
Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Document Title
Requirements on Security
Management for Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 881

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 18-03

Document Change History
Date Release Changed by Description

2018-03-29 18-03
AUTOSAR
Release
Management

• Moved the Identity and Access
chapter into RS Identity and Access
Management (899)

2017-10-27 17-10
AUTOSAR
Release
Management

• Initial Release

1 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Table of Contents

1 Scope of Document 4

2 Requirements Specification 5

2.1 Functional Overview . 5
2.2 Secure Communication . 5
2.3 Protected Runtime Environment . 6

2.3.1 Inter-Process Separation . 6
2.3.2 Process-System Separation 8
2.3.3 Protection against Memory Corruption Attacks 9
2.3.4 Design Rules . 10

3 Requirements Tracing 11

4 References 12

A Protected Runtime Environment 14

A.1 Introduction . 14
A.2 Protection against Memory Corruption Attacks 14

A.2.1 Overview . 15
A.2.2 Secure Coding . 16
A.2.3 Attacks and Countermeasures 17

A.2.3.1 Code Corruption Attack 17
A.2.3.2 Control-flow Hijack Attack 17
A.2.3.3 Data-only Attack . 19
A.2.3.4 Information Leak . 19

A.2.4 Existing Solutions . 20
A.2.4.1 W ⊕ X, Write xor Execute, Data Execution Preven-

tion (DEP) . 20
A.2.4.2 Stack Smashing Protection (SSP) 21
A.2.4.3 Address Space Layout Randomization (ASLR) . . . 22
A.2.4.4 Control-flow Integrity (CFI) 24
A.2.4.5 Code Pointer Integrity (CPI), Code Pointer Separa-

tion (CPS) . 26
A.2.4.6 Pointer Authentication 27

A.3 Isolation . 27
A.3.1 Horizontal Isolation . 28

A.3.1.1 Virtual Memory . 28
A.3.2 OS-Level Virtualization . 29

A.4 Vertical Isolation . 29

3 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

1 Scope of Document

This document specifies the requirements of Adaptive Applications to the functional
cluster Security of the AUTOSAR Adaptive Platform. The motivation is to provide stan-
dardized and portable security in Adaptive Applications.

4 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

2 Requirements Specification

2.1 Functional Overview

The AUTOSAR Adaptive Platform Security provides services for Adaptive Applications
and other clusters of the AUTOSAR Adaptive Platform. The AUTOSAR Adaptive Plat-
form Security is responsible for all aspects which regards to:

• Crypto Stack

• Secure Communication

• Protected Runtime Environment

2.2 Secure Communication

[RS_SEC_04001] Secure communication shall be performed through secure
channels d

Type: draft

Description:

Secure channels are established between communication nodes. Secure
channels satisfy security requirements such as authenticity or confidentiality.
Communication that is subject to specific security requirements is then routed
through the respective secure channel.

Rationale: Reduce resource consumption
Dependencies: –

Use Case: Nodes may host several services that could be multiplexed over a single secure
channel.

Supporting
Material: –

c(RS_Main_00503, RS_Main_00140, RS_Main_00514, RS_Main_00510,
RS_Main_00280, RS_Main_00200)

[RS_SEC_04002] Secure channels shall be defined d

Type: draft

Description:

Secure channels are established between communication nodes. Secure
channels satisfy security requirements such as authenticity or confidentiality.
Secure channels can be realized using various technologies. Therefore the
kind and the parameters of a specific secure channel shall be configurable.

Rationale: Enable modeling system security
Dependencies: –

Use Case: Nodes may host several services having different protection requirements thus
requiring appropriate secure communication channels.

Supporting
Material: –

c(RS_Main_00503, RS_Main_01005, RS_Main_00160, RS_Main_00150,
RS_Main_00514, RS_Main_00280)

5 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

[RS_SEC_04003] The assignment of communication to secure channels shall be
defined d

Type: draft

Description:
Secure channels are established between communication nodes.
Communication that is subject to specific security requirements is then routed
through the respective secure channel.

Rationale: Increase flexibility of Adaptive applications
Dependencies: –
Use Case: Specific communication shall be assigned to the appropriate secure channel.
Supporting
Material: –

c(RS_Main_00503, RS_Main_01005, RS_Main_00106, RS_Main_00150)

[RS_SEC_04004] Using secure channels shall be transparent on the communi-
cation API d

Type: draft

Description:
Communication through configured secure channels shall be facilitated
transparently by the communication stack. Communicating through a secured
channel shall make no difference for the application.

Rationale: Reduce maintenance effort of Adaptive application code
Dependencies: –

Use Case: Application code may be reused to transfer data with different security
requirements.

Supporting
Material: –

c(RS_Main_00503, RS_Main_00150, RS_Main_00060)

2.3 Protected Runtime Environment

2.3.1 Inter-Process Separation

Each two applications shall be running isolated. There shall be a spatial, time, and
resource separation between the two applications.

[RS_SEC_05001] Individual virtual memory address space d

Type: draft

Description: The Autosar Platform shall ensure that an application uses only its individual
virtual memory address space.

Rationale: A shared virtual memory address space could lead to information leaking.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

6 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

[RS_SEC_05002] Memory of other processes d

Type: draft

Description:
The Autosar Platform shall ensure that a process does not access the memory
of any other process. This includes access to information stored in memory
freed by another process.

Rationale: Access to memory of other processes can be exploited, even if it is freed by the
other process.

Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05003] Access via communication management d

Type: draft

Description:
The Autosar Platform shall ensure that communication between two
applications is realized by Inter-Process Communication (IPC) mechanisms via
Communication Management.

Rationale: IPC is maximally secure only using the Communication Management.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05004] Individual persistency area d

Type: draft

Description:
The Autosar Platform shall ensure that an application uses only its individual
persistency area. The application shall not be allowed to access the
persistency area of any other application.

Rationale: Access to other applications’ persistency area could lead to information leaks.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05005] Individual process tree d

Type: draft

Description:
The Autosar Platform shall ensure that an application uses its individual
process tree. It shall not be aware of any process belonging to another
application.

Rationale: Otherwise processes gain information from each other.
Dependencies: –
Use Case: –
Supporting
Material: –

7 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

c(RS_Main_00514)

[RS_SEC_05006] Maximum quota of memory allocation d

Type: draft

Description: The Autosar Platform shall ensure that an application is restricted to a
predefined maximum quota of memory allocation and processor time.

Rationale: This restriction is meant to ensure that other application also have enough
resources available.

Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

2.3.2 Process-System Separation

[RS_SEC_05019] Access to Adaptive AUTOSAR Foundation and Services d

Type: draft

Description: The Autosar Platform shall ensure that access from an application to the
Adaptive AUTOSAR Foundation and Services is restricted to a minimum.

