
Specification of Execution Management
AUTOSAR AP Release 17-10

Document Title Specification of Execution
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 721

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-10

Document Change History
Date Release Changed by Description

2017-10-27 17-10
AUTOSAR
Release
Management

• State Management elaboration,
introduction of Function Groups
• Recovery actions for Platform Health

Management
• Resource limitation and deterministic

execution

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Table of Contents

1 Introduction and functional overview 6

1.1 What is Execution Management? . 6
1.2 Interaction with AUTOSAR Runtime for Adaptive 6

2 Acronyms and abbreviations 7

3 Related documentation 8

3.1 Input documents . 8
3.2 Related standards and norms . 8
3.3 Related specification . 8

4 Constraints and assumptions 9

4.1 Known limitations . 9
4.2 Applicability to car domains . 9

5 Dependencies to other modules 10

5.1 Platform dependencies . 10
5.2 Other dependencies . 10

6 Requirements tracing 11

7 Functional specification 13

7.1 Technical Overview . 13
7.1.1 Application . 13
7.1.2 Adaptive Application . 13
7.1.3 Executable . 14
7.1.4 Process . 15
7.1.5 Application Manifest . 16
7.1.6 Machine Manifest . 16
7.1.7 Manifest format . 16

7.2 Execution Management Responsibilities 17
7.3 Platform Lifecycle Management . 17
7.4 Application Lifecycle Management . 18

7.4.1 Process States . 18
7.4.2 Startup and shutdown . 19
7.4.3 Startup sequence . 20

7.4.3.1 Application dependency 21
7.5 State Management . 24

7.5.1 Overview . 24
7.5.2 Application State . 24
7.5.3 Machine State . 25

7.5.3.1 Startup . 26
7.5.3.2 Shutdown . 26
7.5.3.3 Restart . 27

7.5.4 Function Group State . 28

3 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.5.5 State Management Architecture 31
7.5.5.1 State Manager . 31
7.5.5.2 State Interaction . 34

7.5.6 State Change . 35
7.6 Application Recovery Actions . 39

7.6.1 Overview . 39
7.6.2 Recovery Actions Interfaces 39
7.6.3 Integrated in the Execution Management 40

7.7 Resources and Deterministic Execution 40
7.7.1 Introduction . 41

7.7.1.1 Resource Configuration 41
7.7.1.2 Resource Monitoring 42
7.7.1.3 Deterministic Execution 43

7.7.2 Resource configuration and monitoring 46
7.7.2.1 CPU usage . 46
7.7.2.2 Memory Budget and Monitoring 47

7.8 Deterministic Redundant Execution . 49
7.8.1 Redundant Execution Overview 49
7.8.2 Redundant Execution Example 51
7.8.3 Redundant Execution Details 52

7.9 Handling of Application Manifest . 56
7.9.1 Overview . 56
7.9.2 Application Dependency . 56
7.9.3 Application Arguments . 56
7.9.4 Machine State and Function Group State 57
7.9.5 Scheduling Policy . 57
7.9.6 Scheduling Priority . 58
7.9.7 Application Binary Name . 58

8 API specification 59

8.1 Type definitions . 59
8.1.1 ApplicationState . 59
8.1.2 ApplicationReturnType . 59
8.1.3 StateReturnType . 59
8.1.4 RecoveryActionReturnType 60
8.1.5 ResetCause . 60

8.2 Class definitions . 61
8.2.1 ApplicationClient class . 61

8.2.1.1 ApplicationClient::ApplicationClient 61
8.2.1.2 ApplicationClient::~ApplicationClient 62
8.2.1.3 ApplicationClient::ReportApplicationState 62
8.2.1.4 ApplicationClient::SetLastResetCause 62
8.2.1.5 ApplicationClient::GetLastResetCause 63

8.2.2 StateClient class . 63
8.2.2.1 StateClient::StateClient 64
8.2.2.2 StateClient::~StateClient 64

4 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

8.2.2.3 StateClient::GetState 65
8.2.2.4 StateClient::SetState 66

8.2.3 RecoveryActionClient class 68
8.2.3.1 RecoveryActionClient::RecoveryActionClient 68
8.2.3.2 RecoveryActionClient::~RecoveryActionClient 68
8.2.3.3 RecoveryActionClient::RestartProcess 69
8.2.3.4 RecoveryActionClient::OverrideState 69

9 Service Interfaces 70

9.1 Service Type definitions . 70
9.1.1 State_StatusType . 70

9.2 State Management Interface . 70
9.2.1 Methods . 70
9.2.2 Events . 71

A Not applicable requirements 72

B Mentioned Class Tables 72

5 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

1 Introduction and functional overview

This document is the software specification of the Execution Management function-
al cluster within the Adaptive Platform.

Execution Management is responsible for all aspects of system execution manage-
ment including platform initialization and startup / shutdown of Applications. Ex-
ecution Management works in conjunction with the Operating System to perform
run-time scheduling of Applications. This document describes how these concepts
are realized within the Adaptive Platform. Furthermore, the Application Program-
ming Interface (API) of the Execution Management is specified.

1.1 What is Execution Management?

Execution Management is responsible for the startup and shutdown of Applica-
tions based on Manifest information. The usage of Execution Management is
limited to the Adaptive Platform, however the latter is usually not exclusively used
within a single AUTOSAR System. The vehicle is also equipped with a number of E-
CUs developed on the AUTOSAR Classic Platform and the system design for the entire
vehicle will therefore have to cover both ECUs built using that as well as the Adaptive
Platform.

1.2 Interaction with AUTOSAR Runtime for Adaptive

The Execution Management is a functional cluster contained in the Adaptive
Platform Foundation. The set of programming interfaces to the Adaptive Ap-
plications is called ARA.

Execution Management, in common with other Applications is assumed to be a
process executed on a POSIX compliant operating system. Execution Management
is responsible for initiating execution of the processes in all the Functional Clusters,
Adaptive AUTOSAR Services, and Adaptive Applications. The launching order
must be given to the Execution Management according to the specification defined
in this document to ensure proper startup of the system.

The Adaptive AUTOSAR Services are provided via the Communication Managemen-
t functional cluster of the Adaptive Platform Foundation. In order to use the
Adaptive AUTOSAR Services, the functional clusters in the Foundation must be prop-
erly initialized beforehand. Refer to the respective specifications regarding more infor-
mation on the Communication Management.

6 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

2 Acronyms and abbreviations

All technical terms used throughout this document – except the ones listed here – can
be found in the official [1, AUTOSAR glossary] or [2, TPS Manifest Specification].

Term Description

Process A process is a loaded instance of an Executable to be executed
on a Machine.

Application Dependency Dependencies between Executable instances can be config-
ured to define a sequence for starting and terminating them.

Execution Management
The element of the Adaptive Platform responsible for the
ordered startup and shutdown of the Adaptive Platform and
the Applications.

State Manager

The element of the Execution Management defining modes of
operation for Adaptive Platform. It allows flexible definition
of functions which are active on the platform at any given time.
Architecture and functionality of State Management are still under
dicussion. A consolidated description will follow in a later release.

Machine State

The element of the State Management which characterize the
current status of the machine. It defines a set of active Appli-
cations for any certain situation. The set of Machine States
is machine specific and it will be deployed in the Machine Man-
ifest. Machine States are mainly used to control machine
lifecycle (startup/shut-down/restart) and platform-level process-
es.

Function Group State

The element of the State Management which characterize the
current status of functionally coherent user-level Applications.
The set of Function Groups and their Function Group S-
tates is machine specific and it will be deployed in the Machine
Manifest.

Time Determinism The results of a calculation are guaranteed to be available before
a given deadline.

Data Determinism The results of a calculation only depend on the input data and
are reproducible, assuming a given initial internal state.

Full Determinism Combination of Time and Data Determinism.

Table 2.1: Technical Terms

7 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

3 Related documentation

3.1 Input documents

The main documents that serve as input for the specification of the Execution Man-
agement are:

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[3] Requirements on Operating System Interface
AUTOSAR_RS_OperatingSystemInterface

[4] Requirements on Execution Management
AUTOSAR_RS_ExecutionManagement

[5] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[6] Standard for Information Technology–Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7
http://pubs.opengroup.org/onlinepubs/9699919799/

3.2 Related standards and norms

See chapter 3.1.

3.3 Related specification

See chapter 3.1.

8 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

http://pubs.opengroup.org/onlinepubs/9699919799/

Specification of Execution Management
AUTOSAR AP Release 17-10

4 Constraints and assumptions

4.1 Known limitations

This chapter lists known limitations of Execution Management and their relation to
this release of the Adaptive Platform. The intent is to not only provide a specifi-
cation of the current state of Execution Management but also an indication how the
Adaptive Platform will evolve future releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

• Appendix A details requirements from Execution Management Requiremen-
t Specification that are not elaborated within this specification. The presence
of these requirements in this document ensures that the requirement tracing is
complete and also provides an indication of how Execution Management will
evolve in future releases of the Adaptive Platform.

• Resource limitation and deterministic execution will be expanded with more prop-
erties and formal requirements (see 7.7 and 7.8).

• ECU/VM reset needs more clarification.

• Error handling and timeout is not finished and will be expanded.

The functionality described above is subject to modification and will be considered for
inclusion in a future release of this document.

4.2 Applicability to car domains

No restrictions to applicability.

9 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

5 Dependencies to other modules

5.1 Platform dependencies

Operating System Interface

The Execution Management functional cluster is dependent on the Operating Sys-
tem Interface [3]. The OSI is used by Execution Management to control specific
aspects of Application execution. E.g. to set scheduling parameters or to execute
an Application.

5.2 Other dependencies

Currently, there are no other library dependencies.

10 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

6 Requirements tracing

The following tables reference the requirements specified in [4] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_EM_00002] The Execution Management

shall set-up one process for the
execution of each Executable
instance

[SWS_EM_01014] [SWS_EM_01015]
[SWS_EM_01039] [SWS_EM_01040]
[SWS_EM_01041] [SWS_EM_01042]
[SWS_EM_01043]

[RS_EM_00003] The Execution Management
shall support the checking of the
integrity of Executables at
startup of Executable.

[SWS_EM_NA]

[RS_EM_00004] The Execution Management
shall support the authentication
and authorization of Executables
at startup of Executable

[SWS_EM_NA]

[RS_EM_00005] The Execution Management
shall support the configuration of
OS resource budgets for
Executable and groups of
Executables

[SWS_EM_NA]

[RS_EM_00006] The Execution Management
shall support the supervision of
available and required OS
resource budgets for
Executables and groups of
Executables during installation

[SWS_EM_NA]

[RS_EM_00007] The Execution Management
shall support allocation of
dedicated resources for the
Executable (e.g GPU)

[SWS_EM_NA]

[RS_EM_00008] The Execution Management
shall support the binding of
Executable threads to a
specified set of processor cores.

