
Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Document Title Methodology for Adaptive
Platform

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 709

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-10

Document Change History
Date Release Changed by Description

2017-10-27 17-10
AUTOSAR
Release
Management

• Design of service oriented
communication between CP and AP
• Design of signal oriented

communication between CP and AP
• Deployment by means of
SoftwareCluster
• Removed concept of TransportLay-

erIndependentInstanceId

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Table of Contents

1 Introduction 8

1.1 Objective and Scope . 8
1.2 Document Outline . 9
1.3 Document Conventions . 9
1.4 Methodology Concepts . 9
1.5 Requirements Traceability . 10

2 Use Cases for the Adaptive Platform 13

2.1 Overall View . 13
2.1.1 Purpose . 13
2.1.2 Description . 13

2.1.2.1 Domains of Development 13
2.1.2.2 Fundamental Activities 14
2.1.2.3 Workflow . 21

2.2 Architecture and Design . 24
2.2.1 Develop a Service Interface Description 24

2.2.1.1 Purpose . 24
2.2.1.2 Description . 24
2.2.1.3 Workflow . 25

2.2.2 Design communication between Classic Platform and
Adaptive Platform . 26

2.2.2.1 Design service oriented communication between
Classic Platform and Adaptive Platform . 26

2.2.2.2 Design signal oriented communication between
Classic Platform and Adaptive Platform . 29

2.3 Software Development . 32
2.3.1 Develop Adaptive Application Software 32

2.3.1.1 Purpose . 32
2.3.1.2 Description . 32
2.3.1.3 Workflow . 33

2.3.2 Develop Platform-level Application Software 35
2.3.2.1 Purpose . 35
2.3.2.2 Description . 36
2.3.2.3 Workflow . 36

2.4 Integration and Deployment . 37
2.4.1 Integrate Software . 37

2.4.1.1 Purpose . 37
2.4.1.2 Description . 37
2.4.1.3 Workflow . 38

2.4.2 Define and Configure Machine 41
2.4.2.1 Describe Platform 41
2.4.2.2 Configure Machine 42

2.4.3 Create Application Manifest 44
2.4.3.1 Purpose . 44

3 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.3.2 Description . 44
2.4.3.3 Workflow . 45

2.4.4 Define and Configure Service Instances 46
2.4.4.1 Purpose . 46
2.4.4.2 Description . 47
2.4.4.3 Workflow . 48

2.4.5 Set up the Machine . 50
2.4.5.1 Purpose . 50
2.4.5.2 Description . 50
2.4.5.3 Workflow . 50

2.4.6 Create SoftwareCluster 51
2.4.6.1 Purpose . 51
2.4.6.2 Description . 51
2.4.6.3 Workflow . 51

2.4.7 Deploy Software . 52
2.4.7.1 Purpose . 52
2.4.7.2 Description . 52
2.4.7.3 Workflow . 53

3 Adaptive Methodology Library 54

3.1 Service Interface . 54
3.1.1 Tasks . 54

3.1.1.1 Provide Data Types for Adaptive Platform 54
3.1.1.2 Define Service Interfaces 54
3.1.1.3 Aggregate Service Interfaces 55

3.1.2 Work Products . 55
3.1.2.1 AUTOSAR AP Standard Package 55
3.1.2.2 AP Data Types . 56
3.1.2.3 Service Interface Description 56
3.1.2.4 Service Interface Mapping 58

3.2 Communication Mapping . 58
3.2.1 Tasks . 58

3.2.1.1 Map Method . 58
3.2.1.2 Map Event . 58
3.2.1.3 Map Field . 59
3.2.1.4 Map Fire and Forget 59
3.2.1.5 Map SignalBasedMethod to ISignalTriggerings . . . 59
3.2.1.6 Map SignalBasedEvent to ISignalTriggerings 60
3.2.1.7 Map SignalBasedField to ISignalTriggerings 60
3.2.1.8 Map ServiceInstance to PortPrototype 60

3.2.2 Work Products . 61
3.2.2.1 Client Server Interface Description 61
3.2.2.2 Sender Receiver Interface Description 61
3.2.2.3 Trigger Interface Description 61
3.2.2.4 Service Interface Mapping for Service Oriented

Communication . 62

4 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.2.2.5 System Description 62
3.2.2.6 Signal to Service Mapping 64

3.3 Adaptive Application . 64
3.3.1 Tasks . 65

3.3.1.1 Generate Header Files for Service Interfaces 65
3.3.1.2 Design Software Component for Adaptive Platform . 65
3.3.1.3 Implement Software Component Functionality 65
3.3.1.4 Compile Software Component 66
3.3.1.5 Develop Main Function 67
3.3.1.6 Configure Serialization for Adaptive Platform 67
3.3.1.7 Generate Serialization Code for Adaptive Platform . 67
3.3.1.8 Implement Service Proxies and Skeletons 68
3.3.1.9 Build Executable Application 68

3.3.2 Work Products . 69
3.3.2.1 Header Files for Service Interfaces 69
3.3.2.2 Software Component Description for Adaptive Platform 69
3.3.2.3 Build Chain Configuration 70
3.3.2.4 Software Component Source Code 70
3.3.2.5 Software Component Object Code 71
3.3.2.6 Serialization Configuration for Adaptive Platform . . 71
3.3.2.7 Serialization Source Code 72
3.3.2.8 Implemented Service Proxies and Skeletons 72
3.3.2.9 Main Function . 73
3.3.2.10 Executable Application 73

3.4 Platform and Machine . 74
3.4.1 Tasks . 74

3.4.1.1 Configure Network Connections of Machine 74
3.4.1.2 Configure Service Discovery Message Exchange . . 74
3.4.1.3 Define ECU Description 75
3.4.1.4 Describe Available HW Resources 75
3.4.1.5 Define Machine States 76
3.4.1.6 Configure OS for Adaptive Platform 76

3.4.2 Work Products . 76
3.4.2.1 Middleware Library Header Files 76
3.4.2.2 Middleware Libraries 77
3.4.2.3 ECU Resources Description 77
3.4.2.4 Configured Adaptive ECU 78
3.4.2.5 Machine Manifest . 78
3.4.2.6 Platform Object Code 79
3.4.2.7 Operating System for Adaptive Platform 80

3.5 Application Manifest . 80
3.5.1 Tasks . 81

3.5.1.1 Define Process . 81
3.5.1.2 Define Startup Configuration 81
3.5.1.3 Define Execution Dependencies 81

3.5.2 Work Products . 82

5 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.5.2.1 Application Manifest 82
3.5.2.2 Process . 83
3.5.2.3 Mode-dependent Startup Configuration 83

3.6 Service Instance . 84
3.6.1 Tasks . 84

3.6.1.1 Configure Service Interface Deployment 84
3.6.1.2 Define and Configure Service Instance 84
3.6.1.3 Define SOME/IP timing 85
3.6.1.4 Map Service Instance to Port Prototype 85
3.6.1.5 Map Service Instance to Machine 86

3.6.2 Work Products . 86
3.6.2.1 Service Interface Deployment Configuration 86
3.6.2.2 Service Instance Configuration 87
3.6.2.3 Service Instance Manifest 87

3.7 Deployment . 88
3.7.1 Work Products . 88

3.7.1.1 SoftwareCluster . 88

A Change History 90

A.1 Change History for AP 17-10 . 90
A.1.1 Added Specification Items in AP 17-10 90
A.1.2 Changed Specification Items in AP 17-10 90
A.1.3 Deleted Specification Items in AP 17-10 90

A.2 Change History for AP 17-03 . 90
A.2.1 Added Specification Items in AP 17-03 90
A.2.2 Changed Specification Items in AP 17-03 91
A.2.3 Deleted Specification Items in AP 17-03 91

6 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Bibliography

[1] Methodology
AUTOSAR_TR_Methodology

[2] Requirements on Methodology
AUTOSAR_RS_Methodology

[3] Standardization Template
AUTOSAR_TPS_StandardizationTemplate

[4] Software Process Engineering Meta-Model Specification
http://www.omg.org/spec/SPEM/2.0/

[5] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[6] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[7] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

7 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

http://www.omg.org/spec/SPEM/2.0/

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

1 Introduction

1.1 Objective and Scope

AUTOSAR requires a common technical approach for at least the major development
steps, called the AUTOSAR methodology.

The methodology for the AUTOSAR Classic Platform is given by [1], whereas this
document defines the methodology for the AUTOSAR Adaptive Platform.

The corresponding requirements are defined in [2].

The present expansion was necessary, because the AUTOSAR Adaptive Platform has
introduced new concepts.

In contrast to the AUTOSAR Classic Platform, instances of Adaptive Applica-
tions, for example, are executed within the context of processes, entities managed
by the operating system. If permitted by the configuration of the operating system, pro-
cesses may be added to or removed from the list of executables and may be started,
executed or stopped, if available, at any time during the life cycle of a machine. As
a consequence, the way of configuration (by the means of Manifests) or when and
how software packages are deployed (e.g., by software updates over-the-air) clearly
differ from the concepts of the AUTOSAR Classic Platform.

Moreover, the term machine has been newly introduced with the AUTOSAR Adaptive
Platform. A machine is quasi a virtualized ECU, an entity where software can be
deployed to. In this spirit, one real ECU could run several machines, even though the
methodology will not detail this. In the simplest case the term machine may only be a
synonym for ECU.

Although the list is not complete, aforementioned aspects may serve as sufficient mo-
tivation to provide a separate methodology for the AUTOSAR Adaptive Platform.

Despite all the differences, there are also many commonalities, such as the description
of the system features, like topologies or hardware capabilities. This document, how-
ever, will rather focus on the specifics of the AUTOSAR Adaptive platform, in order to
avoid duplications. The specification of the common aspects of both platforms may be
subject of a separate document (foundation document) later.

[TR_AMETH_00100] Scope of the Methodology for the AUTOSAR Adaptive Plat-
form d The methodology for the AUTOSAR Adaptive Platform describes main aspects
(use-cases, tasks, work products, ...) necessary to build an Adaptive AUTOSAR sys-
tem and how they relate to each other. However, the methodology does neither provide
a complete process description, nor does it stipulate a precise order of activities. Itera-
tions of activities are possible, but it is not described how and when iterations shall be
carried out. c(RS_METH_00006, RS_METH_00020, RS_METH_00056)

8 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

1.2 Document Outline

This document will follow the policies of the AUTOSAR Classic Platform, i.e., the way
how to model use-cases, how to structure the document and the way to specify.

Thus, the outline of this document follows roughly its counterpart of the AUTOSAR
Classic Platform:

The rest of this section documents the policies utilized and the requirements traceability
map.

Section 2 describes the major use cases for the development of a system implement-
ing an AUTOSAR Adaptive Platform. Note that the description of the life cycle of a
Software Package is not included in the AUTOSAR methodology.

Section 3 lists and describes all tasks and work products, which are used in the
descriptions of the use cases in section 2.

1.3 Document Conventions

This document follows a list of document conventions, which are described in the fol-
lowing.

Technical terms of AUTOSAR are typeset in mono spaced font, e.g. ECU. As a general
rule, plural forms of technical terms are created by adding "s" to the singular form, e.g.
ECUs.

This document contains specification items in textual form that are distinguished from
the rest of the text by a unique numerical ID, a headline, and the actual text starting after
the d character and terminated by the c character. The conventions for requirements
traceability follow [TPS_STDT_00080], see Standardization Template ([3]).

1.4 Methodology Concepts

The concepts of the methodology for the Adaptive Platform are identical with the con-
cepts of the methodology for the Classic Platform. Hence, we will only mention the
main principles here. Please refer to section 1.5 in [1] for further details.

[TR_AMETH_00101] Definition of tasks, work products and use cases d The
methodology describes typical use cases by means of activitys, entities to aggre-
gate tasks and their corresponding work products. Tasks are defined as reusable
elements: input information (e.g., stored within particular work products) is pro-
cessed in order to generate new work products. This document describes use cas-
es in Section 2, tasks and work products in Section 3. c(RS_METH_00018)

9 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[TR_AMETH_00102] Types and kinds of work products d Work products are ei-
ther artifacts and deliverables and can be of the kind AUTOSAR XML, source
code, object code, executable, text or custom. c(RS_METH_00018)

The definitions and the figures are made according to the Software Process Engi-
neering Meta-Model Specification (SPEM) [4]. The symbols are those used by the
Enterprise Architect modeling tool.

1.5 Requirements Traceability

The following table references the requirements specified in the corresponding require-
ments document [2].

Requirement Description Satisfied by
[RS_METH_00006] The methodology shall explain

how to build an AUTOSAR
system

[TR_AMETH_00016]
[TR_AMETH_00100]

[RS_METH_00015] The methodology shall be
independent of programming
languages

[TR_AMETH_00013]

[RS_METH_00018] The methodology shall be
modular

[TR_AMETH_00101]
[TR_AMETH_00102]
[TR_AMETH_00200]

[RS_METH_00020] The methodology shall support
round-trip engineering

[TR_AMETH_00100]

[RS_METH_00032] The methodology shall support
different levels of abstractions

[TR_AMETH_00001]
[TR_AMETH_00002]
[TR_AMETH_00200]
[TR_AMETH_00201]
[TR_AMETH_00202]
[TR_AMETH_00205]

[RS_METH_00041] The methodology shall support
top-down and bottom-up
approaches

[TR_AMETH_00019]
[TR_AMETH_00020]
[TR_AMETH_00034]
[TR_AMETH_00035]
[TR_AMETH_00204]

[RS_METH_00042] The methodology shall
incorporate the usage of
industry standard tools

[TR_AMETH_00013]
[TR_AMETH_00018]

[RS_METH_00056] The AUTOSAR methodology
shall not be bound to a particular
life-cycle model

[TR_AMETH_00100]

[RS_METH_00066] The methodology shall allow
activities that reference tools

[TR_AMETH_00012]
[TR_AMETH_00013]
[TR_AMETH_00016]
[TR_AMETH_00018]

[RS_METH_00077] The methodology shall support
different views on the SW-C
structure by OEMs and suppliers

[TR_AMETH_00014]
[TR_AMETH_00015]
[TR_AMETH_00016]
[TR_AMETH_00024]

10 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[RS_METH_00078] The methodology shall explain
the typical usage of different
views on the system of the OEM

[TR_AMETH_00029]
[TR_AMETH_00033]
[TR_AMETH_00203]

[RS_METH_00079] The methodology shall explain
the typical usage of different
views on the system of the
supplier

[TR_AMETH_00203]

[RS_METH_00084] The AUTOSAR methodology
shall relate templates to a
distributed development process

[TR_AMETH_00027]
[TR_AMETH_00028]

[RS_METH_00201] The methodology shall explain
how to design the services of a
system

[TR_AMETH_00001]
[TR_AMETH_00007]
[TR_AMETH_00008]
[TR_AMETH_00009]

[RS_METH_00202] The methodology shall explain
how to develop an Adaptive
Application

[TR_AMETH_00002]
[TR_AMETH_00010]
[TR_AMETH_00011]
[TR_AMETH_00012]
[TR_AMETH_00013]
[TR_AMETH_00014]
[TR_AMETH_00015]
[TR_AMETH_00018]
[TR_AMETH_00205]
[TR_AMETH_00207]
[TR_AMETH_00208]
[TR_AMETH_00209]
[TR_AMETH_00210]

[RS_METH_00203] The methodology shall explain
the high-level usage of the
Manifest Specification

[TR_AMETH_00003]
[TR_AMETH_00004]
[TR_AMETH_00005]
[TR_AMETH_00021]
[TR_AMETH_00022]
[TR_AMETH_00023]
[TR_AMETH_00024]
[TR_AMETH_00025]
[TR_AMETH_00026]
[TR_AMETH_00027]
[TR_AMETH_00028]
[TR_AMETH_00029]
[TR_AMETH_00033]

[RS_METH_00204] The methodology shall describe
how to configure a machine for
the Adaptive Platform

[TR_AMETH_00003]
[TR_AMETH_00021]
[TR_AMETH_00022]
[TR_AMETH_00023]
[TR_AMETH_00031]

[RS_METH_00205] The methodology shall describe
how to deploy software on the
Adaptive Platform

[TR_AMETH_00006]
[TR_AMETH_00031]
[TR_AMETH_00032]
[TR_AMETH_00206]

[RS_METH_00206] The methodology shall explain
how to configure the instances
of services of a system

[TR_AMETH_00005]
[TR_AMETH_00027]
[TR_AMETH_00028]
[TR_AMETH_00029]
[TR_AMETH_00033]

11 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[RS_METH_00207] The methodology shall explain
how to develop Platform
Software for the Adaptive
Platform

[TR_AMETH_00017]
[TR_AMETH_00019]
[TR_AMETH_00020]
[TR_AMETH_00034]
[TR_AMETH_00035]

12 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2 Use Cases for the Adaptive Platform

This section describes the main use cases for building a system based on the
AUTOSAR Adaptive Platform.

