification requires to add a length field of 8, 16 or 32 bit in
front of data structures with dynamic length. The length field of arrays describes the
total number of bytes. Note that this section uses only the term array which can also
be used to realize vectors.

[SWS_CM_00257] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfArrayLengthField is set to a
value equal to 0, no length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10256] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfArrayLengthField is set to a
value greater 0, a length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10279] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.byteOrder is set this attribute shall define
the byte order for the length field that shall be inserted in front of the serialized array
for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00258] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value equal to 0 and attribute SomeipDataPro-

75 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, no length field shall be inserted in front of the serialized
array for which the ApSomeipTransformationProps is defined via Someip-
DataPrototypeTransformationProps.someipTransformationProps. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00259] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value greater 0 and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, a length field shall be inserted in front of the serialized
array for which the ApSomeipTransformationProps is defined via Someip-
DataPrototypeTransformationProps.someipTransformationProps. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10280] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is set
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.byteOrder is not set, the attribute TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.byte-
Order shall define the byte order for the length field that shall be inserted in front
of the serialized array for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10258] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is not set and attribute SomeipDataPrototypeTransfor-
mationProps.someipTransformationProps.sizeOfArrayLengthField is
not set, a length field of 4 bytes with the data type uint32 shall be inserted in front of the
serialized array. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10281] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.byteOrder is not set, a byte order of mostSignificant-
ByteFirst (i.e., big endian) shall be used for the length field that shall be inserted
in front of the serialized array. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10257] d If SomeipDataPrototypeTransformationProps.someip-
TransformationProps.sizeOfArrayLengthField defines the the data type for
the length field of a array, the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

76 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00260] d If TransformationPropsToServiceInterfaceEle-
mentMappingSet.mapping.transformationProps.sizeOfArrayLength-
Field defines the the data type for the length field of a array, the data shall
be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10076] d A array shall be serialized as the concatenation of the following
elements:

• the length indicator which holds the length (in bytes) of the following array

• the array which contains the serialized elements of the array

where the size of the length field shall be determined as specified by ApSomeip-
TransformationProps.sizeOfArrayLengthField which applies to the array c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10234] d A vector is represented in adaptive platform by an Imple-
mentationDataType with the category VECTOR and the attribute dynamicArray-
SizeProfile not set. The payload is typed by the ImplementationDataType ref-
erenced by subElement. Note that vectors are realized with dynamic sized arrays on
SOME/IP level. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10235] d An array is represented in adaptive platform by an Implemen-
tationDataType with the category ARRAY. The payload is typed by the Implemen-
tationDataType referenced by subElement. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

In case of nested arrays, the same scheme applies.

[SWS_CM_10222] d The serializing SOME/IP network binding shall write the size (in
bytes) of the serialized array (without the size of the length field) into the length field. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

The layout of arrays is shown in 7.7 and Figure 7.8 where L_1 and L_2 denote the
length in bytes. The serialization of one- and multi-dimensional arrays is described in
the next two subchapters.

7.3.1.6.6 One-dimensional

A one-dimensional arrays carries a number of elements of the same type.

77 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Element_1

…

element size e

n [byte]

Length n

8,16 or 32 bit

Element_2 Element_3 Element_n

Figure 7.7: One-dimensional arrays (Example)

[SWS_CM_10070] d A one-dimensional arrays shall be serialized by concatenating
the arrays elements in order. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.3.1.6.7 Multi-dimensional

[SWS_CM_10072] d The serialization of multi-dimensional arrays shall happen in
depth-first order. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

Element_a[1][j…k_1]

L_1 [byte]

Length n

8,16 or 32 bit

E1,1 E1,2 E1,k_1 …
L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 …
L_2 …

L_2 [byte]

n [byte]

Figure 7.8: Multi-dimensional arrays (Example)

In case of multi-dimensional arrays, each array (serialized as SOME/IP array) needs to
have its own length field. See L_1 and L_2 in Figure 7.8.

7.3.1.6.8 Associative Maps

Associative maps are modeled as ApplicationAssocMapDataTypes in the Mani-
fest. As stated in the AUTOSAR Manifest Specification [4] the “natural” language bind-
ing for C++ for an associative map is std::map<key_type,value_type> where
key_type is the data type used for the key of the a map element and value_type
is the data type for the value of a map element. Hereby key_type and value_type
are derived from the ApplicationAssocMapElement of the key and the value
respectively.

78 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10261] Serialization of an associative map d As far as serialization is
concerned the serialized representation of an associative map shall consist of the fol-
lowing parts without any intermediate padding:

• Length field: A length field describing the size of the associative map excluding
the length field itself in units of bytes.

• Elements: The individual map elements themselves

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00262] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfArrayLengthField is set to a
value equal to 0, no length field shall be inserted in front of the serialized associative
map for which the ApSomeipTransformationProps is defined via Someip-
DataPrototypeTransformationProps.someipTransformationProps. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10262] Insertion of an associative map length field d If attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.sizeOfArrayLengthField is set to a value greater 0, a length field shall
be inserted in front of the serialized associative map for which the ApSomeip-
TransformationProps is defined via SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps. c(RS_CM_00204, RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10282] d If attribute SomeipDataPrototypeTransformation-
Props.someipTransformationProps.byteOrder is set this attribute shall define
the byte order for the length field that shall be inserted in front of the serialized
associative map for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00263] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value equal to 0 and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, no length field shall be inserted in front of the serialized
associative map for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00264] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value greater 0 and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, a length field shall be inserted in front of the serialized
associative map for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

79 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10283] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is set
and attribute SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps.byteOrder is not set, the attribute TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.byte-
Order shall define the byte order for the length field that shall be inserted in front of
the serialized associative map for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10267] Insertion of an associative map length field d If attribute
TransformationPropsToServiceInterfaceElementMappingSet.map-
ping.transformationProps.sizeOfArrayLengthField is not set and attribute
SomeipDataPrototypeTransformationProps.someipTransformation-
Props.sizeOfArrayLengthField is not set, a length field of 4 bytes with the
data type uint32 shall be inserted in front of the serialized associative map. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10284] d If attribute TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.byteOrder is not set, a byte order of mostSignificantByte-
First (i.e., big endian) shall be used for the length field that shall be inserted in front
of the serialized associative map. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10264] Size of the associative map length field d If SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeO-
fArrayLengthField defines the the data type for the length field of an associative
map, the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00265] d If TransformationPropsToServiceInterfaceEle-
mentMappingSet.mapping.transformationProps.sizeOfArrayLength-
Field defines the the data type for the length field of an associative map, the data
shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

80 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10265] Serialization of associative map elements d The individual ele-
ments of the associative map shall be serialized as a sequence of key-value pairs with-
out any additonal intermediate padding. Hereby the key attribute of an element shall
be serialized first followed by the value attribute of this element. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

Table 7.2 illustrates the serialized form of an exaple map consisting of 3 elements
where each element consists of a key-value pair of type uint16 each. The sizeO-
fArrayLengthField is set to 4 bytes.

length field = 12 Bytes
key0 value0
key1 value1
key2 value2

Table 7.2: Example of a serialized associative map

[SWS_CM_10266] Applicability of mandatory padding after variable length data
elements d Any mandatory padding after variable length data elements according to
[TPS_MANI_03104] shall be applied after the serialized key attribute as well as after
the value attribute in case the respective attributes is typed by a variable length data
type. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

Note: Adhering to [SWS_CM_10266] is essential to ensure interoperability with the
AUTOSAR classic platform where maps may be modelled as ApplicationAr-
rayDataType with a dynamicArraySizeProfile of VSA_LINEAR where each
array element is an ApplicationRecordDataType of variable length and thus
[TPS_SYST_02126] applies to the individual ApplicationRecordElements.

7.3.2 DDS Network binding

[SWS_CM_11000] d The DDS network binding shall comply with the DDS Minimum
Profile defined in [12], the DDS Wire Interoperability protocol (RTPS) defined in [13],
and the DDS-XTYPES Minimal Programming Interface and Network Interoperability
Profiles defined in [14]. c(RS_CM_00204)

7.3.2.1 Service Discovery

[SWS_CM_11001] Mapping of OfferService method d When instructed to offer a
Service, the DDS Binding shall perform the following operations:

• [SWS_CM_11002] It shall assign a DDS Domain Participant to the Service In-
stance.

• [SWS_CM_11003] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

81 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• [SWS_CM_11004] It shall add the Service and Service Instance IDs to the DDS
Domain Participant’s USER_DATA QoS Policy.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance
d The DDS Binding shall assign a DDS DomainParticipant to every Ser-
vice Instance. The configuration of the DomainParticipant is described in the
TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the ProvidedDdsServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the ProvidedDdsServiceInstance element defines the qosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants matching the configuration criteria specified above in the current
process4. If the search is successful, the Service shall assign one of the Domain-
Participants found to the Service; otherwise, the Service shall create a new Domain-
Participant according to the desired configuration. c(RS_CM_00204, RS_CM_00200,
RS_CM_00101)

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event
in the ServiceInterface d The DDS binding shall assign a DDS Topic to every
event in the ServiceInterface according to the mapping rules specified in
[SWS_CM_11015]. Since these DDS Topics may already be available in the Domain-
Participant assigned to the Service Instance (e.g., because a different Service Instance
assigned to the same DomainParticipant may have created them), the service shall first
look for existing Topics in the Domain Participant matching the required criteria. If the
search is unsuccessful, the DomainParticipant shall create a new DDS Topic to repre-
sent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event. c(RS_CM_00204, RS_CM_00200,
RS_CM_00101)

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS Domain
Participant’s USER_DATA QoS Policy d The binding implementation shall configure
the USER_DATA QoS Policy of the DDS DomainParticipant associated with the Service
Instance to propagate the Service and Instance IDs using the native DDS discovery
mechanisms defined in [13]. The USER_DATA QoS Policy appends a user-defined
value to the DomainParticipant’s discovery messages. This information may be used
by ara::com Clients and DDS native applications to identify a DomainParticipant as an
“ara::com DomainParticipant” that provides one or more Service Instances.

4The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

82 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Service and Service Instance IDs shall be encoded in the USER_DATA QoS Policy in
string format according to the following pattern:

"ara.com://services/<svcId>_<svcInId>[&<svcId>_<svcInId>]*"

Where:

<svcId> is the Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfaceId.

<svcInId> is the Instance Id derived from the Manifest, where the Provided-
DdsServiceInstance element defines the serviceInstanceId.

Because a DomainParticipant may be associated with one or more Service Instances,
the syntax specified above allows appending one or more <svcId>_<svcInId> pairs
to the USER_DATA QoS:

• If USER_DATA QoS is empty, the binding implementation shall set it to
“ara.com://services/<svcId>_<svcInId>”.

• Else, if USER_DATA QoS is not empty, the binding implementation shall append
the Service Id and Instance Id to the current value preceded by an ampersand
symbol (i.e., “&<svcId>_<svcInId>”).

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11005] Mapping of StopOfferService method d When instructed to stop
offering a Service, the DDS Binding perform the following operations:

• It shall remove the appropriate Service and Instance IDs from the USER_DATA
QoS Policy of DDS DomainParticipant assigned to the Service Instance.

• It shall remove all DDS DataWriters associated with events in the ServiceIn-
terface created in previous calls to the OfferService() method.

c(RS_CM_00204, RS_CM_00105)

[SWS_CM_11006] Mapping of FindService method dWhen instructed to find remote
Services, the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_11008].

• [SWS_CM_11009] It shall iterate the list of discovered remote DomainPartici-
pants and look for those matching the filter criteria specified in the FindSer-
vice() call.

• It shall return a HandleType object for every DomainParticipant matching the
filter criteria.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

83 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing
client-side operations d The DDS binding shall provide client-side methods with a
DDS DomainParticipant capable of discovering and communicating with remote DDS
DomainParticipants assigned to the requested Service Instance(s). The configuration
of the DomainParticipant is described in the TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the RequiredDdsServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the RequiredDdsServiceInstance element defines the qosProfile.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11008] Creating a DDS DomainParticipant suitable for perform-
ing client-side operations d To create a DomainParticipant capable of discover-
ing and communicating with remote DDS DomainParticipants assigned to Service
Instances, the binding implementation shall use the configuration parameters in
the TPS_ManifestSpecification described in [SWS_CM_11007]. c(RS_CM_00204,
RS_CM_00200, RS_CM_00102)

[SWS_CM_11009] Discovering remote Service Instances through DDS Domain-
Participants d DDS DomainParticipants are responsible for discovering remote Do-
mainParticipants assigned to Service Instances.

To retrieve the list of discovered Service Instances, the DDS binding shall iterate first
the list of remote DomainParticipants the DomainParticipant has discovered so far.
This shall be done by calling read() on the DomainParticipant’s built-in DataReader
for the DCPSParticipant Topic. DCPSParticipant is a standard DDS Topic de-
fined in [13] that DomainParticipants use to inform other DomainParticipants of their
presence in the network. Among other things, DCPSParticipant Topics propagate
the DomainParticipant’s USER_DATA QOS Policy; therefore, these messages provide
all the necessary information to identify remote DomainParticipants associated with
the ara::com Service Instances.

The DDS binding shall analyze the content of the USER_DATA QoS of each remote
DomainParticipant and return the list of remote DomainParticipants matching the fol-
lowing criteria.

If requiredServiceInstanceId is set to “ANY”, DomainParticipants whose
USER_DATA QoS matches the following pattern shall be added to the list of match-
ing DomainParticipants:

"ara::com//services/.*<svcId>.*"

Else, if requiredServiceInstanceId is set to any value other than “ANY”, Domain-
Participants whose USER_DATA QoS matches the following pattern shall be added to
the list of matching DomainParticipants:

"ara::com//services/.*<svcId>_<reqSvcInId>.*"

Where:

84 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

<svcId> is the corresponding serviceInterfaceId.

<reqSvcInId> is the corresponding requiredServiceInstanceId.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11010] Mapping of StartFindService method d When instructed to start
a continuous service search, the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_11008].

• [SWS_CM_11011] It shall define a DDS BuiltinParticipantListener capable of call-
ing the given FindServiceHandler every time a remote DomainParticipant
assigned to a matching Service Instance is discovered.

• [SWS_CM_11012] It shall bind the defined BuiltinParticipantListener to the Do-
mainParticipant.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener d The DDS Binding
implementation shall define a BuiltinParticipantListener class to handle noti-
fications whenever a remote DomainParticipant is discovered. This class shall derive
from the standard DataReaderListener class [12], specifying that the datatype of
the samples to be handled is ParticipantBuiltinTopicData—the datatype as-
sociated with the built-in DataReader for samples of DCPSParticipant Topic [13].

BuiltinParticipantListener shall implement the following methods according
to the specified instructions:

• A Constructor that takes as a parameter references to a FindServiceHan-
dler and a requiredServiceInstanceId. These references shall be stored
in member variables so that they can be used by subsequent executions of
on_data_available()—which is the method the listener calls every time a
new DomainParticipant is discovered.

• An on_data_available() method that calls FindServiceHandler us-
ing the value of the member variable requiredServiceInstanceId. If
the returned ServiceHandleContainer contains more than one element,
on_data_available() shall invoke FindServiceHandler and pass the
container as a parameter; otherwise the method shall return and perform no
further action.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainPar-
ticipant d To bind a BuiltinParticipantListener to a DDS DomainPar-
ticipant, the DDS binding implementation shall create a new BuiltinPartic-
ipantListener object (see [SWS_CM_11011]) passing FindServiceHandler
and requiredServiceInstanceId to the listener’s constructor. Then ser-

85 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

vice shall then bind the newly created listener to the DomainParticipant using
the set_listener() method with StatusMask = DATA_AVAILABLE_STATUS5. c
(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11013] Mapping of StopFindService method d When instructed to stop
a continuous service search initiated by a previous call to StartFindService(), the
DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService() shall return and perform no further action.

• [SWS_CM_11014] It shall unbind the BuiltinParticipantListener from
the retrieved DDS DomainParticipant6.

c(RS_CM_00204, RS_CM_00200)

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS Domain-
Participant d When instructed to unbind a BuiltinParticipantListener from
a DDS DomainParticipant, the DDS binding implementation service shall invoke the
DomainParticipant’s set_listener() method to disable the listener. In that case,
set_listener() shall be called with a NULL listener parameter and StatusMask
= STATUS_MASK_NONE. c(RS_CM_00204, RS_CM_00200)

7.3.2.2 Handling Events

[SWS_CM_11015] Mapping Events to DDS Topics d The DDS binding shall map ev-
ery VariableDataPrototype defined in the ServiceInterface in the role event
to a DDS Topic. The equivalent DDS Topic shall be configured as follows:

• The Topic Name shall be derived from the Manifest, where the DdsEventDe-
ployment element defines the topicName.

• The Topic Datatype shall be defined as specified in [SWS_CM_11008], and shall
be registered by under the equivalent datatype’s name.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11016] DDS Topic datatype definition d The datatype of a DDS Topic
representing an Event shall be constructed according to the following IDL definition7:

1 struct <eventTypeName>EventType {
2 @key uint16 instance_id;

5Note that the syntax of set_listener() and StatusMask is described in terms of the DDS
Platform-Independent Model specified in [12]. Different Platform-Specific Mappings, such as the DDS-
CPP-PSM specified in [15], map these concepts into more language-friendly constructs.

6Note that with the behavior specified for FindService() and StartFindService()—the only
methods capable of creating DomainParticipants—guarantees that the DomainParticipant used by sub-
sequent calls to StartFindService() and StopFindService() will be the same.

7DDS types are often defined in OMG IDL [16], which provides a standard language-independent
format to represent datatypes and interfaces.

86 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

3 @external <eventTypeName> data;
4 };

Where:

<eventTypeName> is the short name for the type of the VariableDataPro-
totype defined in the ServiceInterface in the role event. That is,
event.type.swDataDefProps.implementationDataType.shortName.

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is a reference (per language mapping of the @external annotation) to the ac-
tual value of the event, which shall be constructed and encoded as specified in
section 7.3.2.3.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11017] Mapping of Send method d When instructed to send an event
message, the DDS Binding shall construct a new sample of the equivalent DDS Topic
datatype (see [SWS_CM_11016]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the ProvidedDdsServiceInstance element defines the serviceInstan-
ceId.

• The Data field (data) shall point to the data input parameter of the Send()
method.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the event, which shall serialize the sample and publish it
over DDS as specified in section 7.3.2.3. c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11018] Mapping of Subscribe method dWhen instructed to create a sub-
scription to an event, the DDS binding shall perform the following operations:

• [SWS_CM_11019] It shall create a DDS DataReader to handle the subscription.

• It shall save the value of policy in a member variable for subsequent calls to
Update().

• It shall create a SampleContainer (see [SWS_CM_00307]) in a member vari-
able to store references to the DataReader’s internal cache.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11019] Creating a DDS DataReader for event subscription d The DDS
binding shall create DDS DataReaders for Topics associated with the events (see
[SWS_CM_11015]) as described below.

The binding implementation shall create the DataReader as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsEvent-
Deployment element defines the qosProfile that shall be used. To configure

87 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

the DataReader’s cache size according to the cacheSize specified in the Sub-
scribe() method call, the value of the DataReader’s HISTORY QoS specified
in qosProfile shall be overridden as follows:

– history.kind = KEEP_LAST_HISTORY_QOS

– history.depth = <cacheSize>

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11020] Defining a DDS DataReaderListener d The DDS Binding imple-
mentation shall define a DataReaderListener class capable of handling notifica-
tion when a new sample is received and/or when the matched status of the subscrip-
tion changes. This class shall derive from the standard DataReaderListener class
[12], specifying that the samples to be handled are of the Topic datatype specified in
[SWS_CM_11016].

The DataReaderListener shall implement the following methods according to the
specified instructions:

• A Constructor that initializes two member variables that hold references to an
EventReceiveHandler and a SubscriptionStateChangeHandler.

• An on_data_available() method that calls the EventReceiveHandler if it
has been set and there are valid samples in the DataReader’s cache.

• An on_subscription_matched() method that calls GetSubscription-
State() and passes the resulting SubscriptionState to Subscription-
StateChangeHandler if it has been set.

• A event_receive_handler() method that takes as an input parameter a ref-
erence to an EventReceiveHandler and updates the member variable holding
a reference to an EventReceiveHandler to point to the input parameter.

• A subscription_state_change_handler() method that takes as an input
parameter a reference to a SubscriptionStateChangeHandler and updates
the member variable holding a reference to a SubscriptionStateChange-
Handler to point to the input parameter.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11021] Mapping of Unsubscribe method d When instructed to unsub-
scribe from a service event, the DDS binding shall call the Clear() method and delete
the DataReader associated with the event. c(RS_CM_00204, RS_CM_00104)

[SWS_CM_11022] Mapping of GetSubscriptionState method d When instructed
to provide the subscription state, the DDS binding shall call the DataReader’s
get_subscription_matched_status() method. If the total_count attribute of

88 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

the resulting SubscriptionMatchedStatus is greater than zero, GetSubscrip-
tionState() shall return SubscriptionState = kSubscribed, otherwise it
shall return SubscriptionState = kSubscriptionPending. c(RS_CM_00204,
RS_CM_00106)

[SWS_CM_11023] Mapping of Update method dWhen instructed to update, the DDS
binding shall evaluate the value of member variable that indicates whether the subscrip-
tion was created with kLastN or kNewestN EventCacheUpdatePolicy.

• If policy = kLastN, the method shall perform a take() on the DataReader.

• If policy = kNewestN, the method shall perform a read() on the
DataReader.

If the Update() method was invoked with a FilterFunction, it shall be translated
into an equivalent DDS QueryConditon, which shall be passed to the corresponding
read() or take() call.

After calling read() or take(), the binding implementation shall clear the Sample-
Container and populate it with a reference to every valid sample in the DataReader’s
cache.

c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11024] Mapping of GetCachedSamples method d When instructed to
return the cached samples, the binding implementation shall return a constant refer-
ence to the SampleContainer member variable with references to the DataReader’s
cache. c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11025] Mapping of SetReceiveHandler method d When instructed to
register an EventReceiveHandler, the binding implementation shall perform the
following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the event_receive_handler() method to instruct the listener to
invoke the new EventReceiveHandler whenever there is data available.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

89 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11026] Mapping of UnsetReceiveHandler method d When instructed to
unregister an EventReceiveHandler, the binding implementation shall perform the
following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the event_receive_handler() method to unset the internal
EventReceiveHandler that is called whenever there is data available (i.e., set
it to NULL).

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method d When in-
structed to register a SubscriptionStateChangeHandler, the binding implemen-
tation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the subscription_state_change_handler() method to in-
struct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

90 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method dWhen in-
structed to unregister a SubscriptionStateChangeHandler, the binding imple-
mentation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the subscription_state_change_handler() method to in-
struct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS.

c(RS_CM_00204, RS_CM_00106)

7.3.2.3 Serialization of Payload

[SWS_CM_10040] d The serialization of the payload shall be done according to the
DDS standard serialization rules defined in section 7.4.3.5 of [14]. c(RS_CM_00204,
RS_CM_00201)

7.3.2.3.1 Basic Datatypes

[SWS_CM_11041] d Basic datatypes shall be serialized according to the standard se-
rialization rules for the equivalent DDS PRIMITIVE_TYPE defined in section 7.4.3.5 of
[14]. Table 7.3 provides the equivalent DDS PRIMITIVE_TYPEs for the SwBaseTypes
defined in [9]. c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

Type DDS Type Remark
boolean Boolean
uint8 Byte Shall be encoded as a Byte type (opaque 8-bit type).
uint16 UInt16
uint32 UInt32
uint64 UInt64
sint8 Byte Shall be encoded as a Byte type (opaque 8-bit type).

91 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

sint16 Int16
sint32 Int32
sint64 Int64
float32 Float32
float64 Float64

Table 7.3: SwBaseTypes supported for serialization

7.3.2.3.2 Enumeration Datatypes

[SWS_CM_11042] d Enumeration datatypes shall be serialized according to the stan-
dard serialization rules for DDS ENUM_TYPE defined in section 7.4.3.5 of [14]. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.3.2.3.3 Structured Datatypes (structs)

[SWS_CM_11043] d Structured datatypes shall be serialized according to the stan-
dard serialization rules for DDS STRUCT_TYPE defined in section 7.4.3.5 of [14]. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.3.2.3.4 Strings

[SWS_CM_11044] Serialization of Strings of baseTypeSize 8 d An Implementa-
tionDataType of category STRING where the baseTypeSize is set to a value of 8
shall be serialized according to the standard serialization rules for DDS STRING_TYPE
defined in section 7.4.3.5 of [14]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_11045] Serialization of Strings of baseTypeSize 16 d An Imple-
mentationDataType of category STRING where the baseTypeSize is set to a
value of 16 shall be serialized according to the standard serialization rules for DDS
WSTRING_TYPE defined in section 7.4.3.5 of [14]. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

7.3.2.3.5 Vectors and Arrays

[SWS_CM_11046] Serialization of ImplementationDataType of category VEC-
TOR d An ImplementationDataType of category VECTOR shall be serialized ac-
cording to the standard serialization rules for DDS SEQUENCE_TYPE defined in section
7.4.3.5 of [14]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11047] Serialization of ImplementationDataType of category AR-
RAY d An ImplementationDataType of category ARRAY shall be serialized ac-

92 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

cording to the standard serialization rules for DDS ARRAY_TYPE defined in section
7.4.3.5 of [14]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.3.2.3.6 Associative Maps

[SWS_CM_11048] d Associative maps shall be serialized according to the standard se-
rialization rules for DDS MAP_TYPE defined in section 7.4.3.5 of [14]. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4 Security

In the following chapter the behavior according to the meta model of access control
and secure communication shall be described.

7.4.1 Access Control

The following assumptions have to be held true to realize access control:

1. Communication between two applications must be realized by using ara::com
interfaces Communication Management to enable access control.

2. Process separation as defined in [SWS_CM_90004]

[SWS_CM_90004] Process separation of network and language binding for ac-
cess control d The application with the language binding part of proxies and the net-
work binding part of proxies shall be located in different processes. c(RS_SEC_03003,
RS_SEC_03005, RS_SEC_05019)

[SWS_CM_90001] Restrictions on executing methods d The invocation of a method
by an application shall be executed depending the value of ClientComSpec.client-
Capability. From a temporal perspective the enforcement of the capability shall take
place between the invocation of one of the following methods and invocation of the con-
tinuation registered with then() (see [SWS_CM_00331]) or the access to result of the
Future (via the get() method (see [SWS_CM_00326])) returned by these methods:

• the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196])

• the Set() method of the respective Field class (see [SWS_CM_00113])

• the Get() method of the respective Field class (see [SWS_CM_00112])

A failure of the capability enforcement (i.e., an invocation without appropriate ca-
pability modeling) shall be signaled by throwing an Unchecked Exception. c
(RS_SEC_03002, RS_SEC_03008, RS_SEC_03010)

93 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_90002] Restrictions on sending events d Sending an event by an appli-
cation shall be enabled depending on the the value of SenderComSpec.senderCa-
pability. From a temporal perspective the enforcement of the capability shall take
place after the invocation of the following method:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Update() method of the respective Field class (see [SWS_CM_00119])

A failure of the capability enforcement (i.e., the triggering of an event without ap-
propriate capability modeling) shall cause the event to be dropped silently. c
(RS_SEC_03002, RS_SEC_03008, RS_SEC_03010)

[SWS_CM_90003] Restrictions on receiving events d Subscribing to event notifica-
tions shall be enabled depending on the value of ReceiverComSpec.receiverCa-
pability. From a temporal perspective the enforcement of the capability shall take
place after the invocation of the following method:

• the Subscribe() method of the respective Event class (see
[SWS_CM_00141])

A failure of the capability enforcement (i.e., the subscription to an event without ap-
propriate capability modeling) shall cause the subscription to the event to be dropped
silently. c(RS_SEC_03002, RS_SEC_03008, RS_SEC_03010)

Note:
In case of [SWS_CM_90002] and [SWS_CM_90003] dropping data, the application
will not be notified.