[SWS_EM_01201]

[RS_EM_00009] Only Execution Management
shall start Executables

[SWS_EM_01030]

[RS_EM_00010] The Execution Management
shall support multiple instances
of Executables

[SWS_EM_01012] [SWS_EM_01033]

[RS_EM_00011] Execution Managemen shall
support self-initiated graceful
shutdown of Executable
instances

[SWS_EM_01005]

[RS_EM_00012] Application Manifes shall
support unique identification of
Executable instances

[SWS_EM_01017] [SWS_EM_01050]

[RS_EM_00013] Execution Management shall
support configurable recovery
actions

[SWS_EM_01016] [SWS_EM_01018]
[SWS_EM_01061] [SWS_EM_01062]

11 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Requirement Description Satisfied by
[RS_EM_00050] The Execution Managemen shall

do a system-wide coordination
of activities

[SWS_EM_NA]

[RS_EM_00051] The Execution Management
shall provide functions to the
Executable for configuring
external trigger conditions for its
activities

[SWS_EM_NA]

[RS_EM_00052] The Execution Management
shall provide functions to the
Executable for configuring cyclic
triggering of its activities

[SWS_EM_NA]

[RS_EM_00053] The Execution Management
shall provide functions to
support redundant execution of
Executables

[SWS_EM_NA]

[RS_EM_00100] The Execution Management
shall support the ordered startup
and shutdown of Executables

[SWS_EM_01000] [SWS_EM_01001]
[SWS_EM_01050] [SWS_EM_01051]

[RS_EM_00101] The Execution Management
shall provide State Management
functionality

[SWS_EM_01013] [SWS_EM_01023]
[SWS_EM_01024] [SWS_EM_01025]
[SWS_EM_01026] [SWS_EM_01028]
[SWS_EM_01032] [SWS_EM_01034]
[SWS_EM_01035] [SWS_EM_01036]
[SWS_EM_01037] [SWS_EM_01056]
[SWS_EM_01058] [SWS_EM_01059]
[SWS_EM_01060] [SWS_EM_01107]
[SWS_EM_01108] [SWS_EM_01109]
[SWS_EM_01110] [SWS_EM_01111]
[SWS_EM_01112] [SWS_EM_02005]
[SWS_EM_02006] [SWS_EM_02007]
[SWS_EM_02008] [SWS_EM_02031]
[SWS_EM_02044] [SWS_EM_02047]
[SWS_EM_02048] [SWS_EM_02049]
[SWS_EM_02050] [SWS_EM_02051]
[SWS_EM_02054] [SWS_EM_02055]
[SWS_EM_02056] [SWS_EM_02057]
[SWS_EM_02070] [SWS_EM_02072]
[SWS_EM_02073] [SWS_EM_02074]
[SWS_EM_02075]

[RS_EM_00103] Execution Management shall
support application lifecycle
management

[SWS_EM_01002] [SWS_EM_01003]
[SWS_EM_01004] [SWS_EM_01005]
[SWS_EM_01006] [SWS_EM_01053]
[SWS_EM_01055] [SWS_EM_02000]
[SWS_EM_02001] [SWS_EM_02002]
[SWS_EM_02003] [SWS_EM_02030]
[SWS_EM_02031] [SWS_EM_02071]

[RS_EM_00110] Execution Management shall
support diagnostic reset cause

[SWS_EM_02041] [SWS_EM_02042]
[SWS_EM_02043]

12 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7 Functional specification

7.1 Technical Overview

This chapter presents a short summary of the relationship between Application,
Executable, and Process.

7.1.1 Application

Applications are developed to resolve a set of coherent functional requirements.
An Application consists of executable software units, additional execution related
items (e.g. data or parameter files), and descriptive information used for integration
end execution (e.g. a formal model description based on the AUTOSAR meta model,
test cases).

Applications can be located on user level above the middleware or can implement
functional clusters of the Adaptive Platform (located on the level of the middle-
ware), see [TPS_MANI_01009] in [2].

Applications might use all mechanisms and APIs provided by the operating system
and other functional clusters of the Adaptive Platform, which in general restricts
portability to other Adaptive Platforms.

All Applications, including Adaptive Applications (see below), are treated the
same by Execution Management.

7.1.2 Adaptive Application

An Adaptive Application is a specific type of Application. The implementa-
tion of an Adaptive Application fully complies with the AUTOSAR specification,
i.e. it is restricted to use APIs standardized by AUTOSAR and needs to follow specific
coding guidelines to allow reallocation between different Adaptive Platforms.

Adaptive Applications are always located above the middleware. To allow porta-
bility and reuse, user level Applications should be Adaptive Applications
whenever technically possible.

Figure 7.1 shows the different types of Applications.

13 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

platform/
machine

user level

fully AUTOSAR
compliant

OS/hardware
specific

implementation

Adaptive
Application

non portable, e.g.
hardware-dependent

user Application

portable
Adaptive

Application

reusable
platform

Application

typical
functional cluster

Application

Figure 7.1: Types of Applications

An Adaptive Application is the result of functional development and is the unit of
delivery for Machine specific configuration and integration. Some contracts (e.g. con-
cerning used libraries) and Service Interfaces to interact with other Adaptive Ap-
plications need to be agreed on beforehand. For details see [5].

7.1.3 Executable

An Executable is a software unit which is part of an Application. It has exactly
one entry point (main function), see [SWS_OSI_01300]. An Application can be
implemented in one or more Executables.

The lifecycle of Executables usually consists of:

Process Step Software Meta Information

Development
and Integration

Linked, configured and calibrated bi-
nary for deployment onto the target
Machine. The binary might contain
code which was generated at integra-
tion time.

Application Manifest, see
7.1.5 and [2], and Service In-
stance Manifest (not used by
Execution Management).

Deployment
and Removal

Binary installed on the target Ma-
chine.

Processed Manifests, stored in a
platform-specific format which is effi-
ciently readable at Machine startup.

Execution Process started as instance of the bi-
nary.

The Execution Management uses
contents of the Processed Manifest-
s to start up and configure each pro-
cess individually.

Table 7.1: Executable Lifecycle

14 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Executables which belong to the same Adaptive Application might need to be
deployed to different Machines, e.g. to one high performance Machine and one high
safety Machine.

Figure 7.2 shows the lifecycle of an Executable from deployment to execution.

Figure 7.2: Executable Lifecycle from deployment to execution

Remark: Throughout this document, on execution level the term Application refers
to one Executable of this Application, i.e. whenever mechanism on the Machine
or contents of the Application Manifest are described, there is no distinction
between Application and Executable, because the Application component
model is flattened into independent Executables after deployment.

7.1.4 Process

A Process is a started instance of an Executable. For details on how Execution
Management starts and stops Processes see 7.4.

Remark: In this release of this document it is assumed, that processes are self-
contained, i.e. that they take care of controlling thread creation and scheduling by call-
ing APIs from within the code. Execution Management only starts and terminates
the processes and while the processes are running, Execution Management only
interacts with the processes by using State Management mechanisms (see 7.5).

15 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.1.5 Application Manifest

The Application Manifest consists of parts of the Application design informa-
tion which is provided by the application developer in an application description, and
additional machine-specific information which is added at integration time. For details
on the Application Manifest contents see chapter 7.9. A formal specification can
be found in [2].

An Application Manifest is created together with a Service Instance Man-
ifest (not used by Execution Management) at integration time and deployed onto a
Machine together with the Executable it is attached to. It describes in a standard-
ized way the machine-specific configuration of Process properties (startup parameters,
resource group assignment, priorities etc.).

Each instance of an Executable binary, i.e. each started process, is individu-
ally configurable, with the option to use a different configuration set per Machine
State or per Function Group State (see 7.5 and [TPS_MANI_01012], [TP-
S_MANI_01013], [TPS_MANI_01014], [TPS_MANI_01015], [TPS_MANI_01059], [TP-
S_MANI_01017] and [TPS_MANI_01041]).

7.1.6 Machine Manifest

The Machine Manifest is also created at integration time for a specific Machine
and is deployed like Application Manifests whenever its contents change. The
Machine Manifest holds all configuration information which cannot be assigned to
a specific Executable, i.e. which is not already covered by an Application Man-
ifest or a Service Instance Manifest.

The contents of a Machine Manifest includes the configuration of Machine prop-
erties and features (resources, safety, security, etc.), e.g. configured Machine S-
tates and Function Group States, resource groups, access right groups, sched-
uler configuration, SOME/IP configuration, memory segmentation. For details see [2].

7.1.7 Manifest format

The Application Manifests and the Machine Manifest can be transformed
into a platform-specific format (called Processed Manifest), which is efficiently read-
able at Machine startup. The format transformation can be done either off board at
integration time or at deployment time, or on the Machine (by SW Configuration Man-
agement) at installation time.

16 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.2 Execution Management Responsibilities

Execution Management is responsible for all aspects of Adaptive Platform ex-
ecution management and Application execution management including:

1. Platform Lifecycle Management

Execution Management is started as part of the Adaptive Platform start-
up phase and is responsible for the initialization of the Adaptive Platform
and deployed Applications.

During execution, Execution Management monitors the Adaptive Plat-
form and, when required, the ordered shutdown of the Adaptive Platform.

2. Application Lifecycle Management – the Execution Management is respon-
sible for the ordered startup and shutdown of the deployed Applications.

The Execution Management determines when, and possibly in which order, to
start or stop the deployed Applications, based on information in the Machine
Manifest and Application Manifests.

Depending on the Machine State or on a Function Group State, de-
ployed Applications are started during Adaptive Platform startup or later,
however it is not expected that all will begin active work immediately since many
Applications will provide services to other Applications and therefore wait
and “listen” for incoming service requests.

The Execution Management derives an ordering for startup/shutdown within
the State Management framework, based on declared Application dependen-
cies. The dependencies are described in the Application Manifests, see
[TPS_MANI_01041].

The Execution Management is not responsible for run-time scheduling of Appli-
cations since this is the responsibility of the Operating System. However the Execu-
tion Management is responsible for initialization / configuration of the OS to enable
it to perform the necessary run-time scheduling based on information extracted by the
Execution Management from the Machine Manifest and Application Man-
ifests.

7.3 Platform Lifecycle Management

The Execution Management controls the ordered startup and shutdown of the
Adaptive Platform. The Platform Lifecycle Management characterize different
stages of the Adaptive Platform including:

Platform startup – the Execution Manager as part of Execution Managemen-
t is started as the “init” process by the Operating System and then takes over
responsibility for subsequent initialization of the Adaptive Platform and de-
ployed Application Executables.

17 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

[SWS_EM_01030] Start of Application execution d Execution Manage-
ment shall be solely responsible for initiating execution of Applications. c
(RS_EM_00009)

Note that [SWS_EM_01030] is exclusive; once the Execution Manager is run-
ning no other element of Adaptive Platform initiates Application execu-
tion.