Each section consists of subsections for the overall purpose of the use case, the de-
scription in terms of specifications, and the modeled workflow according to [4].

2.1 Overall View

2.1.1 Purpose

This section provides an overview of the design and development steps to build a
system based on the AUTOSAR Adaptive Platform. The main activities of the overall
development are depicted in Figure 2.6. An overview of the workflow including relevant
work products is given in Figure 2.7. A brief description of these main steps is given
below in Section 2.1.2. For a detailed description please refer to the relevant sections.

2.1.2 Description

2.1.2.1 Domains of Development

It is good practice to decompose the development of complex systems into different
work phases, for example analysis, design, implementation and the like. Each work
phase will thereby linked to a different level of abstraction. Moreover, each stakeholder
of this development will need a distinct view on the system in order to emphasize on its
particular aspects.

Thus, all this needs somehow be represented by the methodology, too. In this re-
spect, the methodology of the AUTOSAR Classic Platform is structured into so-called
domains of development [1], which is in some way a mix of the concepts separation of
concerns and abstraction.

The methodology of the AUTOSAR Adaptive Platform will follow this approach.

[TR_AMETH_00200] Domains of development utilized for the methodology of the
AUTOSAR Adaptive Platform d The methodology of the Adaptive Platform shall be
structured by the following domains of development:

• Analysis

• Architecture and Design

• System

• Software Development

13 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

• Integration and Deployment

c(RS_METH_00018, RS_METH_00032)

2.1.2.2 Fundamental Activities

2.1.2.2.1 Analysis

Analysis tasks are often necessary for the purpose of preparing later decisions. One
line of inquiry may be to identify and investigate timing critical event chains between
sensors and actuators of a vehicle function in order to comply with the required timing
behavior.

Although the present version does not, later versions of this document will specify
corresponding use-cases/activities.

2.1.2.2.2 Architecture and Design

Figure 2.1: From the Function Architecture to a Common Software Architecture

[TR_AMETH_00201] Develop a Function Architecture d An engineer, e.g., an E/E
architect, may evaluate features and requirements necessary for a specific E/E vehicle
project in order to form an appropriate Function Architecture during the activity
Develop a Function Architecture.

The Function Architecture is composed of a number of function networks. A
function network consists of a set of function blocks with their interfaces and corre-
sponding interconnections. One functionality is encapsulated within one function block.
Therefore, a particular function network represents all functionality that is needed to ex-
ecute a particular feature (vehicle function). Note, that function blocks may be realized
in software or hardware or as a mix of both.

14 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

The result of this activity, i.e., the Function Architecture can be specified by
means of the Abstract System Description.

This activity is optional. c(RS_METH_00032)

[TR_AMETH_00202] Develop a Common Software Architecture d Another engi-
neer, e.g., a software architect, could take the Function Architecture as one in-
put to deduce a corresponding Common Software Architecture while executing
an activity Develop a Common Software Architecture.

The Common Software Architecture provides a dedicated view of all software
entities and their communication relation within the E/E vehicle system. In this light,
the Common Software Architecture comprises both types, AUTOSAR software
components of the Classic Platform as well as those entities that form later an Adap-
tive Application Software deployed to an Adaptive Platform-based machine. It
is important to stress this, because not only software components of the same platform
type communicate among each other. There is also a service oriented communica-
tion possible between software components or entities that belong to different platform
types.

The communication entry and exit points of components are ports typed by a particu-
lar interface definition. In case of the Adaptive Platform, interfaces are expressed as
Service Interfaces. In this respect, typed ports are means to instantiate specific
interface definitions.

Figure 2.1 shows that a functionality may be implemented by one or more software
components, by software components which are finally be mapped either to a machine
running an AUTOSAR Adaptive Platform (gray boxes, named AApl for Adaptive Appli-
cation) or to a Classic Platform ECU.

The term component may also include the term compositions of components.
An Adaptive Application Software may also be subdivided into more fine-
granular components.

The result of this activity, i.e., the Common Software Architecture can be speci-
fied by means of the System Description.

This activity is optional. c(RS_METH_00032)

Figure 2.2: Views of subsystems enable to emphasize on relevant aspects

15 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[TR_AMETH_00203] Provide views of subsystems d A subsystem is a reduced part
of the overall technical system and emphasizes on relevant aspects of it.

Figure 2.2 shows two possible views on subsystems deduced from the Common Soft-
ware Architecture. It is absolutely feasible, for example, to generate a pure VFB
view or a view on a mixed Adaptive/Classic Platform subsystem.

Latter could contain all those software entities which communicate at least to one oth-
er Adaptive Application Software. It may be usable to develop the interfaces for com-
munication between software components/entities which belong to different platforms,
AUTOSAR Adaptive Platform or AUTOSAR Classic Platform.

This activity is optional. c(RS_METH_00078, RS_METH_00079)

[TR_AMETH_00001] Develop Service Interfaces d During this activity, services for
service-oriented communication are specified, i.e., particular events, methods and
fields per interface. It may be done independently of any assignation to specific soft-
ware components or any instantiation. In this respect it may be seen as a preparation
step towards the development of Adaptive Application Software entities.

This use case is elaborated in section 2.2.1. c(RS_METH_00201, RS_METH_00032)

[TR_AMETH_00207] Design communication between Classic Platform ECUs
and Adaptive Platform machines d Adaptive Applications communicate
in a service oriented manner. However, a typical vehicle will also be equipped with
ECUs developed for the Classical Platform. Thus, it is very likely that ECUs of
different types need to communicate.

In case that the Classic Platform ECU implements SOME/IP they can communi-
cate in service oriented way. However, in order to describe this kind of communication
a mapping between the elements of the ServiceInterface and the corresponding
elements of the respective PortInterface of the Classic Platform needs to be
specified. This use case is elaborated in section 2.2.2.1.

If the counterpart on a Classic Platform ECU, however, communicates only in
a signal-based way, a Signal-to-Servicetranslation is needed. This use case is
elaborated in section 2.2.2.2. c(RS_METH_00202)

Design signal oriented
communication between Classic
and Adaptive Platform

Design service oriented
communication between Classic
and Adaptive Platform

Design communication between
Classic and Adaptive Platform

 «nesting» «nesting»

Figure 2.3: Design Communication between Classic Platform and Adaptive Platform

16 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Activity Design communication between Classic and Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Communication
Brief Description Design communication between CP and AP
Description Higher level activity that encloses all activities which are necessary to

design communication between a Classic Platform (ECU) and a
Adaptive Platform.

Relation Type Related Element Mul. Note
Aggregates Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1

Aggregates Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1

Table 2.1: Design communication between Classic and Adaptive Platform

2.1.2.2.3 System

Like for the CP methodology [1], this development domain will cover activities which
refine the Common Software Architecture into a system defined by specific ECUs
or machines. In this respect, the main activities/issues specified there will in principle
also valid here (see Figure 2.4).

[TR_AMETH_00204] Develop the System d

The subsequent specifications of the Classic Platform methodology shall also be ap-
plicable for the Adaptive Platform (by following their general meanings):

• Development of the System (TR_METH_01046) and (Develop) the overall system
(TR_METH_01048), which talk about the refinement of the VFB by the definition
of a topology of ECUs and networks and the deployment of software components
onto ECUs, with the extensions necessary for the Common Software Archi-
tecture and the additions to specify machines and the corresponding mapping
of machines to ECUs.

• Two phase development approach (TR_METH_01047) and Interaction between
organizations (TR_METH_01049), which structures the collaboration between d-
ifferent parties, like between OEMs and their suppliers.

c(RS_METH_00041)

17 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Figure 2.4: System development: ECUs, machines, communication networks, mapping
of software entities to ECUs or machines

2.1.2.2.4 Software Development

[TR_AMETH_00002] Develop the software for AdaptiveAutosarApplications
d Once the service interfaces have been defined, software for AdaptiveAutosarAp-
plications of category application-level and platform-level can be developed. The
development may include several sub-activities like analysis, design, implementation
or test.

The most important artifacts of this activity are either source-code or object-code files,
depending on whether or not the developer knows the Build Chain Configura-
tion beforehand. The artifacts are handed over to an integrator.

Sections 2.3.1 and 2.3.2 will refine the necessary activities associated with the
development of application-level and platform-level software. c(RS_METH_00202,
RS_METH_00032)

18 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Develop Adaptive
Application Software

Develop Platform-level
Application Software

Develop Adaptive Software

 «nesting» «nesting»

Figure 2.5: Develop Adaptive Software

Activity Develop Adaptive Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Develop Adaptive Software
Description This higher level activity encloses the development of Adaptive

Applications with category application-level as well as platform-level.
Relation Type Related Element Mul. Note
Aggregates Develop Adap-

tive Application
Software

1

Aggregates Develop Platform-
level Application
Software

1

Table 2.2: Develop Adaptive Software

2.1.2.2.5 Integration and Deployment

The term Integration of software (on the Adaptive Platform) refers to all activities that
are necessary to make designated software run on a specific machine, determined
by its hardware, connected networks, its operating system and (some) Functional
Clusters , in order to satisfy all requirements. To start the integration, at least the
operating system (kernel and some basic operating system functionality) needs to be
ported for the dedicated machine.

[TR_AMETH_00205] Integrate Software to form AdaptiveAutosarApplica-
tions d An integrator will either take source-code or object-code files delivered by
the software development and will bind them together in order to form the actual exe-
cutables of an AdaptiveAutosarApplication for a specific machine and notably
its application binary interface (ABI).

Note, that an AdaptiveAutosarApplication may consist of several executables.

19 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

This activity does not include instantiation, i.e., the binding of actual executables of
an AdaptiveAutosarApplication to the context of processes (at least one per
executable).

Thus, the output of this activity are one or more executables of an AdaptiveAu-
tosarApplication, which may be input for the instantiation.

Section 2.4.1 will refine the necessary activities associated with the integration of soft-
ware. c(RS_METH_00202, RS_METH_00032)

[TR_AMETH_00003] Configuration of the machine d Independent of the definition
of the service interfaces and the development of the software, the machine can be
defined and configured. The machine’s network connections will be configured and a
specific designated IP multicast address and port number is given for service discov-
ery message exchange. The available hardware resources for the machine will be de-
scribed. In addition, the OS will be configured. All these configuration aspects are con-
tained in the Machine Manifest. For details see Section 2.4.2. c(RS_METH_00204,
RS_METH_00203)

[TR_AMETH_00004] Creation of the Application Manifest d Executables of an
AdaptiveAutosarApplication are instantiated by means of the Application
Manifest. Instantiation here means to bind the executables to the context of specific
processes of the operating system. Each process may start with a different start-up
configuration depending on a machine mode. Further on, the Application Mani-
fest may also define dependencies of processes.

The creation of the Application Manifest is detailed in Section 2.4.3. c
(RS_METH_00203)

[TR_AMETH_00005] Configuration of the service instances d During this activity,
the service instances are configured, notably the binding of the service interfaces to
a chosen transport layer, whether a specific service instance is either provided or re-
quired and the mapping to a dedicated machine. The configurations of the service
instance are manifested in the Service Instance Manifest.

The details are given in Section 2.4.4 c(RS_METH_00206, RS_METH_00203)

[TR_AMETH_00006] Deployment of the application software d Application software
is deployed by means of SoftwareClusters.The deployed application software ob-
viously need to be aligned, i.e., integrated, for the particular machines in the field.

For details see Section 2.4.6 and 2.4.7. c(RS_METH_00205)

20 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.1.2.3 Workflow

Adaptive Methodology Overview

Develop a Service Interface
Description

Define and Configure Service
Instances

Define and configure
machine

Create Application
Manifest

Deploy SoftwareCluster

Integrate Software

Set Up Machine

Select OS
Distribution

Develop Adaptive Software

Create SoftwareCluster

Design communication between
Classic and Adaptive Platform

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

 «nesting»

Figure 2.6: Adaptive Methodology Overview: Overall Structure

Process Pattern Adaptive Methodology Overview
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Adaptive Methodology Overview
Brief Description High-level view of the adaptive AUTOSAR methodology
Description This Process Pattern contains the typical activities to develop an

Adaptive AUTOSAR system.
Relation Type Related Element Mul. Note
Aggregates Create Application

Manifest
1

Aggregates Create Software
Cluster

1

Aggregates Define and Con-
figure Service In-
stances

1

Aggregates Define and config-
ure machine

1

Aggregates Deploy Software
Cluster

1

Aggregates Design commu-
nication between
Classic and Adap-
tive Platform

1

Aggregates Develop Adaptive
Software

1

Aggregates Develop Platform-
level Application
Software

1

21 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Develop a Service

Interface Descrip-
tion

1

Aggregates Integrate Software 1
Aggregates Select OS Distribu-

tion
1

Aggregates Set Up Machine 1

Table 2.3: Adaptive Methodology Overview

22 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Machine
Manifest

Service Instance
Manifest

Application
Manifest

Develop a Service
Interface Description

Service Interface
Description

Develop Adaptive
Application Software

Define and Configure
Service Instances

Create Application
Manifest

Define and configure
machine

Executable Application

Autosar AP
Standard Package

SoftwareCluster

Deploy SoftwareCluster

Set Up
Machine

Configured
Adaptive ECU

Operating
System for
Adaptive
Platform

Select OS
Distribution

Integrate Software

Software
Component
Object Code

Develop Platform-level
Application Software

Platform Object
Code

Create SoftwareCluster

1

 «input»

0..1

 «input»

 «output»

1..*

 «output»

1..*

 «output»

1..*

0..*

 «input»

0..*

 «input»

0..*

 «input»

 «output»

1

 «output»
1

1

 «input»

1

 «input»

1
 «input»

1

 «input»

 «output»

1..*

1

 «input»

 «output»

1

 «output»

1

1

 «input»
1

 «input»

0..*

 «input»

0..* «input»

0..*

 «input»

0..*

 «input»

 «output»

1

 «output»

1..*

1..*

 «input»

0..1

 «input»

Figure 2.7: Adaptive Methodology Overview: Workflow

23 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.2 Architecture and Design

2.2.1 Develop a Service Interface Description

2.2.1.1 Purpose

This use case gives an outline of the definition of the services in a system, independent
of any instantiation. All relevant tasks and deliverables for this use case are given in
Figure 2.8. The workflow is depicted in Figure 2.9.