A logging facility for security events is currently not defined in the AUTOSAR Adaptive
Platform. Logging violations of access restrictions according to [SWS_CM_90001],
[SWS_CM_90002] and [SWS_CM_90003] is up to the implementation or specific ECU
projects.

7.4.2 Secure Communication

7.4.2.1 SOME/IP

SOME/IP communication can be transported via TCP and UDP. Therefore different
security mechanism have to be available to secure the SOME/IP communication. The
following security protocols are currently supported:

• DTLS

• SecOC

SOME/IP supports one-to-many (unicast) and many-to-many (multicast) communica-
tion paradigms. These paradigms may switch at runtime for events (see multicast-
Threshold).

94 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

It is therefore important to be aware of the limitations of the secure channel approach:

• Confidentiality of events
If events are transported using UDP and may be sent using multicast, they cannot
be guaranteed confidential due to the fact that only SecOC can be used to secure
multicast communication and SecOC does not offer confidentiality.

[SWS_CM_90101] Secure channel creation d The Communication Management
software shall create secure channels according to the input for all SecureComProps
referenced by ServiceInterfaceElementSecureComConfig in the role secure-
ComProps. Secure channels may be shared for multiple communication by multiplex-
ing the communication. c(RS_SEC_04001)

[SWS_CM_90102] Using secure channels d All communication triggered by a
Skeleton or Proxy shall be sent via the respective secure channel according to
the input. The appropriate secure channel is identified by examining the role secure-
ComProps of ServiceInterfaceElementSecureComConfig for the Adaptive-
PlatformServiceInstance referencing the ServiceInterfaceDeployment in
the role serviceInterface.

The following configuration in the ServiceInterfaceElementSecureComConfig
is applicable:

• Methods
The roles methodCall and methodReturn identify the method(s) that shall
be sent using the referenced secure channel.

• Events
The role event identifies the event(s) that shall be sent using the referenced
secure channel.

• Fields
The roles fieldNotifier, getterCall, getterReturn, setterCall and
setterReturn identify the event and method(s) that shall be sent using the
referenced secure channel.

c(RS_SEC_04001, RS_SEC_04003)

The actual secure channel to be created is determined by the concrete sub-class of
the SecureComProps base-class.

A (D)TLS secure channel may provide authenticity, integrity and confidentiality.

[SWS_CM_90103] TLS secure channel for methods using reliable transport d A
TLS secure channel shall be created and used if:

• secureComProps
A TlsSecureComProps instance is referenced in the role secureComProps by
a ServiceInterfaceElementSecureComConfig for the respective method

95 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• transportProtocol
The transportProtocol of the associated SomeipMethodDeployment in-
stance has the value “tcp”

c(RS_SEC_04001)

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport
d A DTLS secure channel shall be created and used if:

• secureComProps
A TlsSecureComProps instance is referenced in the role secureComProps by
a ServiceInterfaceElementSecureComConfig for the respective method

• transportProtocol
The transportProtocol of the associated SomeipMethodDeployment in-
stance has the value “udp”

c(RS_SEC_04001)

[SWS_CM_90105] TLS secure channel for events using reliable transport d A TLS
secure channel shall be created and used if:

• secureComProps
A TlsSecureComProps instance is referenced in the role secureComProps by
a ServiceInterfaceElementSecureComConfig for the respective event

• transportProtocol
The transportProtocol of the associated SomeipEventDeployment in-
stance has the value “tcp”

c(RS_SEC_04001)

[SWS_CM_90106] DTLS secure channel for events using unreliable transport d A
DTLS secure channel shall be created and used if:

• secureComProps
A TlsSecureComProps instance is referenced in the role secureComProps by
a ServiceInterfaceElementSecureComConfig for the respective event

• transportProtocol
The transportProtocol of the associated SomeipEventDeployment in-
stance has the value “udp”

• multicastThreshold
The current number of subscriptions is below the configured multicast-
Threshold in an SomeipProvidedEventGroup referencing the associated
SomeipEventDeployment in the role eventGroup.

c(RS_SEC_04001)

[SWS_CM_90107] TLS secure channel for fields d The requirements
[SWS_CM_90103], [SWS_CM_90104], [SWS_CM_90105] and [SWS_CM_90106]

96 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

apply to fields in the same manner, since fields are a composition of methods and
events. c(RS_SEC_04001)

A SecOC secure channel may provide authenticity and integrity.

[SWS_CM_90108] SecOC secure channel for methods d A SecOC secure channel
shall be created and used if:

• secureComProps
A SecOcSecureComProps instance is referenced in the role secureCom-
Props by a ServiceInterfaceElementSecureComConfig for the respec-
tive method

c(RS_SEC_04001)

[SWS_CM_90109] SecOC secure channel for events d A SecOC secure channel
shall be created and used if:

• secureComProps
A SecOcSecureComProps instance is referenced in the role secureCom-
Props by a ServiceInterfaceElementSecureComConfig for the respec-
tive event.

c(RS_SEC_04001)

[SWS_CM_90110] SecOC secure channel for fields d The requirements
[SWS_CM_90108] and [SWS_CM_90109] apply to fields in the same manner, since
fields are a composition of methods and events. c(RS_SEC_04001)

97 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8 Communication API specification

8.1 C++ language binding

8.1.1 API Header files

This chapter describes the header files of the ara::com API.

The so-called input for the header files are the AUTOSAR metamodel classes within
the ServiceInterface description, as defined in the AUTOSAR Adaptive Method-
ology Specification [17].

The following requirements are applicable for all header files; requirements which are
specific for a header file are described in own sub-chapters.

The required folder structure for the ARA public header files is defined by
[SWS_AP_00001] in AUTOSAR SWS General [18]. This applies to the Types header
file, but the folder structure for the Service header files, Common header files, and the
Implementation Types header files is derived from the namespace hierarchy.

[SWS_CM_01020] Folder structure d The Service header files defined by
[SWS_CM_01002], the Common header files defined by [SWS_CM_01012], and the
Implementation Types header files defined by [SWS_CM_10373] shall be located
within the folder:

<folder>/<namespace[0]>/<namespace[1]>/.../<namespace[n]>/

where:
<folder> is the start folder for the ara::com header files specific for a project or plat-
form vendor,
<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005] and [SWS_CM_10375]. c(RS_CM_00001)

8.1.1.1 Service header files

The Service header files are the central definition of the ara::com API and any associ-
ated data structures that are required by the AdaptiveApplication software components
to use the communication management.

[SWS_CM_01002] Service header files existence d The communication manage-
ment shall provide one Proxy header file and one Skeleton header file for each Ser-
viceInterface defined in the input by using the file name <name>_proxy.h for
the Proxy header file and <name>_skeleton.h for the Skeleton header file, where
<name> is the ServiceInterface.shortName converted to lower-case letters. c
(RS_CM_00001)

[SWS_CM_01004] Inclusion of common header file d The Proxy and Skeleton
header file shall include the Common header file:

98 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

1 #include "<name>_common.h"

where <name> is the the ServiceInterface.shortName converted to lower-case
letters. c(RS_CM_00001)

Namespaces are used to separate the definition of services from each other to prevent
name conflicts and they allow to use reasonably short names. It is recommended to
define the name space unique, e.g. by using the company domain name.

[SWS_CM_01005] Namespace of Service header files d Based on the symbol at-
tributes of the ordered SymbolProps aggregated by PortInterface in role name-
space, the C++ namespace of the Service header file shall be:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 ...
6 } // namespace <ServiceInterface.namespace[n].symbol>
7 } // namespace <...>
8 } // namespace <ServiceInterface.namespace[1].symbol>
9 } // namespace <ServiceInterface.namespace[0].symbol>

with all namespace names converted to lower-case letters. c(RS_CM_00002)

Starting from the innermost namespace as defined by [SWS_CM_01005], there are
additional C++ namespaces for the proxy or the skeleton and for the events and meth-
ods. These namespaces are used for the declarations and definitions as described in
chapter 8.1.3.

[SWS_CM_01006] Service skeleton namespace d The C++ namespace for a specific
service skeleton class shall be:

1 namespace skeleton {
2 ...
3 } // namespace skeleton

c(RS_CM_00002)

[SWS_CM_01007] Service proxy namespace d The C++ namespace for a specific
service proxy class shall be:

1 namespace proxy {
2 ...
3 } // namespace proxy

c(RS_CM_00002)

[SWS_CM_01009] Service events namespace d The Proxy and Skeleton header
file shall provide a C++ namespace for the definition of events within the namespace
defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace events {
2 ...
3 } // namespace events

99 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00002)

[SWS_CM_01015] Service methods namespace d The Proxy and Skeleton header
file shall provide a C++ namespace for the definition of methods within the namespace
defined by [SWS_CM_01007]:

1 namespace methods {
2 ...
3 } // namespace methods

c(RS_CM_00002)

[SWS_CM_01031] Service fields namespace d The Proxy and Skeleton header file
shall provide a C++ namespace for the definition of fields within the namespace defined
by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace fields {
2 ...
3 } // namespace fields

c(RS_CM_00002, RS_CM_00216)

[SWS_CM_10351] Service application errors d The Proxy and Skeleton header file
shall provide a C++ namespace for the definition of application errors within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace application_errors {
2 ...
3 } // namespace application_errors

c(RS_CM_00002)

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01006], [SWS_CM_01009], and [SWS_CM_10351], the namespace
hierarchy in the Skeleton header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace skeleton{
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace application_errors {
12 ...
13 } // application_errors
14

15 ...
16 } // namespace skeleton
17 } // namespace <ServiceInterface.namespace[n].symbol>
18 } // namespace <...>
19 } // namespace <ServiceInterface.namespace[1].symbol>
20 } // namespace <ServiceInterface.namespace[0].symbol>

100 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01007], [SWS_CM_01009], [SWS_CM_01015], and [SWS_CM_10351],
the namespace hierarchy in the Proxy header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace proxy{
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace methods {
12 ...
13 } // namespace methods
14

15 namespace fields {
16 ...
17 } // namespace fields
18

19 namespace application_errors {
20 ...
21 } // application_errors
22

23 ...
24 } // namespace proxy
25 } // namespace <ServiceInterface.namespace[n].symbol>
26 } // namespace <...>
27 } // namespace <ServiceInterface.namespace[1].symbol>
28 } // namespace <ServiceInterface.namespace[0].symbol>

8.1.1.2 Common header file

The Common header file includes the ara::com specific type declarations derived from
the ApplicationErrors composed by a particular ServiceInterface as well
Service Identifier type declarations related to a particular ServiceInterface.

[SWS_CM_01012] Common header file existence d The communication manage-
ment shall provide a Common header file for each ServiceInterface defined in the
input by using the file name <name>_common.h, where <name> is the ServiceIn-
terface.shortName converted to lower-case letters. c(RS_CM_00001)

As a minimal requirement, the Types header file and the Implementation Types header
files need to be included.

[SWS_CM_01001] Inclusion of Types header file d The Common header file shall
include the Types header file:

1 #include "ara/com/types.h"

c(RS_CM_00001)

101 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10372] Inclusion of Implementation Types header files d The Common
header file shall include the Implementation Types header files of those Implemen-
tationDataTypes that are actually used by the particular ServiceInterface:

1 #include "<folder>/<namespace[0]>/<namespace[1]>/.../<namespace[n]>/
impl_type_<symbol>.h"

where folder is the start folder for the ara::com header files specific for a project or
platform vendor (see [SWS_CM_01020]), <namespace[0..n]> is the namespace
hierarchy defined in [SWS_CM_10375], and <symbol> is the Implementation
Data Type symbol according to section 8.1.2.5.2 converted to lower-case letters.
c(RS_CM_00001)

It is not mandatory that all declarations and definitions are located directly in the Com-
mon header file. A Communication Management implementation might also distribute
the declarations and definitions into different header files, but at least all those header
files need to be included into the Common header file.

[SWS_CM_10370] Data Type definitions for Application Errors in Common
header file d The Common header file shall include the class definitions for all sub-
classes of ApplicationErrorException for the ApplicationErrors of a Ser-
viceInterface according to [SWS_CM_10356]. c(RS_CM_00001)

[SWS_CM_01017] Service Identifier Type definitions in Common header file d The
Common header file shall include the information to identify the service type according
to the requirement [SWS_CM_01010]. c(RS_CM_00001)

[SWS_CM_01008] Common header file namespace d The declarations and defini-
tions according to [SWS_CM_01017] and [SWS_CM_10370] shall be located in the
C++ namespace as defined by [SWS_CM_01005] to match to the namespace of the
related skeleton and proxy header file. c(RS_CM_00002)

8.1.1.3 Types header file

The Types header file includes the data type definitions which are specific for the
ara::com API. Such data type definitions are used in the standardized proxy and skele-
ton interfaces defined in chapter 8.1.3.

[SWS_CM_01013] Types header file existence d The communication management
shall provide a Types header file by using the file name types.h. c(RS_CM_00001)

[SWS_CM_01018] Types header file namespace d The C++ namespace for the data
type definitions included by the Types header file shall be:

1 namespace ara {
2 namespace com {
3 ...
4 } // namespace com
5 } // namespace ara

c(RS_CM_00002)

102 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

It is not mandatory that all data type definitions are located directly in the Types header
file. A Communication Management implementation might also distribute the defini-
tions into different header files, but at least all those header files need to be included
into the Types header file.

[SWS_CM_01019] Data Type declarations in Types header file d The Types
header file shall include the data type definitions according to [SWS_CM_00300],
[SWS_CM_00301], [SWS_CM_00302], [SWS_CM_00303], [SWS_CM_00304],
[SWS_CM_00305], [SWS_CM_00306], [SWS_CM_00307], [SWS_CM_00308],
[SWS_CM_00309], [SWS_CM_00310], [SWS_CM_00311], [SWS_CM_00312],
[SWS_CM_10352], and [SWS_CM_10354]. c(RS_CM_00001)

8.1.1.4 Implementation Types header files

The Implementation Types header files include the ara::com specific type declara-
tions derived from the ImplementationDataTypes created from the definitions of
AUTOSAR meta model classes within the ServiceInterface description. Such
data type declarations are described in detail in chapter 8.1.2.5.

[SWS_CM_10373] Implementation Types header files existence d The com-
munication management shall provide an Implementation Types header file for
each ImplementationDataType defined in the input by using the file name
impl_type_<symbol>.h, where <symbol> is the Implementation Data Type
symbol according to section 8.1.2.5.2 converted to lower-case letters. c
(RS_CM_00001)

The Implementation Types header files might might need to include other header files,
e.g. for std::string or std::vector, depending on the BaseType of the data
type declarations.

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Imple-
mentation Types header files d The Implementation Types header files shall
include the type definitions and structure and class definitions for all the AUTOSAR
Data Types according to [SWS_CM_00402], [SWS_CM_00403], [SWS_CM_00404],
[SWS_CM_00405], [SWS_CM_00406], [SWS_CM_00407], [SWS_CM_00408],
[SWS_CM_00409], [SWS_CM_00410] and [SWS_CM_00424].c(RS_CM_00001)

[SWS_CM_10375] Implementation Types header file namespace d The C++ name-
space of the Implementation Types header file for a given Implementation-
DataType is defined via an ImplementationDataTypeExtension referencing the
given ImplementationDataType in role implementationDataType. Based on
the symbol attributes of the ordered SymbolProps aggregated by Implementa-
tionDataTypeExtension in role namespace, the C++ namespace of the Imple-
mentation Types header file shall be:

1 namespace <ImplementationDataTypeExtension.namespace[0].symbol> {
2 namespace <ImplementationDataTypeExtension.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ImplementationDataTypeExtension.namespace[n].symbol> {

103 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

5 ...
6 } // namespace <ImplementationDataTypeExtension.namespace[n].symbol>
7 } // namespace <...>
8 } // namespace <ImplementationDataTypeExtension.namespace[1].symbol>
9 } // namespace <ImplementationDataTypeExtension.namespace[0].symbol>

with all namespace names converted to lower-case letters. c(RS_CM_00002)

104 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2 API Data Types

This chapter describes the data types used by the ara::com API, both the specific ones
which are part of the standardized proxy and skeleton interfaces, and the ones derived
from the description based on the AUTOSAR Metamodel.

8.1.2.1 Service Identifier Data Types

The data types described in this chapter are derived from the ara::com API design and
as a part of the API, they are used to identify a specific service or service instance.

A service can be identified at least by a fully qualified name and a version. The Servi-
ceIdentifier is not visible in the ara::com API, as the specific service skeleton and
proxy class itself represent the service type, but the ServiceIdentifier is needed
for the implementation of the Communication Management software. It is defined here
to guarantee a minimum amount of information.

[SWS_CM_01010] Service Identifier and Service Version Classes d The Com-
munication Management shall provide a C++ class named ServiceInter-
face.shortName. The class contains at least a fully qualified name identifier
(ServiceIdentifier) and a service version (ServiceVersion). The exact types
of ServiceIdentifier and ServiceVersion are specific to the Communication
Management software provider. Their concrete realization is implementation defined.
To allow for logging and for storing and managing in C++ container classes by the using
application, however, the types of both classes shall satisfy the EqualityCompara-
ble requirements according to table 17, the LessThanComparable requirements ac-
cording to table 18, and the CopyAssignable requirements according to table 23 of
section 17.6.3.1 of [19]. These requirements are fulfilled if the operators operator==,
operator<, and operator= as well as a toString() method is provided.

1 class <ServiceInterface.shortName> {
2 public:
3 static constexpr ServiceIdentifierType ServiceIdentifier;
4 static constexpr ServiceVersionType ServiceVersion;
5 };
6

7 class ServiceIdentifierType {
8 bool operator==(const ServiceIdentifierType& other) const;
9 bool operator<(const ServiceIdentifierType& other) const;

10 ServiceIdentifierType& operator=(const ServiceIdentifierType& other);
11 std::string toString() const;
12 };
13

14 class ServiceVersionType {
15 bool operator==(const ServiceVersionType& other) const;
16 bool operator<(const ServiceVersionType& other) const;
17 ServiceVersionType& operator=(const ServiceVersionType& other);
18 std::string toString() const;
19 };

105 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00200)

There might exist different instances of exactly the same service in the system. To
handle this, an InstanceIdentifier is used to identify a specific instance of a
service. It is a necessary parameter of the API defined for both the skeleton and proxy
side:

• on service skeleton side, it types the parameter needed to identify the service
instance when creating an instance by [SWS_CM_00130],

• on service proxy side, it types the parameter needed to identify the ser-
vice instance when searching for a specific instance by [SWS_CM_00122] or
[SWS_CM_00123].

[SWS_CM_00302] Instance Identifier Class d The Communication Management
shall provide a class InstanceIdentifier. It only contains instance information,
but does not contain a fully qualified name, which would also have service type infor-
mation.
The definition of the InstanceIdentifier can be extended by the Communica-
tion Management software provider, but at least the given class constructor, the class
method signatures, and the static member Any must be preserved. InstanceI-
dentifier shall further satisfy the EqualityComparable requirements according
to table 17, the LessThanComparable requirements according to table 18, and the
CopyAssignable requirements according to table 23 of section 17.6.3.1 of [19] to
allow for logging of InstanceIdentifiers as well as storing and managing In-
stanceIdentifiers in C++ container classes by the using application. These re-
quirements are fulfilled if the operators operator==, operator<, and operator=
as well as a toString() method is provided.

1 class InstanceIdentifier {
2 public:
3 static const InstanceIdentifier Any;
4

5 explicit InstanceIdentifier(std::string value);
6 std::string toString() const;
7 bool operator==(const InstanceIdentifier& other) const;
8 bool operator<(const InstanceIdentifier& other) const;
9 InstanceIdentifier& operator=(const InstanceIdentifier& other);

10 };

c(RS_CM_00101)

The following data types are used for the handling of services on the service consumer
side, therefore they are part of the API defined for the proxy side.

To identify a triggered request to find a service, the StartFindService method of
[SWS_CM_00123] returns a FindServiceHandle which is used as parameter to
cancel this request with StopFindService as described in [SWS_CM_00125].

[SWS_CM_00303] Find Service Handle d The Communication Management shall
provide the definition of an opaque FindServiceHandle with exactly this name.
FindServiceHandle shall satisfy the EqualityComparable requirements accord-

106 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

ing to table 17, the LessThanComparable requirements according to table 18, and
the CopyAssignable requirements according to table 23 of section 17.6.3.1 of [19]
to allow storing and managing FindServiceHandles in C++ container classes by
the using application. These requirements are fulfilled if the following operators
are provided: operator==, operator<, and operator=. The exact definition
of FindServiceHandle is communication management implementation specific. c
(RS_CM_00102)

For example, a definition of FindServiceHandle could look like this:
1 struct FindServiceHandle {
2 internal::ServiceId service_id;
3 internal::InstanceId instance_id;
4 std::uint32_t uid;
5

6 bool operator==(const FindServiceHandle& other) const;
7 bool operator<(const FindServiceHandle& other) const;
8 FindServiceHandle& operator=(const FindServiceHandle& other);
9 ...

10 };

The usage of the API to find service instances, as defined in [SWS_CM_00122] and
[SWS_CM_00123], provides a handle container holding a list of handles. Each handle
represents an existing service instance and by passing the handle as parameter to the
proxy constructor [SWS_CM_00131], it allows the ara::com API user to create a proxy
instance to access this service instance.

[SWS_CM_00312] Handle Type Class d The Communication Management shall pro-
vide the definition of HandleType. It types the handle for a specific service instance
and shall contain the information that is needed to create a ServiceProxy. The
definition of the HandleType can be extended by the Communication Management
software provider, but at least the given class and class method signatures must be
preserved.
HandleType shall satisfy the EqualityComparable requirements according to ta-
ble 17, the LessThanComparable requirements according to table 18, and the Copy-
Assignable requirements according to table 23 of section 17.6.3.1 of [19] to allow
storing and managing HandleTypes in C++ container classes by the using applica-
tion. These requirements are fulfilled if the following operators are provided: opera-
tor==, operator<, and operator=.
The definition of the HandleType class shall be located inside the ServiceProxy
class defined by [SWS_CM_00004]. This allows the Communication Management
software to provide handles with different implementation dependent on the binding
to the represented service.

1 class HandleType {
2 public:
3 bool operator==(const HandleType& other) const;
4 bool operator<(const HandleType& other) const;
5 HandleType& operator=(const HandleType& other);
6 const ara::com::InstanceIdentifier& GetInstanceId() const;
7 };

107 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00102)

Since the Communication Management software is responsible for creation of handles
and the application just uses instances of it, the constructor signature is not part of the
HandleType specification.

[SWS_CM_00304] Service Handle Container d The Communication Management
shall provide the definition of a ServiceHandleContainer. The container holds a
list of service handles and is used as a return value of the FindService methods.
The assigned data type is allowed to be changed by the Communication Management
software provider, but must adhere to the general container requirements according
to table 96 of section 23.2.1 and the sequence container requirements according to
table 100 of section 23.2.3 of [19]. A std::vector for example fulfills these require-
ments.

1 template <typename T>
2 using ServiceHandleContainer = std::vector<T>;

c(RS_CM_00102)

The possibility to continuously find services by registering a handler function as defined
in [SWS_CM_00123] requires a definition of such a handler function. The function
implementation itself must be provided by the proxy user.

[SWS_CM_00305] Find Service Handler d The Communication Management shall
provide the definition of FindServiceHandler as a function wrapper for the handler
function that gets called by the Communication Management software in case the ser-
vice availability changes. It takes as input parameter a handle container containing
handles for all matching service instances.

1 template <typename T>
2 using FindServiceHandler =
3 std::function<void(ServiceHandleContainer<T>)>;

c(RS_CM_00102)

[SWS_CM_00383] Extended Find Service Handler d The Communication Manage-
ment shall provide the definition of FindServiceHandlerExt as a function wrapper
for the handler function that gets called by the Communication Management software
in case the service availability changes. It takes as input parameter a handle container
containing handles for all matching service instances and a FindServiceHandle
which can be used to invoke StopFindService (see [SWS_CM_00125]) from within
the FindServiceHandlerExt.

1 template <typename T>
2 using FindServiceHandlerExt =
3 std::function<void(ServiceHandleContainer<T>, FindServiceHandle)>;

c(RS_CM_00102)

See [SWS_CM_00304] for the type definition of ServiceHandleContainer.

108 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2.2 Event Related Data Types

Event handling on receiver side is based on queued communication with configurable
caches. Beside the cache size, the Communication Management requests the update
policy of the application local cache for the specific event when subscribing to a specific
event by [SWS_CM_00141].

[SWS_CM_00300] Event Cache Update Policy d The Communication Management
shall provide an enumeration EventCacheUpdatePolicy which defines the policy of
the event cache update. The following policies shall be supported:

• kLastN: With this policy, for each call of Update the new available events are
added to the cache. If they do not fit into the cache, the least recently used entries
are discarded first.

• kNewestN: With this policy, for each call of Update the cache gets cleared first
and then filled with the new available events. Even if no event has arrived since
the last call to Update, the cache gets cleared.

1 enum class EventCacheUpdatePolicy : uint8_t {
2 kLastN,
3 kNewestN
4 };

c(RS_CM_00202, RS_CM_00203)

See ARAComAPI explanatory document [1] for more details on the event cache policy.

After the receiver subscribed to an event, the method GetCachedSamples as defined
in [SWS_CM_00173] is used to retrieve the data samples of that event. It returns a
Sample Container containing Sample Pointers to the data samples stored in the event
cache. A Sample Pointer is an alias for an event data type pointer.

SamplePtr behaves as std::shared_ptr but it may be implemented differ-
ently or with a subset of features. It also contains some an additional method
E2ECheckStatus of the referred sample.

[SWS_CM_00306] Sample Pointer d The Communication Management shall provide
the definition of SamplePtr as a pointer to a data sample. The implementation
is allowed to be changed by the Communication Management software provider. c
(RS_CM_00202, RS_CM_00203)

[SWS_CM_90432] Functionality of Sample Pointer d SamplePtr shall have behav-
ior of the standard C++ std::shared_ptr. c()

[SWS_CM_90420] E2ECheckStatus of a sample d The SamplePtr shall provide
the access to the E2ECheckStatus of each sample by means of the method
GetE2ECheckStatus:

1 ara::com::E2E_state_machine::CheckStatus GetE2ECheckStatus();
2

c(RS_E2E_08534)

109 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00307] Sample Container d The Communication Management shall pro-
vide the definition of SampleContainer. The container holds a list of pointers to data
samples and is received via event communication. The assigned data type is allowed
to be changed by the Communication Management software provider, but must adhere
to the general container requirements according to table 96 of section 23.2.1 and the
sequence container requirements according to table 100 of section 23.2.3 of [19]. A
std::vector for example fulfills these requirements.

1 template <typename T>
2 using SampleContainer = std::vector<T>;

c(RS_CM_00202, RS_CM_00203)

On the event provider side, it is possible to let the Communication Management
allocate the memory for the storage of the data before sending it as defined in
[SWS_CM_90438]. A Sample Allocatee Pointer is an alias for an event data type
pointer used both for allocation and data sending.

[SWS_CM_00308] Sample Allocatee Pointer d The Communication Management
shall provide the definition of SampleAllocateePtr as a pointer to a data sample
allocated by the Communication Management implementation. The implementation is
allowed to be changed by the Communication Management software provider.

1 template <typename T>
2 using SampleAllocateePtr = std::unique_ptr<T>;

c(RS_CM_00201)

The event receiver can register an Event Receive Handler as a callback to get no-
tified if new event data has arrived. The callback function itself is defined in the
event consumer implementation; the Event Receive Handler type is just an general
purpose function alias for the use in the method SetReceiveHandler as defined by
[SWS_CM_00181].

[SWS_CM_00309] Event Receive Handler d The Communication Management shall
provide the definition of EventReceiveHandler as a function wrapper without pa-
rameters for the handler function that gets called by the Communication Management
software in case new event data arrives for an event. The event receiver must provide
the function implementation which is not required to be re-entrant.
The symbolic name is set; for the alias it is recommended to use the C++ general-
purpose polymorphic function wrapper std::function, but this is not mandatory and
is allowed to be changed by the Communication Management software provider.