Platform monitoring – the Execution Management can perform Application
monitoring, also in conjunction with the Platform Health Management. Par-
ticular design aspects of resource monitoring are shown in chapter 7.7.

Platform shutdown – the Execution Manager performs the ordered shutdown of
the Adaptive Platform based on the dependencies, with the exception that
already terminated Applications do not represent an error in the order.

7.4 Application Lifecycle Management

7.4.1 Process States

From the execution stand point, Process States characterize the lifecycle of any Ap-
plication Executable. Note that each instance (i.e. process) of an Application
Executable is independent and therefore has its own Process State.

[SWS_EM_01002] Idle Process State d The Idle Process State shall be the Pro-
cess state prior to creation of the Applications process and resource allocation. c
(RS_EM_00103)

[SWS_EM_01003] Starting Process State d The Starting Process State shall apply
when the Application’s process has been created and resources have been allo-
cated. c(RS_EM_00103)

[SWS_EM_01004] Running Process State d The Running Process State shall ap-
ply to an Applications process after it has been scheduled and it has reported
Running State to the Execution Manager. c(RS_EM_00103)

[SWS_EM_01005] Terminating Process State d The Terminating Process State
shall apply either after an Applications process has received the termination in-
dication from the Execution Manager or after it has decided to self-terminate and
informed the Execution Manager. c(RS_EM_00103, RS_EM_00011)

The termination indication uses the ReportApplicationState API (see Sec-
tion 8.2.1.3).

On entering the Terminating Process State the Applications process performs
persistent storage of the working data, frees all Applications process internal re-
sources, and exits.

18 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

[SWS_EM_01006] Terminated Process State d The Terminated Process State shal-
l apply after the Applications process has been terminated and the process re-
sources have been freed. For that, Execution Manager shall observe the exit sta-
tus of all Applications processes, with the POSIX waitpid() command. From the
resource allocation stand point, Terminated state is similar to the Idle state as there
is no process running and no resources are allocated anymore. From the execution
stand point, Terminated state is different from the Idle state since it tells that the Ap-
plications process has already been executed and terminated. This is relevant for
one shot Applications Processes which are supposed to run only once. Once they
have reached their Terminated state, they shall stay in that state and never go back in
any other state. E.g. System Initialization Applications process is supposed to run
only once before any other application execution. c(RS_EM_00103)

Execute

Idle

(Application

Manifest

references

FG1:State2)

Starting

process

created,

resources

allocated

Terminated

process

resources

freed

Terminating Terminate Running Schedule

Figure 7.3: Process Lifecycle

7.4.2 Startup and shutdown

[SWS_EM_01050] Start dependent Application Executables d The Execution
Management shall respect Application Dependencys and start any Applica-
tion Executables in this list first. In case no dependency is specified between
two Application Executables, they can be started in an arbitrary order. c
(RS_EM_00012, RS_EM_00100)

[SWS_EM_01051] Shutdown Application Executables d The Execution Man-
agement shall respect Application Dependencys and shutdown dependent Ap-
plication Executables before the Application Executable that was initially
requested to be shutdown. c(RS_EM_00100)

[SWS_EM_01012] Application Argument Passing d The Execution Management
shall provide argument passing for a Process containing one or more ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig.

At the initiation of startup of a Process, the aggregated StartupOptions of the S-
tartupConfig referenced by the ModeDependentStartupConfig shall be passed
to the call of the exec-family based POSIX interface to start the Process by the Op-
erating System, with the following behavior:

• for arg_0, the name of the Application Executable shall be passed

• for each aggregated StartupOption, starting with n = 1:

19 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

– for a StartupOption with StartupOption.optionKind = commandLi-
neSimpleForm: arg_n = StartupOption.optionArgument

– for a StartupOption with StartupOption.optionKind = commandLi-
neShortForm:

∗ When multiplicity of StartupOption.optionArgument = 1:

arg_n = ’-’ + StartupOption.optionName + ’ ’ + StartupOp-
tion.optionArgument

∗ otherwise:

arg_n = ’-’ + StartupOption.optionName

– for a StartupOption with StartupOption.optionKind = command-
LineLongForm:

∗ When multiplicity of StartupOption.optionArgument = 1:

arg_n = ’--’ + StartupOption.optionName + ’=’ + StartupOp-
tion.optionArgument

∗ otherwise:

arg_n = ’--’ + StartupOption.optionName

– n = n+ 1

c(RS_EM_00010)

7.4.3 Startup sequence

When the Machine is started, the OS will be initialized first and then Execution
Manager is launched as one of the OS’s initial processes1. Other functional cluster-
s and platform-level Applications of the Adaptive Platform Foundation are
then launched by Execution Management. After the Adaptive Platform Foun-
dation is up and running, Execution Management continues to launch user-level
Applications.

[SWS_EM_01000] Startup order d The startup order of the platform-level Applica-
tions is determined by the Execution Management, based on Machine Mani-
fest and Application Manifest information. c(RS_EM_00100) Please see Sec-
tion 7.9.1.

Figure 7.4 shows the overall startup sequence.
1Typically the init process

20 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

OS boot

OS starts the Execution Management

The Execution Management reads the processed manifests

and determines the application startup order based on the

dependency description.

Processes of Application Executables are instantiated

based on the startup order.

Other Adaptive Platform Foundation modules are also

started as they are Applications described with

Manifests

Figure 7.4: Startup sequence

7.4.3.1 Application dependency

The Execution Management provides support to the Adaptive Platform for or-
dered startup and shutdown of Applications. This ensures that Applications
are started before dependent Applications use the services that they provide and,
likewise, that Applications are shutdown only when their provided services are no
longer required. In this release, this only applies to platform-level Applications at
machine startup and shutdown, see [constr_1484] in [2].

The startup dependencies, see [TPS_MANI_01041], are configured in the Applica-
tion Manifests, which is created at integration time based on information provided
by the Application developer.

User-level applications use service discovery mechanisms of the Communication
Management and should not depend on startup dependencies. Which Executable
instances are running depends on the current Machine State and on the current
Function Group States, see 7.5. The integrator must ensure that all service de-
pendencies are mapped to State Management configuration, i.e. that all dependent
Executable instances are running when needed.

In real life, specifying a simple dependency to an Application might not be sufficient
to ensure that the depending service is actually provided. Since some Applications
shall reach a certain Application State to be able to offer their services to other Ap-
plications, the dependency information shall also refer to Application State of the
Application specified as dependency. With that in mind, the dependency informa-
tion may be represented as a pair like: <Application>.<ApplicationState>.
For more details regarding the Application States refer to Section 7.5.2.

21 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

The following dependency use-cases have been identified:

• In case Application B has a simple dependency on Application A, the
Running Application State of Application A is specified in the dependency
section of Application B’s Application Manifest.

• In case Application B depends on One-Shot Application A, the Terminated
Application State of Application A is specified in the dependency section of
Application B’s Application Manifest.

Version information within the Application Manifest is required since a consum-
ing Executable and its required services might not be compatible with all versions of
the producing Executable and its provided services. An example for the definition
of the version information attached to several Executables could be found in Listing
7.1.

Listing 7.1: Example for Executable versions
<AR-PACKAGE>

<SHORT-NAME>Executables</SHORT-NAME>
<ELEMENTS>

<EXECUTABLE>
<SHORT-NAME>RadarSensorVR</SHORT-NAME>
<VERSION>1.0.3</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>RadarSensorVL</SHORT-NAME>
<VERSION>1.0.4</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>Diag</SHORT-NAME>
<VERSION>1.0.0</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<VERSION>1.0.2</VERSION>

</EXECUTABLE>
</ELEMENTS>

</AR-PACKAGE>

An example for the definition of the Executable dependency information could be
found in Listing 7.2

Listing 7.2: Example for Executable dependency
<PROCESS>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<EXECUTABLE-REF DEST="EXECUTABLE">/Executables/SensorFusion</EXECUTABLE-

REF>
<MODE-DEPENDENT-STARTUP-CONFIGS>

<MODE-DEPENDENT-STARTUP-CONFIG>
<EXECUTION-DEPENDENCYS>

<EXECUTION-DEPENDENCY>
<APPLICATION-MODE-IREF>

<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-
DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVR/

22 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVL/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/Diag/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>

</EXECUTION-DEPENDENCYS>
<STARTUP-CONFIG-REF DEST="STARTUP-CONFIG">/StartupConfigSets/

StartupConfigSet_AA/SensorFusion_Startup</STARTUP-CONFIG-REF>
</MODE-DEPENDENT-STARTUP-CONFIG>

</MODE-DEPENDENT-STARTUP-CONFIGS>
</PROCESS>

Processes are only started by the Execution Manager if they reference a requested
Machine State or Function Group State, but not because of configured Exe-
cution Dependencies. Execution Dependencies are only used to control a startup or
terminate sequence at state transitions or at machine startup/shutdown.

[SWS_EM_01001] Execution Dependency error d If an Execution Dependency is
configured in a ModeDependentStartupConfig of a starting or already running pro-
cess which references a process that is not already in the Running Application State
or being started at a Machine State or Function Group State transition (simple
dependency), or that is not in the Terminated Application State (One-Shot Application
dependency), or if two or more Applications have mutual dependencies, this shall
be considered to be a configuration error. c(RS_EM_00100)

Example: Let’s assume we have a process “A” that depends on the Running Appli-
cation State of a process “B”. At a Machine State transition, process “A” shall be
started, because it references the new Machine State. However, process “B” does
not reference that Machine State, so it is not started. Due to the Execution Depen-

23 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

dency between the two processes, process “A” would never start running in the new
Machine State because it waits forever for process “B”, which shall be considered a
configuration error.

7.5 State Management

7.5.1 Overview

State Management provides a mechanism to define the state of the operation for
an Adaptive Platform. The Application Manifest allows definition in which
states the Application Executable instances have to run (see [2]). State Man-
agement grants full control over the set of Applications to be executed and ensures
that Applications are only executed (and hence resources allocated) when actually
needed.

Four different states are relevant for Execution Management:

• Application State, see 7.5.2

• Process State

Process States are managed by an Execution Management internal state ma-
chine. For details see Section 7.4.1.

• Machine State, see 7.5.3

• Function Group State, see 7.5.4

An example for the interaction between these states will be shown in section 7.5.5.2.

7.5.2 Application State

The Application State characterizes the internal lifecycle of any instance of an Appli-
cation Executable. The states are defined by the ApplicationState enumera-
tion.