Rationale: Direct access to the foundation can be abused or misused.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05008] No physical memory address d

Type: draft

Description: The Autosar Platform shall ensure that an application does not access any
physical memory address.

Rationale: Direct access to a physical memory address can be abused or misused.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05009] Process access operating system functionality d

Type: draft

Description:
The Autosar Platform shall ensure that either an application does not access
operating system functionality via a system call at all, or the system call has to
be authorized.

8 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Rationale: An application with direct access to the OS can cause significant damage,
therefore the limitation / authorization.

Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05010] Inter-Process Communication d

Type: draft

Description:
The Autosar Platform shall ensure that an application only uses Inter-Process
Communication (IPC) to access the Adaptive AUTOSAR Foundation and
Services.

Rationale: The exclusive use of IPC is meant to ensure maximum security rsp. regulation.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

[RS_SEC_05011] Process access to the Adaptive AUTOSAR d

Type: draft

Description: The Autosar Platform shall ensure that process access to the Adaptive
AUTOSAR Foundation and Services is authorized.

Rationale: Direct access to AUTOSAR Foundation and Services can be abused.
Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

2.3.3 Protection against Memory Corruption Attacks

[RS_SEC_05012] The Adaptive Platform shall ensure that state-of-the-art protec-
tion mechanisms against memory corruption attacks are implemented. d

Type: draft

Description: The Autosar Platform shall support the implementation of state-of-the-art
protection mechanisms against memory corruption attacks.

Rationale:

Memory errors caused by error prone, unmanaged languages such as C or
C++, are utilized to enforce memory corruption which is the root cause of
nearly all vulnerabilities in todays software. If the vulnerabilities are exploited by
a threat triggered by an attacker the possible impact is for example arbitrary
code execution, privilege escalation, or exfiltration of sensitive information. A
guideline for implementation is available as an Annex in this document.
Note: The guideline is for reference only.

9 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Dependencies: Hardware, Operating System, Compiler
Use Case: –
Supporting
Material: EXP_FCDesignSecurityManagement

c(RS_Main_00514)

2.3.4 Design Rules

[RS_SEC_05018] Privileges and permissions d

Type: draft

Description: The Autosar Platform shall ensure that an application is only granted the
privileges and permissions mandatory for fulfilling its intended purpose.

Rationale: More privileges and permissions than required can lead to a higher impact in
case of a compromised application.

Dependencies: –
Use Case: –
Supporting
Material: –

c(RS_Main_00514)

10 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

3 Requirements Tracing

The following table references the features specified in [1] and links to the fulfillments
of these.

Feature Description Satisfied by
[RS_Main_00060] AUTOSAR shall provide a standardized software

interface for communication between Applications
[RS_SEC_04004]

[RS_Main_00106] AUTOSAR shall provide the possibility to extend
the software with new SWCs without recompiling
the platform foundation

[RS_SEC_04003]

[RS_Main_00140] AUTOSAR shall provide network independent
communication mechanisms for applications

[RS_SEC_04001]

[RS_Main_00150] AUTOSAR shall support the deployment and
reallocation of AUTOSAR Application Software

[RS_SEC_04002]
[RS_SEC_04003]
[RS_SEC_04004]

[RS_Main_00160] AUTOSAR shall provide means to describe
interfaces of the entire system.

[RS_SEC_04002]

[RS_Main_00200] AUTOSAR specifications shall allow resource
efficient implementations

[RS_SEC_04001]

[RS_Main_00280] AUTOSAR shall support standardized automotive
communication protocols

[RS_SEC_04001]
[RS_SEC_04002]

[RS_Main_00503] AUTOSAR shall provide a Software Platform that
supports adaptation of communication topology
after production

[RS_SEC_04001]
[RS_SEC_04002]
[RS_SEC_04003]
[RS_SEC_04004]

[RS_Main_00510] AUTOSAR shall support secure onboard
communication

[RS_SEC_04001]

[RS_Main_00514] AUTOSAR shall support the development of
secure systems

[RS_SEC_04001]
[RS_SEC_04002]
[RS_SEC_05001]
[RS_SEC_05002]
[RS_SEC_05003]
[RS_SEC_05004]
[RS_SEC_05005]
[RS_SEC_05006]
[RS_SEC_05008]
[RS_SEC_05009]
[RS_SEC_05010]
[RS_SEC_05011]
[RS_SEC_05012]
[RS_SEC_05018]
[RS_SEC_05019]

[RS_Main_01005] AUTOSAR shall establish communication paths
dynamically

[RS_SEC_04002]
[RS_SEC_04003]

11 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

4 References

[1] Main Requirements
AUTOSAR_RS_Main

[2] Explanation of Adaptive Platform Design
AUTOSAR_EXP_PlatformDesign

[3] SoK: Eternal War in Memory

[4] Guidelines for the use of the C++14 language in critical and safety-related sys-
tems
AUTOSAR_RS_CPP14Guidelines

[5] The SPARC Architectural Manual, Version 8
http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz

[6] OpenBSD-3.3 announcement, public release of ŴX
http://www.openbsd.org/33.html

[7] Smashing The Stack For Fun And Profit
http://phrack.org/issues/49/14.html

[8] The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86)

[9] Jump-oriented Programming: A New Class of Code-reuse Attack

[10] On the Expressiveness of Return-into-libc Attacks

[11] Code-Pointer Integrity

[12] ARM Pointer Authentication
https://lwn.net/Articles/718888/

[13] PaX ASLR (Address Space Layout Randomization)

[14] Control-flow Integrity

[15] AMD64 Architecture Programmer’s Manual Volume 2: System Programming
http://support.amd.com/TechDocs/24593.pdf

[16] PowerPC Architecture Book, Version 2.02
https://www.ibm.com/developerworks/systems/library/es-archguide-v2.html

[17] PowerPC Operating Environment Architecture Book III
http://public.dhe.ibm.com/software/dw/library/es-ppcbook3.zip

[18] Linux Kernel, Summary of changes from v2.6.7 to v2.6.8
https://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.8

[19] PAX
https://pax.grsecurity.net/docs/pax.txt

12 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
http://www.openbsd.org/33.html
http://phrack.org/issues/49/14.html
https://lwn.net/Articles/718888/
http://support.amd.com/TechDocs/24593.pdf
https://www.ibm.com/developerworks/systems/library/es-archguide-v2.html
http://public.dhe.ibm.com/software/dw/library/es-ppcbook3.zip
https://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.8
https://pax.grsecurity.net/docs/pax.txt

