AUTOSAR

Document Title

Specification of Log and Trace for
Adaptive Platform

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 853
Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-03

Document Change History

Date Release | Changed by Description
AUTOSAR , o
2018-03-29 | 18-03 Release e Refactoring and editorial changes
Management e Log and Trace extensions added
AUTOSAR
2017-10-27 | 17-10 Release No content changes
Management
AUTOSAR
2017-03-31 | 17-03 Release Initial release
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTOSAR

Table of Contents

—

Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1

Inputdocuments

4 Constraints and assumptions

41
4.2

Limitations
Applicability tocardomainso

5 Dependencies to other Functional Clusters

5.1

Platform dependencies

6 Requirements Tracing

7 Functional specification

7.1

7.2
7.3
7.4
7.5
7.6

8.1

8.2

Necessary Parameters and Initialization
7.1.1 ApplicationID
7.1.2 Application Description L.
7.1.3 Default Log Level
7.1.4 LogMode
7.1.5 LogFilePath
7.1.6 ContextID
7.1.7 Context Description oL
7.1.8 Initialization of the Logging framework

LogMessages

Conversionfunctions

Log and Trace timestamp L

Application Communicationtracing

Log and Trace message network load balancing

API specification

Type definitions
8.1.1 LogLevel
8.1.2 LogMode
8.1.3 LogHex8
8.1.4 LogHex16
8.1.5 LogHex32
8.1.6 LogHex64
8.1.7 LogBin8
8.1.8 LogBin16
8.1.9 LogBin32
8.1.10 LogBin64

Function definitions L o

© O © 00 ©

AUTOSAR

8.3

8.2.1 InitLogging 28
8.2.2 CreateLogger 28
8.2.3 HexFormat (uint8) 29
8.24 HexFormat (int8) 29
8.2.5 HexFormat (uint16) 30
8.2.6 HexFormat (int16) 30
8.2.7 HexFormat (uint32) 30
8.2.8 HexFormat (int32) 31
8.2.9 HexFormat (uinté4) 31
8.2.10 HexFormat (int64) 31
8.2.11 BinFormat (uint8) 32
8.2.12 BinFormat (int8) 32
8.2.13 BinFormat (uint16) L. 33
8.2.14 BinFormat (int16), 33
8.2.15 BinFormat (uint32) oL 33
8.2.16 BinFormat (int32) 34
8.2.17 BinFormat (uinté4) 34
8.2.18 BinFormat (int64) 34
8.2.19 RawBuffer o 35
Class definitions 36
8.3.1 Class LogStream 36
8.3.1.1 Extending the Logging API to understand custom types 36
8.3.1.2 LogStream::Flush. 37
8.3.1.3 Built-in operators for natively supported types:. . . . 37
8.3.1.4 Built-in operators for conversion types: 41
8.3.1.5 Built-in operators for extratypes: 43
8.3.2 Class Logger o o i 45
8.3.2.1 Logger::iLogFatal 45
8.3.2.2 Logger::LogErroro 45
8.3.2.3 Logger::LogWarn 46
8.3.24 Logger::Loginfo L. 46
8.3.2.5 Logger::iLogDebug 46
8.3.2.6 Logger::LogVerbose L. 47
8.3.2.7 Logger::lsLogEnabled 47

9 Configuration specification 48

AUTOSAR

1 Introduction and functional overview

This specification specifies the functionality of the AUTOSAR Adaptive Platform
Log and Trace functional cluster.

The Log and Trace functional cluster provides interfaces for applications to forward
logging information onto the communication bus, the console, or to the file system.
Each of the provided logging information has its own severity level.

For each severity level, a separate method is provided to be used by applications or
Adaptive Platform services, €.g. ara:com.

In addition, utility methods are provided to convert decimal values into the hexadecimal
numeral system, or into the binary numeral system.

To pack the provided logging information into a standardized delivery and presentation
format, a protocol is needed. For this purpose, the DLT protocol can be used which is
standardized within the AUTOSAR consortium.

The DLT protocol can add additional information, like an ECU ID, to the provided log-
ging information. This information can be used by a DLT Logging Client to relate, sort
or filter the received logging frames.

Detailed information regarding the use cases and the DLT protocol itself are provided
by the PRS DLT protocol specification[1].

Adaptive Adaptive
Application Application

SWsS

Logging APIs

Logging and Tracing Functional Cluster ara::com

Log and Trace backend .
GENIVI DLT DLT Client

| DLT Protocol

Figure 1.1: Architecture overview

Furthermore, this document introduces additional specification extensions for the
Adaptive Platform Log and Trace functional cluster. Such extensions consist
of several requirements:

e [SWS_LOG_00080] | Log and Trace information shall be able to be correlated
across time and between multiple ECUs. |()

AUTOSAR

e [SWS_LOG_00081] | Communication flow between differentAdaptive Ap-—
plications shall be traceable, regardless of the scope of the communication
(i.e. internal or external communication). |()

AUTOSAR

2 Acronyms and Abbreviations

Abbreviation / | Description:

Acronym:

L&T Log and Trace

DLT protocol Original name of the protocol itself (Diagnostic Log and Trace)
Logging API The main logging interface towards user applications as a library

Logging back-end

Implementation of the Logging Protocol, e.g. DLT

Logging Client

An external tool which can remotely interact with the Logging framework

Logging framework

Implementation of the software solution used for Logging purposes

Log message

Log message, including header(s)

Log severity level

Meta information about the severity of a passed logging information

PoD

Plain old data type supported natively by most platforms. Integers,
floats, chars, etc.

AUTOSAR

3 Related documentation

3.1 Input documents
[1] Log and Trace Protocol Specification
AUTOSAR_PRS_LogAndTraceProtocol

[2] Requirements on Log and Trace
AUTOSAR_RS_LogAndTrace

[3] Specification of Time Synchronization for Adaptive Platform
AUTOSAR_SWS TimeSync

[4] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The provided Logging framework APl is designed to be independent from the underly-
ing logging protocol back-end implementation and as such doesn’t impose limitations.

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other Functional Clusters

There are no dependencies to other functional clusters.

5.1 Platform dependencies

This specification is part of the AUTOSAR Adaptive Platform and therefore depends
on it.

AUTOSAR

6 Requirements Tracing

The following table references the requirements specified in RS Log And Trace [2] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_LT_00003]

Applications shall
have the possibility to
send log or trace
messages to the LT
module.

[SWS_LOG_00002]

[RS_LT_00044]

Provide raw buffer
content.

[SWS_LOG_00014] [SWS_LOG_00038]
[SWS_LOG_00061]

[RS_LT_00045]

Check the current
severity level.

[SWS_LOG _00007] [SWS_LOG _00070]

[RS_LT_00046]

Conversion functions
for hexadecimal and
binary values.