Initializing

application

data

initialization

Running

perform main

functionality

Terminating

 store data,

free resources,

exit

Terminate

create process

allocate

resources

Figure 7.5: Application States

24 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

[SWS_EM_01053] Application State Running d Once the initialization of an Appli-
cation Executable instance is complete, it shall switch to the Running state by
setting the state to kRunning. c(RS_EM_00103)

[SWS_EM_01055] Application State Termination d

• The switch from the Running state to Terminating shall be initiated by the
POSIX Signal SIGTERM or by any Application internal functionality causing
this state change.

• On Reception of that Signal, the Application Executable instance shall
switch to the Terminating state and update it’s state to the kTerminating
enumeration value.

• During the Terminating state, the Application shall free internally used re-
sources.

• When the Terminating state finishes, the Application Executable in-
stance shall exit.

c(RS_EM_00103)

[SWS_EM_02031] Application State Reporting d An Application Executable
instance shall report its state to the Execution Management using the Applica-
tionClient::ReportApplicationState interface. It has to be reported immedi-
ately after it has been changed. c(RS_EM_00101, RS_EM_00103)

7.5.3 Machine State

Requesting and reaching a Machine State is, besides using Function Group S-
tates (see 7.5.4), one way to define the current set of running Application Exe-
cutable instances. It is significantly influenced by vehicle-wide events and modes.

Each Application can declare in its Application Manifest in which Machine
States it has to be active.

There are several mandatory machine states specified in this document that have to be
present on each machine. Additional Machine States can be defined on a machine
specific basis and are therefore not standardized.

[SWS_EM_01032] Machine States d A ModeDeclaration for each required Ma-
chine State has to be defined in the Machine Manifest. The Execution
Manager shall obtain the Machine States from the Machine Manifest. c
(RS_EM_00101)

The Machine States are determined and requested by the State Manager, see
7.5.5.1. For details on state change management see 7.5.6.

25 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.5.3.1 Startup

[SWS_EM_01023] Machine State Startup d The Startup Machine State shall be
the first state to be active after the startup of Execution Manager. Therefore, a
ModeDeclaration for the Startup has to be defined in the Machine Manifest.
c(RS_EM_00101)

[SWS_EM_01037] Machine State Startup behavior d The following behavior apply
for the Startup Machine State:

• All platform-level Applications configured for Startup shall be started. Ap-
plications configured for Startup are based on the reference from the Ap-
plications Processes to the ModeDependentStartupConfig in the role
Process.modeDependentStartupConfig with the instanceRef to the Mod-
eDeclaration in the role ModeDependentStartupConfig.machineMode
that belongs to the Startup Machine State.

• For startup of Applications, the startup requirements of section 7.4 apply.

• The Execution Manager shall wait for all started Applications until their
Application State Running is reported.

• If that is the case, the Execution Manager shall notify the State Manager
that the Startup Machine State is ready to be changed.

• The Execution Manager shall not change the Machine State by itself until
a new state is requested by the State Manager.

c(RS_EM_00101)

7.5.3.2 Shutdown

[SWS_EM_01024] Machine State Shutdown d The Shutdown Machine State
shall be active after the Shutdown Machine State is requested by the State Man-
ager. Therefore, a ModeDeclaration for the Shutdown has to be defined in the
Machine Manifest. c(RS_EM_00101)

[SWS_EM_01036] Machine State Shutdown behavior d The following behavior apply
for the Shutdown Machine State:

• All Applications, including the platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Applications, the shutdown requirements of section 7.4 ap-
ply.

• When Process State of all Applications is Idle or Terminated, all Ap-
plications configured for Shutdown shall be started. Applications config-
ured for Shutdown are based on the reference from the Applications Pro-
cesses to the ModeDependentStartupConfig in the role Process.modeDe-

26 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

pendentStartupConfig with the instanceRef to the ModeDeclaration in
the role ModeDependentStartupConfig.machineMode that belongs to the
Shutdown Machine State.

c(RS_EM_00101)

[SWS_EM_01058] Shutdown of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartupCon-
fig.machineMode that belongs to the Shutdown Machine State. This Appli-
cation shall contain the actual mechanism(s) to initiate shutdown of the Operating
System. c(RS_EM_00101)

7.5.3.3 Restart

[SWS_EM_01025] Machine State Restart d The Restart Machine State shall
be active after the Restart Machine State is requested by the State Manager.
Therefore, a ModeDeclaration for the Restart has to be defined in the Machine
Manifest. c(RS_EM_00101)

[SWS_EM_01035] Machine State Restart behavior d The following behavior applies
for the Restart Machine State:

• All Applications, including the platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Applications, the shutdown requirements of Section 7.4 ap-
ply.

• When Process State of all Applications is Idle or Terminated, all Ap-
plications configured for Restart shall be started. Applications config-
ured for Restart are based on the reference from the Applications Pro-
cesses to the ModeDependentStartupConfig in the role Process.modeDe-
pendentStartupConfig with the instanceRef to the ModeDeclaration in
the role ModeDependentStartupConfig.machineMode that belongs to the
Restart Machine State.

c(RS_EM_00101)

[SWS_EM_01059] Restart of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartupCon-
fig.machineMode that belongs to the Restart Machine State. This Applica-
tion shall contain the actual mechanism(s) to initiate restart of the Operating System.
c(RS_EM_00101)

27 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.5.4 Function Group State

If more than one group of functionally coherent Applications is installed on the
same machine, the Machine Statemechanism is not flexible enough to control these
functional clusters individually, in particular if they have to be started and terminated
with interleaving lifecycles. Many different Machine States would be required in this
case to cover all possible combinations of active functional clusters.

To support this use case, Function Group States can be configured in addition to
Machine States. Other use cases where starting and terminating individual groups
of processes might be necessary include diagnostics and error recovery.

In general, Machine States are used to control machine lifecycle (startup/shut-
down/restart), platform level processes, and other infrastructure, while Function
Group States individually control groups of functionally coherent user level Appli-
cation processes.

Figure 7.6 shows an example state change sequence where several processes refer-
ence Machine States and Function Group States of two Function Groups
FG1 and FG2. For simplicity, only the three static Process States Idle, Running, and
Terminated are shown for each process.

28 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Figure 7.6: State dependent process control

• Process A references the Machine State Startup. It is a one shot process,
i.e. it terminates after executing once.

• Process B references Machine States Startup and Running. It depends on
the termination of Process A, i.e. an Application Dependency has been config-
ured, as described in 7.4.3.1

• Process C references Machine State Running only. It terminates when Ma-
chine State Diagnostics is requested by the State Manager.

• Process D references Function Group State FG1:Running only.

• Process E references FG1:Running and FG2:Running. Because it references
states of different Function Groups, it must use the same startup configuration
(StartupConfig) in all states to avoid sequence dependent behaviour.

29 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

• Process F references FG2:Running and FG2:Fallback. It has different start-
up configurations assigned to the two states, therefore it terminates at the state
transition and starts again, using a different startup configuration.

System design and integration must ensure that enough resources are available on
the machine at any time, i.e. the added resource consumption of all processes which
reference simultaneously active States must be considered.

The Function Group States are determined and requested by the State Man-
ager, see 7.5.5.1. For details on state change management see 7.5.6.

[SWS_EM_01107] Function Group name d A unique name for each Function
Group has to be defined in the Machine Manifest. The Execution Manager
shall obtain the name of the Function Group from the Machine Manifest to set-
up the Function Group specific state management. c(RS_EM_00101)

[SWS_EM_01108] Function Group State d A ModeDeclaration for each required
Function Group State has to be defined in the Machine Manifest. Each
Function Group State must be assignable to a specific Function Group. The
Execution Manager shall obtain the Function Group States from the Ma-
chine Manifest. c(RS_EM_00101)

[SWS_EM_01109] State References d Each instance of an Application Exe-
cutable shall reference in its Application Manifest one or more Function
Group States of the same or of different Function Groups and/or one or sev-
eral Machine States. c(RS_EM_00101) In the event of a misconfigured system, the
Execution Manager shall not start an instance which does not reference at least
one State.

[SWS_EM_01110] Off States d Each Function Group has an Off State which
shall be used as default Function Group State, if no other state is requested.
c(RS_EM_00101)

[SWS_EM_01111] No reference to Off State d The Off Function Group States
shall not be referenced in any Application Manifest. c(RS_EM_00101)

[SWS_EM_01112] StartupConfig d Application Executable instances reference
in their Application Manifest the states in which they want to be executed. A s-
tate can be a Function Group State or a Machine State. If an Application
Executable instance references Function Group States which belong to more
than one Function Group, or if it references both Machine States and Func-
tion Group States, then only one startup configuration (StartupConfig) shall
be configured, which is then valid for all referenced states. c(RS_EM_00101)

This restriction prevents undefined behaviour, because if an Application Exe-
cutable instance references states of different Function Groups, which can be
active simultaneously, the used startup configurations would depend on the sequence
of the referenced Function Group States, if different startup configurations were
used. Process E in Figure 7.6 is an example for such an Application Executable
instance.

30 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

If different startup configurations are needed for different Function Groups, then
one or more instances of the same Application Executable can be configured
per Function Group.

7.5.5 State Management Architecture

7.5.5.1 State Manager

The Execution Manager provides operative mechanisms and interfaces to control
the actual set of running Applications, depending on the current Machine State
and Function Group States. The decision of State changes is fully given to the
State Manager Application.

The State Manager is here the central point where all Applications refer to, for
retrieving the current and requesting new Machine States and Function Group
States.

The State Manager arbitrates Machine State and Function Group State
change request, which are possibly issued by

• dedicated applications

• a vehicle state manager (possibly located on a different ECU)

• error management, e.g. the Platform Health Manager

• diagnostics

The State Manager functionality is highly system dependent and OEM specific, and
AUTOSAR decided against specifying functionality like the Classic Platforms B-
swM for the Adaptive Platform.

However, AUTOSAR specifies some interfaces of the State Manager, so all appli-
cation which might request states (see above) are portable between machines with
different State Manager implementations. Also, all State Manager implementa-
tions shall use the StateClient API, so the same State Manager can be reused
on different platforms.

[SWS_EM_01056] State Manager d Each unconfigured Adaptive Platform (un-
configured meaning that the platform contains the functional clusters of the Adap-
tive Platform Foundation and the Adaptive Platform Services, but is not yet config-
ured as a Machine, i.e. as an instance of the Adaptive Platform) shall contain
an Application, called State Manager, that provides a standardized ara::com S-
tateManager interface, so all applications can request and retrieve Machine States
and Function Group States, and that uses the StateClient::GetState and
StateClient::SetState APIs to set and get Machine States and Function
Group States from the Execution Manager. State requests and inquieries are
routed through this default State Manager without any arbitration. It is expected,
that this default State Manager will be completely replaced by an OEM specific so-

31 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

lution on configured machines, providing and using the same and possibly additional
interfaces. The OEM specific State Manager can be a user-level Application. c
(RS_EM_00101)

Therefore,

• All users of the ara::com StateManager interface are technically portable between
different machines without changing the implementation.