1 using EventReceiveHandler = std::function<void()>;

c(RS_CM_00203)

The event receiver can monitor the state of a service event subscription by requesting
or getting a notification of the Subscription State, as the real process of subscription
might happen at a later point in time than the return of the call to Subscribe. The Sub-
scription State related ara::com API methods require the definitions of a Subscription
State enumeration and a Subscription State Changed Handler function wrapper.

110 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00310] Subscription State d The Communication Management shall pro-
vide an enumeration SubscriptionState which defines the subscription state of an
event.

1 enum class SubscriptionState : uint8_t {
2 kSubscribed,
3 kNotSubscribed,
4 kSubscriptionPending
5 };

c(RS_CM_00103, RS_CM_00104, RS_CM_00106)

[SWS_CM_00316] Query Subscription State d The Communication Management
shall provide an API GetSubscriptionState which returns the subscription state
of an event. The conditions for the Subscription state beeing returned by GetSub-
scriptionState shall be the same as for the SubscriptionStateChangeHan-
dler described in [SWS_CM_00313], [SWS_CM_00314] and [SWS_CM_00315].

1 ara::com::SubscriptionState GetSubscriptionState() const;

c(RS_CM_00106)

[SWS_CM_00311] Subscription State Changed Handler d The Communication
Management shall provide the definition of SubscriptionStateChangeHandler
as a function wrapper for the handler function that gets called by the Communication
Management software in case the subscription state of an event has changed.

1 using SubscriptionStateChangeHandler =
2 std::function<void(SubscriptionState)>;

c(RS_CM_00103, RS_CM_00104, RS_CM_00106)

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscription-
Pending d The Communication Management shall call the SubscriptionState-
ChangeHandler with the value kSubscriptionPending in the following cases:

• the client subscribes to an event and the actual subscription does not happen
immediately (e.g. due to a bus protocol)

• the client is subscribed to an event and Communication Management has de-
tected that the server instance is currently not available (due to restart, network
problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

Note: Method Calls may lead to a ServiceNotAvailableException at that time.

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed d The
Communication Management shall call the SubscriptionStateChangeHandler
with the value kSubscribed in the following cases:

• the client subscribes to an event and the actual subscription is established suc-
cessfully

111 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• the client is subscribed to an event and the actual subscription is re-established
again after beeing temporarily unavailable (due to restart, network problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

[SWS_CM_00315] Re-establishing an active subscription d The Communication
Management shall re-establish the actual subscription again after the server service
beeing temporarily unavailable (due to restart, network problem or so). This shall work
independently of whether a network binding is involved or not. The re-establishment
shall also provide a possible update of binding specific connection properties if needed.
c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

8.1.2.3 Method Related Data Types

Service method invocation on provider side can be executed in different processing
modes, where the Method Call Processing Mode is set as a parameter of the Ser-
viceSkeleton constructor defined by [SWS_CM_00130].

[SWS_CM_00301] Method Call Processing Mode d The Communication Manage-
ment shall provide an enumeration MethodCallProcessingMode which defines the
processing modes for the service implementation side.

1 enum class MethodCallProcessingMode : uint8_t {
2 kPoll,
3 kEvent,
4 kEventSingleThread
5 };

c(RS_CM_00211)

The expected behavior of each processing mode is described in [SWS_CM_00198].

8.1.2.4 Generic Data Types

8.1.2.4.1 Future and Promise

The following section describes the Future and Promise class templates used
in ara::com to provide and retrieve the results of method calls. Whenever there
is a mention of a standard C++11 item (class, class template, enum or func-
tion) such as std::future or std::promise, the implied source material is
[19]. Whenever there is a mention of an experimental C++ item such as
std::experimental::future::is_ready, the implied source material is [20].

Futures are technically referred to as "asynchronous return objects", and promises
are referred to as "asynchronous providers". Their interaction is made possible by a
"shared state". The "shared state" concept is described in [19], section 30.6.4. The
description also applies to the shared state behind ara::com Future and Promise,
with the following amendments:

112 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• ", as used by async when policy is launch::deferred" is removed from paragraph 2.

• Paragraph 10, referring to "promise::set_value_at_thread_exit", is re-
moved.

[SWS_CM_00320] FutureStatus d The Communication Management shall provide
an enumeration FutureStatus which contains an operation status for timed wait
functions of ara::com::Future.

enum class FutureStatus : uint8_t {
ready,
timeout

};

c(RS_CM_00214)
Note: The meaning of the values is the same as that of the corresponding ones in
std::future_status.

[SWS_CM_00321] Future Class Template d The Communication Management shall
provide a Future class template which provides a way to check and retrieve results of
method calls.

template<typename T>
class Future {

// Default constructor
Future() noexcept;
// Move constructor
Future(Future&&) noexcept;
// Default copy constructor deleted
Future(const Future&) = delete;
// Specialized unwrapping constructor
Future(Future<Future<T>>&&) noexcept;

~Future();

// Move assignment operator
Future& operator=(Future&&) noexcept;
// Default copy assignment operator deleted
Future& operator=(const Future&) = delete;

// Returns the result
T get();

// Check if the Future has any shared state
bool valid() const noexcept;

// Block until the shared state is ready.
void wait() const;

// Wait for a specified relative time.
template< class Rep, class Period >

113 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

FutureStatus wait_for(
const std::chrono::duration<Rep,Period>& timeout_duration) const;

// Wait until a specified absolute time.
template <class Clock, class Duration>
FutureStatus wait_until(

const std::chrono::time_point<Clock,Duration>& abs_time) const;

// Set a continuation for when the shared state is ready.
template <typename F>
auto then(F&& func) -> Future<decltype(func(std::move(*this)))>;

// Return true only when the shared state is ready.
bool is_ready() const;

};

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00322] Future default constructor d The Future constructor
1 Future() noexcept;

behaves as the std::future constructor
1 future() noexcept;

c(RS_CM_00214)

[SWS_CM_00323] Future move constructor d The Future constructor
1 Future(Future&&) noexcept;

behaves as the std::future constructor
1 future(future&&) noexcept;

c(RS_CM_00214)

[SWS_CM_00324] Future unwrapping constructor d The Future constructor
1 Future(Future<Future<T>>&&) noexcept;

behaves as the std::experimental::future constructor
1 future(future<future<R>>&&) noexcept;

c(RS_CM_00214)

[SWS_CM_00325] Move assignment operator d The Future operator
1 Future& operator=(Future&&) noexcept;

behaves as the std::future operator
1 future& operator=(future&& rhs) noexcept;

114 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00214)

[SWS_CM_00326] Future::get d The Future function
1 T get();

behaves as the std::future function
1 R get();

c(RS_CM_00214)

[SWS_CM_00327] Future::valid d The Future function
1 bool valid() const noexcept;

behaves as the std::future function
1 bool valid() const noexcept;

c(RS_CM_00214)

[SWS_CM_00328] Future::wait d The Future function
1 void wait() const;

Behaves as the std::future function
1 void wait() const;

c(RS_CM_00214)

[SWS_CM_00329] Future::wait_for d The Future function
1 template< class Rep, class Period >
2 FutureStatus wait_for(
3 const std::chrono::duration<Rep,Period>& timeout_duration) const;

behaves as the std::future function
1 template <class Rep, class Period>
2 future_status wait_for(
3 const chrono::duration<Rep, Period>& rel_time) const;

but using FutureStatus instead of std::future_status.
Note: The value std::future_status::deferred has no correpondent. c
(RS_CM_00214)

[SWS_CM_00330] Future::wait_until d The Future function
1 template <class Clock, class Duration>
2 FutureStatus wait_until(
3 const std::chrono::time_point<Clock,Duration>& abs_time) const;

behaves as the std::future function
1 template <class Clock, class Duration>
2 future_status wait_until(
3 const chrono::time_point<Clock, Duration>& abs_time) const;

115 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

but using FutureStatus instead of std::future_status.
Note: The value std::future_status::deferred has no correpondent. c
(RS_CM_00214)

[SWS_CM_00331] Future::then d The Future function
1 template <typename F>
2 auto then(F&& func) -> Future<decltype(func(std::move(*this)))>;

behaves as the std::experimental::future function
1 template <class F>
2 <<see below>> then(F&& func);

but without performing implicit unwrapping. c(RS_CM_00215)

[SWS_CM_00332] Future::is_ready d The Future function
1 bool is_ready() const;

behaves as the std::experimental::future function
1 bool is_ready() const;

c(RS_CM_00214)

[SWS_CM_00340] Promise Class Template d The Communication Management
shall provide a Promise class template which provides a way to set a value or ex-
ception into the shared state.

template <class T>
class Promise {
public:

// Default constructor
Promise();
// Default copy constructor deleted
Promise(const Promise&) = delete;
// Move constructor
Promise(Promise&&) noexcept;

~Promise();

// Default copy assignment operator deleted
Promise& operator=(const Promise&) = delete;
// Move assignment operator
Promise& operator=(Promise&&) noexcept;

// Return a Future with the same shared state.
Future<T> get_future();

// Store an exception in the shared state.
void set_exception(std::exception_ptr p);

116 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

// Store a value in the shared state.
void set_value(const T& value);
void set_value(T&& value);

// Set a handler to be called, upon future destruction.
void set_future_dtor_handler(std::function<void> handler);

};

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00341] Promise default constructor d The Promise constructor
1 Promise();

behaves as the std::promise constructor
1 promise();

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00342] Promise move constructor d The Promise constructor
1 Promise(Promise&&) noexcept;

behaves as the std::promise constructor
1 promise(promise&&) noexcept;

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00343] Promise move assignment operator d The Promise operator
1 Promise& operator=(Promise&&) noexcept;

behaves as the std::promise operator
1 promise& operator=(promise&& rhs) noexcept;

Note: the promise::swap function the explanation in the standard refers to has no
correspondent for Promise, but the standard function’s behaviour is considered. c
(RS_CM_00214, RS_CM_00215)

[SWS_CM_00344] Promise::get_future d The Promise function
1 Future<T> get_future();

behaves as the std::promise function
1 future<R> get_future();

but returning a Future instead of an std::future. c(RS_CM_00214,
RS_CM_00215)

[SWS_CM_00345] Promise::set_value d The Promise function
1 void set_value(const T& value);

117 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

behaves as the std::promise function
1 void promise::set_value(const R& r);

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00346] Promise::set_value, forwarding reference version d The
Promise function

1 void set_value(T&& value);

behaves as the std::promise function
1 void promise::set_value(R&& r);

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00347] Promise::set_exception d The Promise function
1 void set_exception(std::exception_ptr p);

behaves as the std::promise function
1 void set_exception(exception_ptr p);

c(RS_CM_00214, RS_CM_00215)

[SWS_CM_00348] Promise::set_future_dtor_handler d The Promise func-
tion

1 void set_future_dtor_handler(std::function<void> handler);

sets a handler to be called upon destruction of the Future associated with the
Promise’s shared state.
Note: the destruction of the associated Future implies the value or exception
set by the Promise cannot be received from that point on. c(RS_CM_00214,
RS_CM_00215)

8.1.2.4.2 Optional Data Types

The following section describes the Optional class template ara::com::Optional
used in ara::com to provide access to optional record elements of a Structure Im-
plementation Data Type. Whenever there is a mention of the standard C++17
Item std::optional, the implied source material is [21].

The class template std::optional manages optional record elements, i.e. values that
may or may not be present. Every instance of an optional record element either con-
tains a value or does not. The existence can be evaluated during runtime.
Note: Mandatory record elements are declared directly with the corresponding Im-
plementationDataType without using std::optional.

[SWS_CM_01033] Optional Class Template d The Communication Management
shall at least provide an Optional class template which provides a way to check and
set the availability of optional record elements.

118 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

template< class T >
class Optional {

// Default constructor
Optional() noexcept;
// Move constructor
Optional(Optional&&) noexcept;
// Copy constructor
Optional(const Optional<T>&);

~Optional();

// Move assignment operator
Optional& operator=(Optional&&) noexcept;
// Default copy assignment operator
Optional& operator=(const Optional&);

// Returns the value
T& value();

// Check if the value is available
bool has_value();

// Overload bool operator
operator bool();

// Destroy value and mark as unavailable
void reset();

};

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01034] Optional default constructor d The Optional constructor
1 Optional();

behaves as the std::optional constructor
1 optional();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01035] Optional move constructor d The Optional move constructor
1 Optional(Optional&&) noexcept;

behaves as the std::optional move constructor
1 constexpr optional(optional&& other) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01036] Optional copy constructor d The Optional copy constructor

119 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

1 Optional(const Optional&);

behaves as the std::optional copy constructor
1 constexpr optional(const optional& other);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01037] Optional destructor d The Optional destructor
1 ~Optional();

behaves as the std::optional destructor
1 ~optional();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01038] Optional move assignment operator d The Optional move
assignment operator

1 Optional& operator=(Optional&&) noexcept;

behaves as the std::optional move assignment operator
1 constexpr optional(optional&& other) noexcept

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01039] Optional default copy assignment operator d The Optional
default copy assignment operator

1 Optional& operator=(const Optional&);

behaves as the std::optional default copy assignment operator
1 optional& operator=(const optional& other);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01040] Optional function to get contained value d The Optional
function to get contained value

1 T& value();

If *this contains a value, returns a reference to the contained value.
Otherwise, throws a std::bad_optional_access exception. c(RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01041] Optional function to check availability of contained value d
The Optional checker function to check the availability of the contained value

1 bool has_value();

true if *this contains a value, false if *this does not contain a value. c
(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01042] Optional bool operator d The Optional bool operator

120 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

1 operator bool();

true if *this contains a value, false if *this does not contain a value. c
(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01043] Optional reset function d The Optional reset function
1 void reset();

If *this contains a value, destroy that value as if by value().T:: T(). Otherwise,
there are no effects.
*this does not contain a value after this call. c(RS_CM_00205, RS_SOMEIP_00050)

8.1.2.4.3 Variant Data Types

The following section describes the Variant class template ara::com::Variant
used in ara::com to provide a type-save union representation. Whenever there is a
mention of the standard C++17 Item std::variant, the implied source material is
[21].

The class template std::variant at a given time either holds a value of one of its alter-
native types, or in the case of an error, no value.

[SWS_CM_01050] Variant Class Template d The Communication Management
shall at least provide an Variant class template which provides a type-save union
representation.

template< class... Types >
class Variant {

// Default constructor
Variant() noexcept;
// Move constructor
Variant(Variant&&) noexcept;
// Copy constructor
Variant(const Variant&);

~Variant();

// Move assignment operator
Variant& operator=(Variant&&) noexcept;
// Default copy assignment operator
Variant& operator=(const Variant&);

// Returns the zero-based index of the alternative
std::size_t index();

// Checks if the Variant is an invalid state
bool valueless_by_exception() const noexcept;

121 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

};

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01051] Variant default constructor d The Variant constructor
1 Variant();

behaves as the std::variant constructor
1 variant();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01052] Variant move constructor d The Variant move constructor
1 Variant(Variant&&) noexcept;

behaves as the std::variant move constructor
1 constexpr variant(variant&& other) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01053] Variant copy constructor d The Variant copy constructor
1 Variant(const Variant&);

behaves as the std::variant copy constructor
1 constexpr variant(const variant& other);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01054] Variant destructor d The Variant destructor
1 ~Variant();

behaves as the std::variant destructor
1 ~variant();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01055] Variant move assignment operator d The Variant move as-
signment operator

1 Variant& operator=(Variant&&) noexcept;

behaves as the std::variant move assignment operator
1 constexpr variant(variant&& other) noexcept

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01056] Variant default copy assignment operator d The Variant de-
fault copy assignment operator

122 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

1 Variant& operator=(const Variant&);

behaves as the std::variant default copy assignment operator
1 variant& operator=(const variant& other);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01057] Variant function to return the zero-based index of the alter-
native d The Variant function returns the zero-based index of the alternative

1 std::size_t index();

behaves as the std::variant function to return the zero-based index of the alterna-
tive

1 std::size_t index();

Returns the zero-based index of the alternative that is currently held by the variant.
If the variant is valueless by exception, it returns variant_nops. c(RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01058] Variant function to check if the Variant is in invalid state d
The Variant function checks if the Variant is in invalid state

1 bool valueless_by_exception() const noexcept;

behaves as the std::variant function to return false if and only if the variant holds
a value

1 bool valueless_by_exception() const noexcept;

Returns false if and only if the variant holds a value. c(RS_CM_00205,
RS_SOMEIP_00050)

8.1.2.5 Communication Payload Data Types

The data types described in the previous chapters are derived from the ara::com API
design and as an integral part of the API, they explicitly need to exist to make use of
ara::com API.

In contrast to this, the types described in this chapter will exist only if there is a related
AutosarDataType configured by the user, i.e. they are fully dependent to the data
type related input configuration. These data types are intended to be used for the
definition of the "payload" of events, operations, fields, and exceptions but also for the
implementation of the ara::com API and the functionality of the Adaptive Applications.

The parameters used in the event, method signatures, and exceptions of the ara::com
API are depending on the design of the service. So they are usually generated based
on the DataPrototypes of the ServiceInterface description. Their mapping to
C++ data types is described in following.

123 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

The AUTOSAR Meta Model defines the AutosarDataPrototype which can be typed
by an ApplicationDataType or an ImplementationDataType, but the Commu-
nication Management maps only ImplementationDataTypes to C++ data types.
Therefore it is required in the input configuration that every ApplicationDataType
used for the typing of a DataPrototype is mapped by a DataTypeMap to an Im-
plementationDataType.

The PortInterfaceToDataTypeMapping associates a particular ServiceIn-
terface with a DataTypeMappingSet and defines thus the applicable
DataTypeMaps.

[SWS_CM_00423] Data Type Mapping d The ara::com generator shall reject in-
put configurations containing a AutosarDataPrototype which is typed by an
ApplicationDataType, but not mapped to an ImplementationDataType. c
(RS_CM_00211, RS_CM_00003)

The Implementation Types header files as defined in [SWS_CM_10373] includes the
type declarations derived from the ImplementationDataTypes of the AUTOSAR
Adaptive Platform meta-model classes, depending on the values of the attributes
typeEmitter and nativeDeclaration.

[SWS_CM_00421] Provide data type definitions d The ara::com generator shall pro-
vide the corresponding data type definition if the value of attribute typeEmitter is
either NOT defined or set to "ARA_COM" and shall silently not generate the data type
definition if typeEmitter is set to anything else. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00422] Reject data type definitions d The ara::com generator shall re-
ject configurations where [SWS_CM_00421] is satisfied, but the Implementation-
DataType directly references a SwBaseType without defined nativeDeclaration.
c(RS_CM_00211, RS_CM_00003)

The redeclaration of C++ types due to the multiple descriptions of equivalent Imple-
mentation Data Types in the ServiceInterface description shall be avoided.

[SWS_CM_00411] Avoid Data Type redeclaration d If there is defined more than one
data type with equal Implementation Data Type symbols which are referring
to compatible ImplementationDataTypes with identical Implementation Data
Type symbols, there shall exist only once the corresponding type declaration as de-
scribed in the following sub chapters. c(RS_CM_00211, RS_CM_00003)

The available meta-model classes are described in detail in the AUTOSAR Manifest
Specification [4] and allow to use most of the data types of the AUTOSAR Classic
Platform like primitive values and structures. Additionally there are AUTOSAR Adaptive
Platform specific data types available, like string, vector and map.

8.1.2.5.1 Classification of Implementation Data Types

The type model ImplementationDataType is able to express following kinds of data
types:

124 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Primitive Implementation Data Type

• Array Implementation Data Type

• Structure Implementation Data Type

• Union Implementation Data Type

• Variant Implementation Data Type

• String Implementation Data Type

• Vector Implementation Data Type

• Associative Map Implementation Data Type

• Redefinition Implementation Data Type

• Enumeration Data Type

A Primitive Implementation Data Type is classified either by the category
attribute set to VALUE and that it directly refers to a SwBaseType in the role baseType
of its SwDataDefProps; or by a Redefinition Implementation Data Type,
which, after all type references have been resolved, boils down to an Implementa-
tionDataType of category VALUE.

An Array Implementation Data Type is classified by the category attribute
set to ARRAY and that it defines ImplementationDataTypeElements for each di-
mension of the array. The arraySize specifies the number of array elements of the
dimension.

A Structure Implementation Data Type is classified by the category at-
tribute of the ImplementationDataType set to STRUCTURE and that it has Imple-
mentationDataTypeElements. Each ImplementationDataTypeElement itself
can be one of the listed kinds again.

A Union Implementation Data Type is classified by the category attribute of
the ImplementationDataType set to UNION and that it has Implementation-
DataTypeElements. Each ImplementationDataTypeElement itself can be one
of the listed kinds again.

A Variant Implementation Data Type is classified by the category attribute
of the ImplementationDataType set to VARIANT and that it has Implementa-
tionDataTypeElements. Each ImplementationDataTypeElement itself can be
one of the listed kinds again.

A String Implementation Data Type is classified by the category attribute of
the ImplementationDataType set to STRING.
For more details, see chapter 3.3.3.1 of AUTOSAR Manifest Specification [4].

A Vector Implementation Data Type is classified by the category attribute of
the ImplementationDataType set to VECTOR and that it has one Implementa-
tionDataTypeElement. The ImplementationDataTypeElement itself can be

125 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

one of the listed kinds again.
For more details, see chapter 3.3.3.2 of AUTOSAR Manifest Specification [4].

An Associative Map Implementation Data Type is classified by the cate-
gory attribute of the ImplementationDataType set to ASSOCIATIVE_MAP and that
it has two ImplementationDataTypeElements.
For more details, see chapter 3.3.3.3 of AUTOSAR Manifest Specification [4].

A Redefinition Implementation Data Type is classified by the category at-
tribute of the referring ImplementationDataType set to TYPE_REFERENCE and that
it refers to an ImplementationDataType in the role implementationDataType
of its SwDataDefProps.

An Enumeration Data Type is classified by a Primitive Implementation
Data Type or ApplicationPrimitiveDataType having a SwDataDefProps ref-
erencing a CompuMethod, where the CompuMethod has:

• the category attribute set to TEXTTABLE,

• and has a CompuScales container located in the compuInternalToPhys con-
tainer,

• and the CompuScales container has CompuScales in role compuScale with
point ranges only (i. e. lower and upper limit of a CompuScale are identical).

8.1.2.5.2 Naming of Implementation Data Types

The data type name is defined by the Implementation Data Type symbol, which
is either the shortName or the value of the symbol attribute of the Implementa-
tionDataType.

[SWS_CM_00400] Naming of data types by short name d The Implementa-
tion Data Type symbol shall be the shortName of the Implementation-
DataType if no symbol attribute for this ImplementationDataType is defined. c
(RS_CM_00211, RS_CM_00003)

[SWS_CM_00401] Naming of data types by symbol d The Implementation
Data Type symbol shall be the value of the SymbolProps.symbol attribute of the
ImplementationDataType if the symbol attribute is defined. c(RS_CM_00211,
RS_CM_00003)

8.1.2.5.3 Primitive Implementation Data Type

The Communication Management declares C++ types for all Primitive Implemen-
tation Data Types defined in the ServiceInterface where the referred Base-
Type has a nativeDeclaration attribute.

126 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00402] Primitive Data Type d For each Primitive Implementation
Data Type with a nativeDeclaration attribute, there shall exist the corresponding
type declaration as:

using <name> = <nativeDeclaration>;

where:

<name> is the Implementation Data Type symbol of the Primitive Imple-
mentation Data Type,

<nativeDeclaration> is the nativeDeclaration attribute of the referred
BaseType.

c(RS_CM_00211, RS_CM_00003)

8.1.2.5.4 Array Implementation Data Type

The Communication Management declares C++ types for all Array Implementa-
tion Data Types defined in the ServiceInterface. In AUTOSAR Adaptive Plat-
form, the C++ binding of an Array Implementation Data Type could either be
implemented as a C-style array or as an std::array. It was chosen to implement it
as an std::array, because it avoids several limitations of the C-style arrays, e.g. by
having a member size() that provides the size of the array.

An array definition is based on the following information:

• the array type,

• the number of dimensions,

• the number of elements for each dimension.

An Array Implementation Data Type can have one or multiple dimensions.
In the context of the definitions given in this chapter, the term dimension is not re-
lated to the real physical dimensions in the memory, but to the ostensible dimensions
visible directly at the declaration of the data type. This means, that e.g. even if an Ar-
ray Implementation Data Type holds elements of Structure Implementa-
tion Data Type which itself has array or vector elements, the term one-dimensional
applies for the definition of the data type.

A one-dimensional Array Implementation Data Type aggregates one Imple-
mentationDataTypeElement which itself is not defined as an Array Implemen-
tation Data Type.

[SWS_CM_00403] Array Data Type with one dimension d For each Array Imple-
mentation Data Type with one dimension, there shall exist the corresponding type
declaration as:

using <name> = std::array<<element>, <size>>;

127 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

where:

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

<element> is the array element specification. It is defined by the Implementa-
tionDataTypeElement which is aggregated by the Array Implementation
Data Type,

<size> is the arraySize of the Array’s ImplementationDataTypeElement.

c(RS_CM_00211, RS_CM_00003)

A multidimensional Array Implementation Data Type aggregates one Imple-
mentationDataTypeElement which itself is defined as an Array Implemen-
tation Data Type. This means, that the ImplementationDataTypeElement
defined as <element> according to [SWS_CM_00403] is again categorized as a
Array Implementation Data Type and aggregates one further Implementa-
tionDataTypeElement. This definition describes a two-dimensional Array Im-
plementation Data Type; consequently a type with more dimensions is described
by just nesting more ImplementationDataTypeElements.

[SWS_CM_00404] Array Data Type with more than one dimension d For each Ar-
ray Implementation Data Type having more than one dimension, there shall ex-
ist the corresponding type declaration according to [SWS_CM_00403] as base where
<element> has a nested std::array for each additional dimension. The total num-
ber of dimensions is equal to the number of nested ImplementationDataType-
Elements with category ARRAY plus one for the top level Array Implementa-
tion Data Type. The array element itself is specified by the innermost Implemen-
tationDataTypeElement with category different from ARRAY. c(RS_CM_00211,
RS_CM_00003)

Please note that [SWS_CM_00404] leads to an std::array type definition where the
<size> definitions for each dimension are ordered from the leaf to the root Imple-
mentationDataTypeElement, like e.g.:

1 using My2DimArray = std::array<std::array<uint16, 3>, 2>;

which is the same layout as the corresponding C-style array type definition where the
<size> definitions for each dimension are ordered from the root to the leaf Imple-
mentationDataTypeElement, like:

1 typedef uint16 My2DimArray[2][3];

8.1.2.5.5 Structure Implementation Data Type

The Communication Management declares C++ types for all Structure Implemen-
tation Data Types defined in the ServiceInterface.