[SWS_LOG 00015] [SWS_LOG _00016]
[SWS_LOG_00017] [SWS_LOG_00022]
[SWS_LOG_00023] [SWS_LOG_00024]
[SWS_LOG_00025] [SWS_LOG_00026]
[SWS_LOG_00027] [SWS_LOG_00028]
[SWS_LOG_00029] [SWS_LOG_00030]
[SWS_LOG_00031] [SWS_LOG_00032]
[SWS_LOG_00033] [SWS_LOG_00034]
[SWS_LOG_00035] [SWS_LOG_00036]
[SWS_LOG_00037] [SWS_LOG_00053]
[SWS_LOG_00054] [SWS_LOG_00055]
[SWS_LOG_00056] [SWS_LOG_00057]
[SWS_LOG_00058] [SWS_LOG_00059]
[SWS_LOG_00060]

[RS_LT_00047]

Initialization and
registration.

[SWS_LOG_00003] [SWS_LOG_00004]
[SWS_LOG_00020]

[RS_LT_00048]

Meta information
about Applications.

[SWS_LOG _00004] [SWS_LOG _00020]

[RS_LT_00049]

Providing Logging
Information.

[SWS_LOG_00008] [SWS_LOG_00009]
[SWS_LOG_00010] [SWS_LOG_00011]
[SWS_LOG_00012] [SWS_LOG_00013]
[SWS_LOG_00018] [SWS_LOG_00039]
[SWS_LOG_00040] [SWS_LOG_00041]
[SWS_LOG_00042] [SWS_LOG_00043]
[SWS_LOG_00044] [SWS_LOG_00045]
[SWS_LOG_00046] [SWS_LOG_00047]
[SWS_LOG_00048] [SWS_LOG_00049]
[SWS_LOG_00050] [SWS_LOG_00051]
[SWS_LOG_00062] [SWS_LOG_00063]
[SWS_LOG_00064] [SWS_LOG_00065]
[SWS_LOG_00066] [SWS_LOG_00067]
[SWS_LOG_00068] [SWS_LOG_00069]

[RS_LT_00050]

Grouping of Logging
Information.

[SWS_LOG_00005] [SWS_LOG_00006]
[SWS_LOG_00021]

[RS_LT_00051]

Logging Information
targets.

[SWS_LOG_00019]

[RS_LT_00052]

Early logging.

[SWS_LOG_00001]

AUTOSAR

7 Functional specification

This specification defines the usage of the defined C++ 11 APlIs for the functional clus-
ter Log & Trace. Applications can use these functions to forward logging information to
the bus, the console or the file system.

The following functionalities are provided:
1) Methods for initializing the Logging framework (see chapter 7.2)

2) Utility methods to convert decimal values into hexadecimal or binary values (see
chapter 7.3)

3) Automatic timestamping of log messages (see chapter 7.4)
4) Tracing of communication between applications (see chapter 7.5)

5) Network load balancing (see chapter 7.6)

7.1 Necessary Parameters and Initialization

The concept of identifying the user application:

To be able to distinguish the logs from different applications with in a system (e.g.
an ECU or even the whole vehicle), every application, in that system, has to get a
particular ID and a description.

The concept of log contexts:

In order to be able to distinguish the logs from different logical groups within an appli-
cation, for every context within an application a particular ID and a description has to
be assigned.

Every application can have an arbitrary amount of contexts, but at least one — the
default context.

The application using the Log & Trace framework needs to configure it once at early
startup with the following information:

e Application ID

e Application description
e The default log level

e The log mode

e The log file path

The application using the Logging framework can request contexts from it by providing
the following information:

e Context ID

AUTOSAR

e Context description

7.1.1 Application ID

The Application ID is an identifier that allows to associate generated logging informa-
tion with its user application. The Application ID is passed as a string value. Depending
on the Logging framework actual implementation, the length of the Application ID might
be limited. To be able to unambiguously associate the received logging information to
the origin, it is recommended to assign unique Application IDs within the vehicle or at
least within one ECU.

Note:
It is also recommended to assign unique IDs per application process, meaning if the
same application is started multiple times it shall have an own ID per instance.

7.1.2 Application Description

Since the length of the Application ID can be quite short and an additional descriptive
text needs to be provided. This Application description is passed as a string. The
maximum length is implementation dependent.

7.1.3 Default Log Level

The Log Level represents the severity of the log messages. Severity levels are defined
in chapter 7.2.

Each initiated log message is qualified with such a severity level.

The default Log Level is set at initialization per Application ID.

The application log level acts as a reporting filter. Only log messages having a higher
or the same severity will be processed by the Logging framework, the rest is ignored.

The Default Log Level is the initial configured log reporting level for a certain applica-
tion.

The application wide log reporting level shall be adjustable during runtime. The real-
ization is implementation detail of the underlying back-end. E.g. remotely, via a client
(DLT). Same applies for the context reporting level.

Design rationale of providing a initial default log reporting level only application wide
vs. having them per context level:

e Simplifies the API usage. Otherwise the user will have to define a context level
for each group before using the API.

e The context separation of log messages will be still possible during runtime.

AUTOSAR

7.1.4 Log Mode

Depending on the Logging framework implementation, the passed logging information
can be processed in different ways. The destination (the log message sink) can be the
console output, saved into a file on the file system, or sent over the communication
bus. Any combination of these destinations can also be simultaneously selected.

7.1.5 Log File Path

In case the file system mode is set as a destination directory path needs to be provided.
The actual file name will be generated by the Logging framework.

7.1.6 ContextID

The Context ID is an identifier that is used to logically group logging information within
the scope of a user application. The Context ID is passed as a string value. Depending
on the actual implementation of the Logging framework, the length of the Context ID
might be limited. To be able to unambiguously associate the received logging informa-
tion, it is recommended to assign unique Context IDs within each Application.

Note:

Special attention should be paid to library components, that are meant to be used by
applications and therefore are running within the application’s process scope. Logs
done out of those libraries will end-up inside the scope of the parent application. In
order to distinguish the internal library logs from the application logs or from other
library logs within same process, each library might need to reserve its own Context
IDs system wide — at least when it shall be used by more than one application.

7.1.7 Context Description

Since the length of the Context ID can be quite short an additional descriptive text must
be provided. This Context description is passed as a string. The maximum length of
the Context description is implementation dependent.

7.1.8 Initialization of the Logging framework

Before the logging information can be processed, the Logging framework needs to be
initialized. In order to initialize the Logging framework, the application needs to provide
the mandatory information to the Logging framework.

The Application ID is used to identify and to associate the provided logging informa-
tion, whereas the log mode defines where the logging information is routed. Possible

AUTOSAR

destinations are the console, the file system, or the communication bus. These three
destinations can also be used simultaneously combined.

Next to the registration of the applications at the Logging framework, contexts need to
be registered as well. These contexts are used to logically cluster logging information.

In addition to registration of the applications and the contexts, applications can query
the current active severity.