• Using the ara::com StateManager interface over the network (e.g. by a central
vehicle manager) is possible due to standardized interfaces.

• The OEM specific State Manager implementation can arbitrate all state
change requests in any required way.

• If application deliveries use different names for Function Groups or Func-
tion Group States, the names can be mapped accordingly in the OEM spe-
cific State Manager before issuing state change requests to the Execution
Manager, or when delivering state information back to applications. This way,
the application implementation does not need to be adapted for each system
environment. Manifest contents can be adapted accordingly at integration time.

An overview of the interaction of the State Manager, the Execution Manager and
Applications is shown in Figure 7.7.

32 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Figure 7.7: State Manager Architecture

Additional interfaces, e.g. to the Platform Health Manager, are not shown in this
figure.

33 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.5.5.2 State Interaction

Figure 7.8 shows a simplified example for the interaction between different states. One
can see the state transitions of a Function Group and the Process and Applica-
tion States of one application process which references one state of this Function
Group, ignoring possible delays and dependencies if several processes are involved.
The interaction is identical if the application process references a Machine State
instead of a Function Group State.

Figure 7.8: Interaction between states

34 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.5.6 State Change

[SWS_EM_01026] State change d The State Manager can request to change one
or several Function Group States and/or the Machine State from the Execu-
tion Manager via the StateClient::SetState API. The state change request
shall lead to state transitions and hereof a state change to the requested Machine
State and/or Function Group States. c(RS_EM_00101)

Machine State and Function Group State changes can be requested individu-
ally or in parallel by the State Manager. However, the following restriction applies to
avoid undefined behaviour while the state transitions are performed by the Execution
Manager:

[SWS_EM_01034] Deny State change request d The Execution Manager shall
deny State change requests, that are received before all previously requested Ma-
chine State and/or Function Group State transitions are completed. If a re-
quest is denied, the Execution Manager shall return an error code to the requester.
c(RS_EM_00101)

[SWS_EM_01028] GetState API d The Execution Manager shall provide the inter-
face StateClient::GetState to retrieve the current Machine State or a Func-
tion Group State. c(RS_EM_00101)

In the following requirement, the term

"the Process references a State"

means that an instance of an Application Executable (i.e. a Process) has in its
Application Manifest an aggregation from the Executables Process contain-
ing a ModeDependentStartupConfig in the role Process.modeDependentStar-
tupConfig with an instanceRef to a ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to that State.

A State can be a Machine State or a Function Group State.

CurrentStates is the collection of the Function Group States of all configured
Function Groups and the Machine State at the time before one or several paral-
lel State Transitions start.

RequestedStates is the collection of the Function Group States of all configured
Function Groups and the Machine State at the time when one or several parallel
State Transitions are finished.

A SingleReferenceProcess references in its Application Manifest either Ma-
chine States or states of one Function Group only. In Figure 7.6 this would
apply to all processes except process E.

A MultiReferenceProcess references in its Application Manifest more than one
type of states, e.g. Machine States and Function Group States, or states of
more than one Function Group. In Figure 7.6 this would apply to process E. As

35 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

stated in [SWS_EM_01112], different startup configurations are not permitted in this
case.

[SWS_EM_01060] State change behavior d

1. For each SingleReferenceProcess, that

[

• references exactly one of the CurrentStates

and

• references none of the RequestedStates

and

• has a Process State different than [Idle or Terminated]

] or [

• references exactly one of the CurrentStates

and

• references exactly one of the RequestedStates

and

• has different aggregated StartupOptions in the role StartupConfig.s-
tartupOption, referenced by the ModeDependentStartupConfigs in
the role ModeDependentStartupConfig.startupConfig

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to the referenced
CurrentState

and

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to the referenced
RequestedState.

],

and

For each MultiReferenceProcess, that

[

• references at least one of the CurrentStates

and

• references none of the RequestedStates

36 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

and

• has a Process State different than [Idle or Terminated]

],

the Executable Process shall be shutdown. For shutdown the requirements
of section 7.4 apply.

2. Wait until Process State of all affected Processes is Idle or Terminated.
The Execution Manager shall monitor the time required by the applications to
terminate. In case of a timeout the following set of actions shall be performed by
the Execution Management:

• The Platform Health Manager is notified about the timeout to initiate
appropriate recovery actions.

• The timeout condition is reported back to the State Manager (as initiator
of the state change) to notify that the state change cannot be fulfilled.

The default value of the Application termination timeout shall be defined by
the system integrator in the Machine Manifest. This value may be overwrit-
ten for individual application by defining the Application termination timeout
parameter in the Application Manifest.

3. For each SingleReferenceProcess, that

[

• references none of the CurrentStates

and

• references exactly one of the RequestedStates

and

• has a Process State that is [Idle or Terminated]

] or [

• references exactly one of the CurrentStates

and

• references exactly one of the RequestedStates

and

• has different aggregated StartupOptions in the role StartupConfig.s-
tartupOption, referenced by the ModeDependentStartupConfigs in
the role ModeDependentStartupConfig.startupConfig

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.machineMode that belongs to the referenced
CurrentState

37 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

and

– and with an instanceRef to the ModeDeclaration in the role Mod-
eDependentStartupConfig.machineMode that belongs to the ref-
erenced RequestedState.

],

and

For each MultiReferenceProcess, that

[

• references none of the CurrentStates

and

• references at least one of the RequestedStates

and

• has a Process State that is [Idle or Terminated]

],

the Executable shall be started. For startup the requirements of section 7.4
apply.

4. Wait until Process State of all affected Processes is Running. The Execu-
tion Manager shall monitor the time required by the Processes to reach the
Running state.

5. In case the applications report the Running state within the defined timeout in-
terval, a confirmation of the state change shall be sent to the initiator of the state
change.

6. In case of a timeout the following set of actions shall be performed by the Exe-
cution Management:

• The Platform Health Manager is notified about the timeout to initiate
appropriate recovery actions.

• The timeout condition is reported back to the State Manager (as initiator
of the state change) to notify that the state change cannot be fulfilled.

The default value of the Application startupt timeout shall be defined by the
system integrator in the Machine Manifest. This value may be overwritten for
individual application by defining the Application startup timeout parameter in
the Application Manifest.

c(RS_EM_00101)

38 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.6 Application Recovery Actions

7.6.1 Overview

The Execution Management is responsible for the state dependent management
of Application start/stop, so it has to have the special right to start and stop Ap-
plications. The Platform Health Management monitors Applications and
could trigger a Recovery Action in case any Application behaves not within the
specified parameters.

The Recovery Actions are defined by the integrator based on the software archi-
tecture requirements for the Platform Health Management and configured in the
Application Manifest.

7.6.2 Recovery Actions Interfaces

[SWS_EM_01016] RestartProcess API d The Execution Management shall pro-
vide functional cluster internal interfaces to restart a specific Process on the request
from the Platform Health Management. c(RS_EM_00013)

An example for this API is RecoveryActionClient::RestartProcess.

[SWS_EM_01062] RestartProcess behaviour d The Execution Management shall
restart a specific Process on the request from the Platform Health Management
with the exact same startupConfig of the modeDependentStartupConfig that
belongs to the to be restarted Process. c(RS_EM_00013)

[SWS_EM_01018] OverrideState API d The Execution Management shall pro-
vide functional cluster internal interfaces to force the Execution Management to
switch to specific Function Group States and/or to a specific Machine State
on the request from the Platform Health Management. c(RS_EM_00013)

An example for this API is RecoveryActionClient::OverrideState.

[SWS_EM_01061] OverrideState API interrupt dA call of the OverrideState API shall
stop any currently "ongoing" state change and process the "override" state change.c
(RS_EM_00013)

39 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.6.3 Integrated in the Execution Management

Figure 7.9: Adaptive Platform - Recovery Action Architecture

7.7 Resources and Deterministic Execution

This chapter deals with configuration and monitoring of resources and how this relates
to deterministic execution.

40 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.7.1 Introduction

Adaptive Platform cannot support all mechanisms as described in this overview
chapter in a standardized way, because the availability highly depends on the used
Operating System. Also, some mechanisms that could be standardized will not yet be
defined in this release.

7.7.1.1 Resource Configuration

In this section we give an overview on resource assignment to instances of Application
Executables, i.e. processes. The main resources are:

• RAM (e.g. for code, data, thread stacks, heap)

• CPU time

Other resources like persistent storage or I/O usage are also be relevant, but will not
be evaluated further in this document, which focuses on Execution Management.

The following stakeholders are involved in resource management:

• Application Developer

The Application developer should know how much memory (RAM) and computing
resources the Executable instances need to perform their tasks within a specific
time. This needs to be specified in the Application description (which can be
the pre-integration stage of the Application Manifest) which is handed over to the
integrator. Additional constraints like a deadline for finishing a specific task, e.g.
cycle time, will usually also be configured here.

However, the exact requirements may depend on the specific use case, e.g.

– The RAM consumption might depend on the intended use, e.g. a video filter
might be configurable for different video resolutions, so the resource needs
might vary within a range.

– The computing power required depends on the processor type. i.e. the re-
source demands need to be converted into a computing time on that specific
hardware. Possible parallel thread execution on different cores also needs
to be considered here.

In general, we need to distinguish between two resource demand values:

– Minimum resources, which need to be guaranteed so the process can reach
its Running state and perform its basic functionality.

– Maximum resources, which might be temporarily needed and shall not be
exceeded at any time, otherwise an error can be assumed.

• Integrator

41 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

The integrator knows the specific platform and its available resources and con-
straints, as well as other applications which may run at the same time as the
processes to be configured. The integrator must assign available resources to
the applications which can be active at the same time, which is closely related to
State Management configuration, see section 7.5. If not enough resources are
available at any given time to fulfill the maximum resource needs of all running
processes, assuming they are actually used by the processes, several steps have
to be considered:

– Assignment of resource criticality to processes, depending on safety and
functional requirements and on the need for Deterministic Execution (see
7.7.1.3).

– Depending on the Operating System, maximum resources which cannot be
exceeded by design (e.g. Linux cgroups) can be assigned to a process or a
group of processes.

– A scheduling policy has to be applied, so threads of processes with high
criticality get guaranteed computing time and finish before a given deadline,
while threads of less critical processes might not. For details see section
7.7.2.1.

– If the summarized maximum RAM needs of all processes, which can be run-
ning in parallel at any given time, exceeds the available RAM, this cannot be
solved easily by prioritization, since memory assignment to low critical pro-
cesses cannot just be removed without compromising the process. However,
it must be ensured that processes with high criticality have ready access to
their maximum resources at any time, while lower criticality processes need
to share the remaining resources. For details see 7.7.2.2.