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

[20] CPI LLVM on github
https://github.com/cpi-llvm

[21] Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors

[22] Drammer: Deterministic Rowhammer Attacks on Mobile Platforms

[23] ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks

[24] A seccomp overview
https://lwn.net/Articles/656307/

[25] Frequently Asked Questions for FreeBSD 10.X and 11.X

[26] pledge(2)
https://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2

13 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://github.com/cpi-llvm
https://lwn.net/Articles/656307/
https://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/pledge.2

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

A Protected Runtime Environment

A.1 Introduction

Vulnerabilities in software programs lead to unauthorized system manipulation and ac-
cess when they are exploited by runtime attacks. Unauthorized system manipulations
are, for instance, arbitrary code execution, privilege escalation, or persistent manipu-
lation of storage. The cause of the vulnerabilities are mostly programming mistakes
and design flaws. Although design rules are known during the development process
or quality assurance processes like static code analysis or fuzzing are performed, vul-
nerabilities exist statistically in nearly all projects. These measures can being specified
only qualitatively by the AUTOSAR Adaptive Platform specification. However, there are
technical countermeasures on the operating system level to harden a system against
such attacks. Note that the term harden includes that there is still no guaranteed sys-
tem security but the effort for a successful attack can be raised to a higher level.

The hardening measures are combined as the term Protected Runtime Environment
(PRE) in the context of AUTOSAR Adaptive Platform. A PRE includes the most im-
portant, basic protection mechanisms for a complex software environment. Without it,
any other security mechanism will be circumventable, as any compromised process or
service will be able to compromise any other running process on a system. The goal
of a protected runtime environment is to protect the integrity of a process’ control-flow
during runtime and to limit the impact of a successful attack. So, two strategies of hard-
ening are considered for AUTOSAR Adaptive Platform: proactive protection that should
mitigate the exploitation of vulnerabilities and “post-mortem” measures that isolates an
untrusted process.

The present document is a guidance for integrators and implementers who are going
to develop an automotive system that is compliant to the AUTOSAR Adaptive Platform
specifications. It contains recommendations and hints to fulfill the desired security
requirements listed in this document. The actual implementation of a specific measure
is yet to be defined and may depend on the concrete system at hand, or may be a
combination of multiple measures.

Section A.2 introduces exploit mitigation approaches and presents related integration
options. Afterwards, Section A.3 discusses the isolation aspects that limits the action
scope of a compromised or untrusted process. In each chapter the general attack and
mitigating techniques are detailed and existing countermeasure implementations are
presented. Further, technical requirements for the integration are highlighted.

A.2 Protection against Memory Corruption Attacks

Unmanaged languages, such as C or C++, enable programmers to implement their
code with a high degree of freedom to resource management. As such, code can be
optimized for runtime performance or memory consumption and access to low level
functions of the operating system is possible. However, programmers are fully respon-

14 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

sible for bounds checking and memory management since C/C++ is memory-unsafe.
In practice, this often leads to the violation of the Memory Safety policy or memory
errors, as the manual management of memory is very error prone.

Memory errors in turn can be utilized to cause memory corruption, the root cause of
nearly all vulnerabilities in software components. If the vulnerabilities are exploited
by an attacker the possible impact is, for example, arbitrary code execution, privilege
escalation, or the leakage of sensitive information.

The language of choice in AUTOSAR AP is C++14 as proposed in platform design ex-
planatory document [2, Section 2.3.1]. As such, the designated programming language
for Adaptive Applications (AA), AUTOSAR Runtime for Adaptive Applications (ARA), as
well as Functional Clusters on the Adaptive Platform Foundation or the Adaptive Plat-
form Services is unmanaged, resulting in a large attack surface. One goal of a PRE is
the minimization of this attack surface.

This chapter is structured as follows. Section A.2.1 gives an overview of the poten-
tial types of memory corruption vulnerabilities. The typical pitfalls during coding are
detailed in section A.2.2. In section A.2.3 an explanation of the basic technical rea-
sons of memory corruption attacks and the corresponding state-of-the-art protection
techniques on various attack stages is given. Further, possible practical solutions to
implement and integrate the presented protection techniques in terms of the AUTOSAR
AP are presented in Section A.2.4.

A.2.1 Overview

The exploitation of vulnerabilities and its mitigation is a complex topic. Computer se-
curity researchers continuously develop new attacks and corresponding defenses. A
general model for memory corruption attacks and the corresponding protecting tech-
niques is described in [3]. The model (cf. Figure A.1) summarizes the general causes
of vulnerabilities, the way how to exploit them according to the targeted impact, as well
as mitigation policies on the individual attack stages for four types of attacks: Code cor-
ruption attack, Control-flow hijack attack, Data-only attack, and Information leak. On
each attack stage they define several policies that must hold to prevent a successful
attack.

The first two stages are common for all attack types and describe the root cause of
vulnerabilities. In the first stage a memory corruption manipulates a pointer. When
this invalid pointer is then dereferenced, a corruption is triggered. A pointer is invalid
if it is an out-of-bounds pointer, i.e. pointing out of the bounds of a previously allo-
cated memory area, or if it becomes a dangling pointer, i.e. pointing to a deleted
object. Commonly known out-of-bounds vulnerabilities are for example: buffer over-
/underflow, format string bug, and indexing bugs like integer overflow, truncation or
signedness bug, or incorrect pointer casting. Typical dangling pointer vulnerabilities
are: use-after-free or double-free. A collection of C and C++ related issues can be
found, for instance, in the List of Software Weakness Types of the Common Weakness

15 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Enumeration (CWE) from MITRE1. The exploration of memory errors is the first step of
an attack. Subsequently a pointer is dereferenced to read, write or free memory.

Figure A.1: Attack model from [3] demonstrating four attack types, policies mitigating
the attacks in different attack stages

A.2.2 Secure Coding

A first measure to counter vulnerabilities at their root is to avoid mistakes and errors
in the first place. To reach this goal programmers have to take care of many pitfalls
during the development process. A simple example is the usage of unsafe functions
from the standard C library like strcpy(). It copies a null character terminated char-
acter string to a buffer until the null character is reached. If the allocated destination
buffer is not large enough, the function still copies characters behind the end of the
buffer and thus overwrites other data. This is one of many pitfalls commonly known
as a buffer overflow and can be used by an attacker, for example, to overwrite the
stored return pointer if the buffer is allocated on the stack. For the given example a
programmer should use safer variants instead. To that end, many standard C library
functions have been supplemented with versions including a bounds check, for str-
cpy() this is strncpy(). Therewith the length of the input is limited and the buffer, if
it is allocated properly, does not get overflowed. While there are supposedly more safe
functions, such as strncpy(), they come with their own quirks and flaws. But also
more complex, context related issues must be considered.