2.2.1.2 Description

[TR_AMETH_00007] Definition of data types for the Adaptive Platform dData type-
s for the Adaptive Platform can be defined based on standardized data types from
AUTOSAR. As on the Classic Platform, data types are defined on different levels of
abstractions: application data types, implementation data types and base types. Most
concepts and data types can be taken over from the Classic Platform. However, in
order to cope with the C++ programming language, for the Adaptive Platform also vec-
tors, strings and maps can be defined. c(RS_METH_00201)

For more information on data types as specified for the Classic Platform and the ex-
tensions for the Adaptive Platform, see [5] and [6].

[TR_AMETH_00008] Definition of service interfaces for the Adaptive Platform
d All service interfaces, which are used in a system, need to be defined. Service
interfaces aggregate elements as events, methods and fields. They are the basis
for the header file generation. Therefore, it is also possible to define namespaces
within a service interface, which has a direct influence on the generated code. c
(RS_METH_00201)

[TR_AMETH_00009] Aggregating service interfaces for reducing the bus load d
Optionally, service interfaces can be aggregated to more coarse-grained service inter-
faces by defining a service interface mapping or a service interface element mapping
respectively. This results in an update of the Service Interface Description.
The newly defined coarse-grained service interfaces are then used for the network-
based communication. c(RS_METH_00201)

24 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.2.1.3 Workflow

Develop a Service
Interface Description

Provide Data Types for Adaptive
Platform

Define Service Interfaces

Aggregate Service Interfaces

Autosar AP Standard Package

Service Interface Description

Service Interface Mapping

0..1

 «input»

 «nesting»

 «nesting»

 «nesting»

 «output»

0..*

 «output»
1..*

Figure 2.8: Develop a Service Interface Description

Activity Develop a Service Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Service Interface Definition
Brief Description Define all service interfaces used in the system
Description This activity describes the definition of the service interfaces,

aggregating events, methods and fields, including the definition of data
types. In addition, coarse-grained service interfaces can be defined for
the network-based communication.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 Optional input for defining data types and

service interfaces for the adaptive
platform

Produces Service Interface
Description

1..* All service interfaces, which are used for
communication

Produces Service Interface
Mapping

0..* Optionally, coarse-grained service
interfaces are defined by a service
interface mapping

Aggregates Aggregate Service
Interfaces

1

Aggregates Define Service In-
terfaces

1

Aggregates Provide Data Type-
s for Adaptive Plat-
form

1

Table 2.4: Develop a Service Interface Description

25 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Autosar AP
Standard Package

Service Interface Description

Provide Data
Types for
Adaptive
Platform

Define Service
Interfaces

Aggregate Service
Interfaces

AP Data Types

Service Interface Mapping

1..*

 «input»

 «output» 0..*

 «output»

0..*

 «output»

1..*

 «output»

1..*

0..* «input»

0..1

 «input»

Figure 2.9: Workflow for defining Service Interfaces

2.2.2 Design communication between Classic Platform and Adaptive
Platform

2.2.2.1 Design service oriented communication between Classic Platform
and Adaptive Platform

2.2.2.1.1 Purpose

This use case covers the activities necessary to design service oriented communica-
tion between applications of a Classic Platform ECU and those of an Adaptive
Platform machine via SOME/IP.

The respective deliverables, activities and tasks are depicted in Figure 2.10.

26 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.2.2.1.2 Description

[TR_AMETH_00208] Map a single ServiceInterface to PortInterface elements d
The main objective of this activity is to map a single ServiceInterface to PortInterface
elements, in detail:

• to map method(s), i.e., to map a ClientServerOperation located in a ClientServer-
Interface to a method located in a ServiceInterface.

• to map event(s), i.e., to map a VariableDataPrototype located in a Sender-
ReceiverInterface to an event located in a ServiceInterface.

• to map field(s), i.e., to map operations located in ClientServerOperations to getter
and setter methods of a ServiceInterface and to map a VariableDataPrototype of
a SenderReceiverInterface to the field notifier of the ServiceInterface.

• to map “Fire and Forget”, i.e., to map a “Fireand Forget” method located in a
ServiceInterface to a VariableDataPrototype in a SenderReceiverInterface or to
a trigger of a TrigerInterface.

c(RS_METH_00202)

2.2.2.1.3 Workflow

Design service oriented
communication between Classic
and Adaptive Platform

Map Event Map Field Map Fire and ForgetMap Method

Service Interface Description

Client Server Interface Description

Sender Receiver Interface
Description

Service Interface Mapping for
Service Oriented Communication

Trigger Interface Description

 «output»
1..*

 «input»
0..*

 «input»

1

 «input»

0..*

 «nesting»

 «nesting»

 «input»

0..*

 «nesting»
 «nesting»

Figure 2.10: Design service oriented communication

27 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Activity Design service oriented communication between Classic and
Adaptive Platform

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Design service oriented communication between CPand AP
Description The background of this activity is the request to enable service oriented

communication between applications of a Classic Platform (CP) ECU
and those of an Adaptive Platform (AP) machine via SOME/IP.

Unfortunately, the AUTOSAR Classic Platform does not support
ServiceInterfaces. Thus, a SOME/IP service may be composed of
different types of Classic Platform PortInterfaces like
SenderReceiverInterfaces, ClientServiceInterfaces or
TriggerInterfaces.

In order to describe the communication over SOME/IP between the CP
ECU and a AP machine, this activity describes the mapping of the
elements of the PortInterfaces of the Classical Platform to the
elements of a single ServiceInterface of the Apdaptive Platform.

The mapping description serves currently only for documentation.
Relation Type Related Element Mul. Note
Consumes Client Server Inter-

face Description
1 The descriptions of Client Server

Interfaces of CP are used to map a
ClientServerOperation to a method in a
ServiceInterface or to map a
ClientServerOperation (representing
getter or setter methods) to a field in a
ServiceInterface

Consumes Sender Receiver
Interface Descrip-
tion

1 The descriptions of Sender Receiver
Interfaces of CP are used to map a
VariableDataPrototype to an Event in a
ServiceInterface or to map a
VariableDataPrototype to the notifier of a
Field of a ServiceInterface or to map a
Fire&Forget Method that is located in a
ServiceInterface to a
VariableDataPrototype in a
SenderReceiverInterface

Consumes Service Interface
Description

1 Description of the Service Interface
which communicates to CP in a
service-oriented manner

Consumes Trigger Interface
Description

1 The descriptions of Trigger Interfaces are
used to map a Fire&Forget Method that
is located in ServiceInterface to a Trigger
in a TriggerInterface

Produces Service Inter-
face Mapping for
Service Oriented
Communication

1..* An InterfaceMapping results from the
design of service-oriented
communication between CP and AP

Aggregates Map Event 1
Aggregates Map Field 1

28 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Map Fire and For-

get
1

Aggregates Map Method 1

Table 2.5: Design service oriented communication between Classic and Adaptive Plat-
form

2.2.2.2 Design signal oriented communication between Classic Platform
and Adaptive Platform

2.2.2.2.1 Purpose

This use case comprises activities to specify a signal oriented communication between
Classic Platform and Adaptive Platform applications, if there is no service
oriented communication possible.

The associated elements, i.e, deliverables, activities and tasks and their relations are
depicted in Figure 2.11.

2.2.2.2.2 Description

[TR_AMETH_00209] Define a signal-based ServiceInterface d As a prerequisite for
the mapping of ServiceInterface elements to ISignalTriggerings, the definition of a Sig-
nalBasedServiceInterface is needed. It specifies the configuration settings for a Servi-
ceInterface from which the content will be transmitted in the signal-based way over a
communication medium and therefore provides the ability to bind a ServiceInterface to
a signal-based communication protocol like CAN or FlexRay.

Details are provided by the specifications TPS_MANI_03120, TPS_MANI_03121,
TPS_MANI_03122 and TPS_MANI_03123 of the ManifestSpecification [6]. c
(RS_METH_00202)

[TR_AMETH_00210] Map signals to services d In a second step, the mapping of
ServiceInstance elements of a specific AdaptivePlatformServiceInstance defined in the
context of a process to ISignalTriggerings is described, in detail:

• to map SignalBasedMethod to ISignalTriggerings, according to TP-
S_MANI_03125 of the ManifestSpecification [6]

• to map SignalBasedEvent to ISignalTriggerings, according to TPS_MANI_03124
of the ManifestSpecification [6]

• to map SignalBasedField to ISignalTriggerings, according to TPS_MANI_03126
of the ManifestSpecification [6]

• to map a ServiceInstance to a PortPrototype, according to TPS_MANI_03000 of
the ManifestSpecification [6]

29 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

c(RS_METH_00202)

2.2.2.2.3 Workflow

Design signal oriented
communication between Classic
and Adaptive Platform

Signal to Service Mapping

Service Interface Description

Define a signal-based
ServiceInterface
(SignalBasedServiceInterface)

Map Signals to Services

Map SignalBasedEvent to
ISignalTriggerings

Map SignalBasedField to
ISignalTriggerings

Map SignalBasedMethod to
ISignalTriggerings

Map ServiceInstance to
PortPrototype

System Description

 «nesting» «nesting»
 «nesting» «nesting»

 «output»
1..*

 «nesting»

 «input» 1

 «nesting»

 «input»

1

Figure 2.11: Design signal oriented communication

Activity Design signal oriented communication between Classic and
Adaptive Platform

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Design signal oriented communication between CP and AP
Description Usually, Adaptive Applications communicate between each other in a

service oriented manner. There is even an option that applications
deployed to an Adaptive Platform and Classic Platform communicate in
a service oriented way via SOME/IP.

If the counterpart on a Classic Platform ECU, however, communicates
only in a signal-based way, a Signal-to-Service translation is needed.

This activity encompasses the description of the mapping of signals to
elements of a particular ServiceInterface. It will be the base for the
configuration of the translation application.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1 Description of the Service Interface

which communicates to CP in a
signal-oriented manner

Consumes System Descrip-
tion

1 The System Description based on the
System Template on the AUTOSAR
classic platform is used; it contains a
communication matrix description with
Pdus and ISignals

Produces Signal to Service
Mapping

1..* A signal-to-service mapping results from
the design of signal-oriented
communication between CP and AP

30 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Define a signal-

based Service
Interface (Signal
BasedService
Interface)

1

Aggregates Map Signals to
Services

1

Table 2.6: Design signal oriented communication between Classic and Adaptive Platform

Activity Map Signals to Services
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Architecture and Design::Communication
Brief Description Map Signals to Services
Description Describe the mapping of ServiceInstance elements of a specific

AdaptivePlatformServiceInstance defined in the context of a process to
ISignalTriggerings. The prerequisite is the definition of the
SignalBasedServiceInterface.

Relation Type Related Element Mul. Note
Aggregates Map ServiceIn-

stance to Port
Prototype

1

Aggregates Map SignalBased
Event to ISignal
Triggerings

1

Aggregates Map SignalBased
Field to ISignal
Triggerings

1

Aggregates Map SignalBased
Method to ISignal
Triggerings

1

Table 2.7: Map Signals to Services

Activity Define a signal-based ServiceInterface
(SignalBasedServiceInterface)

Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive
Platform::Architecture and Design::Communication

Brief Description Define SignalBasedServiceInterface
Description Express that a ServiceInterface will be transmitted via a signal-based

communication protocol like CAN or FlexRay.
Relation Type Related Element Mul. Note

Table 2.8: Define a signal-based ServiceInterface (SignalBasedServiceInterface)

31 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.3 Software Development

2.3.1 Develop Adaptive Application Software

2.3.1.1 Purpose

This section explains how to develop application-level software for the Adaptive Plat-
form. First, the design of the software components is described. Based on this de-
scription, the functionality can be implemented. An overview of all relevant tasks for
this use case is given in Figure 2.12. The artifact-based workflow is depicted in Figure
2.13.

2.3.1.2 Description

[TR_AMETH_00010] Application-level Software d An Adaptive Application of cate-
gory application-level is a collection of executables. The executables themselves can
be derived from several software components. c(RS_METH_00202)

[TR_AMETH_00011] Design of the software components d Based on the service in-
terfaces, the development of adaptive application software starts with the design of the
software components. The software components can have an hierarchical structure.
For all software components it is defined if service interfaces are required or provided.
This behavior is designed by using the corresponding ports for the software compo-
nents.
c(RS_METH_00202)

[TR_AMETH_00012] Generation of the header files for service interface d In paral-
lel, the header files for the service interfaces are generated. This step is independent
of the design of the software component and therefore its ports. Instead, the header
files are generated for all service interfaces and afterwards, the relevant ones are used
for the development of the software component.
The generation includes the generation of service proxies and skeletons, which need
to be implemented for a specific platform. c(RS_METH_00202, RS_METH_00066)

[TR_AMETH_00013] Implementation and compilation of software components d
The generated header files are the basis for the implementation of the core function-
ality of a software component. Two typical use cases for the development exist that
depend on the fact if the Build Chain Configuration is known or not known and
therefore if source code or object code is delivered by the application developer. c
(RS_METH_00202, RS_METH_00015, RS_METH_00066, RS_METH_00042)

[TR_AMETH_00014] Development with knowledge of the Build Chain Con-
figuration d In this approach, the integrator hands over the Build Chain Con-
figuration to the software developer beforehand. The software developer can build
his software component against this build chain and can deliver object code back to
the integrator. c(RS_METH_00202, RS_METH_00077)

32 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[TR_AMETH_00015] Development without knowledge of the Build Chain Con-
figuration d For this use case, the application developer is not aware of the
Build Chain Configuration and needs to deliver source code to the integra-
tor. The integrator then takes over the compilation of the the software component.
c(RS_METH_00202, RS_METH_00077)

2.3.1.3 Workflow

Develop Adaptive Application
Software

Service Interface Description

Develop Software
Components

Design Software Component for
Adaptive Platform

Generate Header Fi les
for Service Interfaces

Implement Software
Component Functionali ty

Develop Main
Function

Software Component
Object Code

Main Function

Software Component
Description for Adaptive
Platform

 «output»

1

 «nesting»

 «nesting»

 «nesting»

1..*

 «input»

 «nesting»
 «nesting»

 «output» 1..*

 «output»

1..*

Figure 2.12: Develop Adaptive Application Software

Activity Develop Adaptive Application Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Design and development of software components for Adaptive Platform
Description Develop an Adaptive Application with category application-level. In this

activity, Adaptive Application Software in terms of Software Component
Object Code for the Adaptive Platform is developed. In addition, the
main function for the executable is developed. The integration of these
is done in the proceeding step. The software component description is
needed as deliverable for a later mapping of service instances to port
prototypes.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Service Interfaces are the basis for the

development of adaptive application
software

Produces Main Function 1 One main function per executable is
produced

33 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produces Software Compo-

nent Description
for Adaptive Plat-
form

1..* Output of component model for the
software components

Produces Software Compo-
nent Object Code

1..* Compiled software components

Aggregates Design Software
Component for
Adaptive Platform

1

Aggregates Develop Software
Components

1

Table 2.9: Develop Adaptive Application Software

Activity Develop Software Components
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Implement the core functionality of one executable application
Description In this activity, the software components for one executable are

implemented and compiled. After the header files for the service
interfaces are generated, the functionality can be implemented. For
each executable, a main function needs to be implemented, which
defines the internal communication and scheduling.