In this release, Adaptive Platform provides means to configure “ResourceGroup-
s”. One or several processes can be assigned to one of the configured Resource-
Groups. Each Adaptive Application must be assigned to one ResourceGroup.
For details see 7.7.2.

7.7.1.2 Resource Monitoring

As far as technically possible, the resources which are actually used by a process
should be controlled at any given time. For the entire system, the monitoring part of
this activity is fulfilled by the Operating System. For details on CPU time monitoring
see 7.7.2.1. For RAM monitoring see 7.7.2.2. The monitoring capabilities depend on
the used Operating System. Depending on system requirements and safety goals,
an appropriate Operating System has to be chosen and configured accordingly, in
combination with other monitoring mechanisms (e.g. for execution deadlines) with are
provided by Platform Health Management.

Resource monitoring can serve several purposes, e.g.

42 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

• Detection of misbehaviour of the monitored process to initiate appropriate re-
covery actions, like process restart or state change, to maintain the provided
functionality and guarantee functional safety.

• Protection of other parts of the system by isolating the erroneous processes from
unaffected ones to avoid resource shortage.

For processes which are attempting to exceed their configured maximum resource
needs (see 7.7.1.1), one of the following alternatives is valid:

• The resource limit violation or deadline miss is considered a failure and recovery
actions may need to be initiated. Therefore the specific violation gets reported to
the Platform Health Management, which then starts recovery actions which have
been configured beforehand. This will be the standard option for deterministic
subsystems (see 7.7.1.3).

• For processes without hard deadlines, resource violations sometimes can be mit-
igated without dedicated error recovery actions, e.g. by interrupting execution
and continue at a later point in time.

• If the OS provides a way to limit resource consumption of a process or a group
of processes by design, explicit external monitoring is usually not necessary and
often not even possible. Instead, the limitation mechanisms make sure that re-
source availability for other parts of the system is not affected by failures with-
in the enclosed processes. When such by-design limitation is used, monitoring
mechanisms may still be used for the benefit of the platform, but are not required.
Self-monitoring and out-of-process monitoring is currently out-of-scope in Adap-
tive Platform.

7.7.1.3 Deterministic Execution

In real-time systems, deterministic execution means in general, that for a given set of
input data a calculation always produces consistent output within a bounded time, i.e.
the behavior is reproducible.

In our case the term “calculation” can apply to execution of a thread, a process, or a
group of processes. The calculation can be event-driven or cyclic, i.e. time-driven.

Determinism must be distinguished from other non-functional qualities like reliability or
availability, which all deal in different ways with the statistical risk of failures. Deter-
minism does not provide such numbers, it only defines the behavior in the absence of
errors.

We can distinguish between different types of determinism:

• Time Determinism: The results of the calculation are guaranteed to be available
before a given deadline.

43 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

• Data Determinism: The results only depend on the input data and are repro-
ducible, assuming a given initial internal state.

• Full Determinism: Combination of Time and Data Determinism.

Deterministic behavior is in particular important for safety-critical systems, which may
not be allowed to deviate from the specified behavior at all. Whether Time Determin-
ism, or in addition Data Determinism is necessary to provide the required functionality
depends on the system and on the safety goals.

This list exemplifies some expected use cases of the Adaptive Platform where
such determinism is required:

• Safety goals for Highly Automated Driving (HAD) systems up to ASIL D

• High Performance Computing (HPC) demands can only be met by non
automotive-grade, e.g. consumer electronics (CE), microprocessors

• Most likely no such microprocessor available for ASIL above B, at least for the
parts relevant to the design

• Additional system-level safety mechanisms required to support ASIL C / D func-
tions, e.g. software lockstep concepts. Please find more on software lockstep in
7.7.1.3.2

• Fully-deterministic processing must be supported for software lockstep concepts

• To meet HPC demands, highly predictable and reliable multi-threading must be
supported

• Deterministic processing is important for integration/modeling/simulation

7.7.1.3.1 Time Determinism

Each time a calculation is started, its results are guaranteed to be available before a
specified deadline. To achieve Time Determinism, sufficient and guaranteed resources
(computing time, memory, service response times etc.) must be assigned to the soft-
ware entities that perform the calculation.

The resources must be guaranteed at any time. Best-effort processes can request
guaranteed minimum resources for base functionality, and additionally can have max-
imum resources specified for monitoring. If Time Determinism is requested, minimum
and maximum resources are identical and must be guaranteed at any time.

If the assumptions for deterministic execution are violated, e.g. due to a deadline miss,
this must be treated as an error and recovery actions must be initiated because the
deterministic behavior is broken. In non deterministic “best-effort” subsystems such
deadline violations or other deviations from normal behavior sometimes can be toler-
ated and mitigated without dedicated error management.

44 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Fully-Deterministic behavior requires in addition Data Determinism (see below), how-
ever in many use cases Time Determinism is sufficient.

7.7.1.3.2 Data Determinism

For Data Determinism, each time a calculation is started, its results only depend on
the input data. For a specific sequence of input data, the results are always exactly the
same, assuming the same initial internal state. More on this in section 7.8.

A common approach to verify Data determinism in a safety context is the use of lock-
step mechanisms, where execution is done simultaneously through two different paths
and the result is compared to verify consistency. Hardware lockstep means that the
hardware has specific equipment to make this double-/multi-execution transparent ;
Software lockstep is another technique that allows providing a similar property without
requiring the use of extra hardware.

Depending on the Safety Level, as well as the Safety Concept employed, software lock-
step may involve executing multiple times the same software, in parallel or sequentially,
but may also involve running multiple separate implementations of the same algorithm.

7.7.1.3.3 Full Determinism

For Full Determinism, each time a calculation is started, its results are available before
a specified deadline and only depend on the input data, i.e. both Time and Data
Determinism must be guaranteed.

In this release we restrict ourselves on supporting Full Deterministic behaviour within
one process. Determinism in a cluster of processes on one or even several machines
needs extensions of the Communication Management, which have not been discussed
and specified yet.

Non-deterministic behavior can have many reasons, for example insufficient resources,
accessing data which can be changed by other parts of the system at random times
while the calculation is running, or process internal parallel execution on multiple cores,
where parallel threads read or write the same data. The order in which the threads ac-
cess such data will affect the result, which makes it non-deterministic (“race condition”).

A fully deterministic calculation must be designed, implemented and integrated in a way
such that it is independent of processor load caused by other functions and calculation,
sporadic unrelated events, race conditions, etc., i.e. it always produces the same result
within a given time.

To provide full determinism for a subsystem has the following advantages:

• The deterministic subsystem shows the same behaviour on each platform which
satisfies the performance and resource needs in each environment of unrelated
applications. This includes development and simulation platforms.

45 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

• Due to reproducible functional behavior, many results of testing, configuration and
calibration of the subsystem are valid in each environment where the subsystem
is deployed on and don’t need to be repeated.

• Execution of the deterministic subsystem can be replicated and results can be
compared, e.g. for software lockstep concepts.

7.7.2 Resource configuration and monitoring

We need to be able to configure minimum, guaranteed resources (RAM, computing
time) and maximum resources. In case Time or Full Determinism is required, the
maximum resource needs are guaranteed.

7.7.2.1 CPU usage

CPU usage is represented in a process by its threads. However, several mechanisms
may be available to restrict or configure the scope of execution of these threads. These
mechanisms include:

• Core affinity, restricting a given thread to one or a set of cores in the system

• Scheduling policy, restricting a given thread and possibly threads inheriting the
attributes, to compete in a certain way for CPU time (e.g. SCHED_RR or
SCHED_FIFO)

• Scheduling group, restricting a thread to share CPU time with other threads in
the same group.

While scheduling policies are not a sufficient method to guarantee Full Determinism,
they contribute to improve it. Note that while the aim is to limit CPU time for a process,
scheduling policies apply to threads.

Currently available POSIX-compliant Operating Systems offer the scheduling poli-
cies required by POSIX, and in most cases additional, but different and incompatible
scheduling strategies. This means for now, the required scheduling properties need to
be configured individually, depending on the chosen OS. Moreover, scheduling strate-
gy is defined per thread and the POSIX standard allows for modifying the scheduling
policy at runtime for a given thread, using pthread_setschedparam(). It is therefore
not currently possible for the Adaptive Platform to enforce a particular scheduling
strategy for an entire process, but only for its first thread.

The following elements can influence process and thread scheduling:

• Selection of an OS which can support the expected use cases for this platform,
e.g. regarding isolation, performance, and determinism.

• Configuration of ResourceGroups in the Machine Manifest

46 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

• POSIX API calls and using C++ libraries from within the Application source
code.

• Application Executable instance specific configuration at integration time in Ap-
plication Manifests.

• Execution Management converts the execution requirements of the process-
es, as configured in the manifests, into a vendor-specific OS configuration.

In general, for deterministic behavior the required computing time is guaranteed and
violations are treated as error, while best-effort subsystems are more robust and might
be able to mitigate sporadic violations, e.g. by continuing the calculation at the next
activation, or by providing a result of lesser quality. This means, if time (e.g. deadline
or runtime budget) monitoring is in place, the reaction on deviations is different for de-
terministic and best-effort subsystems. In fact, it may not even be necessary to monitor
best-effort subsystems, since they by definition are doing only a function that may not
succeed. This leads to an architecture where monitoring is a voluntary, configured
property.

7.7.2.2 Memory Budget and Monitoring

To render a function, a process requires the availability of some amount of memory for
its usage (mainly code, data, heap, thread stacks). Over the course of its execution
however, not all of this memory is required at all times, such that an OS can take ad-
vantage of this property to make these ranges of memory available on-demand, and
provide them to other processes when the memory is no longer used. While this has
clear advantages in terms of system flexibility as well as memory efficiency, it is also
in the way of both Time Determinism and Full Determinism: when a range of memory
that was previously unused must now be made available, the OS may have to execute
some amounts of potentially-unbounded activities to make this memory available. Of-
ten, the reverse may also be happening, removing previously available (but unused)
memory from the process under scope, to make it available to other processes. This is
detrimental to an overall system determinism.

The Execution Management should ensure that the entire memory range that de-
terministic Applications may be using is available at the start and for the whole
duration of the respective Application execution.

Applications not configured to be deterministic may be mapped on-demand.

In order to provide sufficient memory at the beginning of the execution of an Adaptive
Application, the following properties need to be defined for each Application:

• Process heap (used for malloc())

• Memory quota (used for mapping new threads or creating kernel resources)

• Whether the Application should be fully mapped at startup

47 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

In order to further control resource usage, the following properties are also configurable
for the first thread of the process:

• Scheduling policy (SCHED_RR, SCHED_FIFO)

• Stack size

Note that while the Execution Management will ensure the proper configuration for
the first thread (that calls the main() function), it is the responsibility of the Applica-
tion itself to properly configure secondary threads.