128 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00405] Structure Data Type d For each Structure Implementation
Data Type, there shall exist the corresponding type declaration as:

struct <name> {<elements>};

where:

<name> is the Implementation Data Type symbol of the Structure Imple-
mentation Data Type,

<elements> is the record element specification. For each record element defined
by one ImplementationDataTypeElement one record element specification
<elements> is defined. The record element specifications are ordered accord-
ing the order of the related ImplementationDataTypeElements in the input
configuration. Sequent record elements are separated with a semicolon.

c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00413] Element specification typed by Base Type d Record element
specifications <elements> shall exist as

<nativeDeclaration> <name>;

if the ImplementationDataTypeElement has the category attribute set to VALUE
and if it refers to an BaseType. The meaning of <nativeDeclaration> is identical
to [SWS_CM_00402] and the meaning of <name> is the shortName of the Imple-
mentationDataTypeElement. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00414] Element specification typed by Implementation Data Type d
Record element specifications <elements> shall exist as

<type> <name>;

if the ImplementationDataTypeElement has the category attribute set to
TYPE_REFERENCE and if it refers to an ImplementationDataType. <type>
is the Implementation Data Type symbol of the referred Implementation-
DataType and <name> is the shortName of the ImplementationDataTypeEle-
ment. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00415] Element specification typed by Array d Record element specifi-
cations <elements> shall exist as

std::array<<element>, <size>> <name>;

if the ImplementationDataTypeElement has the category attribute set to AR-
RAY. The meaning of <element> and <size> is identical to [SWS_CM_00403] and
[SWS_CM_00404]. The meaning of <name> is the shortName of the Implementa-
tionDataTypeElement. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00416] Element specification typed by Structure d Record element
specifications <elements> shall exist as

struct { <elements> } <name>;

129 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

if the ImplementationDataTypeElement has the category attribute set to
STRUCTURE. The meaning of <elements> is identical to [SWS_CM_00405]. The
meaning of <name> is the shortName of the ImplementationDataTypeElement.
Sequent elements are separated with a semicolon. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00417] Element specification typed by Union d Record element specifi-
cations <elements> shall exist as

union { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
UNION. The meaning and order of the fields is identical to [SWS_CM_00412]. Sequent
elements are separated with a semicolon. c(RS_CM_00211)

[SWS_CM_00448] Element specification typed by Variant d Record element speci-
fications <elements> shall exist as

ara::com::Variant < <elements> > <name>;

if the ImplementationDataTypeElement has the category attribute set to VARI-
ANT. The meaning and order of the fields is identical to [SWS_CM_00412]. Sequent
elements are separated with a semicolon. c(RS_CM_00211)

[SWS_CM_00420] Element specification typed by String Data Type with base-
TypeSize of 8 d Record element specifications <elements> shall exist as

std::string <name>;

if the ImplementationDataTypeElement has the category attribute set to
STRING and the baseTypeSize is set to a value of 8.

The meaning of <name> is the shortName of the ImplementationDataTypeEle-
ment. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00428] Element specification typed by String Data Type with base-
TypeSize of 16 d Record element specifications <elements> shall exist as

std::u16string <name>;

if the ImplementationDataTypeElement has the category attribute set to
STRING and the baseTypeSize is set to a value of 16.

The meaning of <name> is the shortName of the ImplementationDataTypeEle-
ment. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00418] Element specification typed by Vector d Record element speci-
fications <elements> shall exist as

std::vector<<element>> <name>;

if the ImplementationDataTypeElement has the category attribute set to VEC-
TOR. The meaning of <element> is identical to [SWS_CM_00408]. The mean-
ing of <name> is the shortName of the ImplementationDataTypeElement. c
(RS_CM_00211, RS_CM_00003)

130 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00419] Element specification typed by Map d Record element specifica-
tions <elements> shall exist as

std::map<<key>, <value>> <name>;

if the ImplementationDataTypeElement has the category attribute set
to ASSOCIATIVE_MAP. The meaning of <key> and <value> is identical to
[SWS_CM_00409]. The meaning of <name> is the shortName of the Implemen-
tationDataTypeElement. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_01032] Accessing optional record elements inside a Structure Im-
plementation Data Type that are serialized with the Tag-Length-Value princi-
ple. d For each record element inside a Structure Implementation Data Type
which is marked as optional according to [TPS_MANI_01083], [TPS_MANI_01085]
and [TPS_MANI_01084], there shall exist the corresponding type declaration as:

struct <struct name>{
ara::com::Optional<element datatype> <name>;

}
e.g.
struct my_struct {

ara::com::Optional<bool> my_bool;
}

where:

<name> is the shortName of the optional ImplementationDataTypeElement,

<element datatype> is the Implementation Data Type Symbol of the Im-
plementationDataType of the optional ImplementationDataTypeEle-
ment.

ara::com::Optional the template class is specified in paragraph 8.1.2.4.2.

c(RS_CM_00205, RS_SOMEIP_00050, RS_CM_00003)

8.1.2.5.6 Union Implementation Data Type

The Communication Management declares C++ types for all Union Implementa-
tion Data Types defined in the ServiceInterface.

[SWS_CM_00412] Union Data Type d For each Union Implementation Data
Type, there shall exist the corresponding type declaration as:

using <name> = union{<elements>};

where:

<name> is the Implementation Data Type symbol of the Union Implemen-
tation Data Type,

<elements> is the union element specification.

131 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

For each union element defined by one ImplementationDataTypeElement one
union element specification <elements> is defined. The union element specifications
are ordered according the order of the related ImplementationDataTypeElements
in the input configuration. Sequent union elements are separated with a semicolon. c
(RS_CM_00211)

The Union Implementation Data Type element specifications are the same
as those defined for Structure Implementation Data Type, so the require-
ments [SWS_CM_00413], [SWS_CM_00414], [SWS_CM_00415], [SWS_CM_00416],
[SWS_CM_00417], [SWS_CM_00418], [SWS_CM_00419] and [SWS_CM_00420] are
valid for Union Implementation Data Type element specifications accordingly.

A union data type describes a kind of structural overlay. Defining only one sub element
of a UNION is therefore not reasonable and indicates an error.

8.1.2.5.7 Variant Implementation Data Type

The Communication Management declares C++ types for all Variant Implemen-
tation Data Types defined in the ServiceInterface.

[SWS_CM_00449] Variant Data Type d For each Variant Implementation Data
Type, there shall exist the corresponding type declaration as:

using <name> = ara::com::Variant< <elements> >;

where:

<name> is the Implementation Data Type symbol of the Variant Imple-
mentation Data Type,

<elements> is the Variant element specification.

For each Variant element defined by one ImplementationDataTypeElement one
union element specification <elements> is defined. The Variant element specifica-
tions are ordered according the order of the related ImplementationDataType-
Elements in the input configuration. Sequent Variants elements are separated with a
semicolon. c(RS_CM_00211)

The Variant Implementation Data Type element specifications are the same
as those defined for Structure Implementation Data Type, so the require-
ments [SWS_CM_00413], [SWS_CM_00414], [SWS_CM_00415], [SWS_CM_00416],
[SWS_CM_00417], [SWS_CM_00418], [SWS_CM_00419] and [SWS_CM_00420] are
valid for Variant Implementation Data Type element specifications accord-
ingly.

A Variant data type describes a kind of structural overlay. Defining only one sub ele-
ment of a VARIANT is therefore not reasonable and indicates an error.

This template class is specified in paragraph 8.1.2.4.3.

132 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2.5.8 String Implementation Data Type

The Communication Management declares C++ types for all String Implementa-
tion Data Types defined in the ServiceInterface. In AUTOSAR Adaptive Plat-
form, the C++ binding of a String Implementation Data Type is implemented
by an std::string or by std::u16string.

[SWS_CM_00406] String Data Type with baseTypeSize of 8 d For each String
Implementation Data Type where the baseTypeSize is set to a value of 8, there
shall exist the corresponding type declaration as:

using <name> = std::string;

where <name> is the Implementation Data Type symbol of the String Im-
plementation Data Type. c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00427] String Data Type with baseTypeSize of 16 d For each String
Implementation Data Type where the baseTypeSize is set to a value of 16,
there shall exist the corresponding type declaration as:

using <name> = std::u16string;

where <name> is the Implementation Data Type symbol of the String Im-
plementation Data Type. c(RS_CM_00211, RS_CM_00003)

8.1.2.5.9 Vector Implementation Data Type

The Communication Management declares C++ types for all Vector Implementa-
tion Data Types defined in the ServiceInterface. In AUTOSAR Adaptive Plat-
form, the C++ binding of a Vector Implementation Data Type is always imple-
mented by an std::vector.

A vector definition is based on the following information:

• the data type the vector consists of,

• the number of dimensions.

A Vector Implementation Data Type can have one or multiple dimensions.
In the context of the definitions given in this chapter, the term dimension is used with
the same sense as described in chapter 8.1.2.5.4.

A one-dimensional Vector Implementation Data Type aggregates one Im-
plementationDataTypeElement which itself is not defined as an Vector Imple-
mentation Data Type.

[SWS_CM_00407] Vector Data Type with one dimension d For each Vector Im-
plementation Data Type having only one dimension, there shall exist the corre-
sponding type declaration as:

using <name> = std::vector<<element>>;

133 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

where:

<name> is the Implementation Data Type symbol of the Vector Implemen-
tation Data Type,

<element> is the vector element specification. It is defined by the Implementa-
tionDataTypeElement which is aggregated by the Vector Implementa-
tion Data Type. The ImplementationDataTypeElement itself can be
one of the data types allowed for the Adaptive Platform.

c(RS_CM_00211, RS_CM_00003)

For a one-dimensional Vector Implementation Data Type, as it is given as ex-
ample for the definition of a Linear Vector Data Type in [4], the corresponding type
declaration would look like this:

1 using DynamicDataArrayImplLinear = std::vector<uint16>;

A multidimensional Vector Implementation Data Type aggregates one Im-
plementationDataTypeElement which itself is defined as an Vector Imple-
mentation Data Type. This means, that the ImplementationDataTypeEle-
ment defined as <element> according to [SWS_CM_00407] is again categorized as a
Vector Implementation Data Type and aggregates one further Implementa-
tionDataTypeElement. This definition describes a two-dimensional Vector Im-
plementation Data Type; consequently a type with more dimensions is described
by just nesting more ImplementationDataTypeElements.

[SWS_CM_00408] Vector Data Type with more than one dimension d For each
Vector Implementation Data Type having more than one dimension, there
shall exist the corresponding type declaration according to [SWS_CM_00407] as base
where <element> has a nested std::vector for each additional dimension. The
total number of dimensions is equal to the number of nested Implementation-
DataTypeElements with category VECTOR plus one for the top level Vector Im-
plementation Data Type. The vector element itself is specified by the inner-
most ImplementationDataTypeElement with category different from VECTOR.
c(RS_CM_00211, RS_CM_00003)

For a two-dimensional Vector Implementation Data Type, as it is given as ex-
ample for the definition of a Rectangular Vector Data Type in [4], the corresponding
type declaration would look like this:

1 using DynamicDataArrayImplRectangular = std::vector<std::vector<uint16>>;

[SWS_CM_00450] Maximum size of allocated vector memory d The maximum
size of usable memory for an ImplementationDataType of category VECTOR
can be limited using the parameter MAX_SIZE_HEAP or MAX_SIZE_STACK within
an Allocator.category as part of a specific ImplementationDataTypeEle-
mentExtension referenced by a distinct ImplementationDataType as described
in [TPS_MANI_01100]. c(TPS_MANI_01101)

134 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00451] Namespace specification for an ImplementationDataType of
category VECTOR d The context namespace for an ImplementationDataType of
category VECTOR can be specified using the SymbolProps element namespace
located in the ImplementationDataTypeExtension referenced by Implementa-
tionDataType. c(TPS_MANI_01102)

For more details how to model Vector Implementation Data Type, see the
chapter Vector Data Type of AUTOSAR Manifest Specification document [4].

8.1.2.5.10 Associative Map Implementation Data Type

The Communication Management declares C++ types for all Associative Map Im-
plementation Data Types defined in the ServiceInterface. In AUTOSAR
Adaptive Platform, the C++ binding of a Associative Map Implementation
Data Type is always implemented by an std::map.

[SWS_CM_00409] Associative Map Data Type d For each Associative Map Im-
plementation Data Type, there shall exist the corresponding type declaration as:

using <name> = std::map<<key>, <value>>;

where:

<name> is the Implementation Data Type symbol of the Associative Map
Implementation Data Type,

<key> is the map key type specification. It is defined by the first Implementation-
DataTypeElement which is aggregated by the Associative Map Imple-
mentation Data Type. The ImplementationDataTypeElement itself can
be one of the data types allowed for the Adaptive Platform as long as the require-
ments on the key data type imposed by the std::map implementation (namely
the applicability of std::less<key>) are met.

<value> is the mapped value type specification. It is defined by the second Imple-
mentationDataTypeElement which is aggregated by the Associative Map
Implementation Data Type. The ImplementationDataTypeElement it-
self can be one of the data types allowed for the Adaptive Platform.

c(RS_CM_00211, RS_CM_00003)

For a Associative Map Implementation Data Type as it is given as example
in chapter Associative Map Data Type of [4], the corresponding type declaration would
look like this:

1 using MyMap = std::map<uint16, uint8>;

For more details how to model Associative Map Implementation Data Type,
see the chapter Associative Map Data Type of AUTOSAR Manifest Specification doc-
ument [4].

135 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2.5.11 Redefinition of Implementation Data Type

[SWS_CM_00410] Data Type redefinition d For each Redefinition Implemen-
tation Data Type which is typed by an ImplementationDataType, there shall
exist the corresponding type declaration as:

using <name> = <type>;

where:

<name> is the Implementation Data Type symbol of the Redefinition Im-
plementation Data Type,

<type> is the Implementation Data Type symbol of the referred Implemen-
tationDataType.

c(RS_CM_00211, RS_CM_00003)

8.1.2.5.12 Enumeration Data Types

An Enumeration is not a plain primitive data type, but a structural description defined
with a set of custom identifiers known as enumerators representing the possible values.
In C++, an Enumeration is a first-class object and can take any of these enumerators
as a value.

It is recommended that the underlying type of the enumeration should be explicitly de-
fined to achieve both type safety and a fixed, well-defined size. Additionally, declaring
enumerations as scoped enumeration classes avoids the need of unique enumerator
names.
Therefore enumerations being both typed and scoped are used instead of classic C++
enumerations; the underlying type must be provided by the input configuration by defin-
ing an Enumeration Data Type.

[SWS_CM_00424] Enumeration Data Type d For each Enumeration Data Type
referenced by the ServiceInterface, there shall exist the corresponding type dec-
laration as:

enum class <name> : <type> {
<enumerator-list>

};

where:

<name> is the Implementation Data Type symbol of the Primitive Imple-
mentation Data Type,

<type> is the type of the Primitive Implementation Data Type, i.e. the
nativeDeclaration attribute of the directly referred BaseType if this na-
tiveDeclaration exists, else the Implementation Data Type symbol

136 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

of the ImplementationDataType where, after all type references have been
resolved, the Primitive Implementation Data Type boils down to.

<enumerator-list> are the enumerators as defined by [SWS_CM_00425].

c(RS_CM_00211, RS_CM_00003)

The enumerator names base on the CompuScale code symbolic name as defined
in [TPS_SWCT_01569] of the AUTOSAR Software Component Template [22].

[SWS_CM_00425] Definition of enumerators d For each CompuScale with point
range (i.e., lowerLimit equals upperLimit and both lowerLimit.interval-
Type and upperLimit.intervalType are either missing or set to CLOSED) in the
Enumeration Data Type, there shall exist the corresponding enumeration nested
in the declaration defined by [SWS_CM_00425] as:

<enumeratorLiteral> = <initializer><suffix>,

where:

<enumeratorLiteral> is the name of the enumerator according to the following
rule (lower values indicate higher priority):

1. the C++ compliant identifier specified by the symbol attribute of CompuS-
cale if this attribute is available and not empty,

2. the string specified by the value of vt element of the CompuConst of the
CompuScale if the value is a valid C++ identifier,

3. the string specified by the value of shortLabel attribute of CompuScale if
the attribute is available and not empty.

<initializer> is the CompuScale’s point range used as enumerator initializer,

<suffix> shall be "U" if <type> of [SWS_CM_00425] is an unsigned data type (i.e.,
if the baseTypeEncoding attribute of the directly (via swDataDefProps.base-
Type) or indirectly (via a chain of TYPE_REFERENCEs) referred SwBaseType
equals NONE (see [constr_1014] of the AUTOSAR Software Component Tem-
plate [22])), or empty if it is a signed data type (i.e., baseTypeEncoding is
different from NONE).

c(RS_CM_00211, RS_CM_00003)

[SWS_CM_10376] Skip CompuScales with non-point range d Any CompuScale
with non-point range shall be simply skipped, i.e., no enumeration according to
[SWS_CM_00425] shall be generated for those CompuScales. c(RS_CM_00211,
RS_CM_00003)

[SWS_CM_00426] Reject incomplete Enumeration Data Types d If the input
configuration contains an Enumeration Data Type and the name of an enumer-
ator can not be determined according to [SWS_CM_00425], the ara::com generator
shall reject this input as an invalid configuration. c(RS_CM_00211, RS_CM_00003)

137 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2.6 Error Exception Types

The ara::com API make use of C++ exceptions to notify the user of the API about any
errors occurred. ara::com API does hereby strictly follow [23, AUTOSAR CPP14 guide-
lines] regarding exception usage. I.e. there is a clean seperation of exception types into
Checked Exceptions and Unchecked Exceptions, which ara::com API builds
upon.

The latter ones (i.e., Unchecked Exceptions) can basically occur in any ara::com
API call, are not formally modeled in the Manifest, and are fully implementation specific.

The former ones (i.e., Checked Exceptions) can only occur in the context of a call of
a service interface method, are formally modeled in the Manifest (as Application-
Errors), and are fully covered by the AUTOSAR standard.

The types described in this chapter are related to Checked Exceptions and the
corresponding ApplicationErrors.

There are two types of Checked Exceptions, which might be thrown in the course
of a service method call on the proxy side:

ServiceNotAvailableException: This exception indicates that the Communica-
tion Management implementation detected during the processing of a method
call, that the providing service instance has already stopped offering the service.

ApplicationErrorException: This exception serves as the base class for all
kinds of exceptions related to the ApplicationErrors defined on meta-model
level for a specific ServiceInterface. They are created at the application level
service provider (skeleton) side and transported to the caller (proxy) side.

[SWS_CM_10352] Definition of ServiceNotAvailableException d The Ser-
viceNotAvailableException shall be a direct sub-class of std::exception. -
Thus the definition should look the following way:

1 class ServiceNotAvailableException: public std::exception
2 {
3 };

This definition of the ServiceNotAvailableException may be extended by the
Communication Management software provider. c(RS_CM_00102)

[SWS_CM_10353] Use of ServiceNotAvailableException d The ServiceNo-
tAvailableException shall be thrown by the Communication Management imple-
mentation in case it detects during processing of a method call, that the providing
service instance has already stopped offering the service. c(RS_CM_00102)

[SWS_CM_10354] Definition of ApplicationErrorException d The Applica-
tionErrorException shall be a direct sub-class of std::exception which shall
provide a pure virtual what method that shall be overridden by all derived classes.

Thus the definition should look the following way:
1 class ApplicationErrorException: public std::exception

138 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

2 {
3 public:
4 virtual const char *what() const noexcept override = 0;
5 };

This definition of the ApplicationErrorException may be extended by the Com-
munication Management software provider. c(RS_CM_00211)

[SWS_CM_10355] Use of ApplicationErrorException d The Application-
ErrorException shall serve as a base class for all kinds of exceptions related to the
ApplicationErrors defined on meta-model level for a specific ServiceInter-
face. c(RS_CM_00211)

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException d
For each ApplicationError composed by a ServiceInterface in role possi-
bleError, a dedicated direct sub-class of ApplicationErrorException shall be
defined. Hereby the name of this subclass shall be the shortName of the Applica-
tionError (<AE.SN>).

This sub-class shall override the what method in order to return a descriptive error
message containing the following information:

• the shortName of the ApplicationError

• the fully qualified shortName of the ServiceInterface

• the errorCode of the ApplicationError

Additionally for every ArgumentDataPrototype referenced by the Application-
Error in role errorContext the sub-class shall contain a dedicated getter method
named get_<CSO.SN>_<ADP.SN> where <CSO.SN> is the shortName of the
ClientServerOperation which contains the referenced ArgumentDataProto-
type and <ADP.SN> is the shortName of the ArgumentDataPrototype. The
return type of this getter method shall be the Implementation Data Type sym-
bol (<IDTS>) of the ArgumentDataPrototype according to [SWS_CM_00401] and
[SWS_CM_00400]. - Thus the definition should look the following way:

1 class <ApplicationError.SN>: public ApplicationErrorException
2 {
3 public:
4 <ApplicationError.SN>(<IDTS0> <CSO0.SN>_<ADP0.SN>, <IDTS1> <CSO1.SN>_

<ADP1.SN>, [..]);
5 const char *what() const noexcept final override;
6 const <IDTS0>& get_<CSO0.SN>_<ADP0.SN>() const;
7 const <IDTS1>& get_<CSO1.SN>_<ADP1.SN>() const;
8 [..]
9 };

This definition of the <ApplicationError.SN> may be extended by the Communi-
cation Management software provider. c(RS_CM_00211)

139 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.2.7 E2E Related Data Types

Some data types are used only in context of e2e-protected communication of events.

[SWS_CM_90421] ara::com:E2E_state_machine::E2Echeckstatus
d The Communication Management shall provide an enumeration
ara::com::E2E_state_machine::E2ECheckStatus which represents the
results of the check of a single sample:

• Ok: OK: the checks of the sample in this cycle were successful (including counter
check).

• Repeated: sample has a repeated counter.

• WrongSequence: The checks of the sample in this cycle were successful, with
the exception of counter jump, which changed more than the allowed delta.

• Error: Error not related to counters occurred (e.g. wrong crc, wrong length,
wrong Data ID).

• NotAvailable: No value has been received yet (e.g. during initialization). This
is used as the initialization value for the buffer.

• NoNewData: No new data is available (assuming a sample has already been
received since the initialization).

1 enum class E2ECheckStatus : uint8_t
2 {
3 Ok,
4 Repeated,
5 WrongSequence,
6 Error,
7 NotAvailable,
8 NoNewData
9 };

c(RS_E2E_08534)

The E2E State is determined by checking a history of CheckStatuses.

[SWS_CM_90422] ara::com:E2E_state_machine::E2EState d
The Communication Management shall provide an enumeration
ara::com:E2E_state_machine::E2EState which represents in what state
is the e2e check of the sample(s) of the event. If E2EState is Valid, then the
sample(s) can be used.

• Valid: Communication of the samples of this event functioning properly ac-
cording to e2e checks, sample(s) can be used.

• NoData: State before E2E protection is initialized, sample cannot be used.

• Init: No data from the publisher is available since the initialization, sample(s)
cannot be used.

140 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Invalid: Communication of the sample of this event not functioning properly,
sample(s) cannot be used.

1 enum class E2EState : uint8_t
2 {
3 Valid,
4 NoData,
5 Init,
6 Invalid
7 };

c(RS_E2E_08534)

The E2EResult is a class providing E2ECheckStatus and E2EState.

[SWS_CM_90423] E2EResult d The Communication Management
shall provide a C++ class named ara::com::e2exf::Result
which provides ara::com::E2E_state_machine::E2EState and
ara::com::E2E_state_machine::E2ECheckStatus.

1 class E2EResult {
2 public:
3 e2e::state_machine::CheckStatus GetCheckStatus() const noexcept;
4 e2e::state_machine::State GetState() const noexcept;
5 };

c(RS_E2E_08534)

141 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.3 API Reference

The ServiceInterface description is the input for the generation of the service API
header files content.

The proxy and skeleton header files contain different classes representing the Servi-
ceInterface itself and its elements event, method and field.

[SWS_CM_00002] Service skeleton class d The Communication Management shall
provide the definition of a C++ class named <name>Skeleton in the service skeleton
header file within the namespace defined by [SWS_CM_01006], where <name> is the
ServiceInterface.shortName.

1 class <ServiceInterface.shortName>Skeleton {
2 ...
3 };

c(RS_CM_00101)

[SWS_CM_00003] Service skeleton Event class d For each VariableDataPro-
totype defined in the ServiceInterface in the role event the definition of a C++
class using the shortName of the VariableDataPrototype shall be provided in
the service skeleton header file within the namespace defined by [SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2 ...
3 };

c(RS_CM_00201)

[SWS_CM_00007] Service skeleton Field class d For each Field defined in the
ServiceInterface in the role field the definition of a C++ class using the short-
Name of the Field shall be provided in the service skeleton header file within the
namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2 ...
3 };

c(RS_CM_00219)

[SWS_CM_00004] Service proxy class d The Communication Management shall pro-
vide the definition of a C++ class named <name>Proxy in the service proxy header
file within the namespace defined by [SWS_CM_01007], where <name> is the Ser-
viceInterface.shortName.

1 class <ServiceInterface.shortName>Proxy {
2 ...
3 };

c(RS_CM_00102)

[SWS_CM_00005] Service proxy Event class d For each VariableDataProto-
type defined in the ServiceInterface in the role event the definition of a C++

142 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

class using the shortName of the VariableDataPrototype shall be provided in
the service proxy header file within the namespace defined by [SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2 ...
3 };

c(RS_CM_00103)

[SWS_CM_00006] Service proxy Method class d For each ClientServerOpera-
tion defined in the ServiceInterface in the role method the definition of a C++
class using the shortName of the ClientServerOperation shall be provided in
the service proxy header file within the namespace defined by [SWS_CM_01015].

1 class <ClientServerOperation.shortName> {
2 ...
3 };

c(RS_CM_00212, RS_CM_00213)

[SWS_CM_00008] Service proxy Field class d For each Field defined in the Ser-
viceInterface in the role field the definition of a C++ class using the shortName
of the ServiceInterface shall be provided in the service proxy header file within the
namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2 ...
3 };

c(RS_CM_00216)

The following sub-chapters describe the content of the previously defined classes.

8.1.3.1 Offer service

[SWS_CM_00101] Method to offer a service d The Communication Management
shall provide an OfferService method as part of the ServiceSkeleton class to
offer a service to applications.

void OfferService();

c(RS_CM_00101)

[SWS_CM_00102] Uniqueness of offered service d The Communication Manage-
ment shall check the offered service for uniqueness. If the same or another service
with the same service ID and instance ID is already registered the Communication
Management shall skip further processing. c(RS_CM_00200, RS_CM_00101)

[SWS_CM_00103] Protocol where a service is offered d When a new service is of-
fered by the application the Communication Management shall check over which proto-
cols this service shall be offered. This information is configured in the class of Servi-
ceInterfaceDeployment referencing the offered ServiceInterface in the role

143 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

serviceInterface. According of the type of the ServiceInterfaceDeployment
the Communication Management shall trigger the service offering over respective pro-
tocol. c(RS_CM_00101)

[SWS_CM_00111] Method to stop offering a service d The Communication Manage-
ment shall provide a StopOfferService method as part of the ServiceSkeleton
class to stop offering services to applications.

void StopOfferService();

c(RS_CM_00105)

8.1.3.2 Service skeleton creation

[SWS_CM_00130] Creation of service skeleton d The Communication Management
shall provide a constructor for each specific ServiceSkeleton class taking two ar-
guments:

• InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.
The identifier shall be unique, so using the same instance identifier for the cre-
ation of more than one skeleton instance shall raise an exception.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::com::InstanceIdentifier instance,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

8.1.3.3 Send event

Inside the specific Event class belonging to the specific ServiceSkeleton class a
Send method shall be provided to initiate sending the corresponding event .To support
sending of events where the data is owned by the application and continuously updated
and the data is explicitly created for sending the Send method shall be provided in two
ways: One where the application is owner of the data and the Send method makes a
copy for sending and one where Communication Management is responsible for the
data and the application is not allowed to do anything with the data after sending.

144 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00162] Send event where application is responsible for the data d The
Send method of the specific Event class where the application is responsible for the
data and the Communication Management creates a copy for sending takes in the
input parameter data, the data to send and sends it to all subscribed applications.
This version of the Send method shall be used whenever the application wants to work
further with the data.

void Event::Send(const SampleType &data);

c(RS_CM_00201)

[SWS_CM_90437] Send event where Communication Management is responsible
for the data d The Send method of the specific Event class where the Communication
Management is responsible for the data and the application is not allowed to access
the data after sending takes in the input parameter data, the data to send and sends
it to all subscribed applications.

void Event::Send(ara::com::SampleAllocateePtr <SampleType> data);

Before sending the event the corresponding data has to be requested from the Com-
munication Management (see [SWS_CM_90438]) and filled with the respective data. c
(RS_CM_00201)

[SWS_CM_90438] Allocating data for event transfer d Data shall be requested by
calling the Allocate method of the specific Event class. By calling the Send method
with the data, it is ensured that the data will be freed by the Communication Manage-
ment.

ara::com::SampleAllocateePtr <SampleType> Event::Allocate();

This version of the Send method shall be used whenever the data is created explicitly
for sending and no further processing is happening afterward by the application itself.
c(RS_CM_00201)

See [SWS_CM_00308] for the type definition of SampleAllocateePtr and ARA-
ComAPI explanatory document [1] for more details on the behavior.