[SWS_LOG_00001] [All messages logged before the initialization of the Logging
framework is done shall be stored inside a FIFO-buffer with a limited size. That means,
oldest entries are lost if the buffer exceeds. The size of the buffer is implementation
detail. |(RS_LT_00052)

[SWS_LOG_00002] | In case of any errors occurring inside the Logging framework or
underlying system, it is intended to not bother the applications and silently discard the
function calls. For this purpose, the relevant interfaces (see chapter 8) neither specify
return values nor throw exceptions. | (RS_LT_00003)

[SWS_LOG_00003] | Before log messages can be processed, the InitLogging ()
function needs to be called. This function initializes the Logging framework for the
application with the given properties. |(RS_LT _00047)

[SWS_LOG_00004] [By calling InitLogging (), the following parameters need to
be provided:

- Application 1D

Application description

The default log level

The log mode

The directory path (only necessary if LogMode::kFile is given as log mode)
|(RS_LT_00047, RS_LT_00048)

Note:
Depending on the Logging framework implementation not all of the features might be
supported, hence not all of the properties will be used.

[SWS_LOG_00005] | Before log message can be processed, at least one logger con-
text has to be available. Calling function CreateLogger () will create a logger context
instance internally inside the Logging framework and returned as reference to the using
application. This strong ownership relationship of contexts to the Logging framework
ensure correct housekeeping of the involved resources. The design rationale is, once
a context is registered against the protocol back-end, its lifetime must be ensured until
the end of the application’s process. |(RS_LT_00050)

AUTOSAR

[SWS_LOG_00006] [By calling CreateLogger (), the following parameters need to
be provided:

- The context ID
- The context description
|(RS_LT_00050)

[SWS_LOG_00007] | Applications should be able to check if a desired log level is
configured through the function IsLogEnabled (). This mechanism conserves CPU
and memory resources that are used during preparation of logging information, as this
logging information is filtered by the Logging framework later on. |(RS_LT_00045)

AUTOSAR

7.2 Log Messages

The Adaptive Logging framework offers stream based API for message creation that
supports certain data types described below.

Design rationale for having insert stream based API vs. function-like solutions:
- Convenient usage for developers

- De-facto standard way of concatenating args in C++ or in other words, passing
data to objects

- Enables easy way of having a multi-line message builder

Performance remark:

C++ stream operators translates to normal function calls after compilation, it is just an-
other syntax, there is no difference compared to functions having a variadic argument
pack. Actually compilers expand them in the same way.

To forward log messages to the Logging framework, C++ interfaces are provided. For
every severity (also known as log level), a separate function call is foreseen.

The following severity levels are defined:
- Off (Logging data is turned off)
- Fatal (Fatal system errors)
- Error (Error messages with impact on correct functionality)
- Warn (Warning messages if correct behavior cannot be ensured)

- Info (Informational log messages providing high level understanding of the pro-
gram flow)

- Debug (Detailed debug used during development)
- Verbose (Verbose debug information used during development)

Note:
Off is not applicable for log message. This level can be used to set reporting level for
the Logging framework either initially in InitLogging() or during runtime.

Design Rationale:
For having separate functions per log level vs. passing log level as parameter to a
generic function:

- Convenient usage of the API, less to type, clearer reading
- Technically no difference, just a shortcut

Each of the log message is represented as a stream object which is an instance of the
LogStream class.

AUTOSAR

By calling one of the Log*() functions, a temporary unnamed LogStream object will be
created with a scoped life time, that lasts until the end of the statement.

Design rationale for having temporary stream objects vs. some global-buffer-based log
solution (e.g. std::cout):

Required destructor semantic to express end-of-statement

End-of-statement expression is required to gain scoped resource access

Guaranteed scoped access if required to ensure thread safety which enables to
log out messages concurrently and have them processed in one piece

Convenient usage for developer due to the fact that he does not need to care for
resource-life-cycle (the stream object goes automatically out-of-scope)

Performance remark:

- Costs of constructor/destructor depends on their content and is implementation
detail of the Logging framework.

- Costs of trivial constructor and destructor (e.g. empty ones) is cheap, actually
instantiating an object in C++ equals to instantiating a struct in C.

- Logger class APl is designed to create a stack object of LogStream and passes
them back via RVO (return-value-optimization is C++11 ISO standard), which
results in a no-cost operation for the transition of a LogStream object after a
Log*() function call.

Store LogStream objects in a variable:

It is also possible to use the API in an alternative way by storing a LogStream object
locally in some named variable. The difference to the temporary object is that it won'’t
go out of scope already at the end of the statement, but stays valid and re-usable as
long as the variable exists. Hence, it can be fed with data distributed over multiple lines
of code. To get the message buffer processed by the Logging framework, the Flush()
method needs to be called, otherwise the buffer will be processed when the object
dies, i.e. when the variable goes out of scope, at the end of the function block.

Performance remark:

Due to the fact that a LogStream is no longer created per message but rather could
be re-used for multiple messages, the costs for this object creation is paid only once —
per log level. How much this really influences the actual performance depends on the
Logging framework implementation. However the main goal of this alternative usage
of the APl is to get the multi-line builder functionality.

Note:

It is highly advised NOT to hold global LogStream objects in multi-threaded applica-
tions,because then concurrent access protection will no longer be covered by the Log-
ging APL." that is simply the fact, who needs to do what because of that fact is not our
concern.

Usage examples:

AUTOSAR

// unnamed temporary LogStream object will process

// the arguments and dies after ";"

LogInfo () < "some log information" <« 123;

// locally stored LogStream object will process the arguments
// until either Flush() is called or it goes out of scope from
// the block is was created

LogStream logInfo = LogInfol();

logInfo K "some log information" <K 123;

logInfo < "some other information";

logInfo.Flush({();

logInfo € "a new message..." < 456;

Exception safety: All Log*() interfaces are designed to guarantee no-throw behavior.
Actually this applies for the whole Logging API.

[SWS_LOG_00008] | To initiate a log message with the Log level Fatal, the API
LogFatal () shall be called. This API returns LogStream object that has to be used
by passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00009] | To initiate a log message with the Log level Error, the API
LogError () shall be called. This API returns LogStream object that has to be used
by passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00010] | To initiate a log message with the Log level warning, the API
LogWarn () shall be called. This API returns LogStream object that has to be used by
passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00011] | To initiate a log message with the Log level Info, the API
LogInfo () shall be called. This API returns LogStream object that has to be used by
passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00012] [To initiate a log message with the Log level Debug, the API
LogDebug () shall be called. This API returns LogStream object that has to be used
by passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00013] | To initiate a log message with the Log level verbose, the API
LogVerbose () shall be called. This API returns LogStream object that has to be used
by passing arguments via the insert stream operator "<". |(RS_LT_00049)

[SWS_LOG_00014] | To log raw data by providing a buffer, the APl RawBuffer ()
shall be called. |(RS_LT_00044)

AUTOSAR

7.3 Conversion functions

Sometimes it makes sense to represent integer numbers in hexadecimal or binary
format instead of decimal format.