48 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.8 Deterministic Redundant Execution

As stated in 7.7.1.3, some typical future systems need high computing performance
in combination with high ASIL safety goals. In this chapter we specifiy mechanisms
which support deterministic multithreading to build high performance software lockstep
solutions.

Formal API definitions and configuration parameters will be provided in a later release.
Also, the concept of redundant execution might be extended in general in upcomming
releases.

7.8.1 Redundant Execution Overview

The Adaptive Platform needs to provide some mechanisms to support redundant
execution with sufficient isolation:

• Real-Time Execution (Time Determinism), see 7.7.1.3.1

To ensure that execution of a given execution unit is finished at a given deadline
we need:

– appropriate scheduling policies

– multithreading to meet high performance demand

– deadline monitoring, execution budget monitoring and appropriate recovery
action in case of violation

• Disjoint core assignment (pinning) of redundant processes to reduce common
cause failures.

[SWS_EM_01201] Core Binding d Execution Management shall consider as-
signment of one or several cores to to be used for execution of the threads of
an Executable instance (or alternatively exclusion of one or several cores)
as configured in the Application Manifest, see [TPS_MANI_03148]. c
(RS_EM_00008)

• Support for recurring (e.g. cyclic) execution

For redundant execution, execution behaviour and its budget (activation timing,
computing time, computing resources) must be explicitly visible for Execution
Management. The activation behavior can be realized by the Execution Man-
agement together with the Communication Management as required by the
safety concept and specified in the manifests. Execution Management shall
provide an API to support recurring execution (wait_for_next_activation()

Details on wait_for_next_activation() see below.

• Data Determinism

49 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

For each execution of a given execution unit the calculated results only depend
on the input data and its initial internal state, and are reproducible, i.e. the same
input data always produce the same output data. In case of restart of one of a
set of redundant execution units, e.g. for error recovery, the internal states (i.e.
internal memory) need to be resynchronized. To do so, both redundant execution
units, i.e. processes, might need to be re-initialized.

Remark: common HAD algorithms use particle filters which require random num-
bers! Therefore random number seeds need to be considered part of the input
data.

• Support for multithreading

For Data Determinism, parallel “worker” threads within a process should satisfy
certain properties:

– avoid race conditions

– no exchange of data between worker threads (no communication)

– no locks and synchronization points except common joins for all worker
threads.

Other, more complex solutions might be possible, but they increase com-
plexity, reduce utilization, and are error-prone.

– worker threads can be executed in parallel or sequentially in any order be-
tween common joins (unrestricted interleaving)

– Deterministic pseudo random number generators

For the cyclic behaviour of the worker threads, the Execution Manage-
ment uses a deterministic and unique pseudo random number concept.
“Deterministic” means, that the provided random numbers are identical for
processes which are executed redundantly.

– Deterministic timestamps

Execution Management must return deterministic timestamps that rep-
resent the moment in time when the current cycle was activated and when
the next cycle will be activated. Subsequent calls inside a cycle will always
return the same value. The timestamps are identical for processes which
are executed redundantly.

Execution Management shall provide an API to access a deterministic thread-
pool, including “deterministic” input data (e.g. pseudo random number generator,
timestamps) to be used within the process execution cycle, including the worker
threads. If the number of required parallel worker threads exceeds the number of
threads in the deterministic thread-pool (number to be fixed at integration time),
Execution Management can use the threads of the pool several times sequen-
tially, which shall be transparent to the user of the thread-pool.

50 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

The thread-pool is triggered by the main-thread of the process in a sequential
order. There is no parallelism between the main-thread and the thread-pool.

A more generic thread-pool as part of a C++ library might be specified later as
part of the Operating System Interface.

7.8.2 Redundant Execution Example

Figure 7.10 shows an example for a possible lockstep architecture. Within a process,
all input data is available when execution starts.

Execution is triggered from outside the process by the Execution Management, de-
pending on received data or events. Details on how to configure services that will
trigger the execution will be provided in a later release.

The workload can be deployed to independent parallel threads, which are not allowed
to exchange any information while they are running, i.e. they don’t access data which
can be altered by other threads to avoid race conditions. The threads can physically
run in parallel or sequentially in any order. Execution Management will provide
additional input like random numbers and timestamps. At the end of the execution
cycle, the process waits for the next activation.

A second, redundant process gets the same input data and produces (in the absence of
errors) the same result, due to full deterministic execution. An independent infrastruc-
ture, which will for now not be specified by AUTOSAR, provides the same input data
for the redundant processes, triggers execution, and compares the results to detect
failures (e.g. transient core errors due to radiation) in one of the redundant processes.
This infrastructure layer can span over multiple hardware instances. Therefore, the in-
frastructure middleware will have to provide abstraction of the application deployment
on the actual hardware.

51 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Figure 7.10: Redundant Execution

Execution Management provides an API for synchronized start of the redundan-
t execution, and a deterministic thread-pool, including synchronized random number
generation and timestamps.

7.8.3 Redundant Execution Details

Please note that content of this chapter is preliminary and subject to change.
API extension: Cyclic behaviour and worker threads:

• A thread-pool class (DeterministicSubset) provides:

– cyclic deterministic timing

– middleware consistence (deterministic data consistency guaranteed on cy-
cle activation)

– deterministic worker thread-pool with deterministic pseudo random genera-
tion

– The thread-pool is modeled as part of the Execution Management to
guarantee the deterministic behavior that includes the incorporation in the
“wait_for_next_activation()”-cycle were the seeds for the pseudo random
generation are provided.

52 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

– The implementation and size of the thread-pool is hidden from the user. The
Integrator decides about the size and the implementation.

1 DeterministicSubset &deterministc_subset = DeterministicSubset::
get_cyclic_behaviour_and_workerthreads(int max_thread_cnt);

• Cyclic deterministic timing is achieved by an Execution Management con-
trolled main loop which is triggered from the outside via Communication Man-
agement (e.g. by external units, events generated due to the arrival of data or a
timer events. Details are not in the scope of AUTOSAR).

1 enum CycleCmd { RUN , INIT, SERVICEDISCOVERY, ABORT};

To be deterministic, the Application may not do service discovery on its own.
The Execution Management together with Communication Management
may initiate a service discovery so that in total it is deterministic

1 CycleCmd wait_for_next_activation();

this blocks and returns when the next cycle is activated by the Execution Man-
agement. All input data as received via Communication Management must
be guaranteed to be deterministically consistent.

• The deterministic thread-pool is used to process container elements, where each
container represents a job to be computed. (e.g. based on POSIX threads.) The
deterministic-distribution of the elements to individual workers is done automati-
cally by the class-library.

1 void workers_run_on_container(Worker myrunable_obj, Container &
container);

This processes all workload using the worker threads.

• Cycle timestamps
1 typedef [ARA timeformat (tbd)] ARATimeStamp;
2 ARATimeStamp get_current_activation_time();

This returns the timestamp that represents the moment in time when the current
cycle was activated. Subsequent calls inside a cycle will always return the same
value.

1 ARATimeStamp get_next_activation_time();

This returns the timestamp that represents the moment in time when the next
cycle will be activated. Subsequent calls inside a cycle will always return the
same value.

• Example worker thread runnable:
1 class MyWorker1 : public WorkerrunableBase<myContainer::

value_type, MyWorker1> {
2 public:
3 void worker_runable(myContainer::value_type &

container_element, WorkerThread &t) {

53 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

4 int random_number = t.random(); // get a unique and
deterministic pseudo-random number

5 }
6 };

• Worker-thread object:
1 class WorkerThread {
2 int random(); // returns a deterministic pseudo-random

number that is unique for each worker
3 ...
4 };

• Example:
1 // this waits for the next trigger from EM
2 while (DeterministicSubset::CycleCmd::ABORT != (cyc_cmd =

deterministc_subset.wait_for_next_activation())) {
3 if (DeterministicSubset::CycleCmd::INIT == cyc_cmd) {
4 // the runtime triggers an INIT to the of the APP, e.g. after

SOTA
5 do_init();
6 do_servicediscovery(); // Discover new services
7 } else if (DeterministicSubset::CycleCmd::SERVICEDISCOVERY ==

cyc_cmd) {
8 // the runtime is triggering service discovery, e.g. if a new

service is available or has disappeared
9 do_servicediscovery(); // Discover new services

10 }
11

12 if (do_update()) { // do all updates
13 auto l_samples = l_proxy->m_myEvent.Get(); // get data
14 auto l_topic = l_skeleton.m_myEvent.Allocate();
15 // prepare delivery
16 ...
17 do_something_with_data(l_topic, l_samples, test_container);
18

19 // do something with the data and e.g. prepare container for
parallel processing

20 MyWorker1 mw1; // get the worker runnable
21 deterministc_subset.workers_run_on_container(mw1, test_container

);
22

23 // process all container-elements using the workers. This will
return when all elements are processed

24 ...
25 l_skeleton.m_myEvent.Send(l_topic); // deliver data
26 }
27 }

• Worker-thread guidelines

Worker-threads must be deterministic

– There must not be any interaction between worker threads (e.g. no
Semaphores/Mutexes, no locking/blocking)

54 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Rationale: locking/blocking makes process runtime in-deterministic. Worker
threads are meant for utilisation of runtime. If synchronization is needed an
explicit join of all worker threads is necessary.

– The result of the concurrent processing with worker threads must be deter-
ministic

∗ Alternative 1:The processing of an individual worker thread must not be
influenced by any other worker thread

∗ Alternative 2: It must be guaranteed that, regardless of the scheduling
of the threads, all results, are invariant of the timing/scheduling

Rationale: Timing between individual threads is not guaranteed. The
Operating System is scheduling threads individually.

– Individual worker threads must not access data that is influenced by other
workers.

Rationale: concurrent influencing of the same data will result in indetermi-
nate results

55 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.9 Handling of Application Manifest

7.9.1 Overview

The Application Manifest is created at integration time by the system integra-
tor. It contains information provided by the Application developer, which has been
adapted to the Machine-specific environment, and additional attributes and other mod-
el elements.

An Application Manifest includes all information needed for deployment and in-
stallation of Application Executables onto an Adaptive Platform and execu-
tion of its instances (i.e. processes). The Execution Management is responsible for
parsing the content of the Application Manifests to perform integrity checks over
the available data, to determine Machine State, Function Group States and s-
tartup dependencies, and to configure the Operating System accordingly at startup of
the Executable instances.

For more information regarding the Application Manifest specification please
see [2].

To perform its necessary actions, the Execution Management imposes a number of
requirements on the content of the Application Manifest. This section serves as
a reference for those requirements.

7.9.2 Application Dependency

The required dependency information is provided by the Application developer. It
is adapted to the specific Machine environment at integration time and made available
in the Application Manifest.

The Execution Management parses the information and uses it to build the start-
up sequence to ensure that the required antecedent Executable instances have
reached a certain Application State before starting a dependent Executable in-
stance.