8.1.3.4 Provide a service method

[SWS_CM_00191] Provision of method d A pure virtual method shall be defined in-
side the specific ServiceSkeleton class for each provided method of the service.
The name of this method and its parameters are derived from the signature of the pro-
vided service method.
The service method input parameters shall become input parameters of the respective
method defined inside the ServiceSkeleton class.
An Output type combining the possible output parameters and optional return values
shall be provided inside the ServiceSkeleton class.
The method shall return an ara::com::Future object wrapping the output parame-
ters and return values as result.

145 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

A corresponding subclass providing implementations for the methods shall be created
to implement the methods of a respective ServiceSkeleton.

struct Method1Output {
TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...
TypeResult result;

}

virtual ara::com::Future <Method1Output> Method1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00211)

[SWS_CM_90434] Provision of a Fire and Forget method d A pure virtual
method shall be defined inside the specific ServiceSkeleton class for each pro-
vided Fire and Forget method of the service.
The name of this method and its parameters are derived from the signature of the pro-
vided Fire and Forget method.
The Fire and Forget method input parameters shall become input parameters of
the respective method defined inside the ServiceSkeleton class.
The Fire and Forget method shall have no return values.
A corresponding subclass providing implementations for the Fire and Forget
methods shall be created to implement the Fire and Forget method of a respec-
tive ServiceSkeleton.

virtual void FF_Method1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00225)

8.1.3.5 Processing of service methods

[SWS_CM_00198] Set service method processing mode d With the instantiation of
a specific ServiceSkeleton class, the mode for processing service method invo-
cations is set by providing an ara::com::MethodCallProcessingMode as a pa-
rameter of the constructor. The mode allows the implementation providing the service
method to select how the incoming service method invocations are processed. The
selection is valid for all the methods of the specific ServiceSkeleton instance. The
data type representing the processing modes is defined by [SWS_CM_00301].
The following processing modes shall be supported:

146 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

• Polling (enumeration element kPoll): Instead of calling a provided service
method, the Communication Management software collects incoming service
method invocations. The processing of each invocation is explicitly triggered by
the implementation providing the service method using the mechanism defined
in [SWS_CM_00199].

• Event-driven, concurrent (enumeration element kEvent): The Communication
Management software activates the invoked service method when the invocation
arrives. Consumer concurrent calls are allowed and will be processed concur-
rently on provider side by using different threads.
This is the default mode.

• Event-driven, sequential (enumeration element kEventSingleThread): The
Communication Management software activates the invoked service method
when the invocation arrives. Consumer concurrent calls are allowed, but will not
be processed concurrently on provider side, by instead executing them one after
the other to avoid the need of synchronization mechanisms in the implementation
providing the service method.

c(RS_CM_00211)

[SWS_CM_00199] Process Service method invocation d Inside the specific Ser-
viceSkeleton class, a ProcessNextMethodCall method shall be provided. This
method allows the implementation providing the service method to trigger the execution
of the next service consumer method call at a specific point of time if the processing
mode is set to Polling.
The method shall return an ara::com::Future object wrapping a bool parameter
as return value. A returned value true indicates that there is at least one pend-
ing invocation, returning false indicates the opposite. Additionally, the returned
ara::com::Future object allows to register a callback function which is invoked
when the next pending execution of a method request is finished.

ara::com::Future<bool> ProcessNextMethodCall();

c(RS_CM_00211)

[SWS_CM_10362] Raising checked exceptions for application errors d Whenever
on the skeleton side of a service method an ApplicationError – according to the
interface description in the Manifest – is detected, the sub-class of Application-
ErrorException representing this ApplicationError (see [SWS_CM_10356])
simply shall be stored into the ara::com::Promise object, from which the
ara::com::Future is returned to the caller. c(RS_CM_00211, RS_CM_00212,
RS_CM_00213, RS_CM_00214)

8.1.3.6 Registering get handlers for fields

[SWS_CM_00114] Registering Getters d Inside the specific Field class belonging
to the specific ServiceSkeleton class a RegisterGetHandler method shall be

147 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

provided to give the possibility to register a GetHandler. This GetHandler (if reg-
istered) shall be called by the implementation whenever the Communication Manage-
ment receives a Get.

void RegisterGetHandler(
std::function<ara::com::Future<FieldType>(

)> getHandler);

c(RS_CM_00218)

[SWS_CM_00115] Existence of RegisterGetHandler method d The existence of
RegisterGetHandler as part of the Field class shall be controlled by Field.has-
Getter. c(RS_CM_00218)

8.1.3.7 Registering set handlers for fields

[SWS_CM_00116] Registering Setters d Inside the specific Field class belonging
to the specific ServiceSkeleton class a RegisterSetHandler function shall be
provided to give the possibility to register a SetHandler. This SetHandler (if reg-
istered) shall be called by the implementation whenever the Communication Manage-
ment receives a Set.

void RegisterSetHandler(
std::function<ara::com::Future<FieldType>(

const FieldType& value)> setHandler);

c(RS_CM_00218)

[SWS_CM_00117] Existence of the RegisterSetHandler method d The existence of
RegisterSetHandler as part of the Field class shall be controlled by Field.has-
Setter. c(RS_CM_00218)

[SWS_CM_00119] Update Function d Inside the specific Field class belonging to
the specific ServiceSkeleton class an Update function shall be provided to initiate
the transmission of updated field data to the subscribers. See [SWS_CM_00162] for
the required behavior. The Update method shall look as follows:

void Field::Update(const FieldType &value);

c(RS_CM_00218)

[SWS_CM_00128] Ensuring the existence of valid Field values d If a service con-
taining a Field is offered, an Unchecked Exception shall be raised, if Update()
has not been called yet and one or more of the following applies:

• hasNotifier = true

• hasGetter = true and a Getter has not yet been registered.

c(RS_CM_00218)

148 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_00129] Ensuring existence of SetHandler d Upon a call to OfferSer-
vice() in a skeleton implementation for a given service, an Unchecked Exception
shall be raised, if for at least one contained Field having hasSetter = true no
SetHandler has been registered yet. c(RS_CM_00218)

8.1.3.8 Find service

The Communication Management shall provide a FindService method as part of the
ServiceProxy class to enable applications to find services. To support event-based
and time-triggered systems the FindService method shall be provided in a handler
registration and a immediately returned request style.

[SWS_CM_00122] Find service with immediately returned request d The Find-
Servicemethod of the ServiceProxy class with immediately returned request takes
an instance ID qualifying the wanted instance of the service as optional input param-
eter. If no instance is specified, any instance of the service matches.
As result a container containing handles for all matching service instances is returned.

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService(ara::com::InstanceIdentifier instance =

ara::com::InstanceIdentifier::Any);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00304] for ServiceHandleContainer,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

[SWS_CM_00123] Find service with handler registration d The StartFindSer-
vice method of the ServiceProxy class with handler registration takes as input
parameters a FindServiceHandler or a FindServiceHandlerExt, fitting for the
corresponding ServiceProxy class which gets called upon detection of a matching
service, and optionally an instance ID qualifying the wanted instance of the service.
If no instance is specified any instance of the service matches. As result a Find-
ServiceHandle for this search/find request is returned, which is needed to stop the
service availability monitoring and related firing of the given handler.

static ara::com::FindServiceHandle StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::com::InstanceIdentifier instance =

ara::com::InstanceIdentifier::Any);

static ara::com::FindServiceHandle StartFindService(
ara::com::FindServiceHandlerExt<<ProxyClassName>::HandleType> handler,

149 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

ara::com::InstanceIdentifier instance =
ara::com::InstanceIdentifier::Any);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00303] for FindServiceHandle,

• [SWS_CM_00305] for FindServiceHandler,

• [SWS_CM_00383] for FindServiceHandlerExt,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

[SWS_CM_00124] Find service handler behavior d After calling the StartFind-
Service method, the FindServiceHandler shall be called by the Communication
Management software to receive the found services. By the first call, the Find-
ServiceHandler or FindServiceHandlerExt shall receive the initially known
matches, if there are any. In following, the FindServiceHandler or FindService-
HandlerExt shall be called every time a new matching service instance is found. c
(RS_CM_00102)

[SWS_CM_00125] Stop find service d To stop receiving further notifications the Ser-
viceProxy class shall provide a StopFindService method. The FindService-
Handle returned by the FindService method with handler registration has to be
provided as input parameter.

void StopFindService(ara::com::FindServiceHandle handle)

c(RS_CM_00102)

[SWS_CM_10382] Calling stop find service for already stopped finds d Calls
to the StopFindService method using a FindServiceHandle obtained from a
StartFindService that already has been stopped shall be silently ingnored. c
(RS_CM_00102)

See [SWS_CM_00303] for the type definition of FindServiceHandle.

8.1.3.9 Service proxy creation

[SWS_CM_00131] Creation of service proxy d The Communication Management
shall provide a constructor for each specific ServiceProxy class taking a handle
returned by any FindService method of the ServiceProxy class to get a valid
ServiceProxy based on the handles returned by FindService.

explicit ServiceProxy::ServiceProxy(HandleType &handle);

c(RS_CM_00102)

150 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

[SWS_CM_10382] GetHandle function to return the proxy instance creation han-
dle d The Communication Management shall provide a GetHandle method for each
specific ServiceProxy class to get the handle from which the ServiceProxy in-
stance has been created.

HandleType ServiceProxy::GetHandle() const;

c(RS_CM_00107)

See [SWS_CM_00312] for the type definition of HandleType.

8.1.3.10 Service event subscription

[SWS_CM_00141] Method to subscribe to a service event d Inside the specific
Event class belonging to the specific ServiceProxy class a Subscribe method
shall be provided to start subscription of the corresponding event. As input parameters
the policy regarding cache update (see [SWS_CM_00300]) and the cacheSize of
the subscription needs to be specified.

void Event::Subscribe(
ara::com::EventCacheUpdatePolicy policy,
size_t cacheSize

);

c(RS_CM_00103)

Note that with ara::com::EventCacheUpdatePolicy::kNewestN policy the
cache always contains the last n received events. Where n is equal to the cache-
Size. The cache will contain less events until n events have been received.

[SWS_CM_00151] Method to unsubscribe from a service event d Inside the specific
Event class belonging to the specific ServiceProxy class a Unsubscribe method
shall be provided to allow for unsubscribing from previously subscribed events.

void Event::Unsubscribe();

c(RS_CM_00104)

8.1.3.11 Receive event using polling

Inside the specific Event class belonging to the specific ServiceProxy class, an
Update, a GetCachedSamples and a Cleanup method shall be provided to allow
for polling of received events.

[SWS_CM_00172] Method to update the event cache d The Communication Man-
agement shall provide an Update method as part of the Event class to update the
event cache with the meanwhile received events. As input parameter the Update
method allows to specify a FilterFunction to throw away received events.

151 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

bool Event::Update(
ara::com::FilterFunction<SampleType> filter = {});

c(RS_CM_00202)

[SWS_CM_00173] Method to get the cached samples d The Communication Man-
agement shall provide a GetCachedSamples method as part of the Event class to
retrieve the current data in the event cache after updating the event cache via the Up-
date method. The return value will be a container containing the events stored in the
event cache.

const ara::com::SampleContainer<ara::com::SamplePtr<const SampleType>>
&GetCachedSamples() const;

For the definition of the types used in the GetCachedSamples signature, see:

• [SWS_CM_00307] for SampleContainer,

• [SWS_CM_00306] for SamplePtr.

c(RS_CM_00202)

For the e2e-protected events, after updating the event cache via the Update method,
and before calling GetCachedSamples, the current E2EResult needs to be retrieved
by calling the GetE2EResult method.

[SWS_CM_00174] Method to clean-up the event cache d The Communication Man-
agement shall provide a Cleanup method as part of the Event class to clean-up the
event cache after processing the data retrieved via the GetCachedSamples method.
The Cleanup method removes all events from the event cache if the selected caching
policy is ara::com::EventCacheUpdatePolicy::kNewestN. Otherwise calling
the Cleanup method has no effect.

void Event::Cleanup()

c(RS_CM_00202)

[SWS_CM_90424] Provide E2E Result d Inside the specific e2e-protected Events
belonging to the specific ServiceProxy class, the method GetE2EResult shall be
provided.

const ara::com::e2exf::Result GetE2EResult() const;

For the definition of the type returned by GetE2EResult signature, see:

• [SWS_CM_90423] for E2EResult

c(RS_E2E_08534)

[SWS_CM_00266] FilterFunction for incoming event filtering d The FilterFunc-
tion takes as input the received event and decides whether to store or throw away the
event. By returning true the event is stored for further processing.

template<typename S>
using FilterFunction = std::function<bool(const S& sample)>

152 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

c(RS_CM_00202)

8.1.3.12 Receive event by getting triggered

[SWS_CM_00181] Enable service event trigger d To enable that applications get
triggered upon receiving of an event inside the specific Event class belonging to the
specific ServiceProxy class a SetReceiveHandler method shall be provided to
allow for specifying the function to call upon event arrival. Therefore, it takes as input
parameter handler a pointer to the respective function.

void Event::SetReceiveHandler(ara::com::EventReceiveHandler handler)

The EventReceiveHandler constitutes a function without parameters and has to
use the Update, Get, and Cleanup methods of the specific Event class to access
the retrieved event data. See [SWS_CM_00309] for its definition. c(RS_CM_00203)

[SWS_CM_00182] Event Receive Handler call serialization d The Communication
Management shall serialize calls to the registered EventReceiveHandler function
as it is not guaranteed that the callback function is re-entrant. c(RS_CM_00203)

[SWS_CM_00183] Disable service event trigger d To disable the triggering of the
application upon receiving of an event inside the specific Event class belonging to the
specific ServiceProxy class a UnsetReceiveHandler method shall be provided
to allow for disabling of triggering the application.

void Event::UnsetReceiveHandler()

c(RS_CM_00203)

8.1.3.13 Call a service method

[SWS_CM_00196] Initiate a method call d The operator() shall be provided inside
the specific Method class belonging to the specific ServiceProxy class to allow the
call of a method provided by a server.
As input parameters, the operator() shall take the respective input parameters of
the provided method.
An Output type combining the possible output parameters and optional return values
shall be provided inside the specific Method class belonging to the specific Service-
Proxy class.
The operator() shall return an ara::com::Future object wrapping the output pa-
rameters and return values.
At the point of time when the caller calls the method, the Communication Manage-
ment software does not know yet if the result shall be returned with synchronous or
asynchronous behavior. Therefore the Communication Management software shall
instantiate the ara::com::Future object to be returned to the caller, but shall not
perform actions which lead to uncontrolled context switches from the caller point of
view, e.g. an asynchronous event-style mechanism for a wait-on-event.

153 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

struct Method1::Output {
TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...
TypeResult result;

}

ara::com::Future<Method1::Output> Method1::operator()(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

);

c(RS_CM_00212, RS_CM_00213)

The method call according to [SWS_CM_00196] will return immediately. The caller’s
selection of a synchronous or asynchronous behavior to get the method output is
achieved by the use of the returned ara::com::Future object which is used to query
for method completion and result including a possibly thrown exception.

[SWS_CM_00194] Cancel the method call d The destructor of the returned
ara::com::Future object shall be used by the caller to cancel the request after
issuing a method call. Deleting the returned ara::com::Future object shall result
in the abort of the method call and ensure that any related buffers are released and no
result is returned to the caller. c(RS_CM_00212, RS_CM_00213)

This is a mechanism on client side to tell the Communication Management software
that the caller is not interested in the method result anymore. Cancellation of the
method call is not propagated to the server side execution of the method.

[SWS_CM_00195] Retrieving results of the method call d The method get() of
the returned ara::com::Future object shall be used to retrieve the result of the
method call or to obtain any exception thrown by the method. The call of method
get() will block if there is not yet a result available and will return after the result
has been received returning an object of the respective Output type or throwing an
exception. c(RS_CM_00212)

[SWS_CM_00192] Synchronous behavior of method call d To achieve synchronous
behavior of the method call, the methods of ara::com::Future object with block-
ing behavior shall be used because they only return when the output of the method
call according to [SWS_CM_00196] is available: get(), wait(), wait_for(),
wait_until(). With the call of one of these methods and the result still pending,
the Communication Management software is allowed to perform actions which lead
to uncontrolled context switches from the caller point of view, e.g. an asynchronous
event-style mechanism for a wait-on-event. c(RS_CM_00212)

[SWS_CM_00193] Asynchronous behavior of method call with polling d To
achieve asynchronous behavior of the method call with polling on the result availability,
the non-blocking method is_ready() of ara::com::Future object shall be used.

154 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

If is_ready() returns true, the next call of get() shall not block, but immediately
return the valid value. c(RS_CM_00213, RS_CM_00214)

Note:
When the user just calls is_ready() of ara::com::Future and on positive re-
sponse, finally get() of ara::com::Future, retrieving the result of the method call
or any exception thown by the method works polling-based without any overhead in
the middleware and uncontrolled context switches due to asynchronous event-style
mechanisms.

[SWS_CM_00197] Asynchronous behavior of method call with notification d To
achieve asynchronous behavior of the method call with event-driven notification on
the result availability, the non-blocking method then() of ara::com::Future object
shall be used. It allows to register a function, which gets asynchronously called in case
the future has a valid result. c(RS_CM_00213, RS_CM_00215)

[SWS_CM_10371] Context of thrown checked exceptions d If during processing
of a method call one of the checked exceptions (see section subsubsection 8.1.2.6)
occurs, the corresponding checked exception (i.e., either ServiceNotAvailable-
Exception or the proper sub-class of ApplicationErrorException) shall be
thrown in the context of the ara::com::Future::Get() call. c(RS_CM_00211,
RS_CM_00212, RS_CM_00213, RS_CM_00214)

[SWS_CM_90435] Initiate a Fire and Forget method call d The operator()
shall be provided inside the specific Fire and Forget method belonging to the
specific ServiceProxy class to allow the call of a Fire and Forget method
provided by a server.
As input parameters, the operator() shall take the respective input parameters of
the provided Fire and Forget method.
The operator() shall not have return values.

void FF_Method1::operator()(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

);

c(RS_CM_00225)

[SWS_CM_90436] No checked exceptions thrown for Fire and Forget
method calls d There shall be no checked exceptions (see section subsubsec-
tion 8.1.2.6) thrown during the processing of a Fire and Forget method calls. c
(RS_CM_00225)

155 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

8.1.3.14 Get method for fields

[SWS_CM_00112] Method to get the value of a field d The Communication Man-
agement shall provide a Get method as part of the Field class to offer a service to
request the current value of the service provider.

ara::com::Future<FieldType> Get();

c(RS_CM_00218)

[SWS_CM_00132] Existence of getter method d The existence of the Get method as
part of the Field class shall be controlled by Field.hasGetter. c(RS_CM_00218)

8.1.3.15 Set method for fields

[SWS_CM_00113] Method to set the value of a field d The Communication Manage-
ment shall provide a Set method as part of the Field class to offer a service to the
applications to request the setting of a new value within the service provider.

ara::com::Future<FieldType> Set(const FieldType& value);

c(RS_CM_00217)

[SWS_CM_00133] Existence of the set method d The existence of the set method as
part of the Field class shall be controlled by Field.hasSetter. c(RS_CM_00218)

8.1.3.16 Update notification events for fields

[SWS_CM_00120] Provision of an update notification event for a Field d If has-
Notifier is true, update notification events for the Field shall be provided as of the
following requirements:

• [SWS_CM_00141] Method to subscribe to a service event

• [SWS_CM_00151] Method to unsubscribe from a service event

• [SWS_CM_00172], [SWS_CM_00173], [SWS_CM_00174] Receive a service
event using polling

• [SWS_CM_00181] Enable service event trigger

• [SWS_CM_00182] Event Receive Handler call serialization

• [SWS_CM_00183] Disable service event trigger

Except that the corresponding methods reside in the Field class instead of the Event
class. c(RS_CM_00218)

156 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document.

Class AdaptivePlatformServiceInstance (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

service instance in an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,

PackageableElement , Referrable, UploadablePackageElement
Subclasses ProvidedApServiceInstance, RequiredApServiceInstance
Attribute Type Mul. Kind Note
e2eEventPr
otectionPro
ps

End2EndEvent
ProtectionProp
s

* aggr This aggregation allows to protect an event or a
field notifier that is defined inside of the
ServiceInterface that is referenced by the
ServiceInstance in the role serviceInterface.

Tags: atp.Status=draft
secureCom
Config

ServiceInterfac
eElementSecu
reComConfig

* aggr Configuration settings to secure the
communication of ServiceInterface elements.

Tags: atp.Status=draft
serviceInterf
ace

ServiceInterfac
eDeployment

0..1 ref Reference to a ServiceInterfaceDeployment that
identifies the ServiceInterface that is represented
by the ServiceInstance.

Tags: atp.Status=draft

Table A.1: AdaptivePlatformServiceInstance

Class Allocator
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::DataTypes
Note This meta-class represents the ability to take influence on the way objects are

allocated in memory, for example it can be controlled whether an objects is allocated
on the heap or on the stack.

Tags: atp.Status=draft; atp.recommendedPackage=Allocators
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,

PackageableElement , Referrable
Attribute Type Mul. Kind Note
namespace
(ordered)

SymbolProps * aggr This aggregation allows for the definition of a
namespace of an Allocator.

Tags: atp.Status=draft

Table A.2: Allocator

157 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ApSomeipTransformationProps
Package M2::AUTOSARTemplates::AdaptivePlatform::TransformationConfiguration
Note SOME/IP serialization properties.

Tags: atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TransformationProps
Attribute Type Mul. Kind Note
alignment PositiveInteger 0..1 attr Specifies the alignment of dynamic data in the

serialized data stream. The alignment is specified
in Bits.

byteOrder ByteOrderEnu
m

0..1 attr Specifies the byte order of data in the serialized
data stream.

sessionHan
dling

SOMEIPTrans
formerSession
HandlingEnum

0..1 attr Defines whether the SOME/IP transformer shall
use session handling for Sender/Receiver
communication.

sizeOfArray
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the
referenced dataPrototype in case of an Array. It
describes the size of the length field (in Bytes) that
will be put in front of the Array in the SOME/IP
message. In contrast to Classic AUTOSAR this
attribute defines the value for both, fixed-size and
dynamic-size arrays.

sizeOfString
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the
referenced dataPrototype in case of a String. It
describes the size of the length field (in Bytes) that
will be put in front of the String in the SOME/IP
message.

sizeOfStruct
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the
referenced dataPrototype in case of an Struct. It
describes the size of the length field (in Bytes) that
will be put in front of the Struct in the SOME/IP
message.

sizeOfUnion
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the
referenced dataPrototype in case of a Union. It
describes the size of the length field (in Bytes) that
will be put in front of the Union in the SOME/IP
message.

sizeOfUnion
TypeSelect
orField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the
referenced dataPrototype in case of a Union. It
describes the size of the type selector field (in
Bytes) that will be put in front of the Union in the
SOME/IP message.

Table A.3: ApSomeipTransformationProps

158 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ApplicationArrayDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which is an array, each element is of the same application

data type.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, Atp

Blueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType, Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
dynamicArr
aySizeProfil
e

String 0..1 attr Specifies the profile which the array will follow if it
is a variable size array.

element ApplicationArra
yElement

1 aggr This association implements the concept of an
array element. That is, in some cases it is
necessary to be able to identify single array
elements, e.g. as input values for an interpolation
routine.

Table A.4: ApplicationArrayDataType

Class ApplicationAssocMapDataType
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::DataTypes
Note An application data type which is a map and consists of a key and a value

Tags: atp.Status=draft; atp.recommendedPackage=ApplicationDataTypes
Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, Atp

Blueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType, Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
key ApplicationAss

ocMapElement
1 aggr Key element of the map that is used to uniquely

identify the value of the map.

Tags: atp.Status=draft
value ApplicationAss

ocMapElement
1 aggr Value element of the map that stores the content

associated to a key.

Tags: atp.Status=draft

Table A.5: ApplicationAssocMapDataType

Class ApplicationAssocMapElement
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::DataTypes
Note Describes the properties of the elements of an application map data type.

Tags: atp.Status=draft
Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype,

DataPrototype, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
– – – – –

159 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note

Table A.6: ApplicationAssocMapElement

Class ApplicationDataType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note ApplicationDataType defines a data type from the application point of view. Especially

it should be used whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model,
such as measurement units. It does not consider implementation details such as
bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using
ApplicationDataTypes only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType
Attribute Type Mul. Kind Note
– – – – –

Table A.7: ApplicationDataType

Class ApplicationError
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note This is a user-defined error that is associated with an element of an AUTOSAR

interface. It is specific for the particular functionality or service provided by the
AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
errorCode Integer 1 attr The RTE generator is forced to assign this value

to the corresponding error symbol. Note that for
error codes certain ranges are predefined (see
RTE specification).

errorContex
t

ArgumentData
Prototype

* ref This reference identifies out arguments that shall
have a meaning only if an error occurs.

Tags: atp.Status=draft; atp.Status
Comment=Reserved for AUTOSAR adaptive
platform

Table A.8: ApplicationError

160 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ApplicationPrimitiveDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, Atp

Classifier , AtpType, AutosarDataType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.9: ApplicationPrimitiveDataType

Class ApplicationRecordDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which can be decomposed into prototypes of other

application data types.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, Atp

Blueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType, Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
element (or-
dered)

ApplicationRec
ordElement

1..* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is
subject to variability with the purpose to support
the conditional existence of elements inside a
ApplicationrecordDataType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table A.10: ApplicationRecordDataType

Class ApplicationRecordElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Describes the properties of one particular element of an application record data type.
Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype,

DataPrototype, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
– – – – –

Table A.11: ApplicationRecordElement

161 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ArgumentDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note An argument of an operation, much like a data element, but also carries direction

information and is owned by a particular ClientServerOperation.
Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype,

Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
direction ArgumentDirec

tionEnum
1 attr This attribute specifies the direction of the

argument prototype.
serverArgu
mentImplPo
licy

ServerArgume
ntImplPolicyEn
um

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same
semantics as if the attribute is set to the value
useArgumentType for primitive arguments and
structures and to the value useArrayBaseType for
arrays.

Table A.12: ArgumentDataPrototype

Enumeration ArgumentDirectionEnum
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive

Types
Note Use cases:

• Arguments in ClientServerOperation can have different directions that need
to be formally indicated because they have an impact on how the function
signature looks like eventually.

• Arguments in BswModuleEntry already determine a function signature, but
the direction is used to specify the semantics, especially of pointer
arguments.

Literal Description
in The argument value is passed to the callee.

Tags: atp.EnumerationValue=0
inout The argument value is passed to the callee but also passed back from the callee to

the caller.

Tags: atp.EnumerationValue=1
out The argument value is passed from the callee to the caller.

Tags: atp.EnumerationValue=2

Table A.13: ArgumentDirectionEnum

162 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class AutosarDataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Base class for prototypical roles of an AutosarDataType.
Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, Multilanguage

Referrable, Referrable
Subclasses ArgumentDataPrototype, Field, ParameterDataPrototype, PersistencyDataElement,

VariableDataPrototype
Attribute Type Mul. Kind Note
type AutosarDataTy

pe
1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table A.14: AutosarDataPrototype

Class AutosarDataType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note Abstract base class for user defined AUTOSAR data types for ECU software.
Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable,

MultilanguageReferrable, PackageableElement , Referrable
Subclasses AbstractImplementationDataType, ApplicationDataType
Attribute Type Mul. Kind Note
swDataDef
Props

SwDataDefPro
ps

0..1 aggr The properties of this AutosarDataType.

Table A.15: AutosarDataType

Class BaseType (abstract)
Package M2::MSR::AsamHdo::BaseTypes
Note This abstract meta-class represents the ability to specify a platform dependant base

type.
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,

PackageableElement , Referrable
Subclasses SwBaseType
Attribute Type Mul. Kind Note
baseTypeD
efinition

BaseTypeDefi
nition

1 aggr This is the actual definition of the base type.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

Table A.16: BaseType

Class BaseTypeDirectDefinition
Package M2::MSR::AsamHdo::BaseTypes
Note This BaseType is defined directly (as opposite to a derived BaseType)
Base ARObject , BaseTypeDefinition
Attribute Type Mul. Kind Note

163 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
baseTypeE
ncoding

BaseTypeEnco
dingString

1 attr This specifies, how an object of the current
BaseType is encoded, e.g. in an ECU within a
message sequence.