1http://cwe.mitre.org/data/definitions/659.html

16 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

http://cwe.mitre.org/data/definitions/659.html

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

In practice programmers should have coding guidelines at hand like the MISRA for
safety-related systems. Unfortunately the AUTOSAR Coding Guideline does not cover
a rule set for security related issues [4]. But there are third party guidelines which deals
with these issues, like the SEI CERT C++ Coding Standard2.

Since these guides are very comprehensive only few programmers will follow them in
practice due to time reasons. However, there are some tools that can support the check
against some rules in a static code analysis, e.g. Flawfinder 3, RATS4, or CodeSonar 5.
But nevertheless the application of tools does not guarantee vulnerability-free code
finally since there are still several runtime conditions and contexts the tools could not
investigate or the vulnerabilities are not fixed properly.

A.2.3 Attacks and Countermeasures

For a second line of defense it is assumed that vulnerabilities are present and that
never all vulnerabilities are avoided by programmers. Therefore the requirement for
enhanced countermeasures is the independence from written code. The goal is to
mitigate that vulnerabilities get exploited.

A.2.3.1 Code Corruption Attack

A Code Corruption Attack intends to manipulate the executable instructions in the text
segment in the virtual memory space and to breach the Code Integrity policy (cf. Fig-
ure A.1). The countermeasure is to set the memory pages containing code to read-only
or W ⊕ X (write xor execute), respectively. It has to be implemented on both system
levels, i.e. the processor as well as the operating system. The MMU of the CPU has to
provide fine-grained memory permission layout (e.g. NX-bit [5, p.248]) or the operating
system should emulate this. Further, the operating system level has to support the
underlying permission layout, e.g. like W ⊕ X [6] or Data Execution Prevention (DEP)
. But care has to be taken if self-modifying code and Just-In-Time (JIT) compilation is
used, as the generated code must first be written to writeable pages, which are then
set to be executable.

A.2.3.2 Control-flow Hijack Attack

A Control-flow Hijack Attack starts with the exploitation of a memory corruption to mod-
ify a code pointer so that it points to an attacker defined address and the Code Pointer

2https://www.securecoding.cert.org/confluence/pages/viewpage.action?
pageId=637

3https://www.dwheeler.com/flawfinder/
4https://security.web.cern.ch/security/recommendations/en/codetools/rats.

shtml
5https://www.grammatech.com/products/codesonar

17 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
https://www.dwheeler.com/flawfinder/
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml
https://www.grammatech.com/products/codesonar

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Integrity policy is harmed (cf. Figure A.1). This pointer is then used by a indirect
control flow transfer in the original code. Therewith the control-flow is diverted from
the original and so its Control-flow Integrity is violated. The last step is the execution
of the exploit payload. The literature distinguishes between two approaches: code-
injection attacks and code-reuse attacks. While code-injection attacks [7] are based
on injecting arbitrary and custom instructions (a.k.a. shellcode) into the memory as
exploit payload, code-reuse attacks, such as return-oriented program (ROP) [8], jump-
oriented programming (JOP) [9], and return-to-libc [10], utilize existing code in the
process memory to construct so called gadgets, which enable the targeted malicious
functionality.

All in all, a control-flow hijack attack will be successful if the integrity of a code pointer
and of the control-flow are broken. Further, the value of the target address of the
malicious functionality must be known and in the case of code-injection, the memory
pages holding the injected code must be executable.

The goal of Code Pointer Integrity is satisfied if all dereferences that either dereference
or access sensitive pointers, such as direct and references to code pointers, are not
modified (cf. [11]). There are a few recent feasible approaches which detect the alter-
ation of code pointers at this early stage. The Code Pointer Integrity (CPI) [11] mech-
anism provides full memory safety but just for direct and references to code pointers.
According to the authors, this approach protects against all control-flow hijack attacks.
CPI is a combination of static code analysis to identify all sensitive pointers, rewrite the
program to protect identified pointers in a safe memory region, called safe-stack, and
instruction level isolation that controls the access to the safe region. These mecha-
nisms require both compiler and runtime support and comes with an overhead of ca.
8% on runtime. An additional requirement is Code Integrity. Code Pointer Separation
(CPS) [11] is a relaxation of CPI. Among others, CPS limits the set of protected point-
ers to code pointer (no indirections) to lower the overhead to ca. 2%. It still has strong
detection guarantees. A further approach to detect modification on code pointers is
Pointer Authentication [12]. This approach uses cryptographic functions to authenti-
cate and verify pointers before dereferencing. Pointers are replaced by a generated
signature and cannot be dereferenced directly. This requires compiler and instruction
set support. To reduce overhead, hardware acceleration for the cryptographic primi-
tives is required.

With Stack Smashing Protection (SSP) stack-based buffer overflows, which overwrite
the saved return address, can be detected. Therefore, a pseudo-random value, also
known as Stack Canary or Stack Cookie, is inserted on the stack before the saved
base pointer and the saved return address as part of the function prologue. When the
function returns and the function epilogue is performed, the value is compared to a
protected copy. If the value is overwritten by a buffer overflow which targets the return
address, actually, the program aborts because the values do not match anymore.

As mentioned before, code-injection attacks require executable memory pages for the
injected instructions. With principle of W ⊕ X, also called Data Execution Preven-
tion(DEP), a memory page is either flagged as writable or executable, but not both.
This prevents that instructions overwrite data memory such as stack or heap and ex-

18 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

ecute it afterwards. The approach requires a fine-grained page permissions support
either by the MMU of the CPU and the so called NX-bit (No-execute bit) or emulated in
Software as described in Section A.2.3.1. Moreover, the employed operating system
must support it.

Code-reuse attacks are not affected by the W ⊕ X mechanism since existing, exe-
cutable marked, memory regions are utilized and no additional code must be injected
to the memory. To mitigate such kind of attacks currently deployed countermeasures
are implemented on previous attack stages. On the fourth attack stage it is stated
that the target address of the malicious functionality must be known. In general, the
attacker knows or can just estimate an address in the virtual address space since it is
static for a binary after compilation. A countermeasure in practice is the obfuscation
of the address space layout by Address Space Layout Randomization (ASLR) [13].
Therewith the locations of various memory segments get randomized which makes it
harder to predict the correct target addresses. ASLR requires high entropy to prevent
brute-force de-randomization attacks and depends on the prevention of unintended
Information Leak (Section A.2.3.4) that are used by dynamically constructed exploit
payloads. To guarantee high entropy ASLR should be implemented on 64-bit archi-
tectures (or above). Additionally, every memory area must be randomized, including
stack, heap, main code segment, and libraries.