Relation Type Related Element Mul. Note
Aggregates Develop Main

Function
1

Aggregates Generate Header
Files for Service
Interfaces

1

Aggregates Implement Soft-
ware Component
Functionality

1

Table 2.10: Develop Software Components

34 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Service Interface Description

Design Software
Component for Adaptive
Platform

Generate Header Files for
Service Interfaces

Software Component
Description for Adaptive
Platform

Implement Software
Component Functionality

Header Files for
Service Interfaces

Compile Software
Component

Software Component
Source Code

Software Component Object Code

Build Chain
Configuration

Main Function

Develop Main
Function

Middleware Library
Header Fi les

 «output»

1

 «output»

1..*

1..*

 «input»

1..*

 «input»

 «output»
1

1..*

 «input»

1..*

 «input»

1

 «input»

0..*

 «input»
1

 «input»

1..*

 «input»

1..*

 «input»

 «output»

1

 «output»

1

Figure 2.13: Workflow for developing application-level software for the Adaptive Platfor-
m

2.3.2 Develop Platform-level Application Software

2.3.2.1 Purpose

This section explains how to develop platform-level software for the Adaptive Platform.
The artifact workflow is depicted in Figure 2.14.

35 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.3.2.2 Description

[TR_AMETH_00035] Platform-level Software d An Adaptive Application of catego-
ry platform-level is a collection of executables. The executable may consist of soft-
ware components if these are based on standardized service interfaces, but may also
be directly implemented without a software component model. c(RS_METH_00207,
RS_METH_00041)

[TR_AMETH_00020] Development of Platform Object Code d The platform
modules, which consist of an executable, need to be developed. Similar as application-
level software, they are later instantiated in terms of an Application Manifest and then
deployed on the machine. For each executable the corresponding main function needs
to be developed as well. c(RS_METH_00207, RS_METH_00041)

2.3.2.3 Workflow

Autosar AP
Standard Package

Develop Platform-level
Application Software

Platform Object
Code

Main Function

Middleware Library
Header Fi les

 «output»

1

 «output»
1..*

0..1
 «input»

0..*

 «input»

Figure 2.14: Develop Platform-level Application Software

Activity Develop Platform-level Application Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Develop Adaptive Application
Brief Description Develop an Adaptive Application with category platform-level
Description Develop an Adaptive Application with category platform-level. These

applications are platform modules, which consist of an executable and
are deployed together with an Application Manifest onto the machine
(in contrast to e.g. the OS). This activity also includes the
implementation of the corresponding main function.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 In case standardized service interfaces

are used for platform-level applications
Consumes Middleware Library

Header Files
0..* Library header files needed for compiling

the platform-level applications
Produces Main Function 1 Main function for platform-level

executable
Produces Platform Object

Code
1..* Object code of platform module

Table 2.11: Develop Platform-level Application Software

36 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4 Integration and Deployment

2.4.1 Integrate Software

2.4.1.1 Purpose

After the implementation and compilation of the software, it needs to be integrated
into one executable. Since the executable also contains platform-specific aspects, this
process step also describes other activities as e.g. the development of the serialization
for a specific platform and the implementation of the proxies and skeletons.

2.4.1.2 Description

[TR_AMETH_00016] Development of serialization properties d It needs to be de-
scribed how the data in the service interfaces shall be serialized for the transport on the
network. In particular, this is important for the communication over SOME/IP between
Classic and Adaptive Platform.
For the service interfaces, the properties of the serialization will be defined. For
SOME/IP, this includes the alignment, the configuration of length fields that are added
in front of arrays or structures, etc. Based on this Serialization Configuration,
the serialization code can be generated. The serialization is developed for a dedicated
Adaptive Platform. c(RS_METH_00006, RS_METH_00077, RS_METH_00066)

[TR_AMETH_00017] Implementation of service proxies and skeletons d The ser-
vice proxies and skeletons, which are contained in the Header Files for Service
Interfaces and used within the software components, need to be implemented. For
this implementation, the serialization of data needs to be known. c(RS_METH_00207)

[TR_AMETH_00018] Building the Executable Application d The Executable
Application can be built based on application-level Software Component Ob-
ject Code or platform-level Platform Object Code together with the respective
Main Function. Additionally, the Serialization Source Code and all neces-
sary libraries and implementations are linked to one Executable Application. c
(RS_METH_00202, RS_METH_00066, RS_METH_00042)

37 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.1.3 Workflow

Integrate Software

Service Interface Description

Header Fi les for
Service Interfaces

Software Component Object Code

Executable Application

Main Function

Build Chain
Configuration

Generate Serial ization Code for
Adaptive Platform

Build Executable
Application

Configure
Serialization for
Adaptive Platform

Implement Service Proxies and
Skeletons

Platform Object
Code

1

 «input»

1

 «input»

 «nesting»

 «nesting» «nesting»

 «output»

1

0..*

 «input»
0..*

 «input»

0..*
 «input»

0..*

 «input»

 «nesting»

Figure 2.15: Integrate the software components

Activity Integrate Software
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Integrate Software
Brief Description Integrate software to one executable
Description In this activity, the compiled software and one main function are

integrated into one executable. For this step, several other artifacts
may be necessary, as the serialization code, the implemented proxies
and skeletons and necessary middleware libraries.

Several executables can later be packaged into an Adaptive AUTOSAR
Application.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Needed for linking all artifacts

Consumes Header Files for
Service Interfaces

0..* Proxies and skeletons to be implemented

Consumes Main Function 1 One main function per executable
Consumes Platform Object

Code
0..* Object code for platform-level executable

Consumes Service Interface
Description

0..* Needed for defining the serialization

Consumes Software Compo-
nent Object Code

0..* Object code for application-level
executable

38 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produces Executable Appli-

cation
1 Software is integrated into one

executable application
Aggregates Build Executable

Application
1

Aggregates Configure Serial-
ization for Adaptive
Platform

1

Aggregates Generate Serial-
ization Code for
Adaptive Platform

1

Aggregates Implement Service
Proxies and Skele-
tons

1

Table 2.12: Integrate Software

39 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Service Interface Description

Header Fi les for
Service Interfaces

Generate Serialization Code for
Adaptive Platform

Build Executable
Application

Serialization
Source Code

Software Component
Object Code

Executable Application

Middleware Libraries

Main Function

Serial ization
Configuration

Configure
Serial ization for
Adaptive Platform

Implement Service Proxies and
Skeletons

Implemented
Proxies and
Skeletons

Build Chain
Configuration

Platform Object
Code

0..*

 «input»

1..*

 «input»

0..1

 «input»

 «output»

1

 «output»

1..*

0..*

 «input»

1..*

 «input»

0..1

 «input»

1..*

 «input»

1

 «input»

0..*

 «input»

0..*

 «input»

 «output»

1

 «output»

1..*

1..*

 «input»

1

 «input»

Figure 2.16: Workflow for integrating the software

40 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.2 Define and Configure Machine

The machine is an instance of the AUTOSAR Adaptive Platform. Before all necessary
activities for configuring the machine can be described, the basis for this configuration,
i.e. the Adaptive Platform itself needs to be set up.

2.4.2.1 Describe Platform

2.4.2.1.1 Purpose

This first step covers the tasks for describing the platform, independent of the instanti-
ation in terms of a machine yet.

2.4.2.1.2 Description

[TR_AMETH_00019] Description of the Adaptive Platform d As a first step, the un-
derlying hardware for the Adaptive Platform can be described. The description of all
hardware elements like processing units, memory, sensors and actuators, pins is given
in the ECU Resources Description. c(RS_METH_00207, RS_METH_00041)

ECU resources can be specified based on the ECU Resource Template [7].

[TR_AMETH_00034] Selecting the Operating System for Adaptive Plat-
form d For the platform, the operating system needs to be selected and assembled.
The workflow for the platform modules as the OS is different to the workflow of platform-
level applications (see section 2.3.2), which will be instantiated with an Application
Manifest. c(RS_METH_00207, RS_METH_00041)

2.4.2.1.3 Workflow

Operating System for Adaptive
Platform

Select OS Distribution

 «output»

1

Figure 2.17: Select the OS Distribution

41 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Activity Select OS Distribution
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Define and Configure Machine::Develop Platform Software
Brief Description Select and assemble an operating system
Description Select an operating system and assemble it. The workflow for the

platform modules as the OS is different to the workflow of platform-level
applications, which will be instantiated with an Application Manifest.

Relation Type Related Element Mul. Note
Produces Operating System

for Adaptive Plat-
form

1 Selected OS distribution

Table 2.13: Select OS Distribution

2.4.2.2 Configure Machine

2.4.2.2.1 Purpose

The machine describes the computing resource on which the Adaptive AUTOSAR
Software Stack is executed. This use case describes all definition and configuration
activities for the machine independent of the deployment information of applications
or service instances. All produced content will be part of the Machine Manifest.
The overview of inputs, outputs and all tasks is given in Figure 2.18. The workflow is
described in Figure 2.19.

2.4.2.2.2 Description

[TR_AMETH_00021] Configuration of network communication for machine d For
the communication on the network, the machine’s network connections need to be con-
figured. In more detail, IPv4 or IPv6 addresses are defined. Additionally, in order to
exchange service discovery messages with SOME/IP, a specifically designated IP mul-
ticast address and a UDP Port is specified. c(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00022] Definition of machine states and resources d A machine can
have several machine states, in which certain processes will be activated or deactivat-
ed. These states need to be defined and can then be used for the startup configuration
of a process, which might depend on the machine states.
Optionally, based on the ECU Resources Description the available hardware re-
sources for the machine can be described. c(RS_METH_00204, RS_METH_00203)

[TR_AMETH_00023] Configuration of the operating system d The configuration of
the operating system is defined via the AdaptiveModuleInstantiation meta class. For a
specific instantiation of the operating system, resource groups as well as the supported
timer granularity can be defined. c(RS_METH_00204, RS_METH_00203)

42 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.2.2.3 Workflow

Configure Network
Connections of Machine

Configure Service
Discovery Message
Exchange

Describe Available HW Resources

Machine Manifest

Define Machine States

Configure OS for Adaptive
Platform

Define and configure machine

ECU Resources
Description

Operating System for Adaptive
Platform

1

 «input»

1

 «input»

 «nesting»

 «nesting»

 «output»

1

 «nesting»

 «nesting»

 «nesting»

Figure 2.18: Define and Configure Machine

Activity Define and configure machine
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Define and Configure Machine::Machine Configuration
Brief Description Configuration of the machine independent of deployment information of

applications or service instances
Description The activity describes tasks for the configuration of the machine, which

do not depend on deployment information of applications or service
instances. This includes the configuration for the communication on the
network based on service discovery, the description of all machine
states and the available resources as well as dedicated configuration of
the OS.

Relation Type Related Element Mul. Note
Consumes ECU Resources

Description
1 All resources which are available for the

ECU
Consumes Operating System

for Adaptive Plat-
form

1 OS to be configured

Produces Machine Manifest 1 The machine manifest describes all the
configuration settings for one machine

Aggregates Configure Network
Connections of
Machine

1

Aggregates Configure OS for
Adaptive Platform

1

Aggregates Configure Service
Discovery Mes-
sage Exchange

1

43 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Define Machine S-

tates
1

Aggregates Describe Available
HW Resources

1

Table 2.14: Define and configure machine

Configure Network
Connections of
Machine

Configure Service Discovery
Message Exchange

Describe Available HW Resources

Machine Manifest

Define Machine States

Configure OS for Adaptive Platform
Operating System for Adaptive
Platform

ECU Resources
Description

Define ECU
Description

 «output»

0..1
 «output»

0..1

 «output»

0..1

 «output»

0..1

 «output»

0..1

 «output»

1..* 1

 «input»

1

 «input»

Figure 2.19: Workflow for defining and configuring an machine

2.4.3 Create Application Manifest

2.4.3.1 Purpose

This use case defines all tasks, which are necessary in order to instantiate the Exe-
cutable Application. For on overview see Figure 2.20. The workflow is given in
Figure 2.21.

2.4.3.2 Description

[TR_AMETH_00024] Instantiation of Executable Application d Define the in-
stantiation of an Executable Application on a specific machine in terms of a
process. One executable can be instantiated several times and in different ways, e.g.
varying in the definition of the startup behavior. This results in several processes. c
(RS_METH_00203, RS_METH_00077)

44 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

[TR_AMETH_00025] Definition of startup behavior of a process d For each process
the startup behavior can be defined depending on a machine state. Therefore, the
process might have a different startup behavior in one machine state compared to a
second machine state. This behavior can e.g. vary in terms of the scheduling priority
or the execution dependencies to other processes. c(RS_METH_00203)

[TR_AMETH_00026] Definition of Application Manifest d The Application
Manifest aggregates the process and its startup configuration. Therefore, one Ap-
plication Manifest is defined per process. c(RS_METH_00203)

2.4.3.3 Workflow

Executable Application

Create Application Manifest

Define Startup Configuration
Define Execution Dependencies

Application Manifest

Define Process

Machine
Manifest

1

 «input»

 «nesting»

1

 «input»

 «nesting»

 «nesting»

 «output»

1..*

Figure 2.20: Create an Application Manifest

Activity Create Application Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Application Manifest
Brief Description Instantiation-specific configuration of executable
Description In this activity, the processes are defined. One executable can be

instantiated several times, which results in multiple processes for one
executable. One Application Manifest is defined per process and
contains all its attributes including startup configuration and execution
dependencies.

Relation Type Related Element Mul. Note
Consumes Executable Appli-

cation
1 One executable can be instantiated

several times
Consumes Machine Manifest 1 Instantiation is defined on one specific

machine
Produces Application Mani-

fest
1..* One application manifest per instantiated

executable
Aggregates Define Execution

Dependencies
1

45 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Define Process 1
Aggregates Define Startup

Configuration
1

Table 2.15: Create Application Manifest

Define Execution
Dependencies

Define
Process

Define Startup
Configuration

Mode-dependent
Startup Configuration

Process

Executable Application

Machine Manifest

 «output»

1..*

 «output»

1..*

 «output»

1..*

1

 «input»

1

 «input»

1

 «input»

1

 «input»

1

 «input»

Figure 2.21: Workflow for defining a Process

2.4.4 Define and Configure Service Instances

2.4.4.1 Purpose

This use case describes the definition and configuration of service instances in the
system. For an overview of all tasks see Figure 2.22. For the workflow see Figure 2.23.
The outcome of this activity is the Service Instance Manifest.

46 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.4.2 Description

[TR_AMETH_00027] Configuration of Service Interface Deployment d The system
responsible needs to define how the service interfaces shall be deployed. In particular,
for each used transport layer, the binding of the service interface to this transport layer
needs to be given.
For SOME/IP deployment, an ID for each service interface is defined. This ID needs
to be unique in the system. Additionally, methodId, eventId as well as event groups are
defined. c(RS_METH_00206, RS_METH_00203, RS_METH_00084)

[TR_AMETH_00028] Configuration of Service Instances d Afterwards, the system
responsible defines instances of the deployed service interfaces and decides whether
the service instance is provided or consumed. In order to set up the service-oriented
communication, the search or offer criteria for all service instances are described. c
(RS_METH_00206, RS_METH_00203, RS_METH_00084)

[TR_AMETH_00029] Mapping of Service Instances to Machine d The service in-
stances will be deployed to the Adaptive Platform instance that will execute the ser-
vice instance via the ServiceInstanceToMachineMapping. For SOME/IP, the TP and
IP configuration for the client and the server are described. c(RS_METH_00206,
RS_METH_00203, RS_METH_00078)

[TR_AMETH_00033] Mapping of Service Instances to Port Prototypes d In addi-
tion, the service instances need to be mapped to their representation in the appli-
cation (i.e., port prototypes) via the ServiceInstanceToPortPrototypeMapping. This
mapping is necessary in order to ensure a unique relationship between locally used
service instances within the application and global service instances on the net-
work (e.g. SOME/IP service instances). c(RS_METH_00206, RS_METH_00203,
RS_METH_00078)

47 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.4.3 Workflow

Define and Configure
Service Instances

Service Instance Manifest

Define and Configure
Service Instance

Define SOME/IP Timing

Map Service Instance to Machine

Machine Manifest

Service Interface Description

Map Service Instance
to Port Prototype

Configure Service
Interface Deployment

Software Component
Description for Adaptive
Platform

 «nesting»

1

 «input»

 «nesting»

1

 «input»

1

 «input»

 «nesting»

 «nesting»

 «nesting»

 «output»

1..*

Figure 2.22: Define and Configure Service Instances

Activity Define and Configure Service Instances
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Service Instance Definition
Brief Description Configuration of service interface deployment and service instances
Description This activity describes two main steps. The first step describes the

configuration of the service interfaces for the used network layer,
independent of any instantiation. In the second step, the service
instances are defined and configured.

Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Service instances will be mapped to

machine
Consumes Service Interface

Description
1 Deployment of service interfaces needs

to be configured
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1 Used to map the service instances to
ports of a software component

Produces Service Instance
Manifest

1..* Contains all configuration settings for the
service instance on a specific machine

Aggregates Configure Ser-
vice Interface
Deployment

1

Aggregates Define SOME/IP
Timing

1

48 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Define and Con-

figure Service In-
stance

1

Aggregates Map Service In-
stance to Machine

1

Aggregates Map Service In-
stance to Port Pro-
totype

1

Table 2.16: Define and Configure Service Instances

Define and
Configure Service
Instance

Define SOME/IP
Timing

Map Service
Instance to Machine

Service Instance Manifest

Service Interface
Deployment
Configuration

Service Instance
Configuration

Map Service Instance
to Port Prototype

Machine Manifest

Service Interface
Description

Configure Service
Interface Deployment

Software Component
Description for Adaptive
Platform

1

 «input»

1

 «input»
1

 «input»

 «output»

1

 «output»

1

 «output»

1

 «output»

1

1
 «input»

1

 «input»

 «output»

1..*

1

 «input»

1

 «input»

Figure 2.23: Workflow for defining and configuring service instances

49 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.5 Set up the Machine

2.4.5.1 Purpose

This activity describes how a machine is set up so that software can be deployed on it.
The overview and workflow is depicted in Figure 2.24.

2.4.5.2 Description

[TR_AMETH_00031] Setting up the machine d The Operating System for
Adaptive Platform has been selected for a specific Adaptive Platform type. The
instantiation of an Adaptive Platform results in a machine. The necessary configuration
settings for this instantiation is given in the Machine Manifest. In this step, the ma-
chine will be set up based on the configuration settings and the OS will be installed on
the machine. This step is still independent of any application-level or platform-level soft-
ware. These applications can be uploaded at a later point in time. c(RS_METH_00205,
RS_METH_00204)

2.4.5.3 Workflow

Machine Manifest

Set Up Machine Configured
Adaptive ECU

Operating System for
Adaptive Platform

1

 «input»

1
 «input»

 «output»

1

Figure 2.24: Set up machine

Activity Set Up Machine
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Define and Configure Machine::Setup Machine
Brief Description Set up the machine based on the machine manifest
Description Configure and install the OS on the machine. The configuration

settings are given by the Machine Manifest. In addition, the network
connections as well as machine states are set up.

Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Containing all configuration settings for

the machine
Consumes Operating System

for Adaptive Plat-
form

1 OS to be installed on machine

50 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produces Configured Adap-

tive ECU
1 Machine is configured and software can

now be deployed

Table 2.17: Set Up Machine

2.4.6 Create SoftwareCluster

2.4.6.1 Purpose

This use case comprises activities to specify a SoftwareCluster.

The respective inputs and the output deliverable are depicted in Figure 2.25.

Note, that the definition of SoftwareCluster is work-in-progress and therefore sub-
ject to change.

2.4.6.2 Description

[TR_AMETH_00206] Create SoftwareCluster d A SoftwareCluster is the
“atomic” entity (container) for deployment as well as for automotive diagnosis.

In this respect, SoftwareClusters need to be identifiable by a unique number.

The SoftwareCluster may be empty in extreme cases. For its main use-
cases, however, a SoftwareCluster may contain AdaptiveAutosarApplica-
tion(s), Application Manifest(s), Service Instance Manifest(s), the Ma-
chine Manifest and other artifacts. c(RS_METH_00205)

2.4.6.3 Workflow

Service Instance Manifest

Application Manifest

SoftwareCluster

Executable Application

Deploy SoftwareCluster

Configured Adaptive ECU

Create SoftwareCluster

0..* «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

 «output»

1 1

 «input»

Figure 2.25: Create SoftwareCluster

51 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Activity Create SoftwareCluster
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment
Brief Description Create a SoftwareCluster
Description This activity describes the creation of a SoftwareCluster, i.e., to bind

artifacts that belong together in an unique and identifiable container.

SoftwareCluster are used to deploy software to machines as well as
"atomic" entities in case of automotive diagnosis.

Relation Type Related Element Mul. Note
Consumes Application Mani-

fest
0..* Several processes can be deployed

Consumes Configured Adap-
tive ECU

0..* SW package will be deployed on one
configured adaptive ECU

Consumes Executable Appli-
cation

0..* Executables of deployed processes

Consumes Service Instance
Manifest

0..* Several service instances can be
deployed

Produces SoftwareCluster 1 SoftwareCluster as atomic entity for
deployment defined

Table 2.18: Create SoftwareCluster

2.4.7 Deploy Software

2.4.7.1 Purpose

Once the a particular SoftwareCluster has been created, it can be deployed to a
specific machine.

This is shown in Figure 2.26.

Note, that this use case is work-in-progress and therefore subject to change.

2.4.7.2 Description

[TR_AMETH_00032] Deploying the SoftwareCluster d Dedicated SoftwareClus-
ters are deployed to dedicated machines in the field (vehicle). c(RS_METH_00205)

52 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

2.4.7.3 Workflow

Service Instance Manifest

Application Manifest

SoftwareCluster

Executable Application

Deploy SoftwareCluster

Configured Adaptive ECU

Create SoftwareCluster

0..* «input»

0..*

 «input»

0..*

 «input»

0..*

 «input»

 «output»

1 1

 «input»

Figure 2.26: Deployment of a SoftwareCluster

Activity Deploy SoftwareCluster
Package AUTOSAR Root::M2::Methodology::Methodology Use Cases::Adaptive

Platform::Deployment
Brief Description Deployment of software to a machine
Description In this activity, application software by means of SoftwareClusters are

deployed.
Relation Type Related Element Mul. Note
Consumes SoftwareCluster 1 Deploy software on machine by means of

SoftwareCluster

Table 2.19: Deploy SoftwareCluster

53 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3 Adaptive Methodology Library

The Adaptive Methodology Library lists all work products and tasks that are used for
modeling the use cases in section 2.

3.1 Service Interface

This chapter contains the definition of work products and tasks used for the definition
of service interfaces for the Adaptive Platform.

3.1.1 Tasks

3.1.1.1 Provide Data Types for Adaptive Platform

Task Definition Provide Data Types for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Define a set of AP data types for a specific project, which are not

already defined by Autosar.
Description Select or define a set of data types, which are required for the Adaptive

Platform Instance, but which are not already defined by AUTOSAR.
Standardized data types can be used as input in order to copy and
refine them. Already existing data types can be reused. The AP Data
Types are used for specifying DataElements in service interfaces. The
focus is on the definition application data types and implementation
data types and the necessary data type mapping sets.

Relation Type Related Element Mul. Note
Consumes Autosar AP Stan-

dard Package
0..1 Use standardized elements (e.g. data

types, compu methods) to create the
corresponding elements of the specific
project.

Produces AP Data Types 1..* Defined AP Data Types for a specific
project

Table 3.1: Provide Data Types for Adaptive Platform

3.1.1.2 Define Service Interfaces

54 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Define Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Define the service interfaces that are used for the header file

generation.
Description Define service interfaces by defining events, methods and fields.

Additionally, a namespace for the header file generation can be
defined.

Relation Type Related Element Mul. Note
Consumes AP Data Types 1..* Used for specifying DataElements in

service interfaces
Produces Service Interface

Description
1..* Collection of all service interfaces

Table 3.2: Define Service Interfaces

3.1.1.3 Aggregate Service Interfaces

Task Definition Aggregate Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Tasks
Brief Description Aggregate service interfaces to a coarse-grained service interface.
Description In this optional task, it is possible to define coarse-grained service

interfaces, which are used for network communication with the help of
a service interface mapping. The service interface mapping maps the
fine-grained service interfaces to the coarse-grained service
interfaces.

Alternatively, if the service interface mapping would result in a name
clash due to equal names of some elements of the service interfaces,
then the elements can be mapped by using the service interface
element mapping.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
0..* Fine-grained service interfaces

Produces Service Interface
Description

0..* Coarse-grained service interfaces

Produces Service Interface
Mapping

0..* Mapping between fine-grained service
and coarse-grained service interfaces

Table 3.3: Aggregate Service Interfaces

3.1.2 Work Products

3.1.2.1 AUTOSAR AP Standard Package

55 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Autosar AP Standard Package
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Package with standardized AUTOSAR elements for the Adaptive

Platform.
Description Package with standardized AUTOSAR elements (e.g. data types,

service interfaces) for the Adaptive Platform. This deliverable is
released by AUTOSAR and is read only within the methodology.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Develop Platform-

level Application
Software

0..1 In case standardized service interfaces
are used for platform-level applications

Consumed by Develop a Service
Interface Descrip-
tion

0..1 Optional input for defining data types and
service interfaces for the adaptive
platform

Consumed by Provide Data Type-
s for Adaptive Plat-
form

0..1 Use standardized elements (e.g. data
types, compu methods) to create the
corresponding elements of the specific
project.

Table 3.4: Autosar AP Standard Package

3.1.2.2 AP Data Types

Artifact AP Data Types
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Definition of data types for the Adaptive Platform
Description Data types, which are required for the Adaptive Platform Instance and

not already defined by AUTOSAR. The AP Data Types are used for
specifying DataElements in service interfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Provide Data Type-

s for Adaptive Plat-
form

1..* Defined AP Data Types for a specific
project

Consumed by Define Service In-
terfaces

1..* Used for specifying DataElements in
service interfaces

Table 3.5: AP Data Types

3.1.2.3 Service Interface Description

56 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Service Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Collection of service interfaces with events, methods and fields.
Description Collection of service interfaces. Service interfaces can consist of

events, methods and fields and are the basis for the generation of
header files for a software component. In addition, the namespace
used for the header file generation can be defined.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Service In-

terfaces
1..* Collection of all service interfaces

Produced by Develop a Service
Interface Descrip-
tion

1..* All service interfaces, which are used for
communication

Produced by Aggregate Service
Interfaces

0..* Coarse-grained service interfaces

Consumed by Configure Ser-
vice Interface
Deployment

1 Deployment is configured for each
service interface

Consumed by Define and Con-
figure Service In-
stances

1 Deployment of service interfaces needs
to be configured

Consumed by Design service ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 Description of the Service Interface
which communicates to CP in a
service-oriented manner

Consumed by Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 Description of the Service Interface
which communicates to CP in a
signal-oriented manner

Consumed by Design Software
Component for
Adaptive Platform

1..* All service interfaces that shall be
implemented by the software component

Consumed by Develop Adap-
tive Application
Software

1..* Service Interfaces are the basis for the
development of adaptive application
software

Consumed by Generate Header
Files for Service
Interfaces

1..* For all service interfaces header files are
generated.

Consumed by Generate Serial-
ization Code for
Adaptive Platform

1..* Service interfaces that are implemented
by the software components are needed
for generating the serialization code

Consumed by Configure Serial-
ization for Adaptive
Platform

0..1 Optional if you only configure default
values for the serialization

Consumed by Aggregate Service
Interfaces

0..* Fine-grained service interfaces

Consumed by Integrate Software 0..* Needed for defining the serialization

57 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note

Table 3.6: Service Interface Description

3.1.2.4 Service Interface Mapping

Deliverable Service Interface Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Interface Definition::Work Products
Brief Description Mapping from fine-grained service interfaces to coarse-grained service

interface.
Description The service interface mapping maps the fine-grained service interfaces

to the coarse-grained service interfaces.

In case of an element mapping, this work product contains the
mapping of the elements of interfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Aggregate Service

Interfaces
0..* Mapping between fine-grained service

and coarse-grained service interfaces
Produced by Develop a Service

Interface Descrip-
tion

0..* Optionally, coarse-grained service
interfaces are defined by a service
interface mapping

Table 3.7: Service Interface Mapping

3.2 Communication Mapping

3.2.1 Tasks

3.2.1.1 Map Method

Task Definition Map Method
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Method
Description Map a ClientServerOperation located in a ClientServerInterface to a

method located in a ServiceInterface.

see TPS_MANI_03111 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.8: Map Method

3.2.1.2 Map Event

58 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Map Event
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Event
Description Map a VariableDataPrototype located in a SenderReceiverInterface to

an event located in a ServiceInterface.

see TPS_MANI_03112 of of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.9: Map Event

3.2.1.3 Map Field

Task Definition Map Field
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Field
Description Map operations located in ClientServerOperations to getter and setter

methods of a ServiceInterface. Map a VariableDataPrototype of a
SenderReceiverInterface to the field notifier of the ServiceInterface.

see TPS_MANI_03113 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.10: Map Field

3.2.1.4 Map Fire and Forget

Task Definition Map Fire and Forget
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map Fire and Forget
Description Map a Fire&Forget method located in a ServiceInterface to a

VariableDataPrototype in a SenderReceiverInterface or to a trigger of a
TrigerInterface.

see TPS_MANI_03115 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.11: Map Fire and Forget

3.2.1.5 Map SignalBasedMethod to ISignalTriggerings

59 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Map SignalBasedMethod to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedMethod to ISignalTriggerings
Description see TPS_MANI_03125 of of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.12: Map SignalBasedMethod to ISignalTriggerings

3.2.1.6 Map SignalBasedEvent to ISignalTriggerings

Task Definition Map SignalBasedEvent to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedEvent to ISignalTriggerings
Description see TPS_MANI_03124 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.13: Map SignalBasedEvent to ISignalTriggerings

3.2.1.7 Map SignalBasedField to ISignalTriggerings

Task Definition Map SignalBasedField to ISignalTriggerings
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map SignalBasedField to ISignalTriggerings
Description see TPS_MANI_03126 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.14: Map SignalBasedField to ISignalTriggerings

3.2.1.8 Map ServiceInstance to PortPrototype

Task Definition Map ServiceInstance to PortPrototype
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Tasks
Brief Description Map ServiceInstance to PortPrototype
Description see TPS_MANI_03000 of AUTOSAR_TPS_ManifestSpecification
Relation Type Related Element Mul. Note

Table 3.15: Map ServiceInstance to PortPrototype

60 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.2.2 Work Products

3.2.2.1 Client Server Interface Description

Deliverable Client Server Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Client Server Interface Description
Description This represents the particular description of a ClientServerInterface of

the Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1 The descriptions of Client Server
Interfaces of CP are used to map a
ClientServerOperation to a method in a
ServiceInterface or to map a
ClientServerOperation (representing
getter or setter methods) to a field in a
ServiceInterface

Table 3.16: Client Server Interface Description

3.2.2.2 Sender Receiver Interface Description

Deliverable Sender Receiver Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Sender Receiver Interface Description
Description This represents a particular description of a SenderReceiverInterface

of the Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1 The descriptions of Sender Receiver
Interfaces of CP are used to map a
VariableDataPrototype to an Event in a
ServiceInterface or to map a
VariableDataPrototype to the notifier of a
Field of a ServiceInterface or to map a
Fire&Forget Method that is located in a
ServiceInterface to a
VariableDataPrototype in a
SenderReceiverInterface

Table 3.17: Sender Receiver Interface Description

3.2.2.3 Trigger Interface Description

61 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Trigger Interface Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Trigger Interface Description
Description This represents the particular description of the Trigger Interface of the

Classic Platform.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Consumed by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1 The descriptions of Trigger Interfaces are
used to map a Fire&Forget Method that
is located in ServiceInterface to a Trigger
in a TriggerInterface

Table 3.18: Trigger Interface Description

3.2.2.4 Service Interface Mapping for Service Oriented Communication

Deliverable Service Interface Mapping for Service Oriented Communication
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Collection of mappings for service oriented communication
Description Collection of mappings of elements of AP-based ServiceInterfaces to

elements of corresponding elements of CP-based
SenderReceiverInterfaces, ClientServerInterfaces and
TriggerInterfaces.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design service ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* An InterfaceMapping results from the
design of service-oriented
communication between CP and AP

Table 3.19: Service Interface Mapping for Service Oriented Communication

3.2.2.5 System Description

62 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable System Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Partial Extract of a System
Description Generic deliverable for defining a System. It is used in different roles

within the methodology.