Tags: xml.sequenceOffset=90
baseTypeSi
ze

PositiveInteger 0..1 attr Describes the length of the data type specified in
the container in bits.

Tags: xml.sequenceOffset=70
byteOrder ByteOrderEnu

m
0..1 attr This attribute specifies the byte order of the base

type.

Tags: xml.sequenceOffset=110
maxBaseTy
peSize

PositiveInteger 0..1 attr Describes the maximum length of the BaseType in
bits.

Tags: atp.Status=obsolete
xml.sequenceOffset=80

memAlignm
ent

PositiveInteger 0..1 attr This attribute describes the alignment of the
memory object in bits. E.g. "8" specifies, that the
object in question is aligned to a byte while "32"
specifies that it is aligned four byte. If the value is
set to "0" the meaning shall be interpreted as
"unspecified".

Tags: xml.sequenceOffset=100

164 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
nativeDecla
ration

NativeDeclarati
onString

0..1 attr This attribute describes the declaration of such a
base type in the native programming language,
primarily in the Programming language C. This
can then be used by a code generator to include
the necessary declarations into a header file. For
example

BaseType with
shortName: "MyUnsignedInt"

nativeDeclaration: "unsigned short"

Results in
typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring
ImplementationDataTypes will not be generated
as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and
baseTypeSize.

This is required to ensure the consistent handling
and interpretation by software components, RTE,
COM and MCM systems.

Tags: xml.sequenceOffset=120

Table A.17: BaseTypeDirectDefinition

Enumeration ByteOrderEnum
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive

Types
Note When more than one byte is stored in the memory the order of those bytes may

differ depending on the architecture of the processing unit. If the least significant
byte is stored at the lowest address, this architecture is called little endian and
otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or
ECUs.

Literal Description
mostSignif-
icantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or
as Motorola-Format)

Tags: atp.EnumerationValue=0
mostSignif-
icantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as
Intel-Format)

Tags: atp.EnumerationValue=1

165 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

opaque For opaque data endianness conversion has to be configured to Opaque. See
AUTOSAR COM Specification for more details.

Tags: atp.EnumerationValue=2

Table A.18: ByteOrderEnum

Class ClientComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Client-specific communication attributes (RPortPrototype typed by

ClientServerInterface).
Base ARObject , RPortComSpec
Attribute Type Mul. Kind Note
clientCapab
ility

ClientCapabilit
yEnum

0..1 attr This attribute represents the expressed capability
of the client. The client may decide to claim that
existing resources of a ServiceInterface are
expressly not used by this specific client. The
conceptual background of this claim may be driven
by security, safety, etc.

Tags: atp.Status=draft
getter Field 0..1 ref The existence of this reference indicates that the

ClientComSpec refers to the getter of a Field.

Tags: atp.Status=draft
operation ClientServerO

peration
0..1 ref This represents the corresponding

ClientServerOperation.
setter Field 0..1 ref The existence of this reference indicates that the

ClientComSpec refers to the setter of a Field.

Tags: atp.Status=draft
transformati
onComSpe
cProps

Transformation
ComSpecProp
s

* aggr This references the
TransformationComSpecProps which define
port-specific configuration for data transformation.

Table A.19: ClientComSpec

Class ClientServerOperation
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note An operation declared within the scope of a client/server interface.
Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,

MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
argument
(ordered)

ArgumentData
Prototype

* aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time

166 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
fireAndForg
et

Boolean 0..1 attr This attribute defines whether this method is a
fire&forget method (true) or not (false).

Tags: atp.Status=draft
possibleErr
or

ApplicationErro
r

* ref Possible errors that may by raised by the referring
operation.

Table A.20: ClientServerOperation

Class CompositionDataPrototypeRef
Package M2::AUTOSARTemplates::AdaptivePlatform::General
Note This meta-class represents the ability to refer to an AUTOSAR DataPrototype in the

context of a CompositionSwComponentType.

Tags: atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
dataPrototy
pe

DataPrototype 0..1 iref This attribute shall exist if the InstanceRef points
to a DataPrototype typed by an
ApplicationDataType.

Tags: atp.Status=draft
elementInI
mplDatatyp
e

ElementInImpl
ementationDat
atypeInstance
Ref

0..1 aggr This attribute shall exist if the InstanceRef points
to a DataPrototype typed by an
ImplementationDataType.

Tags: atp.Status=draft

Table A.21: CompositionDataPrototypeRef

Class CompuConst
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the fact that the value of a computation method scale is

constant.
Base ARObject
Attribute Type Mul. Kind Note
compuCons
tContentTyp
e

CompuConstC
ontent

1 aggr This is the actual content of the constant compu
method scale.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=10; xml.type
Element=false; xml.typeWrapperElement=false

Table A.22: CompuConst

167 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class CompuConstTextContent
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the textual content of a scale.
Base ARObject , CompuConstContent
Attribute Type Mul. Kind Note
vt VerbatimString 1 attr This represents a textual constant in the

computation method.

Table A.23: CompuConstTextContent

Class CompuMethod
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to express the relationship between a physical

value and the mathematical representation.

Note that this is still independent of the technical implementation in data types. It only
specifies the formula how the internal value corresponds to its physical pendant.

Tags: atp.recommendedPackage=CompuMethods
Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement ,

Identifiable, MultilanguageReferrable, PackageableElement , Referrable
Attribute Type Mul. Kind Note
compuInter
nalToPhys

Compu 0..1 aggr This specifies the computation from internal
values to physical values.

Tags: xml.sequenceOffset=80
compuPhys
ToInternal

Compu 0..1 aggr This represents the computation from physical
values to the internal values.

Tags: xml.sequenceOffset=90
displayForm
at

DisplayFormat
String

0..1 attr This property specifies, how the physical value
shall be displayed e.g. in documents or
measurement and calibration tools.

Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for

which the CompuMethod applies.

Tags: xml.sequenceOffset=30

Table A.24: CompuMethod

Class CompuScale
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to specify one segment of a segmented

computation method.
Base ARObject
Attribute Type Mul. Kind Note

168 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
desc MultiLanguage

OverviewPara
graph

0..1 aggr <desc> represents a general but brief description
of the object in question.

Tags: xml.sequenceOffset=30
compuInver
seValue

CompuConst 0..1 aggr This is the inverse value of the constraint. This
supports the case that the scale is not reversible
per se.

Tags: xml.sequenceOffset=60
compuScal
eContents

CompuScaleC
ontents

0..1 aggr This represents the computation details of the
scale.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=70; xml.type
Element=false; xml.typeWrapperElement=false

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask PositiveInteger 0..1 attr In difference to all the other computational
methods every COMPU-SCALE will be applied
including the bit MASK. Therefore it is allowed for
this type of COMPU-METHOD, that
COMPU-SCALES overlap.

To calculate the string reverse to a value, the
string has to be split and the according value for
each substring has to be summed up. The sum is
finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35
shortLabel Identifier 0..1 attr This element specifies a short name for the

particular scale. The name can for example be
used to derive a programming language identifier.

Tags: xml.sequenceOffset=20
symbol CIdentifier 0..1 attr The symbol, if provided, is used by code

generators to get a C identifier for the
CompuScale. The name will be used as is for the
code generation, therefore it needs to be unique
within the generation context.

Tags: xml.sequenceOffset=25
upperLimit Limit 0..1 attr This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

169 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note

Table A.25: CompuScale

Class CompuScales
Package M2::MSR::AsamHdo::ComputationMethod
Note This meta-class represents the ability to stepwise express a computation method.
Base ARObject , CompuContent
Attribute Type Mul. Kind Note
compuScal
e (ordered)

CompuScale * aggr This represents one scale within the compu
method. Note that it contains a Variationpoint in
order to support blueprints of enumerations.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time
xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=40; xml.type
Element=false; xml.typeWrapperElement=false

Table A.26: CompuScales

Class DataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Base class for prototypical roles of any data type.
Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable,

Referrable
Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype
Attribute Type Mul. Kind Note
swDataDef
Props

SwDataDefPro
ps

0..1 aggr This property allows to specify data definition
properties which apply on data prototype level.

Table A.27: DataPrototype

Class DataTypeMap
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents the relationship between ApplicationDataType and its

implementing ImplementationDataType.
Base ARObject
Attribute Type Mul. Kind Note
application
DataType

ApplicationDat
aType

1 ref This is the corresponding ApplicationDataType

implementat
ionDataTyp
e

AbstractImple
mentationData
Type

1 ref This is the corresponding
ImplementationDataType.

Table A.28: DataTypeMap

170 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class DataTypeMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents a list of mappings between ApplicationDataTypes and

ImplementationDataTypes. In addition, it can contain mappings between
ImplementationDataTypes and ModeDeclarationGroups.

Tags: atp.recommendedPackage=DataTypeMappingSets
Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement ,

Identifiable, MultilanguageReferrable, PackageableElement , Referrable
Attribute Type Mul. Kind Note
dataTypeM
ap

DataTypeMap * aggr This is one particular association between an
ApplicationDataType and its
ImplementationDataType.

modeReque
stTypeMap

ModeRequest
TypeMap

* aggr This is one particular association between an
ModeDeclarationGroup and its
ImplementationDataType.

Table A.29: DataTypeMappingSet

Class DdsEventDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note DDS configuration settings for an Event.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEvent

Deployment
Attribute Type Mul. Kind Note
topicName DDSIdentifier 1 attr Name of the DDS Topic associated with the Event.

Tags: atp.Status=draft

Table A.30: DdsEventDeployment

Class DdsServiceInterfaceDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note DDS configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, ServiceInterfaceDeployment , UploadablePackage
Element

Attribute Type Mul. Kind Note

171 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
serviceInterf
aceId

String 1 attr Unique Identifier that identifies the
ServiceInterface in DDS. This Identifier is encoded
in the USER_DATA QoS of the DomainParticipant
associated with the Service Instance and its value
is propagated by DDS Discovery messages.

Tags: atp.Status=draft

Table A.31: DdsServiceInterfaceDeployment

Class E2EProfileConfiguration
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::E2E
Note This element holds E2E profile specific configuration settings.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
dataIdMode DataIdModeEn

um
0..1 attr This attribute describes the inclusion mode that is

used to include the implicit two-byte Data ID in the
one-byte CRC.

dataUpdate
Period

TimeValue 0..1 attr This attribute describes the period in which the
applications are assumed to process
E2E-protected messages. The middleware does
not use this attribute at all.

maxDeltaC
ounter

PositiveInteger 0..1 attr Maximum allowed difference between two counter
values of two consecutively received valid
messages. For example, if the receiver gets data
with counter 1 and MaxDeltaCounter is 3, then at
the next reception the receiver can accept
Counters with values 2, 3 or 4.

maxErrorSt
ateInit

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_INIT.

maxErrorSt
ateInvalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_INVALID.

maxErrorSt
ateValid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_VALID.

minOkState
Init

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_INIT.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_INVALID.

172 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_VALID.

profileName NameToken 1 attr Definition of the E2E profile.
windowSize PositiveInteger 0..1 attr Size of the monitoring window for the E2E state

machine.

Table A.32: E2EProfileConfiguration

Class End2EndEventProtectionProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::E2E
Note This element allows to protect an event or a field notifier with an E2E profile.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
dataId
(ordered)

PositiveInteger * attr This represents a unique numerical identifier for
the referenced event or field notifier that is
included in the CRC calculation.

Note: ID is used for protection against
masquerading. The details concerning the
maximum number of values (this information is
specific for each E2E profile) applicable for this
attribute are controlled by a semantic constraint
that depends on the category of the
EndToEndProtection.

e2eProfileC
onfiguration

E2EProfileCon
figuration

0..1 ref Reference to E2E profile configuration settings
that are valid to protect the referenced event or
field notifier.

Tags: atp.Status=draft
event ServiceEventD

eployment
0..1 ref Reference to an event that is protected by the E2E

profile.

Tags: atp.Status=draft
maxDataLe
ngth

PositiveInteger 0..1 attr Maximum length of Data in bits.

minDataLen
gth

PositiveInteger 0..1 attr Minimum length of Data in bits.

notifier ServiceFieldDe
ployment

0..1 ref Reference to a field notifier that is protected by an
E2E profile.

Tags: atp.Status=draft

Table A.33: End2EndEventProtectionProps

173 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class EndToEndTransformationComSpecProps
Package M2::AUTOSARTemplates::SystemTemplate::Transformer
Note The class EndToEndTransformationIComSpecProps specifies port specific

configuration properties for EndToEnd transformer attributes.
Base ARObject , Describable, TransformationComSpecProps
Attribute Type Mul. Kind Note
disableEnd
ToEndChec
k

Boolean 1 attr Disables/Enables the E2E check. The E2Eheader
is removed from the payload independent from the
setting of this attribute.

maxDeltaC
ounter

PositiveInteger 0..1 attr Maximum allowed difference between two counter
values of two consecutively received valid
messages. For example, if the receiver gets data
with counter 1 and MaxDeltaCounter is 3, then at
the next reception the receiver can accept
Counters with values 2, 3 or 4.

maxErrorSt
ateInit

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_INIT.

The minimum value is 0.
maxErrorSt
ateInvalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_INVALID.

The minimum value is 0.
maxErrorSt
ateValid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus
equal to E2E_P_ERROR was determined, within
the last WindowSize checks, for the state
E2E_SM_VALID.

The minimum value is 0.
minOkState
Init

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_INIT.

The minimum value is 1.
minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_INVALID.

The minimum value is 1.
minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus
equal to E2E_P_OK was determined, within the
last WindowSize checks, for the state
E2E_SM_VALID.

The minimum value is 1.

174 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
windowSize PositiveInteger 0..1 attr Size of the monitoring window for the E2E state

machine.

The meaning is the number of correct cycles
(E2E_P_OK) that are required in
E2E_SM_INITCOM before the transition to
E2E_SM_VALID.

The minimum allowed value is 1.

Table A.34: EndToEndTransformationComSpecProps

Class EthernetCommunicationConnector
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::Ethernet

Topology
Note Ethernet specific attributes to the CommunicationConnector.

Tags: atp.ManifestKind=MachineManifest
Base ARObject , CommunicationConnector , Identifiable, MultilanguageReferrable,

Referrable
Attribute Type Mul. Kind Note
maximumTr
ansmission
Unit

PositiveInteger 0..1 attr This attribute specifies the maximum transmission
unit in bytes.

networkEnd
point

NetworkEndpoi
nt

* ref NetworkEndpoints

pathMtuEna
bled

Boolean 0..1 attr If enabled the IPv4/IPv6 processes incoming
ICMP "Packet Too Big" messages and stores a
MTU value for each destination address.

pathMtuTim
eout

TimeValue 0..1 attr If this value is >0 the IPv4/IPv6 will reset the MTU
value stored for each destination after n seconds.

pncFilterDat
aMask

PositiveUnlimit
edInteger

0..1 attr Bit mask for Ethernet Payload used to configure
the Ethernet Transceiver for partial network
wakeup.

unicastNetw
orkEndpoint

NetworkEndpoi
nt

0..1 ref Network Endpoint that defines the IPAddress of
the machine.

Tags: atp.Status=draft

Table A.35: EthernetCommunicationConnector

175 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class Field
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface
Note This meta-class represents the ability to define a piece of data that can be accessed

with read and/or write semantics. It is also possible to generate a notification if the
value of the data changes.

Tags: atp.Status=draft
Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype,

Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
hasGetter Boolean 1 attr This attribute controls whether read access is

foreseen to this field.
hasNotifier Boolean 1 attr This attribute controls whether a notification

semantics is foreseen to this field.
hasSetter Boolean 1 attr This attribute controls whether write access is

foreseen to this field.
initValue ValueSpecifica

tion
1 aggr Specifies initial value(s) of the Field.

Tags: atp.Status=draft

Table A.36: Field

176 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

177 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
Class Identifiable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (within the namespace

borders). In addition to this, Identifiables are objects which contribute significantly to
the overall structure of an AUTOSAR description. In particular, Identifiables might
contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable
Subclasses ARPackage, AbstractEvent , AbstractServiceInstance, Action, ActionItem, ActionList,

AdaptiveModuleInstantiation, AdaptiveSwcInternalBehavior, AliveSupervision,
ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartitionMapping,
Arbitration, AsynchronousServerCallResultPoint, AtpBlueprint , AtpBlueprintable, Atp
Classifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance,
BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , BuildAction
Environment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, Checkpoint
Transition, ClassContentConditional, ClientIdDefinition, ClientServerOperation, Code,
CollectableElement , CommConnectorPort , CommunicationConnector ,
CommunicationController , Compiler, ConsistencyNeeds, ConsumedEventGroup,
CouplingPort, CouplingPortStructuralElement , CppImplementationDataTypeElement,
CryptoJob, CryptoKeySlot, CryptoNeedToCryptoJobMapping, CryptoPrimitive, Data
PrototypeGroup, DataTransformation, DeadlineSupervision, DependencyOnArtifact,
DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticData
Element, DiagnosticFunctionInhibitSource, DiagnosticRoutineSubfunction, DoIpLogic
Address, E2EProfileConfiguration, ECUMapping, EOCExecutableEntityRefAbstract ,
EcuPartition, EcucContainerValue, EcucDefinitionElement , EcucDestinationUriDef,
EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, End2EndEvent
ProtectionProps, EndToEndProtection, EventMapping, ExclusiveArea, Executable
Entity , ExecutionTime, FMAttributeDef, FMFeatureMapAssertion, FMFeatureMap
Condition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction, FM
FeatureSelection, FieldMapping, FireAndForgetMapping, FlatInstanceDescriptor,
FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTpNode, FlexrayTpPduPool,
FrameTriggering, GeneralParameter, GlobalSupervision, GlobalTimeGateway, Global
TimeMaster , GlobalTimeSlave, HealthChannel , HeapUsage, HwAttributeDef, Hw
AttributeLiteralDef, HwPin, HwPinGroup, IPv6ExtHeaderFilterList, ISignalToIPdu
Mapping, ISignalTriggering, IdentCaption, ImplementationDataTypeElement,
InterfaceMapping, InternalTriggeringPoint, J1939SharedAddressCluster, J1939Tp
Node, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, Local
Supervision, LogicalExpression, LogicalSupervision, MacMulticastGroup, McData
Instance, MemorySection, MethodMapping, ModeDeclaration, ModeDeclaration
Mapping, ModeSwitchPoint, NetworkEndpoint, NmCluster , NmNode, NvBlock
Descriptor, PackageableElement , ParameterAccess, PduToFrameMapping, Pdu
Triggering, PerInstanceMemory, PersistencyFileProxy, PersistencyKeyValuePair,
PhysicalChannel , PortGroup, PortInterfaceMapping, PossibleErrorReaction,
PresharedKeyIdentity, ProcessToMachineMapping, Processor, ProcessorCore, Psk
IdentityToKeySlotMapping, ResourceConsumption, ResourceGroup, RestAbstract
Endpoint , RestElementDef, RestResourceDef, RootSwComponentPrototype, Root
SwCompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, Rpt
ExecutableEntityEvent, RptExecutionContext, RptProfile, RptServicePoint, Rule,
RunnableEntityGroup, SdgAttribute, SdgClass, SecOcJobMapping, SecOcJob
Requirement, SecureComProps, SecureCommunicationAuthenticationProps, Secure
CommunicationDeployment , SecureCommunicationFreshnessProps, ServerCall
Point , ServiceEventDeployment , ServiceFieldDeployment , ServiceInstanceToSignal
Mapping, ServiceInterfaceElementMapping, ServiceInterfaceElementSecureCom
Config, ServiceInterfaceMapping, ServiceMethodDeployment , ServiceNeeds, Signal
BasedFieldToISignalTriggeringMapping, SocketAddress, SomeipEventGroup, Someip
ProvidedEventGroup, SpecElementReference, StackUsage, StartupConfig,
StructuredReq, SupervisionCheckpoint, SwGenericAxisParamType, SwServiceArg,
SwcServiceDependency, SwcToApplicationPartitionMapping, SwcToEcuMapping,
SwcToImplMapping, SystemMapping, TcpOptionFilterList, TimeBaseResource,
TimingCondition, TimingConstraint , TimingDescription, TimingExtensionResource,
TimingModeInstance, TlsJobMapping, TlsJobRequirement, Topic1, TpAddress,
TraceableText, TracedFailure, TransformationProps, TransformationPropsToService
InterfaceElementMapping, TransformationTechnology, Trigger, VariableAccess,
VariationPointProxy, ViewMap, VlanConfig, WaitPoint

Attribute Type Mul. Kind Note

178 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
desc MultiLanguage

OverviewPara
graph

0..1 aggr This represents a general but brief (one
paragraph) description what the object in question
is about. It is only one paragraph! Desc is
intended to be collected into overview tables. This
property helps a human reader to identify the
object in question.

More elaborate documentation, (in particular how
the object is built or used) should go to
"introduction".

Tags: xml.sequenceOffset=-60
category CategoryString 0..1 attr The category is a keyword that specializes the

semantics of the Identifiable. It affects the
expected existence of attributes and the
applicability of constraints.

Tags: xml.sequenceOffset=-50
adminData AdminData 0..1 aggr This represents the administrative data for the

identifiable object.

Tags: xml.sequenceOffset=-40
annotation Annotation * aggr Possibility to provide additional notes while

defining a model element (e.g. the ECU
Configuration Parameter Values). These are not
intended as documentation but are mere design
notes.

Tags: xml.sequenceOffset=-25
introduction Documentation

Block
0..1 aggr This represents more information about how the

object in question is built or is used. Therefore it is
a DocumentationBlock.

Tags: xml.sequenceOffset=-30

179 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
uuid String 0..1 attr The purpose of this attribute is to provide a

globally unique identifier for an instance of a
meta-class. The values of this attribute should be
globally unique strings prefixed by the type of
identifier. For example, to include a DCE UUID as
defined by The Open Group, the UUID would be
preceded by "DCE:". The values of this attribute
may be used to support merging of different
AUTOSAR models. The form of the UUID
(Universally Unique Identifier) is taken from a
standard defined by the Open Group (was Open
Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on
CORBA. The method for generating these 128-bit
IDs is published in the standard and the
effectiveness and uniqueness of the IDs is not in
practice disputed. If the id namespace is omitted,
DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table A.37: Identifiable

Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically

correspond to a typedef in C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , Atp

Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
dynamicArr
aySizeProfil
e

String 0..1 attr Specifies the profile which the array will follow in
case this data type is a variable size array.

subElement
(ordered)

Implementatio
nDataTypeEle
ment

* aggr Specifies an element of an array, struct, or union
data type.

The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

180 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
symbolProp
s

SymbolProps 0..1 aggr This represents the SymbolProps for the
ImplementationDataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data
type definitions.

Table A.38: ImplementationDataType

Class ImplementationDataTypeElement
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Declares a data object which is locally aggregated. Such an element can only be

used within the scope where it is aggregated.

This element either consists of further subElements or it is further defined via its
swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such
a local declaration:

• It can represent the elements of an array, defining the element type and array
size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable,
MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note
arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0)

defines the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySizeH
andling

ArraySizeHand
lingEnum

0..1 attr The way how the size of the array is handled in
case of a variable size array.

arraySizeSe
mantics

ArraySizeSem
anticsEnum

0..1 attr This attribute controls the meaning of the value of
the array size.

181 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
subElement
(ordered)

Implementatio
nDataTypeEle
ment

* aggr Element of an array, struct, or union in case of a
nested declaration (i.e. without using "typedefs").

The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefPro
ps

0..1 aggr The properties of this
ImplementationDataTypeElement.

Table A.39: ImplementationDataTypeElement

Class ImplementationDataTypeElementExtension
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::DataTypes
Note This meta-class represents the ability to define an extension to an

ImplementationDataTypeElement to express C++-specific properties.

Tags: atp.Status=draft; atp.recommendedPackage=ImplementationDataTypeElement
Extensions

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note
allocator Allocator 0..1 ref This represents an allocator taken to create the

C++ data type.

Tags: atp.Status=draft
implementat
ionDataTyp
eElement

Implementatio
nDataTypeEle
ment

1 ref This represents the
ImplementationDataTypeElement to extend.

Tags: atp.Status=draft

Table A.40: ImplementationDataTypeElementExtension

Class ImplementationDataTypeExtension
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::DataTypes
Note his meta-class represents the ability to extend the semantics of the

ImplementationDataType.

Tags: atp.Status=draft; atp.recommendedPackage=ImplementationDataType
Extensions

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note

182 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
implementat
ionDataTyp
e

Implementatio
nDataType

1 ref This represents the ImplementationDataType that
this subject to the extension.

Tags: atp.Status=draft
namespace
(ordered)

SymbolProps * aggr This represents the intended namespace of the
C++ data type

Tags: atp.Status=draft

Table A.41: ImplementationDataTypeExtension

Class ImplementationProps (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Defines a symbol to be used as (depending on the concrete case) either a complete

replacement or a prefix when generating code artifacts.
Base ARObject , Referrable
Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix,

SymbolProps, SymbolicNameProps
Attribute Type Mul. Kind Note
symbol CIdentifier 1 attr The symbol to be used as (depending on the

concrete case) either a complete replacement or a
prefix.

Table A.42: ImplementationProps

Class Ipv4Configuration
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::Ethernet

Topology
Note Internet Protocol version 4 (IPv4) configuration.
Base ARObject , NetworkEndpointAddress
Attribute Type Mul. Kind Note
assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new
address from an assignment method with a higher
priority is available, it overwrites the IP address
previously assigned by an assignment method
with a lower priority.

defaultGate
way

Ip4AddressStri
ng

0..1 attr IP address of the default gateway.

dnsServerA
ddress

Ip4AddressStri
ng

* attr IP addresses of preconfigured DNS servers.

Tags: xml.namePlural=DNS-SERVER-ADDRESS
ES

ipAddressK
eepBehavio
r

IpAddressKee
pEnum

0..1 attr Defines the lifetime of a dynamically fetched IP
address.

ipv4Addres
s

Ip4AddressStri
ng

0..1 attr IPv4 Address. Notation: 255.255.255.255. The IP
Address shall be declared in case the
ipv4AddressSource is FIXED and thus no
auto-configuration mechanism is used.

183 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
ipv4Addres
sSource

Ipv4AddressSo
urceEnum

0..1 attr Defines how the node obtains its IP address.

networkMas
k

Ip4AddressStri
ng

0..1 attr Network mask. Notation 255.255.255.255

ttl PositiveInteger 0..1 attr Lifespan of data (0..255). The purpose of the
TimeToLive field is to avoid a situation in which an
undeliverable datagram keeps circulating on a
system.

Table A.43: Ipv4Configuration

Class Ipv6Configuration
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::Ethernet

Topology
Note Internet Protocol version 6 (IPv6) configuration.
Base ARObject , NetworkEndpointAddress
Attribute Type Mul. Kind Note
assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new
address from an assignment method with a higher
priority is available, it overwrites the IP address
previously assigned by an assignment method
with a lower priority.

defaultRout
er

Ip6AddressStri
ng

0..1 attr IP address of the default router.

dnsServerA
ddress

Ip6AddressStri
ng

* attr IP addresses of pre configured DNS servers.

Tags: xml.namePlural=DNS-SERVER-ADDRESS
ES

enableAnyc
ast

Boolean 0..1 attr This attribute is used to enable anycast
addressing (i.e. to one of multiple receivers).

hopCount PositiveInteger 0..1 attr The distance between two hosts. The hop count n
means that n gateways separate the source host
from the destination host (Range 0..255)

ipAddressK
eepBehavio
r

IpAddressKee
pEnum

0..1 attr Defines the lifetime of a dynamically fetched IP
address.

ipAddressPr
efixLength

PositiveInteger 0..1 attr IPv6 prefix length defines the part of the IPv6
address that is the network prefix.

ipv6Addres
s

Ip6AddressStri
ng

0..1 attr IPv6 Address. Notation: FFFF:...:FFFF. The IP
Address shall be declared in case the
ipv6AddressSource is FIXED and thus no
auto-configuration mechanism is used.

ipv6Addres
sSource

Ipv6AddressSo
urceEnum

0..1 attr Defines how the node obtains its IP address.