In addition to ASLR the policy Control-flow Integrity intends to detect a diversion of the
original control-flow. Established techniques are: Shadow Stack and Control-flow in-
tegrity (Abadi) (CFI) [14]. The idea of shadow stack is to push the saved return address
to a separate shadow stack so that it is compared upon a function return. In addition,
CFI also protects indirect calls and jumps as well. The original CFI creates a static
control-flow graph by determining valid targets statically and give them a unique iden-
tity (ID). Afterwards, calls and returns are instrumented to compare the target address
to the ID before jumping there. It is required to protect valid targets from overwrite by
W ⊕ X.

A.2.3.3 Data-only Attack

A memory corruption can also be exploited to modify security critical data that is not re-
lated to control-flow data. For instance, exploiting a buffer overflow to alter a conditional
construct can lead to unintended program behavior. Therewith the policy Data Integrity
is violated. Techniques such as Data Space Randomization and Write Integrity Testing
(WIT) makes it harder to perform such kinds of attacks but they are not established in
practice yet.

A.2.3.4 Information Leak

Memory corruption attacks are also used to leak memory contents. Therewith proba-
bilistic countermeasure like ASLR can be circumvented by the knowledge of randomly

19 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

generated data. As for the data-only attack Data Space Randomization might help to
mitigate information leakage.

A.2.4 Existing Solutions

In this section current state-of-the-art solutions of implemented countermeasures men-
tioned in the sections before are presented. For each approach the system level (com-
piler, operating system, or hardware) at which an approach is enforced is called and
which technical and security requirements are expected.

A.2.4.1 W ⊕ X, Write xor Execute, Data Execution Prevention (DEP)

System Level: Hardware, Operating System

The idea of this approach is to flag memory pages either writable or executable, but
not both at the same time. Therewith code-injected attacks are mitigated. At the low-
est system level a mechanism for fine-grained memory page permissions is required.
Further the operating system must support the hardware mechanism or even emulate
a memory page permission mechanism.

Architecture Instruction Set Enforcement
x86 AMD64 [15, p. 56] No-eXecution bit (NX-bit), Page Table

Intel64 eXecute Disable (XD-bit), Page Table
ARM ARMv6 execute never bit (XN-bit), Page Table

ARMv8-A PEN privileged execute never, PAN privi-
leged access never

SPARC Oracle SPARC Architec-
ture 2011

Translation Storage Buffer (optional)

PowerPC IBM PowerISA [16] [17,
p. 33]

Segment Lookaside Buffer (SLB)

Examples of Hardware Support for Execution Prevention

Family Name Implementation
Linux Linux kernel Linux kernel mainline ≥ 2.6.8 [18]

PaX Patch for the Linux kernel, uses hardware
support or emulates memory page per-
mission [19]

Exec Shield Patch for the Linux kernel, part of Fedora
Core 1 through 66 and Red Hat Enter-
prise Linux ≥ 378, uses hardware support
or emulates memory page

6https://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_
64/os/RELEASE-NOTES.html

7http://people.redhat.com/mingo/exec-shield/
8https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

20 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_64/os/RELEASE-NOTES.html
https://archives.fedoraproject.org/pub/archive/fedora/linux/core/1/x86_64/os/RELEASE-NOTES.html
http://people.redhat.com/mingo/exec-shield/
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

grsecurity Patch for the Linux kernel, uses hardware
support or emulates memory page per-
mission910

Android Android ≥ 2.311

Unix OpenBSD OpenBSD ≥ 3.312

NetBSD NetBSD ≥ 2.013

FreeBSD FreeBSD ≥ 5.3

Examples of Operating System Support for Execution Prevention

A.2.4.2 Stack Smashing Protection (SSP)

System Level: Compiler

Stack Smashing Protection (SSP) mechanisms place pseudo-random values (Stack
Canaries or Stack Cookie) on the stack before the saved base pointer and the saved
return address as part of the function prologue and compare the value again before a
function returns. SSP is enforced at compile-time. Due to performance reasons, the
compiler has to decide which function has to be protected. If the compiler implemen-
tation makes the wrong decision and the concerned function is vulnerable, SSP fails.
Further, information leaks enable an attacker to read the pseudo-random value and
integrate it to her exploit so that the buffer is overwritten with the correct value.

Compiler Option Description
GNU Compiler Collection
(GCC)14

-fstack-protector Emit extra code to check for buffer over-
flows, such as stack smashing attacks.
This is done by adding a guard variable to
functions with vulnerable objects. This in-
cludes functions that call alloca, and func-
tions with buffers larger than 8 bytes. The
guards are initialized when a function is
entered and then checked when the func-
tion exits. If a guard check fails, an error
message is printed and the program exits.

-fstack-protector-
all

Like -fstack-protector except that all func-
tions are protected.

-fstack-protector-
strong

Like -fstack-protector but includes addi-
tional functions to be protected – those
that have local array definitions, or have
references to local frame addresses.

9https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_
Configuration_Options#Enforce_non-executable_kernel_pages

10https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_
Configuration_Options#Paging_based_non-executable_pages

11https://source.android.com/security/#memory-management-security-enhancements
12http://www.openbsd.org/33.html
13http://www.netbsd.org/docs/kernel/non-exec.html
14https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.

html#Instrumentation-Options

21 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Enforce_non-executable_kernel_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Enforce_non-executable_kernel_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Paging_based_non-executable_pages
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Paging_based_non-executable_pages
https://source.android.com/security/#memory-management-security-enhancements
http://www.openbsd.org/33.html
http://www.netbsd.org/docs/kernel/non-exec.html
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#Instrumentation-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Instrumentation-Options.html#Instrumentation-Options

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

-fstack-protector-
explicit

Like -fstack-protector but only pro-
tects those functions which have the
stack_protect attribute.

Clang15 -fstack-protector-
all

Force the usage of stack protectors for all
functions.

-fstack-protector-
strong

Use a strong heuristic to apply stack pro-
tectors to functions.

-fstack-protector Enable stack protectors for functions po-
tentially vulnerable to stack smashing.

Intel C++ Compiler16 -fstack-security-
check

This option determines whether the com-
piler generates code that detects some
buffer overruns that overwrite the return
address. This is a common technique
for exploiting code that does not enforce
buffer size restrictions.

Keil ARM C/C++ Com-
piler17

-protect_stack Use -protect_stack to enable
the stack protection feature. Use -
no_protect_stack to explicitly disable
this feature. If both options are specified,
the last option specified takes effect.

-protect_stack_all The -protect_stack_all option adds
this protection to all functions regardless
of their vulnerability.