For this purpose, the following functions are defined to convert provided decimal
numbers into the hexadecimal or binary system.

[SWS_LOG_00015] | In case a decimal number is converted into a string with hex-
adecimal or binary representation, the most significant bit shall be set to ’1’ for negative
numbers and to 0’ for positive numbers. | (RS_LT_00046)

[SWS_LOG_00016] | Function HexFormat () shall provide functionality to con-
vert an integer decimal number into a string with hexadecimal representation. |
(RS_LT_00046)

[SWS_LOG_00017] [Function BinFormat () shall provide functionality to convert an
integer decimal number into a string with binary representation. | (RS_LT_00046)

AUTOSAR

7.4 Log and Trace timestamp

The Log and Trace information is transmitted by means of the Log and Trace Protocol
which is bus agnostic.

This protocol offers the possibility to include a timestamp in each sent message,
as long as such messages are sent with an extended header (refer to [2] for more
information). The synchronized time base is supplied by the Time Synchronization
functional cluster (refer to [3] for more information).

[SWS_LOG_00082] | Log and Trace shall have accesss to a synchronized time base.
10

Note:
Which time base resource is going to be used, to access the time information, depends
on the manifest configuration.

[SWS_LOG_00083] | In case there is no time base resource referenced by the Log
and Trace module in the manifest configuration, no timestamp information shall be
transmitted. |()

[SWS_LOG_00091] [Each time the trace feature is enabled , Log and Trace shall send
a message indicating whether the used time base is a local time base or a globally
synchronized time base. |()

[SWS_LOG_00092] | If the referenced time base changes, Log and Trace shall provide
a trace message informing about this change. |()

[SWS_LOG_00093] | If the referenced time base:

e is a globally synchronized time base

e loses synchronicity (i.e. there is an interruption on the network communication)
Log and Trace shall inform via a trace message of such loss of synchronicity. |()
[SWS_LOG_00094] | If the referenced time base:

e is a globally synchronized time base

e it is updated presenting a leap jump (either to the future or to the past)

Log and Trace shall inform via a trace message that the time base has been updated
and it shall provide the delta value (i.e. the difference between the updated time base
and the previous time base). A signed data type shall be used to indicate if the leap
jump has been done into the past (a negative value) or into the future (positive value).

10

Note:
At the moment there is no standardized format for the trace messages. Therefore, it

AUTOSAR

should be considered that there are implementation specific messages.

AUTOSAR

7.5 Application Communication tracing

Tracing of the Communication between Adaptive Applications has paramount
advantage when analyzing information flow for different reasons, from debugging to
measuring communication latencies to profiling different communication events.

[SWS_LOG_00084] | Communication tracing of an Adaptive Application shall
be configurable by means of the manifest configuration. |()

[SWS_LOG_00085] | If application communication tracing is enabled, it shall be pos-
sible to start or to stop the trace of a specific port of an Adaptive Application
during runtime. |()

[SWS_LOG_00096] [If the communication tracing of an Adaptive Applicationis
enabled (in the manifest configuration), the Context Identification of each port of such
Adaptive Application shall be assigned. |()

[SWS_LOG_00086] | The application communication tracing of an Adaptive Ap-
plication shall be done without any interaction and independent from the Adaptive
Application. |()

[SWS_LOG_00087] | The application communication tracing of an Adaptive Ap-
plications shall be done within the scope of the Communication Ports of such ap-
plications. |()

[SWS_LOG_00088] | The trace (and log) information must be serialized using a self-
describing format (i.e. JSON). |()

AUTOSAR

7.6 Log and Trace message network load balancing

[SWS_LOG_00090] | The bandwith consumption, effectively the speed at which the
Log and Trace information is being sent on the network bus shall not be higher than 60
percent of the total possible bandwidth of the network bus. |()

[SWS_LOG_00095] | When Log and Trace receives a high load of trace information
(generated at the same time) from multiple Adaptive Applications, it shall buffer
this data internally so it can be sent continuously and so that no information is lost. |()

AUTOSAR

8 API specification

8.1 Type definitions

8.1.1 LogLevel

[SWS_LOG_00018] | Type LogLevel shall be defined as described in table 8.1. |
(RS_LT_00049)

Name: LogLevel
Type: uint8_t
Range: kOff 0 No logging.
kFatal 1 Fatal error.
kError 2 Error with impact to
correct functionality.
kWarn 3 Warning if correct
behavior cannot be
ensured.
kInfo 4 Informational, high level
understanding.
kDebug 5 Detailed information for
programmers.
kVerbose 6 Extra-verbose debug
messages.
Syntax: enum class LogLevel : uint8_t ({
kOff,
kFatal,
kError,
kWarn,
kInfo,
kDebug,
kVerbose
}i
Header file: | ara/log/common.h
Description: | List of possible severity levels.

Table 8.1: Type definition - LogLevel

8.1.2 LogMode

[SWS_LOG_00019] | Type LogMode shall be defined as described in table 8.2. |
(RS_LT_00051)

Name: LogMode

Type: uint8_t

Range: kRemote 0x01 Sent remotely.
kFile 0x02 Save to file.

AUTOSAR

kConsole ‘Ox04 ‘ Forward to console.

Syntax:

enum class LogMode : uint8_t {
kRemote,

kFile,

kConsole

}i

Header file:

ara/log/common.h

Description:

Log mode. Flags, used to configure the sink for log messages.
Note: In order to combine flags, at least the OR and AND operators needs

to be provided for this type.

8.1.3 LogHex8

Table 8.2: Type definition - LogMode

Name LogHex8

Kind Type

Derived from uint8_t

Description Represents a 8 bit hexadecimal value data type

8.1.4 LogHex16

Table 8.3: Definition of LogHex8

Name LogHex16

Kind Type

Derived from uint16_t

Description Represents a 16 bit hexadecimal value data type

8.1.5 LogHex32

Table 8.4: Definition of LogHex16

Name LogHex32

Kind Type

Derived from uint32_t

Description Represents a 32 bit hexadecimal value data type

8.1.6 LogHex64

Table 8.5: Definition of LogHex32

Name

LogHex64

Kind

Type

AUTOSAR

Derived from uinté4_ t
Description Represents a 64 bit hexadecimal value data type
Table 8.6: Definition of LogHex64
8.1.7 LogBin8
Name LogBin8
Kind Type
Derived from uint8_ t
Description Represents a 8 bit binary data type

8.1.8 LogBin16

Table 8.7: Definition of LogBin8

Name LogBin16

Kind Type

Derived from uint16_t

Description Represents a 16 bit binary data type

8.1.9 LogBin32

Table 8.8: Definition of LogBin16

Name LogBin32

Kind Type

Derived from uint32_t

Description Represents a 32 bit binary data type

8.1.10 LogBin64

Table 8.9: Definition of LogBin32

Name LogBin64

Kind Type

Derived from uinté4 _t

Description Represents a 64 bit binary data type

Table 8.10: Definition of LogBin64

AUTOSAR

8.2 Function definitions

8.2.1 InitLogging

[SWS_LOG_00020] [Method InitLogging shall be defined as described in table
8.11. |(RS_LT_00047, RS _LT_00048)

Service name: InitLogging

Syntax: void InitLogging (
std::string appld,
std::string appDescription,
LogLevel appDefloglLevel,
LogMode logMode,
std::string directoryPath

) noexcept;

Parameters (in): appld The ID of the Application
appDescription Description of the Application
appDefLoglLevel The application’s default log level
logMode The log mode(s) to be used
directoryPath The directory path for the file log mode

Parameters (inout): | None

Parameters (out): None

Return value: None

Exceptions: None

Header file: ara/log/logging.h

Description: Initializes the logging framework for the application with given properties.