Table A.44: Ipv6Configuration

184 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Primitive Limit
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive

Types
Note This class represents the ability to express a numerical limit. Note that this is in fact a

NumericalVariationPoint but has the additional attribute intervalType.

Tags: xml.xsd.customType=LIMIT-VALUE; xml.xsd.pattern=(0[xX][0-9a-fA-
F]+)|(0[0-7]+)|(0[bB][0-1]+)|(([+\-]?[1-9][0-9]+(\.[0-9]+)?|[+\-]?[0-9](\.[0-9]+)?)([e
E]([+\-]?)[0-9]+)?)|\.0|INF|-INF|NaN; xml.xsd.type=string

Attribute Datatype Mul. Kind Note
intervalTyp
e

IntervalTypeEnu
m

0..1 attr This specifies the type of the interval. If the
attribute is missing the interval shall be considered
as "CLOSED".

Tags: xml.attribute=true

Table A.45: Limit

Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Machine
Note Machine that represents an Adaptive Autosar Software Stack.

Tags: atp.ManifestKind=MachineManifest; atp.Status=draft; atp.recommended
Package=Machines

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Collectable
Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
defaultAppli
cationTimeo
ut

EnterExitTime
out

0..1 aggr This aggration defines a default timeout in the
context of a given Machine with respect to the
launching and termination of applications.

Tags: atp.Status=draft
functionGro
up

ModeDeclarati
onGroupProtot
ype

* aggr This aggregation represents the collection of
function groups of the enclosing Machine.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=preCompileTime

hwElement HwElement * ref This reference is used to describe the hardware
resources of the machine.

Stereotypes: atpUriDef
Tags: atp.Status=draft

machineDe
sign

MachineDesig
n

1 ref Reference to the MachineDesign this Machine is
implementing.

Tags: atp.Status=draft

185 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
machineMo
deMachine

ModeDeclarati
onGroupProtot
ype

0..1 aggr Set of MachineStates (Modes) that are defined for
the machine.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=preCompileTime

moduleInsta
ntiation

AdaptiveModul
eInstantiation

* aggr Configuration of Adaptive Autosar module
instances that are running on the machine.

Tags: atp.Status=draft
perStateTim
eout

PerStateTimeo
ut

* aggr This aggregation represens the definition of
per-state-timeouts in the context of the enclosing
machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=perStateTimeout; atp.
Status=draft

processor Processor 1..* aggr This represents the collection of processors
owned by the enclosing machine.

Tags: atp.Status=draft
secureCom
munication
Deployment

SecureCommu
nicationDeploy
ment

* aggr Deployment of secure communication protocol
configuration settings to crypto module entities.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName, variation
Point.shortLabel; atp.Status=draft

Table A.46: Machine

Class NetworkEndpoint
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::Ethernet

Topology
Note The network endpoint defines the network addressing (e.g. IP-Address or MAC

multicast address).

Tags: atp.ManifestKind=MachineManifest
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
fullyQualifie
dDomainNa
me

String 0..1 attr Defines the fully qualified domain name (FQDN)
e.g. some.example.host.

infrastructur
eServices

InfrastructureS
ervices

0..1 aggr Defines the network infrastructure services
provided or consumed.

networkEnd
pointAddres
s

NetworkEndpoi
ntAddress

1..* aggr Definition of a Network Address.

Tags: xml.namePlural=NETWORK-ENDPOINT-A
DDRESSES

priority PositiveInteger 0..1 attr Priority of this Network-Endpoint.

Table A.47: NetworkEndpoint

186 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class PortInterface (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Abstract base class for an interface that is either provided or required by a port of a

software component.
Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,

CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Subclasses ClientServerInterface, DataInterface, ModeSwitchInterface, PersistencyInterface,
PlatformHealthManagementInterface, RestServiceInterface, ServiceInterface, Time
SynchronizationInterface, TriggerInterface

Attribute Type Mul. Kind Note
namespace
(ordered)

SymbolProps * aggr This represents the SymbolProps used for the
definition of a hierarchical namespace applicable
for the generation of code artifacts out of the
definition of a ServiceInterface.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName; atp.Status=draft

Table A.48: PortInterface

Class PortInterfaceToDataTypeMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface
Note This meta-class represents the ability to associate a PortInterface with a

DataTypeMappingSet. This association is needed for the generation of header files in
the scope of a single PortInterface.

The association is intentionally made outside the scope of the PortInterface itself
because the designers of a PortInterface most likely will not want to add details about
the level of ImplementationDataType.

Tags: atp.Status=draft; atp.recommendedPackage=ServiceInterfaceToDataType
Mappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note
dataTypeM
appingSet

DataTypeMap
pingSet

1..* ref This represents the reference to the applicable
dataTypemappingSet

Tags: atp.Status=draft; atp.Status
Comment=Reserved for adaptive platform

portInterfac
e

PortInterface 1 ref This represents the reference to the applicable
PortInterface

Tags: atp.Status=draft; atp.Status
Comment=Reserved for adaptive platform

Table A.49: PortInterfaceToDataTypeMapping

187 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ProvidedApServiceInstance (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

provided service instance in an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,

Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Uploadable
PackageElement

Subclasses ProvidedDdsServiceInstance, ProvidedSomeipServiceInstance, ProvidedUser
DefinedServiceInstance

Attribute Type Mul. Kind Note
– – – – –

Table A.50: ProvidedApServiceInstance

Class ProvidedDdsServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

provided service instance in a concrete implementation on top of DDS.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , ProvidedApService
Instance, Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note
domainId Integer 1 attr This attribute identifies the DDS Domain the

Service Instance shall join.

Tags: atp.Status=draft
eventQosPr
ops

ProvidedDdsE
ventQosProps

* aggr List of configuration properties for the Events that
are provided by the Service Instance.

Tags: atp.Status=draft
qosProfile String 1 attr Identifies a group of QoS Policies that apply to the

DDS entities created by the Service Instance.

Tags: atp.Status=draft
serviceInsta
nceId

PositiveInteger 1 attr Identification number that is used by DDS to
identify DomainParticipants associated with an
instance of the service.

Tags: atp.Status=draft

Table A.51: ProvidedDdsServiceInstance

188 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ProvidedServiceInstance
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::Ethernet

Topology
Note Service instances that are provided by the ECU that is connected via the

ApplicationEndpoint to a CommunicationConnector.
Base ARObject , AbstractServiceInstance, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
EventHandl
er

EventHandler * aggr Collection of event callback configurations.

instanceIde
ntifier

PositiveInteger 0..1 attr Instance identifier. Can be used for e.g. service
discovery to identify the instance of the service.

priority PositiveInteger 0..1 attr Priority defined per provided ServiceInstance.
sdServerCo
nfig

SdServerConfi
g

0..1 aggr Service Discovery Server configuration.

serviceIdent
ifier

PositiveInteger 0..1 attr Service ID. Shall be unique within one system to
allow service discovery.

Table A.52: ProvidedServiceInstance

Class ProvidedSomeipServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

provided service instance in a concrete implementation on top of SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , ProvidedApService
Instance, Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note
eventProps SomeipEventP

rops
* aggr Configuration settings for individual events that

are provided by the ServiceInstance.

Tags: atp.Status=draft
loadBalanci
ngPriority

PositiveInteger 0..1 attr This attribute is used to specify the priority in the
load balancing option of SOME/IP that is added to
the OfferService.

When a client searches for all service instances of
a service, the client shall choose the service
instance with highest priority if one is defined.

loadBalanci
ngWeight

PositiveInteger 0..1 attr This attribute is used to specify the weight in the
load balancing option of SOME/IP that is added to
the OfferService.

When a client searches for all service instances of
a service, the client shall choose the service
instance with highest priority if one is defined. If
several service instances exist with the highest
priority the service instance shall be chosen
based on the weights of the service instances.

189 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
methodRes
ponseProps

SomeipMethod
Props

* aggr Configuration settings for individual methods that
are provided by the ServiceInstance.

Tags: atp.Status=draft
providedEv
entGroup

SomeipProvide
dEventGroup

* aggr List of EventGroups that are provided by the
Service Instance.

Tags: atp.Status=draft
sdServerCo
nfig

SomeipSdServ
erServiceInsta
nceConfig

0..1 aggr Server specific configuration settings relevant for
the SOME/IP service discovery.

Tags: atp.Status=draft
serviceInsta
nceId

PositiveInteger 1 attr Identification number that is used by SOME/IP
service discovery to identify the instance of the
service.

Table A.53: ProvidedSomeipServiceInstance

Class ProvidedUserDefinedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

provided service instance in a concrete implementation that is not standardized by
AUTOSAR.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , ProvidedApService
Instance, Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note
– – – – –

Table A.54: ProvidedUserDefinedServiceInstance

Class ReceiverComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Receiver-specific communication attributes (RPortPrototype typed by

SenderReceiverInterface).
Base ARObject , RPortComSpec
Subclasses NonqueuedReceiverComSpec, QueuedReceiverComSpec
Attribute Type Mul. Kind Note
dataElemen
t

AutosarDataPr
ototype

0..1 ref Data element these attributes belong to.

dataUpdate
Period

TimeValue 0..1 attr This attribute defines the period in which the
application shall check for updated data. This
attribute is used for the configuration of the E2E
protection.

Tags: atp.Status=draft

190 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
receiverCap
ability

ReceiverCapa
bilityEnum

0..1 attr This attribute represents the expressed capability
of the receiver. The receiver may decide to claim
that existing resources of a ServiceInterface are
expressly not used by this specific receiver. The
conceptual background of this claim may be driven
by security, safety, etc.

Tags: atp.Status=draft
transformati
onComSpe
cProps

Transformation
ComSpecProp
s

* aggr This references the
TransformationComSpecProps which define
port-specific configuration for data transformation.

Table A.55: ReceiverComSpec

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to

namespace borders).
Base ARObject
Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClient

ServerEntry, BswVariableAccess, CouplingPortTrafficClassAssignment, Diagnostic
DebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriority
Regeneration, EventHandler, ExclusiveAreaNestingOrder, HwDescriptionEntity ,
ImplementationProps, LinSlaveConfigIdent, ModeTransition, Multilanguage
Referrable, PncMappingIdent, SingleLanguageReferrable, SocketConnectionBundle,
SomeipRequiredEventGroup, TimeSyncServerConfiguration, TpConnectionIdent

Attribute Type Mul. Kind Note
shortName Identifier 1 attr This specifies an identifying shortName for the

object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.

Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFra
gment

* aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table A.56: Referrable

191 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class RequiredApServiceInstance (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

required service instance in an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,

Identifiable, MultilanguageReferrable, PackageableElement , Referrable, Uploadable
PackageElement

Subclasses RequiredDdsServiceInstance, RequiredSomeipServiceInstance, RequiredUser
DefinedServiceInstance

Attribute Type Mul. Kind Note
– – – – –

Table A.57: RequiredApServiceInstance

Class RequiredDdsServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

required service instance in a concrete implementation on top of DDS.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, RequiredAp
ServiceInstance, UploadablePackageElement

Attribute Type Mul. Kind Note
domainId Integer 1 attr This attribute identifies the DDS Domain the Client

application shall join.

Tags: atp.Status=draft
eventQosPr
ops

RequiredDdsE
ventQosProps

* aggr List of configuration properties for the Events that
are requested by the Client.

Tags: atp.Status=draft
qosProfile String 1 attr Identifies a group of QoS Policies that apply to the

DDS entities created by the Client.

Tags: atp.Status=draft
requiredSer
viceInstanc
eId

AnyServiceInst
anceId

1 attr This attribute represents the ability to describe the
required service instance ID.

Tags: atp.Status=draft

Table A.58: RequiredDdsServiceInstance

192 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class RequiredSomeipServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

required service instance in a concrete implementation on top of SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, RequiredAp
ServiceInstance, UploadablePackageElement

Attribute Type Mul. Kind Note
methodReq
uestProps

SomeipMethod
Props

* aggr Configuration settings for individual methods that
are requested by the ServiceInstance.

Tags: atp.Status=draft
requiredEve
ntGroup

SomeipRequir
edEventGroup

* aggr List of EventGroups that are used by the
RequiredServiceInstance.

Tags: atp.Status=draft
requiredSer
viceInstanc
eId

AnyServiceInst
anceId

0..1 attr This attribute represents the ability to describe the
required service instance ID.

requiredSer
viceVersion

SomeipService
InterfaceVersio
n

0..1 aggr This element is used to configure for which
version (major version/minor version) of the
SomeIp Service the Service Discovery will search.

Tags: atp.Status=draft
sdClientCon
fig

SomeipSdClie
ntServiceInsta
nceConfig

0..1 aggr Client specific configuration settings relevant for
the SOME/IP service discovery.

Tags: atp.Status=draft

Table A.59: RequiredSomeipServiceInstance

Class RequiredUserDefinedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a

required service instance in a concrete implementation that is not standardized by
AUTOSAR.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable, RequiredAp
ServiceInstance, UploadablePackageElement

Attribute Type Mul. Kind Note
– – – – –

Table A.60: RequiredUserDefinedServiceInstance

193 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SecOcSecureComProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::SecureCommunication
Note Configuration of AUTOSAR SecOC.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, SecureComProps
Attribute Type Mul. Kind Note
authAlgorith
m

String 0..1 attr This attribute defines the authentication algorithm
used for MAC generation and verification.

authInfoTxL
ength

PositiveInteger 0..1 attr This attribute defines the length in bits of the
authentication code to be included in the payload
of the authenticated Message.

freshnessV
alueLength

PositiveInteger 0..1 attr This attribute defines the complete length in bits of
the Freshness Value.

freshnessV
alueTxLeng
th

PositiveInteger 0..1 attr This attribute defines the length in bits of the
Freshness Value to be included in the payload of
the secured message. In other words this attribute
defines the length of the authenticated Message.

jobRequire
ment

SecOcJobReq
uirement

* aggr Collection of cryptographic job requirements.

Tags: atp.Status=draft

Table A.61: SecOcSecureComProps

Class SecureComProps (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::SecureCommunication
Note This meta-class defines a communication security protocol and its configuration

settings.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Subclasses SecOcSecureComProps, TlsSecureComProps
Attribute Type Mul. Kind Note
– – – – –

Table A.62: SecureComProps

Class SenderComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for a sender port (PPortPrototype typed by

SenderReceiverInterface).
Base ARObject , PPortComSpec
Subclasses NonqueuedSenderComSpec, QueuedSenderComSpec
Attribute Type Mul. Kind Note
compositeN
etworkRepr
esentation

CompositeNet
workRepresent
ation

* aggr This represents a
CompositeNetworkRepresentation defined in the
context of a SenderComSpec.

dataElemen
t

AutosarDataPr
ototype

0..1 ref Data element these quality of service attributes
apply to.

194 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
dataUpdate
Period

TimeValue 0..1 attr This attribute describes the period in which the
applications are assumed to transmit
E2E-protected messages. The middleware does
not use this attribute at all.

Tags: atp.Status=draft
networkRep
resentation

SwDataDefPro
ps

0..1 aggr A networkRepresentation is used to define how
the dataElement is mapped to a communication
bus.

senderCapa
bility

SenderCapabil
ityEnum

0..1 attr This attribute represents the expressed capability
of the sender. The sender may decide to claim
that existing resources of a ServiceInterface are
expressly not used by this specific sender. The
conceptual background of this claim may be driven
by security, safety, etc.

Tags: atp.Status=draft
transmissio
nAcknowled
ge

TransmissionA
cknowledgeme
ntRequest

0..1 aggr Requested transmission acknowledgement for
data element.

usesEndTo
EndProtecti
on

Boolean 1 attr This indicates whether the corresponding
dataElement shall be transmitted using end-to-end
protection.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table A.63: SenderComSpec

Class ServiceEventDeployment (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note This abstract meta-class represents the ability to specify a deployment of an Event to

a middleware transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Subclasses DdsEventDeployment, SignalBasedEventDeployment, SomeipEventDeployment,

UserDefinedEventDeployment
Attribute Type Mul. Kind Note
event VariableDataPr

ototype
0..1 ref Reference to an Event that is deployed to a

middleware transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.64: ServiceEventDeployment

195 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ServiceFieldDeployment (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note This abstract meta-class represents the ability to specify a deployment of a Field to a

middleware transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Subclasses SignalBasedFieldDeployment, SomeipFieldDeployment, UserDefinedField

Deployment
Attribute Type Mul. Kind Note
field Field 1 ref Reference to a Field that is deployed to a

middleware transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.65: ServiceFieldDeployment

Class ServiceInstanceToMachineMapping (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstanceMapping
Note This meta-class represents the ability to map a AdaptivePlatformServiceInstance to a

CommunicationConnector of a Machine.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,

PackageableElement , Referrable, UploadablePackageElement
Subclasses DdsServiceInstanceToMachineMapping, SomeipServiceInstanceToMachineMapping,

UserDefinedServiceInstanceToMachineMapping
Attribute Type Mul. Kind Note
communicat
ionConnect
or

Communicatio
nConnector

0..1 ref Reference to the Machine to which the
ServiceInstance is mapped.

Tags: atp.Status=draft
serviceInsta
nce

AdaptivePlatfor
mServiceInsta
nce

0..1 ref Reference to a ServiceInstance that is mapped to
the Machine.

Tags: atp.Status=draft

Table A.66: ServiceInstanceToMachineMapping

196 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ServiceInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface
Note This represents the ability to define a PortInterface that consists of a heterogeneous

collection of methods, events and fields.

Tags: atp.Status=draft; atp.recommendedPackage=ServiceInterfaces
Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,

CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
PortInterface, Referrable

Attribute Type Mul. Kind Note
event VariableDataPr

ototype
* aggr This represents the collection of events defined in

the context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

field Field * aggr This represents the collection of fields defined in
the context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

method ClientServerO
peration

* aggr This represents the collection of methods defined
in the context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

optionalEle
ment

ServiceInterfac
eSubElement

* aggr This aggregation represents the collectionof
optional elements within the scope of the
enclosing ServiceInterface.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=optionalElement, variation
Point.shortLabel; atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

possibleErr
or

ApplicationErro
r

* aggr This represents the collection of ApplicationErrors
defined in the context of the enclosing
ServiceInterface.

Tags: atp.Status=draft

Table A.67: ServiceInterface

197 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ServiceInterfaceDeployment (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note Middleware transport layer specific configuration settings for the ServiceInterface and

all contained ServiceInterface elements.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,

PackageableElement , Referrable, UploadablePackageElement
Subclasses DdsServiceInterfaceDeployment, SignalBasedServiceInterfaceDeployment, Someip

ServiceInterfaceDeployment, UserDefinedServiceInterfaceDeployment
Attribute Type Mul. Kind Note
eventDeplo
yment

ServiceEventD
eployment

* aggr Middleware transport layer specific configuration
settings for an Event that is defined in the
ServiceInterface.

Tags: atp.Status=draft
fieldDeploy
ment

ServiceFieldDe
ployment

* aggr Middleware transport layer specific configuration
settings for a Field that is defined in the
ServiceInterface.

Tags: atp.Status=draft
methodDepl
oyment

ServiceMethod
Deployment

* aggr Middleware transport layer specific configuration
settings for a method that is defined in the
ServiceInterface.

Tags: atp.Status=draft
serviceInterf
ace

ServiceInterfac
e

0..1 ref Reference to a ServiceInterface that is deployed
to a middleware transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.68: ServiceInterfaceDeployment

Class ServiceInterfaceElementSecureComConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::SecureCommunication
Note This element allows to secure the communication of the referenced ServiceInterface

element.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
dataId PositiveInteger 0..1 attr This attribute defines a unique numerical identifier

for the referenced ServiceInterface element.
event ServiceEventD

eployment
0..1 ref Reference to an event that is protected by a

security protocol.

Tags: atp.Status=draft

198 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
fieldNotifier ServiceFieldDe

ployment
0..1 ref Reference to a field notifier that is protected by a

security protocol.

Tags: atp.Status=draft
freshnessV
alueId

PositiveInteger 0..1 attr This attribute defines the Id of the Freshness
Value.

getterCall ServiceFieldDe
ployment

0..1 ref Reference to a field getter call message that is
protected by a security protocol.

Tags: atp.Status=draft
getterRetur
n

ServiceFieldDe
ployment

0..1 ref Reference to a field getter return message that is
protected by a security protocol.

Tags: atp.Status=draft
methodCall ServiceMethod

Deployment
0..1 ref Reference to a method call message that is

protected by a security protocol.

Tags: atp.Status=draft
methodRetu
rn

ServiceMethod
Deployment

0..1 ref Reference to a method return message that is
protected by a security protocol.

Tags: atp.Status=draft
secureCom
Props

SecureComPr
ops

0..1 ref Reference to the communication security protocol
and its configuration settings that will provide
communication security for the referenced
ServiceInterfaceElement that is exchanged
between a ProvidedServiceInstance and one or
several RequiredServiceInstances.

Tags: atp.Status=draft
setterCall ServiceFieldDe

ployment
0..1 ref Reference to a field setter call message that is

protected by a security protocol.

Tags: atp.Status=draft
setterRetur
n

ServiceFieldDe
ployment

0..1 ref Reference to a field setter return message that is
protected by a security protocol.

Tags: atp.Status=draft

Table A.69: ServiceInterfaceElementSecureComConfig

199 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class ServiceMethodDeployment (abstract)
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note This abstract meta-class represents the ability to specify a deployment of a Method to

a middleware transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Subclasses SignalBasedMethodDeployment, SomeipMethodDeployment, UserDefinedMethod

Deployment
Attribute Type Mul. Kind Note
method ClientServerO

peration
0..1 ref Reference to a method that is deployed to a

middleware transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.70: ServiceMethodDeployment

Class SomeipDataPrototypeTransformationProps
Package M2::AUTOSARTemplates::AdaptivePlatform::TransformationConfiguration
Note This meta-class represents the ability to define data transformation props specifically

for a SOME/IP serialization for a given DataPrototype.

Tags: atp.Status=draft; atp.recommendedPackage=SomeipDataPrototype
TransformationPropss

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note
dataPrototy
pe

CompositionD
ataPrototypeR
ef

* aggr Collection of DataPrototypes for which the settings
in SomeipDataPrototypeTransformationProps are
valid. For reuse reasons the
SomeipDataPrototypeTransformationProps is able
to aggregate several DataPrototypes.

Tags: atp.Status=draft
networkRep
resentation

SwDataDefPro
ps

0..1 aggr Optional specification of the actual network
representation for the referenced primitive
DataPrototype. If a network representation is
provided then the baseType available in the
SwDataDefProps shall be used as input for the
serialization/deserialization. If the
networkRepresentation is not provided then the
baseType of the ImplementationDataType shall be
used for the serialization/deserialization.

Tags: atp.Status=draft
someipTran
sformationP
rops

ApSomeipTran
sformationProp
s

0..1 ref This reference represents the ability to define data
transformation props specifically for a SOME/IP
serialization.

Tags: atp.Status=draft

200 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note

Table A.71: SomeipDataPrototypeTransformationProps

Class SomeipEventDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note SOME/IP configuration settings for an Event.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEvent

Deployment
Attribute Type Mul. Kind Note
eventId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that

identifies the Event in SOME/IP. This Identifier is
sent as part of the Message ID in SOME/IP
messages.

maximumS
egmentLen
gth

PositiveInteger 0..1 attr This attribute describes the length in bytes of the
SOME/IP segment. This includes 8 bytes for the
Request ID, Protocol Version, Interface Version,
Message Type and Return Code and 4 additional
SOME/IP TP bytes.

If this attribute is set to a value and the data length
is larger than maximumSegmentLength then the
corresponding SOME/IP message will be
segmented into smaller parts that are transmitted
over the network.

separationT
ime

TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments.

transportPr
otocol

TransportLayer
ProtocolEnum

1 attr This attribute defines over which Transport Layer
Protocol this event is intended to be sent.

Table A.72: SomeipEventDeployment

Class SomeipEventGroup
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note Grouping of events and notification events inside a ServiceInterface in order to allow

subscriptions.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
event SomeipEventD

eployment
* ref Reference to an event that is part of the

EventGroup.

Tags: atp.Status=draft

201 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
eventGroup
Id

PositiveInteger 1 attr Unique Identifier that identifies the EventGroup in
SOME/IP. This Identifier is sent as Eventgroup ID
in SOME/IP Service Discovery messages.

Table A.73: SomeipEventGroup

Class SomeipEventProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class allows to set configuration options for an event in the provided

service instance.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
event SomeipEventD

eployment
0..1 ref Reference to the event for which the

SomeipEventProps are applicable.

Tags: atp.Status=draft
timingProps SomeipTiming

Props
0..1 aggr Collection of timing attributes configurable for an

event that is provided by a Service Instance.

Tags: atp.Status=draft

Table A.74: SomeipEventProps

Class SomeipFieldDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note SOME/IP configuration settings for a Field.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceField

Deployment
Attribute Type Mul. Kind Note
get SomeipMethod

Deployment
0..1 aggr This aggregation represents the setting of the get

method.

Tags: atp.Status=draft
notifier SomeipEventD

eployment
0..1 aggr This aggregation represents the settings of the

notifier.

Tags: atp.Status=draft
set SomeipMethod

Deployment
0..1 aggr This aggregation represents the settings of the set

method

Tags: atp.Status=draft

Table A.75: SomeipFieldDeployment

202 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SomeipMethodDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note SOME/IP configuration settings for a Method.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceMethod

Deployment
Attribute Type Mul. Kind Note
maximumS
egmentLen
gthRequest

PositiveInteger 0..1 attr This attribute describes the length in bytes of one
SOME/IP segment into which the Method Call
Message will be divided. This length field includes
8 bytes for the Request ID, Protocol Version,
Interface Version, Message Type and Return
Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length
is larger than maximumSegmentLengthRequest
then the corresponding SOME/IP message will be
segmented into smaller parts that are transmitted
over the network.

maximumS
egmentLen
gthRespons
e

PositiveInteger 0..1 attr This attribute describes the length in bytes of one
SOME/IP segment into which the Method Return
Message will be divided. This length field includes
8 bytes for the Request ID, Protocol Version,
Interface Version, Message Type and Return
Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length
is larger than maximumSegmentLengthResponse
then the corresponding SOME/IP message will be
segmented into smaller parts that are transmitted
over the network.

methodId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that
identifies the Method in SOME/IP. This Identifier is
sent as part of the Message ID in SOME/IP
messages.

separationT
imeRequest

TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments into which the Method Call Message will
be divided.

separationT
imeRespon
se

TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments into which the Method Return Message
will be divided.

transportPr
otocol

TransportLayer
ProtocolEnum

1 attr This attribute defines over which Transport Layer
Protocol this method is intended to be sent.

Table A.76: SomeipMethodDeployment

203 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SomeipMethodProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class allows to set configuration options for a method in the service

instance.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
method SomeipMethod

Deployment
0..1 ref Reference to the method for which the

SomeipMethodProps are applicable.

Tags: atp.Status=draft
timingProps SomeipTiming

Props
0..1 aggr Collection of timing attributes configurable for a

method that is provided or requested by a Service
Instance.

Tags: atp.Status=draft

Table A.77: SomeipMethodProps

Class SomeipProvidedEventGroup
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note The meta-class represents the ability to configure ServiceInstance related

communication settings on the provided side for each EventGroup separately.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
eventGroup SomeipEventG

roup
0..1 ref Reference to the SomeipEventGroup in the

System Manifest for which the ServiceInstance
related EventGroup settings are valid.

Tags: atp.Status=draft
multicastThr
eshold

PositiveInteger 1 attr Specifies the number of subscribed clients that
trigger the server to change the transmission of
events to multicast.