Examples of Stack Smashing Protection Compiler Support

A.2.4.3 Address Space Layout Randomization (ASLR)

System Level: Compiler, Operating System

Address Space Layout Randomization (ASLR) obfuscates the address space layout of
a process. Therewith the locations of various memory segments get randomized which
makes it harder to predict the correct target address which is needed to perform a code-
reuse attack. ASLR requires high entropy to prevent brute-force de-randomization at-
tacks and depends on the prevention of unintended Information Leak (Section A.2.3.4)
that are used by dynamically constructed exploit payloads. To guarantee high entropy
ASLR should be implemented on 64-bit architectures (or above). Additionally, ASLR
requires position-independent executables (PIE) which implements a random base ad-
dress for the main executable binary.

ASLR is enforced by the operating system primarily but requires position-independent
executables for binaries and position independent code for shared libraries generated
by the complier.

Family Name Implementation

15https://clang.llvm.org/docs/ClangCommandLineReference.html#
cmdoption-clang-fstack-protector

16https://software.intel.com/en-us/node/523162
17http://www.keil.com/support/man/docs/armcc/armcc_chr1359124940593.htm

22 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
https://software.intel.com/en-us/node/523162
http://www.keil.com/support/man/docs/armcc/armcc_chr1359124940593.htm

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

Linux Linux kernel Linux kernel mainline ≥ 3.1418. ASLR for
user-space programs and Kernel Address
Space Layout Randomization (KASLR)19

for the kernel itself.
PaX Patch for the Linux kernel20

Exec Shield Patch for the Linux kernel21

grsecurity Patch for Linux kernel22

Android Android ≥ 4.123

BSD OpenBSD OpenBSD ≥ 4.424

NetBSD NetBSD ≥ 5.025

FreeBSD FreeBSD as patch26

Examples of ASLR Operating System Support

Compiler Option Description
GNU Compiler Collection
(GCC)2728

-fpie, -fPIE These options are similar to -fpic and
-fPIC, but generated position indepen-
dent code can be only linked into exe-
cutables. Usually these options are used
when -pie GCC option is used during
linking. This is especially difficult to plumb
into packaging in a safe way, since it re-
quires the executable be built with -fPIE
for any .o files that are linked at the end
with -pie. There is some amount of per-
formance loss, but only due to the -fPIE,
which is already true for all the linked li-
braries (via their -fPIC).

-fPIC If supported for the target machine, emit
position-independent code, suitable for
dynamic linking and avoiding any limit on
the size of the global offset table. This
option makes a difference on AArch64,
m68k, PowerPC and SPARC. Position-
independent code requires special sup-
port, and therefore works only on certain
machines.

Clang29 -fpie, -fPIE See GCC.

18https://lwn.net/Articles/569635/
19http://selinuxproject.org/~jmorris/lss2013_slides/cook_kaslr.pdf
20https://pax.grsecurity.net/docs/aslr.txt
21http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
22https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_

Configuration_Options#Restrict_mprotect.28.29
23https://source.android.com/security/enhancements/enhancements41
24https://www.openbsd.org/plus44.html
25https://netbsd.org/releases/formal-5/NetBSD-5.0.html
26https://hardenedbsd.org/content/freebsd-and-hardenedbsd-feature-comparisons
27https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#

Code-Gen-Options
28https://wiki.debian.org/Hardening#gcc_-pie_-fPIE
29https://clang.llvm.org/docs/ControlFlowIntegrity.html

23 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://lwn.net/Articles/569635/
http://selinuxproject.org/~jmorris/lss2013_slides/cook_kaslr.pdf
https://pax.grsecurity.net/docs/aslr.txt
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Restrict_mprotect.28.29
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options#Restrict_mprotect.28.29
https://source.android.com/security/enhancements/enhancements41
https://www.openbsd.org/plus44.html
https://netbsd.org/releases/formal-5/NetBSD-5.0.html
https://hardenedbsd.org/content/freebsd-and-hardenedbsd-feature-comparisons
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://wiki.debian.org/Hardening#gcc_-pie_-fPIE
https://clang.llvm.org/docs/ControlFlowIntegrity.html

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

-fPIC See GCC.
Intel C++ Compiler3031 -pie Determines whether the compiler gener-

ates position-independent code that will
be linked into an executable.

-fpic Determines whether the compiler gener-
ates position-independent code.

Keil ARM C/C++ Com-
piler32

-bare_metal_pie (Bare-metal PIE support is deprecated.
There is support for -fropi and -frwpi
in armclang. You can use these options
to create bare-metal position independent
executables.) A bare-metal Position In-
dependent Executable (PIE) is an exe-
cutable that does not need to be executed
at a specific address but can be executed
at any suitably aligned address.

-fropi, -fno-ropi Enables or disables the generation of
Read-Only Position-Independent (ROPI)
code.

-frwpi, -fno-rwpi Enables or disables the generation of
Read/Write Position-Independent (RWPI)
code.

Examples of ASLR Compiler Support

A.2.4.4 Control-flow Integrity (CFI)

System Level: Compiler

Control-flow Integrity (CFI) is a current research topic. However, Clang includes an im-
plementation of a number of control flow integrity (CFI) schemes, which are designed
to abort the program upon detecting certain forms of undefined behavior that can po-
tentially allow attackers to subvert the program’s control flow. These schemes have
been optimized for performance, allowing developers to enable them in release builds.
The CFI implementation in Clang has a performance overhead of ca. 1% and a binary
size overhead of ca. 15% (only forward-edges)33.

Compiler Option Description

30https://software.intel.com/en-us/node/523278
31https://software.intel.com/en-us/node/523158
32http://www.keil.com/support/man/docs/armclang_dev/armclang_dev_

chr1405439371691.htm
33https://clang.llvm.org/docs/ControlFlowIntegrity.html

24 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://software.intel.com/en-us/node/523278
https://software.intel.com/en-us/node/523158
http://www.keil.com/support/man/docs/armclang_dev/armclang_dev_chr1405439371691.htm
http://www.keil.com/support/man/docs/armclang_dev/armclang_dev_chr1405439371691.htm
https://clang.llvm.org/docs/ControlFlowIntegrity.html

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

GNU Compiler Collection
(GCC)34

-fvtable-
verify=[std|preinit|none]

This option is only available
when compiling C++ code. It
turns on (or off, if using -
fvtable-verify=none) the
security feature that verifies at
run time, for every virtual call,
that the vtable pointer through
which the call is made is valid
for the type of the object, and
has not been corrupted or over-
written. If an invalid vtable
pointer is detected at run time,
an error is reported and execu-
tion of the program is immedi-
ately halted.
This option causes run-time
data structures to be built at
program startup, which are
used for verifying the vtable
pointers. The options std and
preinit control the timing
of when these data structures
are built. In both cases the
data structures are built before
execution reaches main. Us-
ing -fvtable-verify=std
causes the data structures
to be built after shared li-
braries have been loaded
and initialized. -fvtable-
verify=preinit causes
them to be built before shared
libraries have been loaded and
initialized.
If this option appears multi-
ple times in the command line
with different values specified,
none takes highest priority
over both std and preinit;
preinit takes priority over
std.