In case the kFile flag is set in logMode, the directory path needs to
be provided. The actual file name will be generated by the Logging
framework.

Note: The call to InitLogging shall be done as early as possible
inside the program runnable (e.g. the main() function or some init
function).

Usage:

int main(int argc, char* argv[])

{

InitLogging("ABCD", "This is the application known as ABCD",
LogLevel::kVerbose, LogMode::kRemote);

}
Table 8.11: Method definition - InitLogging

8.2.2 CreateLogger

[SWS_LOG_00021] | Method createLogger shall be defined as described in table
8.12. |(RS_LT_00050)

Service name: CreatelLogger

Syntax: Logger& Createlogger (std::string ctxId, std::string
ctxDescription) noexcept;

Parameters (in): ctxld | The context ID

AUTOSAR

ctxDescription \ The description of the provided context ID

Parameters (inout): | None

Parameters (out): None

Return value: Reference to the internal managed instance of a Logger object.
Ownership stays within the Logging framework.

Exceptions: None

Header file: ara/log/logging.h

Description: Creates a Logger object, holding the context which is registered in the
Logging framework.

Table 8.12: Method definition - CreateLogger

8.2.3 HexFormat (uint8)

[SWS_LOG_00022] conversion of a uint8 into a hexadecimal value | Method Hex—
Format (uint8) shall be defined as described in table 8.13. |(RS_LT_00046)

Service name: HexFormat
Syntax: LogHex8 HexFormat (uint8_t value) noexcept;
Parameters (in): value Decimal number to be converted into hexadecimal

number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex8 type that has a built-in stream handler.
Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format.

Table 8.13: Method definition - HexFormat (uint8)

8.2.4 HexFormat (int8)

[SWS_LOG_00023] conversion of an int8 into a hexadecimal value | Method Hex—
Format (int8) shall be defined as described in table 8.14. |(RS_LT_00046)

Service name: HexFormat
Syntax: LogHex8 HexFormat (int8_t wvalue) noexcept;
Parameters (in): value Decimal number to be converted into hexadecimal

number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex8 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format. Negatives are repre-

sented in 2’'s complement.

Table 8.14: Method definition - HexFormat (int8)

AUTOSAR

8.2.5 HexFormat (uint16)

[SWS_LOG_00024] conversion of a uint16 into a hexadecimal value

[Method

HexFormat (uintl16) shall be defined as described in table 8.15. | (RS_LT_00046)

Service name: HexFormat

Syntax: LogHex16 HexFormat (uintl6_t wvalue) noexcept;

Parameters (in): value Decimal number to be converted into hexadecimal
number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex16 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format.

Table 8.15: Method definition - HexFormat (uint16)

8.2.6 HexFormat (int16)

[SWS _LOG_00025] conversion of an int16 into a hexadecimal value

[Method

HexFormat (int16) shall be defined as described in table 8.16. | (RS_LT_00046)

Service name:

HexFormat

Syntax:

LogHex16 HexFormat (intl6_t value) noexcept;

Parameters (in): value Decimal number to be converted into hexadecimal
number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex16 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format. Negatives are repre-

sented in 2's complement.

Table 8.16: Method definition - HexFormat (int16)

8.2.7 HexFormat (uint32)

[SWS_LOG_00026] conversion of a uint32 into a hexadecimal value | Method
HexFormat (uint32) shall be defined as described in table 8.17. | (RS_LT_00046)

Service name: HexFormat

Syntax: LogHex32 HexFormat (uint32_t value) noexcept;

Parameters (in): value Decimal number to be converted into hexadecimal
number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex32 type that has a built-in stream handler.

Exceptions: None

AUTOSAR

Header file: ara/log/logging.h
Description: Logs decimal numbers in hexadecimal format.

Table 8.17: Method definition - HexFormat (uint32)

8.2.8 HexFormat (int32)

[SWS_LOG_00027] conversion of an int32 into a hexadecimal value | Method
HexFormat (int32) shall be defined as described in table 8.18. | (RS_LT_00046)

Service name: HexFormat
Syntax: LogHex32 HexFormat (int32_t value) noexcept;
Parameters (in): value Decimal number to be converted into hexadecimal

number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex32 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format. Negatives are repre-

sented in 2's complement.

Table 8.18: Method definition - HexFormat (int32)

8.2.9 HexFormat (uint64)

[SWS_LOG_00028] conversion of a uint64 into a hexadecimal value | Method
HexFormat (uinté64) shall be defined as described in table 8.19. |(RS_LT_00046)

Service name: HexFormat
Syntax: LogHex64 HexFormat (uint64_t value) noexcept;
Parameters (in): value Decimal number to be converted into hexadecimal

number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex64 type that has a built-in stream handler.
Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format.

Table 8.19: Method definition - HexFormat (uint64)

8.2.10 HexFormat (int64)

[SWS_LOG_00029] conversion of an int64 into a hexadecimal value | Method
HexFormat (int64) shall be defined as described in table 8.20. |(RS_LT_00046)

| Service name: | HexFormat \

AUTOSAR

Syntax: LogHex64 HexFormat (int64_t value) noexcept;
Parameters (in): value Decimal number to be converted into hexadecimal
number system

Parameters (inout): | None

Parameters (out): None

Return value: LogHex64 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in hexadecimal format. Negatives are repre-

sented in 2’'s complement.

Table 8.20: Method definition - HexFormat (int64)

8.2.11 BinFormat (uint8)

[SWS_LOG_00030] conversion of a uint8 into a binary value | Method BinFormat
(uint8) shall be defined as described in table 8.21. |(RS_LT_00046)

Service name: BinFormat

Syntax: LogBin8 BinFormat (uint8_t value) noexcept;

Parameters (in): value | Decimal number to be converted into a binary value
Parameters (inout): | None

Parameters (out): None

Return value: LogBin8 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format.

Table 8.21: Method definition - BinFormat (uint8)

8.2.12 BinFormat (int8)

[SWS_LOG_00031] conversion of an int8 into a binary value | Method BinFormat
(int8) shall be defined as described in table 8.22. |(RS_LT_00046)

Service name: BinFormat

Syntax: LogBin8 BinFormat (int8_t wvalue) noexcept;

Parameters (in): value | Decimal number to be converted into a binary value

Parameters (inout): | None

Parameters (out): None

Return value: LogBin8 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format. Negatives are represented in 2’s
complement.