Example: If configured to 0 only unicast will be
used. If configured to 1 the first client will be
already served by multicast. If configured to 2 the
first client will be server with unicast and as soon
as the 2nd client arrives both will be served by
multicast.

This does not influence the handling of initial
events, which are served using unicast only.

sdServerEv
entConfig

SomeipSdServ
erEventTiming
Config

0..1 aggr Server Timing configuration settings that are
EventGroup specific.

Tags: atp.Status=draft

Table A.78: SomeipProvidedEventGroup

204 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SomeipRequiredEventGroup
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note The meta-class represents the ability to configure ServiceInstance related

communication settings on the required side for each EventGroup separately.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Referrable
Attribute Type Mul. Kind Note
eventGroup SomeipEventG

roup
0..1 ref Reference to the SomeipEventGroup in the

System Manifest for which the ServiceInstance
related EventGroup settings are valid.

Tags: atp.Status=draft
sdClientEve
ntTimingCo
nfig

SomeipSdClie
ntEventGroupT
imingConfig

0..1 aggr Client Timing configuration settings that are
EventGroup specific.

Tags: atp.Status=draft

Table A.79: SomeipRequiredEventGroup

Class SomeipSdClientEventGroupTimingConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class is used to specify configuration related to service discovery in the

context of an event group on SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
requestRes
ponseDelay

RequestRespo
nseDelay

0..1 aggr The Service Discovery shall delay answers to
unicast messages triggered by multicast
messages (e.g. Subscribe Eventgroup after Offer
Service).

Tags: atp.Status=draft
timeToLive PositiveInteger 1 attr Defines the time in seconds the subscription of

this event is expected by the client. this value is
sent from the client to the server in the
SD-subscribeEvent message.

Table A.80: SomeipSdClientEventGroupTimingConfig

Class SomeipSdClientServiceInstanceConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note Client specific settings that are relevant for the configuration of SOME/IP

Service-Discovery.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note

205 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
capabilit
yRecord
(ordered)

TagWithOption
alValue

* aggr A sequence of records to store arbitrary
name/value pairs conveying additional information
about the named service.

Tags: atp.Status=draft
initialFindBe
havior

InitialSdDelay
Config

0..1 aggr Controls initial find behavior of clients.

Tags: atp.Status=draft
serviceFind
TimeToLive

PositiveInteger 1 attr This attribute represents the ability to define the
time in seconds the service find is valid.

Table A.81: SomeipSdClientServiceInstanceConfig

Class SomeipSdServerServiceInstanceConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note Server specific settings that are relevant for the configuration of SOME/IP

Service-Discovery.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
capabilit
yRecord
(ordered)

TagWithOption
alValue

* aggr A sequence of records to store arbitrary
name/value pairs conveying additional information
about the named service.

Tags: atp.Status=draft
initialOfferB
ehavior

InitialSdDelay
Config

0..1 aggr Controls offer behavior of the server.

Tags: atp.Status=draft
offerCyclicD
elay

TimeValue 0..1 attr Optional attribute to define cyclic offers. Cyclic
offer is active, if the delay is set (in seconds).

requestRes
ponseDelay

RequestRespo
nseDelay

0..1 aggr Maximum/Minimum allowable response delay to
entries received by multicast in seconds. The
Service Discovery shall delay answers to entries
that were transported in a multicast SOME/IP-SD
message (e.g. FindService).

Tags: atp.Status=draft
serviceOffer
TimeToLive

PositiveInteger 1 attr Defines the time in seconds the service offer is
valid.

Table A.82: SomeipSdServerServiceInstanceConfig

206 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SomeipServiceInstanceToMachineMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstanceMapping
Note This meta-class allows to map SomeipServiceInstances to a

CommunicationConnector of a Machine. In this step the network configuration (IP
Address, Transport Protocol, Port Number) for the ServiceInstance is defined.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInstanceToMachineMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, ServiceInstanceToMachineMapping, Uploadable
PackageElement

Attribute Type Mul. Kind Note
eventMultic
astUdpPort

PositiveInteger 0..1 attr UdpPort configuration that is used for Event
communication in the IP-Multicast case.

SOME/IP Service Discovery: Send in the
SD-SubscribeEventGroupAck Message to client
(answer to SD-SubscribeEventGroup).

Event: This is the destination-port where the
server sends the multicast event messages if the
mulicastThreshold of the corresponding
ProvidedEventGroupInSomeipServiceInstance is
exceeded.

ipv4Multica
stIpAddress

Ip4AddressStri
ng

0..1 attr Multicast IPv4 Address that is transmitted in the
EventGroupSubscribeAck message for all
available EventGroups that are available in the
ProvidedSomeipServiceInstance.

ipv6Multica
stIpAddress

Ip6AddressStri
ng

0..1 attr Multicast IPv6 Address that is transmitted in the
EventGroupSubscribeAck message for all
available EventGroups that are available in the
ProvidedSomeipServiceInstance.

tcpPort PositiveInteger 0..1 attr TcpPort configuration that is used for Method and
Event communication in IP-Unicast case.

SOME/IP Service Discovery: PortNumber that is
sent in the SD-Offer Message to client (answer on
SD-find) or clients (SD-offer).

Method: This is the destination-port where the
server accepts the method call messages (from
the clients). This is the source-port where the
server sends the method response messages (to
the client).

Event: This is the event source-port where the
server sends the event messages to the
subscribed clients in IP-Unicast case.

udpMinTxB
ufferSize

PositiveInteger 0..1 attr Specifies the amount of data in bytes that shall be
buffered for data transmission over the udp
connection specified by this
SomeipServiceInstanceToMachineMapping in
case data accumulation is enabled.

207 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
udpPort PositiveInteger 0..1 attr UdpPort configuration that is used for Method and

Event communication in IP-Unicast case.

SOME/IP Service Discovery: PortNumber that is
sent in the SD-Offer Message to client (answer on
SD-find) or clients (SD-offer).

Method: This is the destination-port where the
server accepts the method call messages (from
the clients). This is the source-port where the
server sends the method response messages (to
the client).

Event: This is the event source-port where the
server sends the event messages to the
subscribed clients in IP-Unicast case.

Table A.83: SomeipServiceInstanceToMachineMapping

Class SomeipServiceInterfaceDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note SOME/IP configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, ServiceInterfaceDeployment , UploadablePackage
Element

Attribute Type Mul. Kind Note
eventGroup SomeipEventG

roup
* aggr SOME/IP EventGroups that are defined within the

SOME/IP ServiceClass.

Tags: atp.Status=draft
serviceInterf
aceId

PositiveInteger 1 attr Unique Identifier that identifies the
ServiceInterface in SOME/IP. This Identifier is sent
as Service ID in SOME/IP Service Discovery
messages.

serviceInterf
aceVersion

SomeipService
InterfaceVersio
n

1 aggr The SOME/IP major and minor Version of the
Service.

Tags: atp.Status=draft

Table A.84: SomeipServiceInterfaceDeployment

208 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class SomeipServiceInterfaceVersion
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note This meta-class represents the ability to describe a version of a SOME/IP

ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
majorVersio
n

AnyVersionStri
ng

1 attr Major Version of the ServiceInterface. Value can
be set to a number that represents the Major
Version of the searched service or to ANY.

minorVersio
n

AnyVersionStri
ng

1 attr Minor Version of the ServiceInterface. Value can
be set to a number that represents the Minor
Version of the searched service or to ANY.

Table A.85: SomeipServiceInterfaceVersion

Class SomeipTimingProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note Collection of timing attributes that are configurable for an event that is provided by a

ServiceInstance or for a method that is provided or requested by a ServiceInstance.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
udpCollecti
onBufferTim
eout

TimeValue 0..1 attr Maximum time, an outgoing message (event,
method call or method response) may be delayed,
due to data accumulation.

udpCollecti
onTrigger

UdpCollection
TriggerEnum

0..1 attr Defines whether the ServiceInterface element
(event or method) contributes to the triggering of
the udp data transmission if data accumulation is
enabled.

Table A.86: SomeipTimingProps

Class SwBaseType
Package M2::MSR::AsamHdo::BaseTypes
Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes
Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, Collectable

Element , Identifiable, MultilanguageReferrable, PackageableElement , Referrable
Attribute Type Mul. Kind Note
– – – – –

Table A.87: SwBaseType

209 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class �atpVariation� SwDataDefProps
Package M2::MSR::DataDictionary::DataDefProperties
Note This class is a collection of properties relevant for data objects under various aspects.

One could consider this class as a "pattern of inheritance by aggregation". The
properties can be applied to all objects of all classes in which SwDataDefProps is
aggregated.

Note that not all of the attributes or associated elements are useful all of the time.
Hence, the process definition (e.g. expressed with an OCL or a Document Control
Instance MSR-DCI) has the task of implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a
curve, or a map, but also the recordLayouts which specify how such elements
are mapped/converted to the DataTypes in the programming language (or in
AUTOSAR). This is mainly expressed by properties like swRecordLayout and
swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy,
swVariableAccessImplPolicy, swAddrMethod, swPointerTagetProps, baseType,
implementationDataType and additionalNativeTypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or
unit, dataConstr, invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime
Base ARObject
Attribute Type Mul. Kind Note
additionalN
ativeTypeQ
ualifier

NativeDeclarati
onString

0..1 attr This attribute is used to declare native qualifiers of
the programming language which can neither be
deduced from the baseType (e.g. because the
data object describes a pointer) nor from other
more abstract attributes. Examples are qualifiers
like "volatile", "strict" or "enum" of the C-language.
All such declarations have to be put into one
string.

Tags: xml.sequenceOffset=235
annotation Annotation * aggr This aggregation allows to add annotations (yellow

pads ...) related to the current data object.

Tags: xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data
object.

Tags: xml.sequenceOffset=50

210 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
compuMeth
od

CompuMethod 0..1 ref Computation method associated with the
semantics of this data object.

Tags: xml.sequenceOffset=180
dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190
displayForm
at

DisplayFormat
String

0..1 attr This property describes how a number is to be
rendered e.g. in documents or in a measurement
and calibration system.

Tags: xml.sequenceOffset=210
implementat
ionDataTyp
e

AbstractImple
mentationData
Type

0..1 ref This association denotes the
ImplementationDataType of a data declaration via
its aggregated SwDataDefProps. It is used
whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType
via a "typedef" to another
ImplementationDatatype

• the target type of a pointer (see
SwPointerTargetProps), if it does not refer
to a base type directly

• the data type of an array or record element
within an ImplementationDataType, if it
does not refer to a base type directly

• the data type of an SwServiceArg, if it does
not refer to a base type directly

Tags: xml.sequenceOffset=215
invalidValue ValueSpecifica

tion
0..1 aggr Optional value to express invalidity of the actual

data element.

Tags: xml.sequenceOffset=255
stepSize Float 0..1 attr This attribute can be used to define a value which

is added to or subtracted from the value of a
DataPrototype when using up/down keys while
calibrating.

swAddrMet
hod

SwAddrMetho
d

0..1 ref Addressing method related to this data object. Via
an association to the same SwAddrMethod it can
be specified that several DataPrototypes shall be
located in the same memory without already
specifying the memory section itself.

Tags: xml.sequenceOffset=30

211 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
swAlignmen
t

AlignmentType 0..1 attr The attribute describes the intended alignment of
the DataPrototype. If the attribute is not defined
the alignment is determined by the swBaseType
size and the memoryAllocationKeywordPolicy of
the referenced SwAddrMethod.

Tags: xml.sequenceOffset=33
swBitRepre
sentation

SwBitReprese
ntation

0..1 aggr Description of the binary representation in case of
a bit variable.

Tags: xml.sequenceOffset=60
swCalibratio
nAccess

SwCalibration
AccessEnum

0..1 attr Specifies the read or write access by MCD tools
for this data object.

Tags: xml.sequenceOffset=70
swCalprmA
xisSet

SwCalprmAxis
Set

0..1 aggr This specifies the properties of the axes in case of
a curve or map etc. This is mainly applicable to
calibration parameters.

Tags: xml.sequenceOffset=90
swCompari
sonVariable

SwVariableRef
Proxy

* aggr Variables used for comparison in an MCD
process.

Tags: xml.sequenceOffset=170; xml.type
Element=false

swDataDep
endency

SwDataDepen
dency

0..1 aggr Describes how the value of the data object has to
be calculated from the value of another data
object (by the MCD system).

Tags: xml.sequenceOffset=200
swHostVari
able

SwVariableRef
Proxy

0..1 aggr Contains a reference to a variable which serves as
a host-variable for a bit variable. Only applicable
to bit objects.

Tags: xml.sequenceOffset=220; xml.type
Element=false

swImplPolic
y

SwImplPolicyE
num

0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

212 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the
requested quantization of data objects early on in
the design process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies
the transition from the physical world to the
standardized world (and vice-versa) (here, "the
slope per bit" is present implicitly in the conversion
formula).

In the case of a development phase without a
fixed conversion formula, a pre-specification can
occur through swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240
swInterpolat
ionMethod

Identifier 0..1 attr This is a keyword identifying the mathematical
method to be applied for interpolation. The
keyword needs to be related to the interpolation
routine which needs to be invoked.

Tags: xml.sequenceOffset=250
swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual

objects do not appear in the memory, their
derivation is much more dependent on other
objects and hence they shall have a
swDataDependency .

Tags: xml.sequenceOffset=260
swPointerT
argetProps

SwPointerTarg
etProps

0..1 aggr Specifies that the containing data object is a
pointer to another data object.

Tags: xml.sequenceOffset=280
swRecordL
ayout

SwRecordLayo
ut

0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290
swRefreshT
iming

Multidimension
alTime

0..1 aggr This element specifies the frequency in which the
object involved shall be or is called or calculated.
This timing can be collected from the task in which
write access processes to the variable run. But
this cannot be done by the MCD system.

So this attribute can be used in an early phase to
express the desired refresh timing and later on to
specify the real refresh timing.

Tags: xml.sequenceOffset=300

213 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
swTextProp
s

SwTextProps 0..1 aggr the specific properties if the data object is a text
object.

Tags: xml.sequenceOffset=120
swValueBlo
ckSize

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

unit Unit 0..1 ref Physical unit associated with the semantics of this
data object. This attribute applies if no
compuMethod is specified. If both units (this as
well as via compuMethod) are specified the units
shall be compatible.

Tags: xml.sequenceOffset=350
valueAxisD
ataType

ApplicationPri
mitiveDataTyp
e

0..1 ref The referenced ApplicationPrimitiveDataType
represents the primitive data type of the value axis
within a compound primitive (e.g. curve, map). It
supersedes CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table A.88: SwDataDefProps

Class SwTextProps
Package M2::MSR::DataDictionary::DataDefProperties
Note This meta-class expresses particular properties applicable to strings in variables or

calibration parameters.
Base ARObject
Attribute Type Mul. Kind Note
arraySizeSe
mantics

ArraySizeSem
anticsEnum

1 attr This attribute controls the semantics of the
arraysize for the array representing the string in an
ImplementationDataType.

It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype,
even for variable length strings as required e.g. for
Support of SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string.
In particular this baseType denotes the intended
encoding of the characters in the string on level of
ApplicationDataType.

Tags: xml.sequenceOffset=30

214 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Attribute Type Mul. Kind Note
swFillChara
cter

Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.

The value will be interpreted according to the
encoding specified in the associated base type of
the data object, e.g. 0x30 (hex) represents the
ASCII character zero as filler character and 0 (dec)
represents an end of string as filler character.

The usage of the fill character depends on the
arraySizeSemantics.

Tags: xml.sequenceOffset=40
swMaxText
Size

Integer 1 attr Specifies the maximum text size in characters.
Note the size in bytes depends on the encoding in
the corresponding baseType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table A.89: SwTextProps

Class SymbolProps
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This meta-class represents the ability to attach with the symbol attribute a symbolic

name that is conform to C language requirements to another meta-class, e.g.
AtomicSwComponentType, that is a potential subject to a name clash on the level of
RTE source code.

Base ARObject , ImplementationProps, Referrable
Attribute Type Mul. Kind Note
– – – – –

Table A.90: SymbolProps

Class TlsSecureComProps
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::SecureCommunication
Note Configuration of the Transport Layer Security protocol (TLS).

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable, SecureComProps
Attribute Type Mul. Kind Note
supportedCi
pherSuite

TlsCipherSuite * aggr Collection of supported cipher suites that are used
to negotiate the security settings for a network
connection.

Tags: atp.Status=draft

Table A.91: TlsSecureComProps

215 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class TransformationPropsToServiceInterfaceElementMapping
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure
Note This meta-class represents the ability to associate a ServiceInterface element with

TransformationProps. The referenced elements of the Service Interface will be
serialized according to the settings defined in the TransformationProps.

Tags: atp.Status=draft
Base ARObject , Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
event VariableDataPr

ototype
* ref This represents the reference to one or several

events of one ServiceInterface.

Tags: atp.Status=draft
field Field * ref This represents the reference to one or several

fields of one ServiceInterface.

Tags: atp.Status=draft
method ClientServerO

peration
* ref This represents the reference to one or several

methods of one ServiceInterface.

Tags: atp.Status=draft
tlvDataId TlvDataIdDefin

ition
* aggr This aggregation represents the collection of

tlvDataIds defined in the enclosing context.

Tags: atp.Status=draft
transformati
onProps

Transformation
Props

0..1 ref This represents the reference to the applicable
Serialization properties.

Tags: atp.Status=draft

Table A.92: TransformationPropsToServiceInterfaceElementMapping

Class TransformationPropsToServiceInterfaceElementMappingSet
Package M2::AUTOSARTemplates::AdaptivePlatform::TransformationConfiguration
Note Collection of TransformationPropsToServiceInterfaceElementMappings.

Tags: atp.Status=draft; atp.recommendedPackage=TransformationPropsToService
InterfaceMappingSets

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable

Attribute Type Mul. Kind Note
mapping Transformation

PropsToServic
eInterfaceElem
entMapping

* aggr Mapping that assigns serialization properties to
elements of a ServiceInterface.

Tags: atp.Status=draft

Table A.93: TransformationPropsToServiceInterfaceElementMappingSet

Enumeration TransportLayerProtocolEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance

216 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Note This enumeration allows to choose a TCP/IP transport layer protocol.

Tags: atp.Status=draft
Literal Description
tcp Transmission control protocol

Tags: atp.EnumerationValue=1
udp User datagram protocol

Tags: atp.EnumerationValue=0

Table A.94: TransportLayerProtocolEnum

Enumeration UdpCollectionTriggerEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInstance
Note Defines whether the ServiceInterface element (event or method) contributes to the

triggering of the udp data transmission if data accumulation is enabled.

Tags: atp.Status=draft
Literal Description
always ServiceInterface element will trigger the transmission of the data.

Tags: atp.EnumerationValue=0
never ServiceInterface element will be buffered and will not trigger the transmission of

the data.

Tags: atp.EnumerationValue=1

Table A.95: UdpCollectionTriggerEnum

Class UserDefinedServiceInterfaceDeployment
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::ServiceInterface

Deployment
Note UserDefined configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest; atp.Status=draft;
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable,
PackageableElement , Referrable, ServiceInterfaceDeployment , UploadablePackage
Element

Attribute Type Mul. Kind Note
– – – – –

Table A.96: UserDefinedServiceInterfaceDeployment

217 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Class VariableDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A VariableDataPrototype is used to contain values in an ECU application. This means

that most likely a VariableDataPrototype allocates "static" memory on the ECU. In
some cases optimization strategies might lead to a situation where the memory
allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on
which it is used executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note
initValue ValueSpecifica

tion
0..1 aggr Specifies initial value(s) of the

VariableDataPrototype

Table A.97: VariableDataPrototype

B History of Specification Items

B.1 Constraint and Specification Item History of this document
according to AUTOSAR Release 17-10

B.1.1 Added Traceables in 17-10

Number Heading

[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00115] Existence of RegisterGetHandler method

[SWS_CM_00116] Registering Setters

[SWS_CM_00117] Existence of the RegisterSetHandler method

[SWS_CM_00119] Update Function

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring existence of SetHandler

[SWS_CM_00132] Existence of getter method

[SWS_CM_00133] Existence of the set method
[SWS_CM_00182] Event Receive Handler call serialization
[SWS_CM_00183] Disable service event trigger

[SWS_CM_00252]

[SWS_CM_00253]

[SWS_CM_00254]

218 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_00255]

[SWS_CM_00256]

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00259]

[SWS_CM_00260]

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00264]

[SWS_CM_00265]

[SWS_CM_00266] FilterFunction for incoming event filtering

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_01031] Service fields namespace

[SWS_CM_10268]

[SWS_CM_10269]

[SWS_CM_10270]

[SWS_CM_10271]

[SWS_CM_10272]

[SWS_CM_10273]

[SWS_CM_10274]

[SWS_CM_10275]

[SWS_CM_10276]

[SWS_CM_10277]

[SWS_CM_10278]

[SWS_CM_10279]

[SWS_CM_10280]

[SWS_CM_10281]

[SWS_CM_10282]

[SWS_CM_10283]

[SWS_CM_10284]

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10287] Conditions for sending of a SOME/IP event message

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10289] Source of a SOME/IP event message

[SWS_CM_10290] Destination of a SOME/IP event message

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10293] Identifying the right event

[SWS_CM_10294] Deserializing the payload

219 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_10295] Store the received event data
[SWS_CM_10296] Invoke receive handler
[SWS_CM_10297] Conditions for sending of a SOME/IP request message

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10300] Destination of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10303] Identifying the right method

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10305] Store the received method data
[SWS_CM_10306] Invoke the method - event driven
[SWS_CM_10307] Invoke the method - polling

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10311] Destination of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10314] Identifying the right method

[SWS_CM_10315] Discarding orphaned responses

[SWS_CM_10316] Deserializing the payload - response mesages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10318] Invoke the notification function
[SWS_CM_10319] Conditions for sending of a SOME/IP event message

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10321] Source of a SOME/IP event message

[SWS_CM_10322] Destination of a SOME/IP event message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10325] Identifying the right event

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10327] Store the received event data
[SWS_CM_10328] Invoke receive handler
[SWS_CM_10329] Conditions for sending of a SOME/IP request message

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10331] Source of a SOME/IP request message

[SWS_CM_10332] Destination of a SOME/IP request message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

220 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_10335] Identifying the right method

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10337] Store the received method data
[SWS_CM_10338] Invoke the registered set/get handlers - event driven

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10340] Conditions for sending of a SOME/IP response message

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10342] Source of a SOME/IP response message

[SWS_CM_10343] Destination of a SOME/IP response message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10346] Identifying the right method

[SWS_CM_10347] Discarding orphaned responses

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10350] Invoke the notification function
[SWS_CM_10351] Service application errors

[SWS_CM_10352] Definition of ServiceNotAvailableException

[SWS_CM_10353] Use of ServiceNotAvailableException

[SWS_CM_10354] Definition of ApplicationErrorException

[SWS_CM_10355] Use of ApplicationErrorException

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_10361]

[SWS_CM_10362] Raising checked exceptions for application errors

[SWS_CM_10370] Data Type definitions for Application Errors in Common header file

[SWS_CM_10371] Context of thrown checked exceptions

[SWS_CM_11262]

[SWS_CM_11263]

[SWS_CM_90101] Secure channel creation
[SWS_CM_90102] Using secure channels

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90107] TLS secure channel for fields
[SWS_CM_90108] SecOC secure channel for methods
[SWS_CM_90109] SecOC secure channel for events
[SWS_CM_90110] SecOC secure channel for fields

221 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90409]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90414]

[SWS_CM_90415]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:state_machine::E2E check status

[SWS_CM_90422] ara::com:state_machine::State

[SWS_CM_90423] E2EResult
[SWS_CM_90424] Provide E2E Result
[SWS_CM_90425] Namespace of Sample Pointer

[SWS_CM_90430]

[SWS_CM_90431]

[SWS_CM_90432] Functionality of Sample Pointer

Table B.1: Added Traceables in 17-10

B.1.2 Changed Traceables in 17-10

Number Heading

[SWS_CM_00122] Find service with immediately returned request

[SWS_CM_00123] Find service with handler registration

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00171] Receive a service event using polling

[SWS_CM_00181] Enable service event trigger

[SWS_CM_00195] Retrieving results of the method call

[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

222 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_00205] SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00300] Event Cache Update Policy

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00304] Service Handle Container
[SWS_CM_00305] Find Service Handler
[SWS_CM_00306] Sample Pointer

[SWS_CM_00307] Sample Container

[SWS_CM_00308] Sample Allocatee Pointer

[SWS_CM_00309] Event Receive Handler
[SWS_CM_00310] Subscription State

[SWS_CM_00312] Handle Type Class

[SWS_CM_00346] Promise::set_value, forwarding reference version

[SWS_CM_00406] String Data Type with baseTypeSize of 8

[SWS_CM_00409] Associative Map Data Type

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01016] Data Type definitions for AUTOSAR Data Types in Common header file

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_10017]

[SWS_CM_10034]

[SWS_CM_10059]

[SWS_CM_10242] UTF-8 Strings

[SWS_CM_10243] UTF-16 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10252]

[SWS_CM_10253]

[SWS_CM_10256]

[SWS_CM_10257]

[SWS_CM_10258]

[SWS_CM_10260]

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10264] Size of the associative map length field

[SWS_CM_10267] Insertion of an associative map length field

Table B.2: Changed Traceables in 17-10

B.1.3 Deleted Traceables in 17-10

223 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 18-03

Number Heading

[SWS_CM_01003] Inclusion protection

Table B.3: Deleted Traceables in 17-10

224 of 224
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.1.1 Architectural concepts
	7.1.2 Design decisions
	7.1.3 Communication paradigms

	7.2 End-to-end communication protection
	7.2.1 Publisher
	7.2.2 Subscriber - Update
	7.2.2.1 Case 1 - there are one or more serialized samples
	7.2.2.2 Case 2 - there are no serialized samples

	7.2.3 Subscriber - GetCachedSamples
	7.2.4 Subscriber - Access to E2E information

	7.3 Network binding
	7.3.1 SOME/IP Network binding
	7.3.1.1 Service Discovery
	7.3.1.2 Accumulation of SOME/IP messages
	7.3.1.3 Handling Events
	7.3.1.4 Handling Method Calls
	7.3.1.5 Handling Fields
	7.3.1.6 Serialization of Payload

	7.3.2 DDS Network binding
	7.3.2.1 Service Discovery
	7.3.2.2 Handling Events
	7.3.2.3 Serialization of Payload

	7.4 Security
	7.4.1 Access Control
	7.4.2 Secure Communication
	7.4.2.1 SOME/IP

	8 Communication API specification
	8.1 C++ language binding
	8.1.1 API Header files
	8.1.1.1 Service header files
	8.1.1.2 Common header file
	8.1.1.3 Types header file
	8.1.1.4 Implementation Types header files

	8.1.2 API Data Types
	8.1.2.1 Service Identifier Data Types
	8.1.2.2 Event Related Data Types
	8.1.2.3 Method Related Data Types
	8.1.2.4 Generic Data Types
	8.1.2.5 Communication Payload Data Types
	8.1.2.6 Error Exception Types
	8.1.2.7 E2E Related Data Types

	8.1.3 API Reference
	8.1.3.1 Offer service
	8.1.3.2 Service skeleton creation
	8.1.3.3 Send event
	8.1.3.4 Provide a service method
	8.1.3.5 Processing of service methods
	8.1.3.6 Registering get handlers for fields
	8.1.3.7 Registering set handlers for fields
	8.1.3.8 Find service
	8.1.3.9 Service proxy creation
	8.1.3.10 Service event subscription
	8.1.3.11 Receive event using polling
	8.1.3.12 Receive event by getting triggered
	8.1.3.13 Call a service method
	8.1.3.14 Get method for fields
	8.1.3.15 Set method for fields
	8.1.3.16 Update notification events for fields

	A Mentioned Class Tables
	B History of Specification Items
	B.1 Constraint and Specification Item History of this document according to AUTOSAR Release 17-10
	B.1.1 Added Traceables in 17-10
	B.1.2 Changed Traceables in 17-10
	B.1.3 Deleted Traceables in 17-10