Clang35 -fsanitize=cfi-cast-strict Enables strict cast checks.
-fsanitize=cfi-derived-
cast

Base-to-derived cast to the
wrong dynamic type.

-fsanitize=cfi-unrelated-
cast

Cast from void* or another un-
related type to the wrong dy-
namic type.

-fsanitize=cfi-nvcall Non-virtual call via an object
whose vptr is of the wrong dy-
namic type.

34https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#
Code-Gen-Options

35https://clang.llvm.org/docs/ControlFlowIntegrity.html

25 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc/Code-Gen-Options.html#Code-Gen-Options
https://clang.llvm.org/docs/ControlFlowIntegrity.html

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

-fsanitize=cfi-vcall Virtual call via an object whose
vptr is of the wrong dynamic
type.

-fsanitize=cfi-icall Indirect call of a function with
wrong dynamic type.

-fsanitize=cfi Enable all the schemes.

Examples of CFI Compiler Support

A.2.4.5 Code Pointer Integrity (CPI), Code Pointer Separation (CPS)

System Level: Compiler

Code-Pointer Integrity (CPI) is a property of C/C++ programs that guarantees absence
of control-flow hijack attacks by requiring integrity of all direct and indirect pointers to
code. Code-Pointer Separation (CPS) is a simplified version of CPI that provides strong
protection against such attacks in practice. SafeStack is a component of CPI/CPS,
which can be used independently and protects against stack-based control-flow hi-
jacks.

CPI/CPS/SafeStack can be automatically enforced for C/C++ programs through
compile-time instrumentation with low performance overheads of 8.5% / 1.9% / 0.05%
correspondingly. The SafeStack enforcement mechanism is now part of the Clang
compiler, while CPI and CPS are available as research prototypes. For the current
status please see [20].

Compiler Option Description
Clang3637 -fsanitize=safe-

stack
SafeStack is an instrumentation pass that
protects programs against attacks based
on stack buffer overflows, without in-
troducing any measurable performance
overhead. It works by separating the pro-
gram stack into two distinct regions: the
safe stack and the unsafe stack. The
safe stack stores return addresses, reg-
ister spills, and local variables that are al-
ways accessed in a safe way, while the
unsafe stack stores everything else. This
separation ensures that buffer overflows
on the unsafe stack cannot be used to
overwrite anything on the safe stack.

Examples of CPI and CPS Compiler Support

36http://dslab.epfl.ch/proj/cpi/
37https://clang.llvm.org/docs/SafeStack.html

26 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

http://dslab.epfl.ch/proj/cpi/
https://clang.llvm.org/docs/SafeStack.html

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

A.2.4.6 Pointer Authentication

System Level: Hardware, Compiler

Pointer Authentication uses cryptographic functions to authenticate and verify point-
ers before dereferencing [12]. Pointers are replaced by a generated signature and
cannot be dereferenced directly. This requires compiler and instruction set support.
ARM recently introduces the Pointer Authentication extensions in ARMv8.3-A specifi-
cation38. The GCC introduces basic support for pointer authentication in version 739

for the AArch64 target (ARMv8.3-A architecture). The overhead is negligible because
of hardware acceleration for the cryptographic primitives40.

Compiler Option Description
GNU Compiler Collection
(GCC)41

-msign-return-address=
scope

Select the function scope on which re-
turn address signing will be applied. Per-
missible values are none, which dis-
ables return address signing, non-leaf,
which enables pointer signing for func-
tions which are not leaf functions, and
all, which enables pointer signing for all
functions. The default value is none.

Examples of Pointer Authentication Compiler Support

A.3 Isolation

Isolating software components within a system is a common protection measure to pro-
tect other components from erroneous ones, either through unintentional programming
errors, or intentional harm caused by an attacker taking over a corruptible component.
While the protective measures detailed in section A.2 are a preventive measure, in-
tended to impede an attacker from taking over a software component by exploiting
programming errors, isolation intends to limit the influence an attacker might have to
other software components after taking over a software component. As such, isolation
is only an effective measure, if the architecture of the system is appropriately designed,
dividing and isolating different functional aspects of the system accordingly. Note that
this guide does not cover this architectural aspect of isolation, but the technical aspect,
i.e. how isolation can be implemented.

The following sections describe two approaches to isolation: the isolation of multiple
software components between each other, and the isolation of software components
and the operating system itself. These two approaches are orthogonal – i.e. horizontal

38https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
39https://gcc.gnu.org/gcc-7/changes.html
40https://lwn.net/Articles/719270/
41https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html#

AArch64-Options

27 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://gcc.gnu.org/gcc-7/changes.html
https://lwn.net/Articles/719270/
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html#AArch64-Options
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html#AArch64-Options

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

isolation between applications and vertical isolation between applications and the OS
– and can be combined accordingly.

A.3.1 Horizontal Isolation

A.3.1.1 Virtual Memory

The oldest and most prevalent isolation mechanism is the concept of virtual mem-
ory, i.e. presenting each running software component of a system with its own virtual
address space, which is mapped to the available physical memory by the operating
system. The origins date back to the 1950s, with the original intention of hiding the
fragmentation of physical memory, but offers the possibility of isolating software com-
ponents. As each component operates in a virtual address space, it cannot access the
memory of other components (unless explicitly allowed by the operating system). This
feature requires hardware support, e.g. by a Memory Management Unit (MMU), but
this support is nearly ubiquitous in most computer systems except very small micro-
controllers.

An extension of this concept is that of virtual machines (or virtualization), whereby
multiple virtual machines (VM) are emulated by a hypervisor. Each VM may run a
complete operating system, depending on the degree of virtualization even in an un-
modified state. The hypervisor controls the access of each VM to the physical hardware
components, or even emulate certain components such as network interfaces. Similar
to virtual memory, the virtualization requires dedicated hardware support to achieve an
appropriate level of performance and security.