In each role, this deliverable may contain variation points in its ARXML
artifacts which need to be bound in later steps, e.g. when defining a
subsystem from a complete system or later for the single ECUs. If such
variation points are present, the System Description may optionally
include PredefinedVariants in order to predefine variants for later
selection and an Evaluated Variant Set.

Please note that this generic deliverable does not correspond to the
system description with the system category
"SYSTEM_DESCRIPTION" (see [TPS_SYST_01003]). The system
description with the category "SYSTEM_DESCRIPTION" is
represented by the deliverable "System Configuration Description".

This deliverable is equivalent to a description of a system with any
category. In the System Template Specification "system description" is
the most frequently used term for this kind of artifact.

Kind Delivered
Extended by Abstract System Description, System Configuration Description,

System Constraint Description, System Extract
Relation Type Related Element Mul. Note
Aggregates System Descrip-

tion Root Element
1

Aggregates Communication
Layers

0..1

Aggregates Mapping of Soft-
ware Components
to ECUs

0..1

Aggregates Mapping of Soft-
ware Components
to Implementations

0..1

Aggregates Rapid Prototyping
Scenario

0..1

Aggregates Topology 0..1
Aggregates Alias Name Set 0..*
Aggregates Communication

Matrix
0..*

Aggregates Data Mapping 0..*
Aggregates Evaluated Variant

Set
0..*

Aggregates Postbuild Variant
Set

0..*

Aggregates Predefined Variant 0..*
Aggregates System Constant

Value Set
0..*

63 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates System Signal 0..*
Aggregates System Signal

Group
0..*

Aggregates System Timing 0..*
In/out Select Design

Time Variant
1

Consumed by Define System
View Mapping

2

Consumed by Define System
Safety Information

1

Consumed by Design signal ori-
ented communica-
tion between Clas-
sic and Adaptive
Platform

1 The System Description based on the
System Template on the AUTOSAR
classic platform is used; it contains a
communication matrix description with
Pdus and ISignals

Consumed by Define Alias
Names

0..1 Needed for definition of alias names with
system, system extract or ECU scope,
depending of the role of the System
Description.

Consumed by Define System
Variants

0..*

Table 3.20: System Description

3.2.2.6 Signal to Service Mapping

Deliverable Signal to Service Mapping
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Architecture and Design::Communication Mapping::Work
Products

Brief Description Collection of mappings for signal oriented communication
Description Collection of mappings of ServiceInstances to ISignalTriggerings.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design signal ori-

ented communica-
tion between Clas-
sic and Adaptive
Platform

1..* A signal-to-service mapping results from
the design of signal-oriented
communication between CP and AP

Table 3.21: Signal to Service Mapping

3.3 Adaptive Application

This chapter contains the definition of work products and tasks used for the defintion
of service interfaces for the Adaptive Platform.

64 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.3.1 Tasks

3.3.1.1 Generate Header Files for Service Interfaces

Task Definition Generate Header Files for Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Generate header files for service interfaces with proxies and skeletons
Description Header files are generated based on service interfaces. Therefore, the

header files are generated regardless of the usage of services by a
specific software component. For each service interface one proxy
header file and one skeleton header file is generated. The generation
contains the header files for the implementation of the software
component as well as the service proxies and skeletons, which need to
be implemented.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* For all service interfaces header files are

generated.
Produces Header Files for

Service Interfaces
1..* One proxy header file and one skeleton

header file per service interface are
generated.

Table 3.22: Generate Header Files for Service Interfaces

3.3.1.2 Design Software Component for Adaptive Platform

Task Definition Design Software Component for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Design a software component with ports that implement service

interfaces.
Description A software component is defined with its ports. Each port implements a

service interface. If a software component requires a service interface,
an RPort is used. If it provides a service interface, an PPort is used. A
hierarchy of software components is described by a composition.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* All service interfaces that shall be

implemented by the software component
Produces Software Compo-

nent Description
for Adaptive Plat-
form

1 Software component model with the
ports that implement service interfaces

Table 3.23: Design Software Component for Adaptive Platform

3.3.1.3 Implement Software Component Functionality

65 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Implement Software Component Functionality
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Implement the core functionality of the software component.
Description In this task, the core functionality of the software component is

implemented. This can be done independently of the main function of
the executable, where the scheduling local to the executable is
described.

Relation Type Related Element Mul. Note
Consumes Header Files for

Service Interfaces
1..* Proxy and skeleton header files are the

basis for implementing the software
component

Consumes Software Compo-
nent Description
for Adaptive Plat-
form

1..* The software component model as input
for the implementation of the software
component.

Produces Software Compo-
nent Source Code

1 The source code of the software
component

Table 3.24: Implement Software Component Functionality

3.3.1.4 Compile Software Component

Task Definition Compile Software Component
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Compile the software component in order to produce object code.
Description Compile the software component together with the header files for

service interfaces.

This task can be performed by the application developer in case
software component object code shall be delivered. In this case, the
used compiler and compiler settings need to be agreed on between
application developer and integrator. This Build Chain Configuration is
given beforehand to the application developer.

On the other hand, this task can be performed by the integrator. In this
case, the application developer has delivered the source code directly
to the integrator.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Settings used for compiling the software

component
Consumes Software Compo-

nent Source Code
1 Source code of the software component

for compilation
Consumes Header Files for

Service Interfaces
1..* Used header files of the software

component for compilation
Consumes Middleware Library

Header Files
0..* Library header files needed for compiling

the software components
Produces Software Compo-

nent Object Code
1 Object code of the software component

after compilation

Table 3.25: Compile Software Component

66 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.3.1.5 Develop Main Function

Task Definition Develop Main Function
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Develop the main function for one executable.
Description For one executable, which can contain several software components,

one main function is developed. The main function defines the control
flow of the executable including the scheduling of the software
components inside the executable.

Relation Type Related Element Mul. Note
Consumes Software Compo-

nent Source Code
1..* Scheduling and communication of

several software components within one
executable is defined

Produces Main Function 1 One main function per executable

Table 3.26: Develop Main Function

3.3.1.6 Configure Serialization for Adaptive Platform

Task Definition Configure Serialization for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Define serialization properties for the Adaptive Platform
Description Define the properties of the serialization, i.e. how the data in the

service interfaces shall be serialized for the transport on SOME/IP. The
alignment, session handling, size of length indicator and endianness
needs to be defined.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
0..1 Optional if you only configure default

values for the serialization
Produces Serialization Con-

figuration
1..* Serialization properties for the service

interfaces

Table 3.27: Configure Serialization for Adaptive Platform

3.3.1.7 Generate Serialization Code for Adaptive Platform

Task Definition Generate Serialization Code for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Generate serialization code for service interfaces.
Description Generate the serialization code based on the configuration settings.
Relation Type Related Element Mul. Note
Consumes Serialization Con-

figuration
1..* Configuration settings are the basis for

generating the serialization code.

67 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1..* Service interfaces that are implemented

by the software components are needed
for generating the serialization code

Produces Serialization
Source Code

1 Source code for the serialization can be
generated

Table 3.28: Generate Serialization Code for Adaptive Platform

3.3.1.8 Implement Service Proxies and Skeletons

Task Definition Implement Service Proxies and Skeletons
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Implement service proxies and skeletons for an Adaptive Platform
Description Service proxies and skeletons for an Adaptive Platform, i.e. the method

calls that are used for service-oriented communication, are
implemented. The implementation is based on the serialization settings
for the platform.

Relation Type Related Element Mul. Note
Consumes Header Files for

Service Interfaces
1..* Header files contain proxies and

skeletons to be implemented
Consumes Serialization Con-

figuration
1..* Serialization of data is needed for

implementing service proxies and
skeletons

Produces Implemented Prox-
ies and Skeletons

1..* Implementation of service proxies and
skeletons given as source code

Table 3.29: Implement Service Proxies and Skeletons

3.3.1.9 Build Executable Application

Task Definition Build Executable Application
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Tasks
Brief Description Build executable application based on several software components.
Description The software components are linked together with the serialization

code and necessary middleware libraries. Together with the main
function, the executable application is build.

Relation Type Related Element Mul. Note
Consumes Build Chain Con-

figuration
1 Settings for the compiler and linker

Consumes Main Function 1 One main function per executable
Consumes Serialization

Source Code
0..1 Serialization for the executable

Consumes Implemented Prox-
ies and Skeletons

0..* Source code of service proxies and
skeletons

Consumes Middleware Li-
braries

0..* Libraries needed to build the executable

68 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Consumes Platform Object

Code
0..* Platform modules to be linked together to

one executable
Consumes Software Compo-

nent Object Code
0..* Software component to be linked

together to one executable
Produces Executable Appli-

cation
1 One executable is built

Table 3.30: Build Executable Application

3.3.2 Work Products

3.3.2.1 Header Files for Service Interfaces

Deliverable Header Files for Service Interfaces
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Header files generated for service interfaces
Description The generated header files of service interfaces consist of

• proxy header files for service discovery and method invocation
as well as event subscription and reception

• skeleton header files for method calls and event publishing

The header files are the basis for implementing the functionality of a
software component.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Header

Files for Service
Interfaces

1..* One proxy header file and one skeleton
header file per service interface are
generated.

Consumed by Compile Software
Component

1..* Used header files of the software
component for compilation

Consumed by Implement Service
Proxies and Skele-
tons

1..* Header files contain proxies and
skeletons to be implemented

Consumed by Implement Soft-
ware Component
Functionality

1..* Proxy and skeleton header files are the
basis for implementing the software
component

Consumed by Integrate Software 0..* Proxies and skeletons to be implemented

Table 3.31: Header Files for Service Interfaces

3.3.2.2 Software Component Description for Adaptive Platform

69 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Software Component Description for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Description of a software component for the Adaptive Platform
Description Description of a software component for the Adaptive Platform with all

its ports. A RPort is used, if the software component requires a service
interface. A PPort is used, if the software component provides a
service interface. A software component can also be of type
composition.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Design Software

Component for
Adaptive Platform

1 Software component model with the
ports that implement service interfaces

Produced by Develop Adap-
tive Application
Software

1..* Output of component model for the
software components

Consumed by Define and Con-
figure Service In-
stances

1 Used to map the service instances to
ports of a software component

Consumed by Map Service In-
stance to Port Pro-
totype

1 In case the service instances are
mapped to ports of a software
component

Consumed by Implement Soft-
ware Component
Functionality

1..* The software component model as input
for the implementation of the software
component.

Table 3.32: Software Component Description for Adaptive Platform

3.3.2.3 Build Chain Configuration

Deliverable Build Chain Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Used compiler and compiler settings for building the executable
Description The Build Chain Configuration contains the used compiler and compiler

settings. These settings are platform implementation specific.
Kind Text
Relation Type Related Element Mul. Note
Consumed by Build Executable

Application
1 Settings for the compiler and linker

Consumed by Compile Software
Component

1 Settings used for compiling the software
component

Consumed by Integrate Software 1 Needed for linking all artifacts

Table 3.33: Build Chain Configuration

3.3.2.4 Software Component Source Code

70 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Software Component Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Source code of the core functionality of a software component
Description This deliverable contains the source code of the core functionality of a

software component. The deliverable includes documentation of the
software component.

In case the integrator is completely responsible for the compilation of
the software components and the build of the executable, the source
code will be delivered directly.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Implement Soft-

ware Component
Functionality

1 The source code of the software
component

Consumed by Compile Software
Component

1 Source code of the software component
for compilation

Consumed by Develop Main
Function

1..* Scheduling and communication of
several software components within one
executable is defined

Table 3.34: Software Component Source Code

3.3.2.5 Software Component Object Code

Deliverable Software Component Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Object code of one software component
Description Compiled software component source code. Since these software

components belong to application-level executables, their
implementation is restricted to use the standardized ara API.

Kind Object Code
Relation Type Related Element Mul. Note
Produced by Compile Software

Component
1 Object code of the software component

after compilation
Produced by Develop Adap-

tive Application
Software

1..* Compiled software components

Consumed by Build Executable
Application

0..* Software component to be linked
together to one executable

Consumed by Integrate Software 0..* Object code for application-level
executable

Table 3.35: Software Component Object Code

3.3.2.6 Serialization Configuration for Adaptive Platform

71 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Serialization Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Configuration of serialization of the data in the service interface
Description Settings necessary for the serialization of the data in the service

interfaces. For SOME/IP, this is e.g. the length of length fields that is
put in front of an array.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Configure Serial-

ization for Adaptive
Platform

1..* Serialization properties for the service
interfaces

Consumed by Generate Serial-
ization Code for
Adaptive Platform

1..* Configuration settings are the basis for
generating the serialization code.

Consumed by Implement Service
Proxies and Skele-
tons

1..* Serialization of data is needed for
implementing service proxies and
skeletons

Table 3.36: Serialization Configuration

3.3.2.7 Serialization Source Code

Artifact Serialization Source Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Serialization of data
Description Source code for serializing data with SOME/IP.
Kind Source Code
Relation Type Related Element Mul. Note
Produced by Generate Serial-

ization Code for
Adaptive Platform

1 Source code for the serialization can be
generated

Consumed by Build Executable
Application

0..1 Serialization for the executable

Table 3.37: Serialization Source Code

3.3.2.8 Implemented Service Proxies and Skeletons

Artifact Implemented Proxies and Skeletons
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Implemented service proxies and skeletons
Description Implemented source code for the service proxies and skeletons.
Kind Source Code
Relation Type Related Element Mul. Note

72 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produced by Implement Service

Proxies and Skele-
tons

1..* Implementation of service proxies and
skeletons given as source code

Consumed by Build Executable
Application

0..* Source code of service proxies and
skeletons

Table 3.38: Implemented Proxies and Skeletons

3.3.2.9 Main Function

Deliverable Main Function
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Main function of executable application
Description This artifact is the main function for one executable. It contains the

control flow of the executable including the scheduling of the software
components inside the executable.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Develop Adap-

tive Application
Software

1 One main function per executable is
produced

Produced by Develop Main
Function

1 One main function per executable

Produced by Develop Platform-
level Application
Software

1 Main function for platform-level
executable

Consumed by Build Executable
Application

1 One main function per executable

Consumed by Integrate Software 1 One main function per executable

Table 3.39: Main Function

3.3.2.10 Executable Application

Deliverable Executable Application
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Adaptive Application::Work Products
Brief Description Executable application containing several software components
Description The executable application, or just executable, can contain an arbitrary

hierarchy of software components. The software components contain
the functionality of the executable.

Several executables can be packaged into an Adaptive AUTOSAR
Application. They can be of category application-level or platform-level.