Table 8.22: Method definition - BinFormat (int8)

AUTOSAR

8.2.13 BinFormat (uint16)

[SWS_LOG_00032] conversion of a uint16 into a binary value | Method BinFor-
mat (uintl16) shall be defined as described in table 8.23. |(RS_LT_00046)

Service name: BinFormat

Syntax: LogBinl6 BinFormat (uintl6_t wvalue) noexcept;

Parameters (in): value \ Decimal number to be converted into a binary value
Parameters (inout): | None

Parameters (out): None

Return value: LogBin16 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format.

Table 8.23: Method definition - BinFormat (uint16)

8.2.14 BinFormat (int16)

[SWS_LOG_00033] conversion of an int16 into a binary value | Method BinFor-
mat (int1le) shall be defined as described in table 8.24. | (RS_LT_00046)

Service name: BinFormat

Syntax: LogBinl6 BinFormat (intl6_t value) noexcept;

Parameters (in): value \ Decimal number to be converted into a binary value

Parameters (inout): | None

Parameters (out): None

Return value: LogBin16 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format. Negatives are represented in 2’s
complement.

Table 8.24: Method definition - BinFormat (int16)

8.2.15 BinFormat (uint32)

[SWS_LOG_00034] conversion of a uint32 into a binary value | Method BinFor-
mat (uint32) shall be defined as described in table 8.25. |(RS_LT_00046)

Service name: BinFormat

Syntax: LogBin32 BinFormat (uint32_t value) noexcept;

Parameters (in): value | Decimal number to be converted into a binary value
Parameters (inout): | None

Parameters (out): None

Return value: LogBin32 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format.

Table 8.25: Method definition - BinFormat (uint32)

AUTOSAR

8.2.16 BinFormat (int32)

[SWS_LOG_00035] conversion of an int32 into a binary value | Method BinFor-
mat (int32) shall be defined as described in table 8.26. | (RS_LT_00046)

Service name: BinFormat

Syntax: LogBin32 BinFormat (int32_t value) noexcept;

Parameters (in): value \ Decimal number to be converted into a binary value

Parameters (inout): | None

Parameters (out): None

Return value: LogBin32 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format. Negatives are represented in 2’s
complement.

Table 8.26: Method definition - BinFormat (int32)

8.2.17 BinFormat (uint64)

[SWS_LOG_00036] conversion of a uint64 into a binary value | Method BinFor-
mat (uinte4) shall be defined as described in table 8.27. |(RS_LT_00046)

Service name:

BinFormat

Syntax:

LogBin64 BinFormat (uint64_t value) noexcept;

Parameters (in): value \ Decimal number to be converted into a binary value
Parameters (inout): | None

Parameters (out): None

Return value: LogBin64 type that has a built-in stream handler.

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format.

Table 8.27: Method definition - BinFormat (uint64)

8.2.18 BinFormat (int64)

[SWS_LOG_00037] conversion of an int64 into a binary value | Method BinFor-
mat (int64) shall be defined as described in table 8.28. | (RS_LT_00046)

Service name:

BinFormat

Syntax:

LogBin64 BinFormat (int64_t value) noexcept;

Parameters (in): value | Decimal number to be converted into a binary value
Parameters (inout): | None

Parameters (out): None

Return value: LogBin64 type that has a built-in stream handler

Exceptions: None

Header file: ara/log/logging.h

Description: Logs decimal numbers in binary format. Negatives are represented in 2’s

complement.

AUTOSAR

Table 8.28: Method definition - BinFormat (int64)

8.2.19 RawBuffer

[SWS_LOG_00038] [Method RawBuf fer shall be defined as described in table 8.29.
|(RS_LT_00044)

Service name: RawBuffer

Syntax: template <typename T> LogRawBuffer RawBuffer (const Té&
value) noexcept;

Parameters (in): value \

Parameters (inout): | None

Parameters (out): None

Return value: LogRawBuffer type that has a built-in stream handler

Exceptions: None

Header file: ara/log/logging.h

Description: Logs raw binary data by providing a buffer

Table 8.29: Method definition - RawBuffer

o

AUTOSAR

8.3 Class definitions
8.3.1 Class LogStream

The Class LogStream represents a log message, allowing stream operators to be used
for appending data.

Note:

Normally applications would not use this class directly. Instead one of the log methods
provided in the main logging API shall be used. Those methods automatically setup
a temporary object of this class with the given log severity level. The only reason to
use this class directly is, if the user wants to hold a LogStream object longer than the
default one-statement scope. This is useful in order to create log messages that are
distributed over multiple code lines. See the Flush() method for further information.

Once this temporary object gets out of scope, its destructor takes care that the mes-
sage buffer is ready to be processed by the Logging framework.

8.3.1.1 Extending the Logging API to understand custom types

The LogStream class supports natively the formats stated in chapter 8.2, it can be
easily extended for other derived types by providing a stream operator that makes use
of already supported types.

Example:

struct MyCustomType {
int8_t foo;
std::string bar;

}i

LogStreamé& operator<<(LogStream& out, const MyCustomType& value) {
return (out << value.foo << value.bar);

}

LogDebug () << MyCustomType{42, "The answer is"};

AUTOSAR

8.3.1.2 LogStream::Flush

[SWS_LOG_00039] | Method LogStream: : Flush shall be defined as described in
table 8.30. | (RS _LT_00049)

Service name: LogStream::Flush

Syntax: void Flush () noexcept

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: None

Exceptions: None

Header file: ara/log/logstream.h

Description: Sends out the current log buffer and initiates a new message stream.

Table 8.30: Method definition - LogStream::Flush

Note:

Calling Flush() is only necessary if the LogSt ream object is going to be re-used within
the same scope. Otherwise, if the object goes out of scope (e.g. end of function block),
than flush operation will be anyway done internally by the destructor. It is important
to note that the Flush() command does not empty the buffer, but it forwards its current
contents to the logging framework.

8.3.1.3 Built-in operators for natively supported types:

[SWS_LOG_00040] | Operator bool handler shall be defined as described in table
8.31. |(RS_LT_00049)

Service name: bool handler

Syntax: LogStreamé& operator< (bool value) noexcept
Parameters (in): bool value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.31: Operator definition - bool handler

[SWS_LOG_00041] | Operator uint8_t handler shall be defined as described in
table 8.32. |(RS_LT_00049)

Service name: uint8_t handler

Syntax: LogStream& operator<(uint8_t wvalue) noexcept
Parameters (in): uint8_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

AUTOSAR

Exceptions: None
Header file: ara/log/logstream.h
Description: Appends given value to the internal message buffer.