Note that both approaches have limitations. The isolation provided by virtual memory
or virtualization is only as strong as the operating system or hypervisor itself, as a ma-
licious application might take control over the OS or hypervisor through a programming
error (the measures described in section A.4 intend to minimize this attack surface).
Similarly, a malicious application might use its access to other hardware components
to circumvent the isolation, as some hardware components may have unrestricted ac-
cess to the systems memory. “IOMMUs”, a technique which presents hardware com-
ponents with a virtual address space, can be used to counter this. Lastly, an attacker
might use the volatile properties of physical memory itself to circumvent the isolation.
For example, in [21] the “rowhammer” attack is described, which is capable of flipping
bits in memory locations usually inaccessible to an application. The attack uses pro-
longed reads to a memory location performed in quick succession, which in the case
of “DRAM” memory will cause neighboring memory cells to change state. This effect
has been shown to be capable of raising the privileges of an application in Linux and
Android (cf. [22]) systems. System designers must consider using one or more mitiga-
tions to such attacks, for example, by using memory with error correction, or software
mitigations as shown in [23].

28 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

A.3.2 OS-Level Virtualization

A more lightweight form of virtualization, often called operating-system-level virtual-
ization or containerization, is available in modern OS. Prominent examples are “LXC”
42, which is built on top of the Linux Kernel Namespacing functionality, or the “Jail”43

functionality provided by the FreeBSD operating system. These tools only virtualize
certain resources of an operating system, for example, file system, the process tree,
or the network stack. This way, the operating system creates a container with a tightly
controlled access to system resources or other containers. In contrast to full virtualiza-
tion, these containers cannot execute a different operating system, albeit a completely
separate user-space instance can be run side-by-side.

OS Family Solution Description
UNIX chroot This is a system call available in many

UNIX alike systems, which can be used
to set up a an execution environment with
a different root filesystem. As such, it only
isolates the filesystem of the host from
the container. If the container contains
privileged processes, they can easily af-
fect the system

Linux Namespaces, LXC,
Docker, systemd-nspawn

Many solutions building upon the Linux
Namespacing functionality exist, many al-
lowing the setup of isolated containers.
Resources of other containers or the host
are not visible to the processes running
inside these containers, unless assigned.
This way, even privileged processes in-
side a container are not capable of affect-
ing the rest of the system.

FreeBSD Jails A solution similar to chroot, except for im-
proved security. For example, these con-
tainers (or called “jails” in this context)
offer an isolated network, as well as re-
stricting the capabilities of privileged pro-
cesses inside (e.g. privileged processes
cannot affect the rest of the system).

Operating System Virtualization / Container Implementations

A.4 Vertical Isolation

Isolating the operating system from applications, often called sandboxing is an another
important aspect of a protected runtime environment. The basic idea is to limit the

42https://linuxcontainers.org/
43https://www.freebsd.org/doc/handbook/jails.html

29 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

capabilities of a process, i.e. restricting what a process can do44. The classic way to do
this is by dropping privileges as soon as they are not needed anymore, i.e. priviledge
revocation. For example, the ping command requires root privileges on UNIX systems
to create a raw network socket, but will drop its privileges to a regular user after creating
it. Ideally, a software component should drop (or never be given) any privileges it does
not require, or drop them as soon as they are no longer required. As with the example
of ping, any software component must then be structured with a setup phase, in which
all advanced privileges are used and subsequently dropped. The following shows a
few examples of operating system functionalities, which allow an application to drop
capabilities or privileges.

OS Family Solution Description
Linux Seccomp Mode 1 (Strict)

[24]
Processes on the Linux operating system
can limit their set of allowed system calls
in a very easy manner. The allowed sub-
set is extremely strict, limiting the process
to read, write, exit and sigreturn.
Once activated, this Seccomp mode can-
not be deactivated again.

Linux Seccomp Mode 2 (Filter)
[24]

A more recent version of the Seccomp
mode, the seccomp filter mode, allows
a much more fine-grained control. The
concept is to allow a process to attach
a small filter program, which will check
each system call. This filter program must
be a “Berkley Packet Filter” (BPF), a very
restricted form of byte-code, which will
be executed by the kernel before each
system call. This filter can than exam-
ine each system call, for example, check
which system call is made or what the pa-
rameters are set. The filter then returns
a decision as to what the kernel should
do. The system call can be allowed or
blocked and if the call is blocked, sev-
eral choices can be made as to how it is
blocked. The filter may decide to imme-
diately kill the process, to simply let the
system call return an error, send a sig-
nal to the offending process or to notify a
tracer attached to the program (such as a
debugger). A notable property of these
filters is, that they are inherited by the
spawned child processes, which enables
a setup of a filter before a potentially dan-
gerous process is started.

FreeBSD Securelevel [25, chapter
13]

This functionality limits the possibilities of
all processes running on a system in in-
cremental levels, which cannot be low-
ered once entered (until a reboot of the
system).

44Not to be confused with “what a process does”, as the behaviour of a process is changed by an
attack.

30 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

Requirements on Security Management for
Adaptive Platform

AUTOSAR AP Release 18-03

OpenBSD Pledge [26] This functionality can be used to limit a
processes system calls. Certain system
calls can be prohibited completely, oth-
ers can be restricted in their functionality.
For example, the open system call can be
limited to only open a small set of system
files, or the mprotect cannot set mem-
ory to be executable. Once the limitations
are in place, the process cannot lift them
again.

Sandoxing Mechanisms in Operating Systems

31 of 31
— AUTOSAR CONFIDENTIAL —

Document ID 881: AUTOSAR_RS_SecurityManagement

	1 Scope of Document
	2 Requirements Specification
	2.1 Functional Overview
	2.2 Secure Communication
	2.3 Protected Runtime Environment
	2.3.1 Inter-Process Separation
	2.3.2 Process-System Separation
	2.3.3 Protection against Memory Corruption Attacks
	2.3.4 Design Rules

	3 Requirements Tracing
	4 References
	A Protected Runtime Environment
	A.1 Introduction
	A.2 Protection against Memory Corruption Attacks
	A.2.1 Overview
	A.2.2 Secure Coding
	A.2.3 Attacks and Countermeasures
	A.2.3.1 Code Corruption Attack
	A.2.3.2 Control-flow Hijack Attack
	A.2.3.3 Data-only Attack
	A.2.3.4 Information Leak

	A.2.4 Existing Solutions
	A.2.4.1 W X, Write xor Execute, Data Execution Prevention (DEP)
	A.2.4.2 Stack Smashing Protection (SSP)
	A.2.4.3 Address Space Layout Randomization (ASLR)
	A.2.4.4 Control-flow Integrity (CFI)
	A.2.4.5 Code Pointer Integrity (CPI), Code Pointer Separation (CPS)
	A.2.4.6 Pointer Authentication

	A.3 Isolation
	A.3.1 Horizontal Isolation
	A.3.1.1 Virtual Memory

	A.3.2 OS-Level Virtualization

	A.4 Vertical Isolation