Kind Executable
Relation Type Related Element Mul. Note

73 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produced by Build Executable

Application
1 One executable is built

Produced by Integrate Software 1 Software is integrated into one
executable application

Consumed by Create Application
Manifest

1 One executable can be instantiated
several times

Consumed by Define Process 1 Executable to be instantiated
Consumed by Create Software

Cluster
0..* Executables of deployed processes

Table 3.40: Executable Application

3.4 Platform and Machine

This chapter contains the definition of work products and tasks, which are used for the
definition and configuration of a machine.

3.4.1 Tasks

3.4.1.1 Configure Network Connections of Machine

Task Definition Configure Network Connections of Machine
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Definition of all network endpoints with corresponding IP address.
Description Define all network connections of a machine and their configuration out

of contracting. All network endpoints with corresponding IP address
are specified.

Relation Type Related Element Mul. Note
Produces Machine Manifest 0..1 Configuration settings of network

connections of machine

Table 3.41: Configure Network Connections of Machine

3.4.1.2 Configure Service Discovery Message Exchange

Task Definition Configure Service Discovery Message Exchange
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Definition of ports and multicast IP addresses for service discovery

message exchange
Description Define ports and multicast IP address over which the service discovery

messages are exchanged.
Relation Type Related Element Mul. Note
Produces Machine Manifest 0..1 Configuration settings of machine for

service discovery message exchange

74 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note

Table 3.42: Configure Service Discovery Message Exchange

3.4.1.3 Define ECU Description

The reference to the performing role is given in [1].

Task Definition Define ECU Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Tasks
Brief Description Define a particular ECU’s resources.
Description Define a particular ECU’s resources by describing Hardware Elements,

pins, connections.The HW Elements are the main describing elements
of an ECU,e.g processing units, memory, peripherals, sensors and
actuators. HW Elements have a unique name and can be identified
within the ECU description. HW Elements do not necessarily have to
be described on the level of an ECU. It is possible to describe HW
Elements as parts of other HW Elements. By this means, a hierarchical
description of HW Elements can be created. HW Elements provide HW
PinGroups and HW Pins for being interconnected among each others.
HW PinGroups allow a rough description of how certain groups of
HWPins are arranged. The detailed description can be done using the
HW Pins.HW Connections are used to describe connection on several
levels:connections between HW Elements, connections between HW
PinGroups, connections between HW Pins.

Relation Type Related Element Mul. Note
Performed by System Engineer 1
Produces ECU Resources

Description
1..*

Table 3.43: Define ECU Description

3.4.1.4 Describe Available HW Resources

Task Definition Describe Available HW Resources
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Description of available hardware resources for the machine
Description Optional step for describing available hardware resources for the

machine.
Relation Type Related Element Mul. Note
Consumes ECU Resources

Description
1 Definition of available HW resources for

the machine based on the description of
the ECU

Produces Machine Manifest 0..1 Available hardware resources of machine

Table 3.44: Describe Available HW Resources

75 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.4.1.5 Define Machine States

Task Definition Define Machine States
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Define additional states of the machine
Description Define states of the machine. These states can later be used for

defining a startup configuration and execution dependencies for a
process per machine state.

Relation Type Related Element Mul. Note
Produces Machine Manifest 0..1 States defined for the machine

Table 3.45: Define Machine States

3.4.1.6 Configure OS for Adaptive Platform

Task Definition Configure OS for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Tasks
Brief Description Configuration of the platform and the platform modules
Description Configure the operating system, e.g. the resource groups and the timer

granularity can be defined.
Relation Type Related Element Mul. Note
Consumes Operating System

for Adaptive Plat-
form

1 OS to be configured

Produces Machine Manifest 0..1 Configuration settings of OS

Table 3.46: Configure OS for Adaptive Platform

3.4.2 Work Products

3.4.2.1 Middleware Library Header Files

Artifact Middleware Library Header Files
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Header files of middleware libraries
Description Header files of middleware libraries, which are needed for application

development.
Kind Source Code
Relation Type Related Element Mul. Note
Consumed by Compile Software

Component
0..* Library header files needed for compiling

the software components
Consumed by Develop Platform-

level Application
Software

0..* Library header files needed for compiling
the platform-level applications

76 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note

Table 3.47: Middleware Library Header Files

3.4.2.2 Middleware Libraries

Artifact Middleware Libraries
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Middleware libraries that are needed in order to build the executable
Description Object code of middleware libraries. These are linked together with

other object code in order to build an Executable Application.
Kind Object Code
Relation Type Related Element Mul. Note
Consumed by Build Executable

Application
0..* Libraries needed to build the executable

Table 3.48: Middleware Libraries

3.4.2.3 ECU Resources Description

The references to other tasks and work products are given in [1].

Artifact ECU Resources Description
Package AUTOSAR Root::M2::Methodology::Methodology Library::System::

Work products
Brief Description Definition of the resources available on an ECU.
Description Definition of the resources available on an ECU. It mainly contains a

description of hardware elements (like physical memory sections or
peripherals, pins, hardware connections) which need to be referred by
a software component or a basic software description. The focus is to
describe an already engineered piece of hardware, its content and
structure. It is not in the focus of the ECU Resource Description to
support the design of electronics hardware itself. In the XML it is
represented as a set of HwDescriptionEntity -s

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregated by Complete ECU

Description
1

Produced by Define ECU De-
scription

1..*

Consumed by Define and config-
ure machine

1 All resources which are available for the
ECU

Consumed by Describe Available
HW Resources

1 Definition of available HW resources for
the machine based on the description of
the ECU

Consumed by Define System
Topology

1..*

Consumed by Define BSW Inter-
faces

0..1

77 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Consumed by Define ECU

Abstraction Com-
ponent

0..1

Consumed by Extend Topology 0..1
Consumed by Generate ECU Ex-

ecutable
0..1 may be used to set up build environment

Meth.bindingTime = CompileTime
Consumed by Implement a BSW

Module
0..1 Meth.bindingTime = SystemDesignTime

Consumed by Measure Compo-
nent Resources

0..1

Consumed by Measure Re-
sources

0..1

Consumed by Define Complex
Driver Component

0..*

Consumed by Define VFB Sen-
sor or Actuator
Component

0..*

Use meta model element HwElement 1

Table 3.49: ECU Resources Description

3.4.2.4 Configured Adaptive ECU

Deliverable Configured Adaptive ECU
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Work Products
Brief Description Configured Adaptive Platform instance
Description This work product is a configured Adaptive Platform instance, i.e. a

configured machine, where software can be deployed on. The
configuration settings are based on the Machine Manifest.

Kind Custom
Relation Type Related Element Mul. Note
Produced by Set Up Machine 1 Machine is configured and software can

now be deployed
Consumed by Create Software

Cluster
0..* SW package will be deployed on one

configured adaptive ECU

Table 3.50: Configured Adaptive ECU

3.4.2.5 Machine Manifest

78 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Machine Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Machine Configuration::Work Products
Brief Description Configuration of the machine
Description Description of deployment content for the configuration of the machine,

independent of any service instances or applications.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define and config-

ure machine
1 The machine manifest describes all the

configuration settings for one machine
Produced by Configure Network

Connections of
Machine

0..1 Configuration settings of network
connections of machine

Produced by Configure OS for
Adaptive Platform

0..1 Configuration settings of OS

Produced by Configure Service
Discovery Mes-
sage Exchange

0..1 Configuration settings of machine for
service discovery message exchange

Produced by Define Machine S-
tates

0..1 States defined for the machine

Produced by Describe Available
HW Resources

0..1 Available hardware resources of machine

Consumed by Create Application
Manifest

1 Instantiation is defined on one specific
machine

Consumed by Define Execution
Dependencies

1 Execution dependencies are defined per
machine mode.

Consumed by Define Startup
Configuration

1 Startup configuration is defined per
machine mode given in the Machine
Manifest

Consumed by Define and Con-
figure Service In-
stances

1 Service instances will be mapped to
machine

Consumed by Map Service In-
stance to Machine

1 Description of machine that the service
instances shall be mapped to

Consumed by Set Up Machine 1 Containing all configuration settings for
the machine

Table 3.51: Machine Manifest

3.4.2.6 Platform Object Code

79 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Platform Object Code
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Object code of platform-level software
Description This is the object code of platform modules. It might be based on

standardized service interfaces, as e.g. for the Adaptive Diagnostic
Manager, where part of the platform module has been implemented in
terms of a software component. Alternatively, the implementation is not
based on software components and hence pure platform object code
(as e.g. Execution Management). A main function is needed in order to
build the executable application.

Kind Object Code
Relation Type Related Element Mul. Note
Produced by Develop Platform-

level Application
Software

1..* Object code of platform module

Consumed by Build Executable
Application

0..* Platform modules to be linked together to
one executable

Consumed by Integrate Software 0..* Object code for platform-level executable

Table 3.52: Platform Object Code

3.4.2.7 Operating System for Adaptive Platform

Deliverable Operating System for Adaptive Platform
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Platform::Work Products
Brief Description Operating System for the Adaptive Platform
Description The operating system for the Adaptive Platform is a platform module,

which does not have an Application Manifest and therefore does not
follow the workflow of platform-level applications. The OS is the basis
for configuring and setting up the machine.

Kind Source Code
Relation Type Related Element Mul. Note
Produced by Select OS Distribu-

tion
1 Selected OS distribution

Consumed by Configure OS for
Adaptive Platform

1 OS to be configured

Consumed by Define and config-
ure machine

1 OS to be configured

Consumed by Set Up Machine 1 OS to be installed on machine

Table 3.53: Operating System for Adaptive Platform

3.5 Application Manifest

This chapter contains the definition of work products and tasks, which are used for
creating the application manifest.

80 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.5.1 Tasks

3.5.1.1 Define Process

Task Definition Define Process
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Tasks
Brief Description Define a process as an instantiation of an executable
Description Define the instantiation of executables. An executable can be

instantiated several times (e.g. with different startup parameters)
resulting in different processes.

Relation Type Related Element Mul. Note
Consumes Executable Appli-

cation
1 Executable to be instantiated

Produces Process 1..* Different instantiation of executables can
result in different processes.

Table 3.54: Define Process

3.5.1.2 Define Startup Configuration

Task Definition Define Startup Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Tasks
Brief Description Define the startup configuration for one process
Description Define the startup configuration for one process per machine mode.
Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Startup configuration is defined per

machine mode given in the Machine
Manifest

Consumes Process 1 Startup configuration to be defined for
process

Produces Mode-dependent
Startup Configura-
tion

1..* Startup configuration of a process for
each mode

Table 3.55: Define Startup Configuration

3.5.1.3 Define Execution Dependencies

81 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Define Execution Dependencies
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Tasks
Brief Description Define execution dependencies to other processes
Description Define the execution dependencies for one process to other processes

per machine mode. Referencing other processes means that they shall
be launched before this process is started.

Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Execution dependencies are defined per

machine mode.
Consumes Process 1 Execution dependencies defined for one

process
Produces Mode-dependent

Startup Configura-
tion

1..* Execution dependencies of a process for
each mode

Table 3.56: Define Execution Dependencies

3.5.2 Work Products

3.5.2.1 Application Manifest

Application Manifest

Mode-dependent
Startup Configuration

Process

 «nesting» «nesting»

Figure 3.1: Structure of Deliverable Application Manifest

Deliverable Application Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Work Products
Brief Description Definition of a process and all its properties
Description The application manifest defines the process with all its properties. It is

defined for a specific machine by referencing its modes in the startup
configuration. One application manifest is defined per process.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Aggregates Mode-dependent

Startup Configura-
tion

1 For each process the startup
configuration can be defined in the
Application Manifest

82 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Aggregates Process 1 The process is defined via the

Application Manifest
Produced by Create Application

Manifest
1..* One application manifest per instantiated

executable
Consumed by Create Software

Cluster
0..* Several processes can be deployed

Table 3.57: Application Manifest

3.5.2.2 Process

Artifact Process
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Work Products
Brief Description Instantiation of an executable
Description The process is the top-level element of the Application Manifest and

references an executable. It is the unit of deployment on the AUTOSAR
adaptive platform and refers to a POSIX process.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Process 1..* Different instantiation of executables can

result in different processes.
Consumed by Define Execution

Dependencies
1 Execution dependencies defined for one

process
Consumed by Define Startup

Configuration
1 Startup configuration to be defined for

process

Table 3.58: Process

3.5.2.3 Mode-dependent Startup Configuration

Artifact Mode-dependent Startup Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Application Manifest::Work Products
Brief Description Startup configuration of a process
Description Startup configuration for one process and depending on the machine

mode.
Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define Execution

Dependencies
1..* Execution dependencies of a process for

each mode
Produced by Define Startup

Configuration
1..* Startup configuration of a process for

each mode

Table 3.59: Mode-dependent Startup Configuration

83 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

3.6 Service Instance

This chapter contains the definition of work products and tasks necessary for instanti-
ating the services.

3.6.1 Tasks

3.6.1.1 Configure Service Interface Deployment

Task Definition Configure Service Interface Deployment
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Configure the binding of a Service Interface to a transport layer
Description Define the transport layer (e.g. SOME/IP or User Defined) and

configure the binding of a service interface to this transport layer. For
all elements of the service interface, i.e., events, methods and fields,
the deployment is configured.

For SOME/IP, an identifier for the service interface is defined. This ID
needs to be uniquely defined system-wide and is send as service ID in
SOME/IP service discovery messages. In addition, message IDs and
SOME/IP event groups for a logical grouping of events are defined.
The IDs for messages and event groups need to be uniquely defined in
the context of the enclosing SomeipServiceInterface.

The User Defined service interface deployment can e.g. be used
machine local IPC communication.

The responsibility of the configuration of service interface deployment
lies with the system responsible.

Relation Type Related Element Mul. Note
Consumes Service Interface

Description
1 Deployment is configured for each

service interface
Produces Service Inter-

face Deployment
Configuration

1 Configuration of binding of a service
interface to a transport layer

Table 3.60: Configure Service Interface Deployment

3.6.1.2 Define and Configure Service Instance

84 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Define and Configure Service Instance
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define the service instances and configure their search or offer criteria
Description Define service instances. A service interface can be instantiated

several times for different purposes resulting in several service
instances. There can be provided service instances (server) if the
functionality of a service interface is provided, and there can be
required service instances (client) in case a service is required.

Configure search criteria for required service instances and offer
criteria for provided service instances. For search criteria in SOME/IP,
the required service instance IDs and required service interface
version needs to be defined. Also, required event groups can be
specified. For offer criteria in SOME/IP, the provided service instance
IDs need to defined. The instance IDs need to be defined system-wide.

The responsibility of the configuration of service instances has the
integrator.

Relation Type Related Element Mul. Note
Consumes Service Inter-

face Deployment
Configuration

1 Instances of service interfaces to be
defined

Produces Service Instance
Configuration

1..* Service instances and their configuration
defined

Table 3.61: Define and Configure Service Instance

3.6.1.3 Define SOME/IP timing

Task Definition Define SOME/IP Timing
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define the timing for SOME/IP for the server and the client
Description Define SOME/IP timing for the server

(SomeipSdServerServiceInstanceConfig,
SomeipSdServerEventTimingConfig) and the client
(SomeipSdClientServiceInstanceConfig,
SomeipSdClientEventGroupTimingConfig). This task is optional and
only necessary if communication via SOME/IP is used.

Relation Type Related Element Mul. Note
Consumes Service Instance

Configuration
1 Timing for service instances to be

defined
Produces Service Instance

Manifest
1 Timing for service instances contributes

to Service Instance Manifest

Table 3.62: Define SOME/IP Timing

3.6.1.4 Map Service Instance to Port Prototype

85 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Task Definition Map Service Instance to Port Prototype
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define mapping of service instance to a port prototype
Description Map service instance to a software component port using the

ServiceInstanceToPortPrototypeMapping. This mapping is needed in
order to ensure a unique relationship between all local service
instances within the application (represented by software component
ports) and the service instances on the network (e.g. SOME/IP service
instances).