Table 8.32: Operator definition - uint8_t handler

[SWS_LOG_00042] [Operator uint16_t handler shall be defined as described in
table 8.33. | (RS_LT_00049)

Service name: uint16_t handler

Syntax: LogStream& operator< (uintl6_t value) noexcept
Parameters (in): uint16_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.33: Operator definition - uint16_t handler

[SWS_LOG_00043] [Operator uint32_t handler shall be defined as described in
table 8.34. | (RS_LT_00049)

Service name: uint32_t handler

Syntax: LogStreamé& operator<(uint32_t value) noexcept
Parameters (in): uint32_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.34: Operator definition - uint32_t handler

[SWS_LOG_00044] [Operator uint 64_t handler shall be defined as described in
table 8.35. | (RS _LT_00049)

Service name: uint64_t handler

Syntax: LogStreamé& operator<k(uint64_t value) noexcept
Parameters (in): uint64_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.35: Operator definition - uint64_t handler

AUTOSAR

[SWS_LOG_00045] | Operator int8_t handler shall be defined as described in
table 8.36. | (RS_LT_00049)

Service name: int8_t handler

Syntax: LogStream& operator< (int8_t wvalue) noexcept
Parameters (in): int8_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.36: Operator definition - int8_t handler

[SWS_LOG_00046] | Operator int16_t handler shall be defined as described in
table 8.37. |(RS_LT_00049)

Service name: int16_t handler

Syntax: LogStream& operator<k (intl6_t value) noexcept
Parameters (in): int16_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.37: Operator definition - int16_t handler

[SWS_LOG_00047] [Operator int32_t handler shall be defined as described in
table 8.38. |(RS_LT_00049)

Service name: int32_t handler

Syntax: LogStream& operator< (int32_t value) noexcept
Parameters (in): int32_t value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.38: Operator definition - int32_t handler

[SWS_LOG_00048] | Operator int64_t handler shall be defined as described in
table 8.39. |(RS_LT_00049)

Service name: int64_t handler
Syntax: LogStream& operator<k (int64_t value) noexcept
Parameters (in): int64_t value

Parameters (inout): | None
Parameters (out): None

AUTOSAR

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.39: Operator definition - int64_t handler

[SWS_LOG_00049] | Operator f1oat handler shall be defined as described in ta-
ble 8.40. | (RS_LT_00049)

Service name:

float handler

Syntax:

LogStreamé& operator< (float value) noexcept

Parameters (in): float value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.40: Operator definition - float handler

[SWS_LOG_00050] | Operator double handler shall be defined as described in
table 8.41. |(RS_LT_00049)

Service name:

double handler

Syntax:

LogStreamé& operator< (double value) noexcept

Parameters (in):

double value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.41: Operator definition - double handler

[SWS_LOG_00051] | Operator null-terminated char string handler shall
be defined as described in table 8.42. | (RS_LT_00049)

Service name:

null-terminated char string handler

Syntax: LogStreamé& operator< (const charx const value) noex-
cept

Parameters (in): char* value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.42: Operator definition - null-terminated char string handler

AUTOSAR

8.3.1.4 Built-in operators for conversion types:

[SWS_LOG_00053] | Operator LogHex8 handler shall be defined as described in
table 8.43. | (RS _LT_00046)

Service name:

LogHex handler

Syntax:

LogStreamé& operator<k (const LogHex8& value)

noexcept

Parameters (in):

Reference to a LogHex8 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.43: Operator definition - LogHex handler

[SWS_LOG_00054] | Operator LogHex16 handler shall be defined as described in
table 8.44. | (RS _LT_00046)

Service name:

LogHex16 handler

Syntax:

LogStreamé& operator<k (const LogHexl6& value)

noexcept

Parameters (in):

Reference to a LogHex16 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.44: Operator definition - LogHex16 handler

[SWS_LOG_00055] | Operator LogHex32 handler shall be defined as described in
table 8.45. |(RS_LT_00046)

Service name:

LogHex32 handler

Syntax:

LogStreamé& operator< (const LogHex32& value)

noexcept

Parameters (in):

Reference to a LogHex32 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.45: Operator definition - LogHex32 handler

[SWS_LOG_00056] | Operator LogHex64 handler shall be defined as described in
table 8.46. |(RS_LT_00046)

Service name:

LogHex64 handler

Syntax:

LogStreamé& operator< (const LogHex64& value)

noexcept

Parameters (in):

Reference to a LogHex64 value

AUTOSAR

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.46: Operator definition - LogHex64 handler

[SWS_LOG_00057] | Operator LogBin8 handler shall be defined as described in
table 8.47. |(RS_LT_00046)

Service name:

LogBin8 handler

Syntax:

LogStreamé& operator< (const LogBin8& value)

noexcept

Parameters (in):

Reference to a LogBin8 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.47: Operator definition - LogBin8 handler

[SWS_LOG_00058] | Operator LogBinl6 handler shall be defined as described in
table 8.48. |(RS_LT_00046)

Service name:

LogBin16 handler

Syntax:

LogStreamé& operator<k (const LogBinlé6& value)

noexcept

Parameters (in):

Reference to a LogBinl6 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.48: Operator definition - LogBin16 handler

[SWS_LOG_00059] | Operator LogBin32 handler shall be defined as described in
table 8.49. |(RS_LT_00046)

Service name:

LogBin32 handler

Syntax:

LogStreamé& operator<k (const LogBin32& value)

noexcept

Parameters (in):

Reference to a LogBin32 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.49: Operator definition - LogBin32 handler

AUTOSAR

[SWS_LOG_00060] | Operator LogBin64 handler shall be defined as described in
table 8.50. |(RS_LT_00046)

Service name: LogBin64 handler

Syntax: LogStream& operator<k(const LogBin64& value) noexcept
Parameters (in): Reference to a LogBin64 value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends given value to the internal message buffer.

Table 8.50: Operator definition - LogBin64 handler

8.3.1.5 Built-in operators for extra types:

[SWS_LOG_00061] | Operator LogRawBuffer handler shall be defined as de-
scribed in table 8.51. |(RS_LT_00044)

Service name: LogRawBuffer handler

Syntax: LogStreamé& operator< (const LogRawBufferé& value)
noexcept

Parameters (in): Reference to a LogRawBuffer value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends plain binary data into message buffer.

Table 8.51: Operator definition - LogRawBuffer handler

[SWS_LOG_00062] | Operator std::string handler shall be defined as de-
scribed in table 8.52. |(RS_LT_00049)

Service name: std::string handler

Syntax: LogStream& operator<(const std::string& value) noex-
cept

Parameters (in): Referenceto a std: :string value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends STL string to message buffer.

Table 8.52: Operator definition - std::string handler

[SWS_LOG_00063] | Operator LogLevel handler shall be defined as described in
table 8.52. | (RS _LT_00049)

AUTOSAR

Service name: LogLevel handler

Syntax: LogStreamé& operator< (LoglLevel value) noexcept
Parameters (in): Reference to a LogLevel value

Parameters (inout): | None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Header file: ara/log/logstream.h

Description: Appends LoglLevel enum parameter as text into message.