Relation Type Related Element Mul. Note
Consumes Service Instance

Configuration
1 Service instances to be mapped to port

prototypes
Consumes Software Compo-

nent Description
for Adaptive Plat-
form

1 In case the service instances are
mapped to ports of a software
component

Produces Service Instance
Manifest

1 Mapping contributes to Service Instance
Manifest

Table 3.63: Map Service Instance to Port Prototype

3.6.1.5 Map Service Instance to Machine

Task Definition Map Service Instance to Machine
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Tasks
Brief Description Define mapping of service instance to machine
Description Map service instance to a machine via a communication connector

using the ServiceInstanceToMachineMapping. This allows to configure
the communication without any assumptions on the applications. For
SOME/IP, IP and TP configuration for the client and the server are
defined.

Relation Type Related Element Mul. Note
Consumes Machine Manifest 1 Description of machine that the service

instances shall be mapped to
Consumes Service Instance

Configuration
1 Service instances to be mapped to

machine
Produces Service Instance

Manifest
1 Mapping contributes to Service Instance

Manifest

Table 3.64: Map Service Instance to Machine

3.6.2 Work Products

3.6.2.1 Service Interface Deployment Configuration

86 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Service Interface Deployment Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Deployment configuration for a service interface
Description Description of deployment configuration with respect to a transport

layer for a service interface. For SOME/IP, service interface ID,
message IDs and event groups are defined.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Configure Ser-

vice Interface
Deployment

1 Configuration of binding of a service
interface to a transport layer

Consumed by Define and Con-
figure Service In-
stance

1 Instances of service interfaces to be
defined

Table 3.65: Service Interface Deployment Configuration

3.6.2.2 Service Instance Configuration

Artifact Service Instance Configuration
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Definition and configuration of the service instances
Description Required as well as provided service instances are defined and

configured. For the configuration, the search criteria for required
service instances and offer criteria for provided service instances are
specified.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define and Con-

figure Service In-
stance

1..* Service instances and their configuration
defined

Consumed by Define SOME/IP
Timing

1 Timing for service instances to be
defined

Consumed by Map Service In-
stance to Machine

1 Service instances to be mapped to
machine

Consumed by Map Service In-
stance to Port Pro-
totype

1 Service instances to be mapped to port
prototypes

Table 3.66: Service Instance Configuration

3.6.2.3 Service Instance Manifest

87 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Deliverable Service Instance Manifest
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Service Instance Manifest::Work Products
Brief Description Definition and configuration of a service instance
Description Definition of a service instance with its configuration for the service

discovery. The mapping of the service instances to the machine is
defined. Optionally, the mapping of service instances to the software
component ports is specified.

Kind AUTOSAR XML
Relation Type Related Element Mul. Note
Produced by Define SOME/IP

Timing
1 Timing for service instances contributes

to Service Instance Manifest
Produced by Map Service In-

stance to Machine
1 Mapping contributes to Service Instance

Manifest
Produced by Map Service In-

stance to Port Pro-
totype

1 Mapping contributes to Service Instance
Manifest

Produced by Define and Con-
figure Service In-
stances

1..* Contains all configuration settings for the
service instance on a specific machine

Consumed by Create Software
Cluster

0..* Several service instances can be
deployed

Table 3.67: Service Instance Manifest

3.7 Deployment

This chapter contains the definition of work products and tasks necessary for deploying
the Software Package.

3.7.1 Work Products

3.7.1.1 SoftwareCluster

Deliverable SoftwareCluster
Package AUTOSAR Root::M2::Methodology::Methodology Library::Adaptive

Platform::Deployment::Work Products
Brief Description Atomic container to deploy software artifacts to a machine
Description A SoftwareCluster is a container and the "atomic" entity for deployment

as well as for automotive diagnosis. In this respect, SoftwareClusters
are identifiable by a unique number.

The SoftwareCluster may be empty in extreme cases. For its main use-
cases, however, a SoftwareCluster may contain
AdaptiveAutosarApplication(s), Application Manifest(s), Service
Instance Manifest(s), theMachine Manifest and other artifacts.

Kind Custom
Relation Type Related Element Mul. Note

88 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Relation Type Related Element Mul. Note
Produced by Create Software

Cluster
1 SoftwareCluster as atomic entity for

deployment defined
Consumed by Deploy Software

Cluster
1 Deploy software on machine by means of

SoftwareCluster

Table 3.68: SoftwareCluster

89 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

A Change History

A.1 Change History for AP 17-10

A.1.1 Added Specification Items in AP 17-10

Number Heading
[TR_AMETH_00200] Domains of development utilized for the methodology of the AUTOSAR Adap-

tive Platform
[TR_AMETH_00201] Develop a Function Architecture
[TR_AMETH_00202] Develop a Common Software Architecture
[TR_AMETH_00203] Provide views of subsystems
[TR_AMETH_00204] Develop the System
[TR_AMETH_00205] Integrate Software to form AdaptiveAutosarApplications
[TR_AMETH_00206] Create SoftwareCluster
[TR_AMETH_00207] Design communication between Classic Platform ECUs and Adaptive Platform

machines
[TR_AMETH_00208] Map a single ServiceInterface to PortInterface elements
[TR_AMETH_00209] Define a signal-based ServiceInterface
[TR_AMETH_00210] Map signals to services

Table A.1: Added specification items in AP 17-10

A.1.2 Changed Specification Items in AP 17-10

Number Heading
[TR_AMETH_00100] Scope of the Methodology for the Adaptive Platform
[TR_AMETH_00101] Definition of tasks, work products and use cases
[TR_AMETH_00102] Types of work products
[TR_AMETH_00001] Description of the services in a system
[TR_AMETH_00002] Development of the software
[TR_AMETH_00006] Deployment of the application software
[TR_AMETH_00032] Deploying the Software Package
[TR_AMETH_00033] Mapping of Service Instances to Port Prototypes

Table A.2: Changed specification items in AP 17-10

A.1.3 Deleted Specification Items in AP 17-10

Number Heading
[TR_AMETH_00030] Machine-driven and model-driven approach

Table A.3: Deleted specification items in AP 17-10

A.2 Change History for AP 17-03

A.2.1 Added Specification Items in AP 17-03

90 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

Methodology for Adaptive Platform
AUTOSAR AP Release 17-10

Number Heading
[TR_AMETH_00100] Scope of the Methodology for the Adaptive Platform
[TR_AMETH_00101] Definition of tasks, work products and use cases
[TR_AMETH_00102] Types of work products
[TR_AMETH_00001] Description of the services in a system
[TR_AMETH_00002] Development of the software
[TR_AMETH_00003] Configuration of the machine
[TR_AMETH_00004] Creation of the Application Manifest
[TR_AMETH_00005] Configuration of the service instances
[TR_AMETH_00006] Deployment of the application software
[TR_AMETH_00007] Definition of data types for the Adaptive Platform
[TR_AMETH_00008] Definition of service interfaces for the Adaptive Platform
[TR_AMETH_00009] Aggregating service interfaces for reducing the bus load
[TR_AMETH_00010] Application-level Software
[TR_AMETH_00011] Design of the software components
[TR_AMETH_00012] Generation of the header files for service interface
[TR_AMETH_00013] Implementation and compilation of software components
[TR_AMETH_00014] Development with knowledge of the Build Chain Configuration
[TR_AMETH_00015] Development without knowledge of the Build Chain Configuration
[TR_AMETH_00016] Development of serialization properties
[TR_AMETH_00017] Implementation of service proxies and skeletons
[TR_AMETH_00018] Building the Executable Application
[TR_AMETH_00019] Description of the Adaptive Platform
[TR_AMETH_00020] Development of Platform Software
[TR_AMETH_00021] Configuration of network communication for machine
[TR_AMETH_00022] Definition of machine states and resources
[TR_AMETH_00023] Configuration of the operating system
[TR_AMETH_00024] Instantiation of Executable Application
[TR_AMETH_00025] Defintion of startup behavior of a process
[TR_AMETH_00026] Defintion of Application Manifest
[TR_AMETH_00027] Configuration of Service Interface Deployment
[TR_AMETH_00028] Configuration of Service Instances
[TR_AMETH_00029] Deployment of Service Instances
[TR_AMETH_00030] Machine-driven and model-driven approach
[TR_AMETH_00031] Setting up the machine
[TR_AMETH_00032] Deploying the Software Package
[TR_AMETH_00033] Mapping of Service Instances to Application Endpoints
[TR_AMETH_00034] Selecting the Operating System for Adaptive Platform
[TR_AMETH_00035] Platform-level Software

Table A.4: Added specification items in AP 17-03

A.2.2 Changed Specification Items in AP 17-03

N/A

A.2.3 Deleted Specification Items in AP 17-03

N/A

91 of 91
— AUTOSAR CONFIDENTIAL —

Document ID 709: AUTOSAR_TR_AdaptiveMethodology

	1 Introduction
	1.1 Objective and Scope
	1.2 Document Outline
	1.3 Document Conventions
	1.4 Methodology Concepts
	1.5 Requirements Traceability

	2 Use Cases for the Adaptive Platform
	2.1 Overall View
	2.1.1 Purpose
	2.1.2 Description
	2.1.2.1 Domains of Development
	2.1.2.2 Fundamental Activities
	2.1.2.3 Workflow

	2.2 Architecture and Design
	2.2.1 Develop a Service Interface Description
	2.2.1.1 Purpose
	2.2.1.2 Description
	2.2.1.3 Workflow

	2.2.2 Design communication between Classic Platform and Adaptive Platform
	2.2.2.1 Design service oriented communication between Classic Platform and Adaptive Platform
	2.2.2.2 Design signal oriented communication between Classic Platform and Adaptive Platform

	2.3 Software Development
	2.3.1 Develop Adaptive Application Software
	2.3.1.1 Purpose
	2.3.1.2 Description
	2.3.1.3 Workflow

	2.3.2 Develop Platform-level Application Software
	2.3.2.1 Purpose
	2.3.2.2 Description
	2.3.2.3 Workflow

	2.4 Integration and Deployment
	2.4.1 Integrate Software
	2.4.1.1 Purpose
	2.4.1.2 Description
	2.4.1.3 Workflow

	2.4.2 Define and Configure Machine
	2.4.2.1 Describe Platform
	2.4.2.2 Configure Machine

	2.4.3 Create Application Manifest
	2.4.3.1 Purpose
	2.4.3.2 Description
	2.4.3.3 Workflow

	2.4.4 Define and Configure Service Instances
	2.4.4.1 Purpose
	2.4.4.2 Description
	2.4.4.3 Workflow

	2.4.5 Set up the Machine
	2.4.5.1 Purpose
	2.4.5.2 Description
	2.4.5.3 Workflow

	2.4.6 Create SoftwareCluster
	2.4.6.1 Purpose
	2.4.6.2 Description
	2.4.6.3 Workflow

	2.4.7 Deploy Software
	2.4.7.1 Purpose
	2.4.7.2 Description
	2.4.7.3 Workflow

	3 Adaptive Methodology Library
	3.1 Service Interface
	3.1.1 Tasks
	3.1.1.1 Provide Data Types for Adaptive Platform
	3.1.1.2 Define Service Interfaces
	3.1.1.3 Aggregate Service Interfaces

	3.1.2 Work Products
	3.1.2.1 AUTOSAR AP Standard Package
	3.1.2.2 AP Data Types
	3.1.2.3 Service Interface Description
	3.1.2.4 Service Interface Mapping

	3.2 Communication Mapping
	3.2.1 Tasks
	3.2.1.1 Map Method
	3.2.1.2 Map Event
	3.2.1.3 Map Field
	3.2.1.4 Map Fire and Forget
	3.2.1.5 Map SignalBasedMethod to ISignalTriggerings
	3.2.1.6 Map SignalBasedEvent to ISignalTriggerings
	3.2.1.7 Map SignalBasedField to ISignalTriggerings
	3.2.1.8 Map ServiceInstance to PortPrototype

	3.2.2 Work Products
	3.2.2.1 Client Server Interface Description
	3.2.2.2 Sender Receiver Interface Description
	3.2.2.3 Trigger Interface Description
	3.2.2.4 Service Interface Mapping for Service Oriented Communication
	3.2.2.5 System Description
	3.2.2.6 Signal to Service Mapping

	3.3 Adaptive Application
	3.3.1 Tasks
	3.3.1.1 Generate Header Files for Service Interfaces
	3.3.1.2 Design Software Component for Adaptive Platform
	3.3.1.3 Implement Software Component Functionality
	3.3.1.4 Compile Software Component
	3.3.1.5 Develop Main Function
	3.3.1.6 Configure Serialization for Adaptive Platform
	3.3.1.7 Generate Serialization Code for Adaptive Platform
	3.3.1.8 Implement Service Proxies and Skeletons
	3.3.1.9 Build Executable Application

	3.3.2 Work Products
	3.3.2.1 Header Files for Service Interfaces
	3.3.2.2 Software Component Description for Adaptive Platform
	3.3.2.3 Build Chain Configuration
	3.3.2.4 Software Component Source Code
	3.3.2.5 Software Component Object Code
	3.3.2.6 Serialization Configuration for Adaptive Platform
	3.3.2.7 Serialization Source Code
	3.3.2.8 Implemented Service Proxies and Skeletons
	3.3.2.9 Main Function
	3.3.2.10 Executable Application

	3.4 Platform and Machine
	3.4.1 Tasks
	3.4.1.1 Configure Network Connections of Machine
	3.4.1.2 Configure Service Discovery Message Exchange
	3.4.1.3 Define ECU Description
	3.4.1.4 Describe Available HW Resources
	3.4.1.5 Define Machine States
	3.4.1.6 Configure OS for Adaptive Platform

	3.4.2 Work Products
	3.4.2.1 Middleware Library Header Files
	3.4.2.2 Middleware Libraries
	3.4.2.3 ECU Resources Description
	3.4.2.4 Configured Adaptive ECU
	3.4.2.5 Machine Manifest
	3.4.2.6 Platform Object Code
	3.4.2.7 Operating System for Adaptive Platform

	3.5 Application Manifest
	3.5.1 Tasks
	3.5.1.1 Define Process
	3.5.1.2 Define Startup Configuration
	3.5.1.3 Define Execution Dependencies

	3.5.2 Work Products
	3.5.2.1 Application Manifest
	3.5.2.2 Process
	3.5.2.3 Mode-dependent Startup Configuration

	3.6 Service Instance
	3.6.1 Tasks
	3.6.1.1 Configure Service Interface Deployment
	3.6.1.2 Define and Configure Service Instance
	3.6.1.3 Define SOME/IP timing
	3.6.1.4 Map Service Instance to Port Prototype
	3.6.1.5 Map Service Instance to Machine

	3.6.2 Work Products
	3.6.2.1 Service Interface Deployment Configuration
	3.6.2.2 Service Instance Configuration
	3.6.2.3 Service Instance Manifest

	3.7 Deployment
	3.7.1 Work Products
	3.7.1.1 SoftwareCluster

	A Change History
	A.1 Change History for AP 17-10
	A.1.1 Added Specification Items in AP 17-10
	A.1.2 Changed Specification Items in AP 17-10
	A.1.3 Deleted Specification Items in AP 17-10

	A.2 Change History for AP 17-03
	A.2.1 Added Specification Items in AP 17-03
	A.2.2 Changed Specification Items in AP 17-03
	A.2.3 Deleted Specification Items in AP 17-03