Table 8.53: Operator definition - LogLevel handler

AUTOSAR

8.3.2 Class Logger

The Class Logger represents a DLT logger context. DLT defines contexts which can
be seen as logger instances within one application or process scope.

A context will be automatically registered against the DLT back-end during creation
phase, as well as automatically deregistered during process shutdown phase. So the
end user does not care for the objects life time. To ensure such housekeeping func-
tionality, a strong ownership of the logger instances needs to be ensured towards the
Logging framework. This means that the applications are not supposed to call the
Logger constructor themselves.

8.3.2.1 Logger::LogFatal

[SWS_LOG_00064] | LogStream LogFatal shall be defined as described in table
8.54. |(RS_LT_00049)

Service name: Logger::LogFatal

Syntax: LogStream LogFatal () noexcept;

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Fatal

Exceptions: None

Header file: ara/log/logger.h

Description: Creates a LogStream object of Fatal severity that has to be used by pass-
ing arguments via the input stream operator "<" .

Table 8.54: LogStream definition - LogFatal

8.3.2.2 Logger::LogError

[SWS_LOG_00065] | LogStream LogError shall be defined as described in table
8.55. |(RS_LT_00049)

Service name:

Logger::LogError

Syntax:

LogStream LogError () noexcept;

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Error

Exceptions: None

Header file: ara/log/logger.h

Description: Creates a LogStream object of Error severity that has to be used by pass-

ing arguments via the input stream operator "<".

Table 8.55: LogStream definition - LogError

AUTOSAR

8.3.2.3 Logger::LogWarn

[SWS_LOG_00066] | LogStream Logwarn shall be defined as described in table
8.56. |(RS_LT_00049)

Service name: Logger::LogWarn

Syntax: LogStream LogWarn () noexcept;

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Warn

Exceptions: None

Header file: ara/log/logger.h

Description: Creates a LogStream object of Warn severity that has to be used by
passing arguments via the input stream operator "<" .

Table 8.56: LogStream definition - LogWarn

8.3.2.4 Logger::Loginfo

[SWS_LOG_00067] | LogStream LogInfo shall be defined as described in table 8.57.
|(RS_LT_00049)

Service name: Logger::Loglnfo

Syntax: LogStream LogInfo () noexcept;

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Info

Exceptions: None

Header file: ara/log/logger.h

Description: Creates a LogStream object of Info severity that has to be used by pass-
ing arguments via the input stream operator "<" .

Table 8.57: LogStream definition - Loginfo

8.3.2.5 Logger::LogDebug

[SWS_LOG_00068] | LogStream LogDebug shall be defined as described in table
8.58. |(RS_LT_00049)

Service name: Logger::LogDebug

Syntax: LogStream LogDebug () noexcept;
Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Debug
Exceptions: None

Header file: ara/log/logger.h

AUTOSAR

Description:

Creates a LogStream object of Debug severity that has to be used by
passing arguments via the input stream operator "<" .

Table 8.58: LogStream definition - LogDebug

8.3.2.6 Logger::LogVerbose

[SWS_LOG_00069] | LogStream LogVerbose shall be defined as described in table

8.59. [(RS_LT_00049)

Service name:

Logger::LogVerbose

Syntax:

LogStream LogVerbose () noexcept;

Parameters (in): None

Parameters (inout): | None

Parameters (out): None

Return value: LogStream object of log level Verbose

Exceptions: None

Header file: ara/log/logger.h

Description: Creates a LogStream object of Verbose severity that has to be used by

passing arguments via the input stream operator "<" .

Table 8.59: LogStream definition - LogVerbose

8.3.2.7 Logger::IsLogEnabled

[SWS_LOG_00070] | Method Logger::IsLogEnabled shall be defined as de-

scribed in table 8.60. |(RS_LT_00045)

Service name:

Logger::IsLogEnabled

Syntax:

bool IsLogEnabled(LogLevel logLevel) const noexcept;

Parameters (in): logLevel
Parameters (inout): | None
Parameters (out): None

Return value:

True if desired log level satisfies the configured reporting level, otherwise
False.

Exceptions: None
Header file: ara/log/logger.h
Description: The Application can check if the current configured log will pass desired

log level..

Table 8.60: Method definition - Logger::IsLogEnabled

AUTOSAR

9 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers, as well as Constraints (if it applies) and Published Information.

The Log and Trace configuration can be found in chapter 7.5 of AUTOSAR Manifest
Specification [4].

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Platform dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 Necessary Parameters and Initialization
	7.1.1 Application ID
	7.1.2 Application Description
	7.1.3 Default Log Level
	7.1.4 Log Mode
	7.1.5 Log File Path
	7.1.6 Context ID
	7.1.7 Context Description
	7.1.8 Initialization of the Logging framework

	7.2 Log Messages
	7.3 Conversion functions
	7.4 Log and Trace timestamp
	7.5 Application Communication tracing
	7.6 Log and Trace message network load balancing

	8 API specification
	8.1 Type definitions
	8.1.1 LogLevel
	8.1.2 LogMode
	8.1.3 LogHex8
	8.1.4 LogHex16
	8.1.5 LogHex32
	8.1.6 LogHex64
	8.1.7 LogBin8
	8.1.8 LogBin16
	8.1.9 LogBin32
	8.1.10 LogBin64

	8.2 Function definitions
	8.2.1 InitLogging
	8.2.2 CreateLogger
	8.2.3 HexFormat (uint8)
	8.2.4 HexFormat (int8)
	8.2.5 HexFormat (uint16)
	8.2.6 HexFormat (int16)
	8.2.7 HexFormat (uint32)
	8.2.8 HexFormat (int32)
	8.2.9 HexFormat (uint64)
	8.2.10 HexFormat (int64)
	8.2.11 BinFormat (uint8)
	8.2.12 BinFormat (int8)
	8.2.13 BinFormat (uint16)
	8.2.14 BinFormat (int16)
	8.2.15 BinFormat (uint32)
	8.2.16 BinFormat (int32)
	8.2.17 BinFormat (uint64)
	8.2.18 BinFormat (int64)
	8.2.19 RawBuffer

	8.3 Class definitions
	8.3.1 Class LogStream
	8.3.1.1 Extending the Logging API to understand custom types
	8.3.1.2 LogStream::Flush
	8.3.1.3 Built-in operators for natively supported types:
	8.3.1.4 Built-in operators for conversion types:
	8.3.1.5 Built-in operators for extra types:

	8.3.2 Class Logger
	8.3.2.1 Logger::LogFatal
	8.3.2.2 Logger::LogError
	8.3.2.3 Logger::LogWarn
	8.3.2.4 Logger::LogInfo
	8.3.2.5 Logger::LogDebug
	8.3.2.6 Logger::LogVerbose
	8.3.2.7 Logger::IsLogEnabled

	9 Configuration specification