7.9.3 Application Arguments

The set of static arguments required by an Application Executable can either be
provided by the Application developer or specified at integration time. The integra-
tor then makes the arguments available in the Application Manifest for use by
Execution Management when starting the Application Executable process.

56 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.9.4 Machine State and Function Group State

[SWS_EM_01013] Machine State and Function Group State d The Execution
Management shall support the execution of specific instances of Application
Executables depending on the current Machine State and Function Group
States, based on information provided in the Application Manifests. c
(RS_EM_00101)

Each instance of an Application Executable is assigned to one or several startup
configurations (StartupConfig), which each can define the startup behaviour in one
or several Machine States and/or Function Group States. For details see [2].
By parsing this information from the Application Manifests, Execution Man-
agement can determine which processes need to be launched if a specific Machine
State or Function Group State is entered, and which startup parameters are
valid.

[SWS_EM_01033] Application start-up configuration d To enable an Applica-
tion Executable to be launched in multiple Machine States, Execution Man-
agement shall be able to configure the Application start-up on every Machine
State change based on information provided in the Application Manifest. c
(RS_EM_00010)

7.9.5 Scheduling Policy

[SWS_EM_01014] Scheduling policy d Execution Management shall support the
configuration of the scheduling policy when lauching an instance of an Application
Executable, based on information provided by the Application Manifest. c
(RS_EM_00002)

For the detailed definitions of these policies, refer to [6]. Note, SCHED_OTHER shal-
l be treated as non-realtime scheduling policy, and actual behavior of the policy is
implementation specific. It must not be assumed that the scheduling behavior is com-
patible between different Adaptive Platform implementations, except that it is a
non-realtime scheduling policy in a given implementation.

• [SWS_EM_01041] Scheduling FIFO d The Execution Management shall be
able to configure FIFO scheduling using policy SCHED_FIFO. c(RS_EM_00002)

• [SWS_EM_01042] Scheduling Round-Robin d The Execution Managemen-
t shall be able to configure round-robin scheduling using policy SCHED_RR. c
(RS_EM_00002)

• [SWS_EM_01043] Scheduling Other d The Execution Management shal-
l be able to configure non real-time scheduling using policy SCHED_OTHER. c
(RS_EM_00002)

57 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

7.9.6 Scheduling Priority

[SWS_EM_01015] Scheduling priority d Execution Management shall support the
configuration of a scheduling priority when lauching an instance of an Application
Executable, based on information provided by the Application Manifest. c
(RS_EM_00002)

The available priority range and actual meaning of the scheduling priority depends on
the selected scheduling policy.

[SWS_EM_01039] Scheduling priority range for SCHED_FIFO and SCHED_RR d
For SCHED_FIFO ([SWS_EM_01041]) and SCHED_RR ([SWS_EM_01042]), an integer
between 1 (lowest priority) and 32 (highest priority) shall be used. c(RS_EM_00002)

[SWS_EM_01040] Scheduling priority range for SCHED_OTHER d For the non real-
time policy SCHED_OTHER ([SWS_EM_01043]) the scheduling priority shall always be
zero. c(RS_EM_00002)

7.9.7 Application Binary Name

[SWS_EM_01017] Application Binary Name d The Execution Management shall
obtain the name of the Application Executable from the Application Mani-
fest. c(RS_EM_00012)

58 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

8 API specification

8.1 Type definitions

8.1.1 ApplicationState

Name: ApplicationState
Type: Scoped Enumeration of uint8_t
Range: kRunning 0 --

kTerminating 1 --
Syntax: enum class ApplicationState : uint8_t {

kRunning = 0,
kTerminating = 1
};

Header file: application_client.hpp
Description: Defines the states of an Application (see 7.5.2).

Table 8.1: ApplicationState

[SWS_EM_02000] ApplicationState Enumeration dTable 8.1 describes the enumer-
ation ApplicationState.c(RS_EM_00103)

8.1.2 ApplicationReturnType

Name: ApplicationReturnType
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kGeneralError 1 --
Syntax: enum class ApplicationReturnType : uint8_t {

kSuccess = 0,
kGeneralError = 1
};

Header file: application_client.hpp
Description: Defines the error codes for ApplicationClient operations.

Table 8.2: ApplicationReturnType

[SWS_EM_02070] ApplicationReturnType Enumeration dTable 8.2 describes the
enumeration ApplicationReturnType.c(RS_EM_00101)

8.1.3 StateReturnType

Name: StateReturnType
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kBusy 1 --
kGeneralError 2 --

59 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Syntax: enum class StateReturnType : uint8_t {
kSuccess = 0,
kBusy = 1,
kGeneralError = 2
};

Header file: state_client.hpp
Description: Defines the error codes for Machine State operations.

Table 8.3: StateReturnType

[SWS_EM_02005] StateReturnType Enumeration dTable 8.3 describes the enumer-
ation StateReturnType.c(RS_EM_00101)

8.1.4 RecoveryActionReturnType

Name: RecoveryActionReturnType
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kGeneralError 1 --
Syntax: enum class RecoveryActionReturnType : uint8_t {

kSuccess = 0,
kGeneralError = 1
};

Header file: not specified
Description: Defines the error codes for Recovery Action operations.

Table 8.4: RecoveryActionReturnType

Table 8.4 describes the enumeration RecoveryActionReturnType.

8.1.5 ResetCause

Name: ResetCause
Type: Scoped Enumeration of uint8_t
Range: kHardReset 0 This value identifies a "hard reset" condition which

simulates the power-on / start-up sequence
typically performed after a server has been
previously disconnected from its power supply (i.e.
battery).

kSoftReset 1 This value identifies a "soft reset" condition, which
causes the server to immediately restart the
application program if applicable.

kKeyOffOnreset 2 This value identifies a condition similar to the driver
turning the ignition key off and back on. This reset
condition should simulate a key-off-on sequence
(i.e. interrupting the switched power supply).

60 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

kRapidPowerShutdown 3 This subfunction applies to ECUs which are not
ignition powered but battery powered only.
Therefore a shutdown forces the sleep mode rather
than a power off. Sleep means power off but still
ready for wake-up (battery powered)

Syntax: enum class ResetCause : uint8_t {
kHardReset = 0,
kSoftReset = 1,
kKeyOffOnreset = 2,
kRapidPowerShutdown = 3
};

Header file: application_client.hpp
Description: Defines the reset cause used by diagnostic services.

Table 8.5: ResetCause

[SWS_EM_02041] ResetCause Enumeration dTable 8.5 describes the enumeration
ResetCause.c(RS_EM_00110)

8.2 Class definitions

8.2.1 ApplicationClient class

The Application State API provides the functionality for an Application to report its
state to the Execution Management.

[SWS_EM_02001] d The ApplicationClient class shall be declared in the
application_client.hpp header file. c(RS_EM_00103)

[SWS_EM_02071] d An application shall not create more than a single instance of the
ApplicationClient class. c(RS_EM_00103)

8.2.1.1 ApplicationClient::ApplicationClient

Service name: ApplicationClient::ApplicationClient
Syntax: ApplicationClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: Implementation spe-

cific
In case the underlying IPC mechanism fails.

Description: Creates an instance of ApplicationClient which opens the Execution
Managements communication channel (e.g. POSIX FIFO) for reporting
the application state. Each Application shall create an instance of
this class to report its state.

Table 8.6: ApplicationClient::ApplicationClient

61 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

[SWS_EM_02030] ApplicationClient::ApplicationClient API dTable 8.6 describes
the interface ApplicationClient::ApplicationClient.c(RS_EM_00103)

8.2.1.2 ApplicationClient::~ApplicationClient

Service name: ApplicationClient::~ApplicationClient
Syntax: ~ApplicationClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: ~ApplicationClient deletes the ApplicationClient instance.

Table 8.7: ApplicationClient::~ApplicationClient

[SWS_EM_02002] ApplicationClient::~ApplicationClient API dTable 8.7 describes
the interface ApplicationClient::~ApplicationClient.c(RS_EM_00103)

8.2.1.3 ApplicationClient::ReportApplicationState

Service name: ApplicationClient::ReportApplicationState
Syntax: ApplicationReturnType ReportApplicationState(

ApplicationState state
);

Sync/Async: Sync
Parameters (in): state Value of the Applications state
Parameters (inout): None
Parameters (out): None
Return value: kSuccess Retrieval operation succeeded.

kGeneralError GeneralError
Exceptions: None
Description: Interface for an Application to report the state to Execution Man-

agement.

Table 8.8: ApplicationClient::ReportApplicationState

[SWS_EM_02003] ApplicationClient::ReportApplicationState API dTable 8.8
describes the interface ApplicationClient::ReportApplicationState.c
(RS_EM_00103)

8.2.1.4 ApplicationClient::SetLastResetCause

Service name: ApplicationClient::SetLastResetCause

62 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Syntax: ApplicationReturnType SetLastResetCause(
ResetCause cause
);

Sync/Async: Sync
Parameters (in): cause The reset cause.
Parameters (inout): None
Parameters (out): None
Return value: kSuccess Set operation succeeded.

kGeneralError GeneralError
Exceptions: None
Description: Interface for an application set the last request cause.

Table 8.9: ApplicationClient::SetLastResetCause

[SWS_EM_02042] ApplicationClient::SetLastResetCause API dTable 8.9 describes
the interface ApplicationClient::SetLastResetCause.c(RS_EM_00110)

8.2.1.5 ApplicationClient::GetLastResetCause

Service name: ApplicationClient::GetLastResetCause
Syntax: ApplicationReturnType GetLastResetCause(

ResetCause& cause
);

Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): cause The reset cause.
Return value: kSuccess Retrieval operation succeeded.

kGeneralError GeneralError
Exceptions: None
Description: Interface for an application retrieve the last request cause.

Table 8.10: ApplicationClient::GetLastResetCause

[SWS_EM_02043] ApplicationClient::GetLastResetCause API dTable 8.10
describes the interface ApplicationClient::GetLastResetCause.c
(RS_EM_00110)

8.2.2 StateClient class

The StateClient class provides the functionality for an Application to request
a Machine State or a Function Group State switch or to retrieve the current
Machine State or a Function Group State from Execution Management.

The Application responsible for managing and controlling the states, State Man-
agement has to instantiate this class.

63 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Note on Platform internal APIs:
When State Management becomes an own functional cluster instead of a user-level ap-
plication, the APIs StateClient::GetState and StateClient::SetState are
platform internal APIs not exposed to user-level applications. Therefore they are shown
as examples how an implementation could look like. It shall then not be necessary that
a functional cluster implementation has to implement it exactly as defined in this spec-
ification.

[SWS_EM_02006] d The StateClient class shall be declared in the
state_client.hpp header file. c(RS_EM_00101)

8.2.2.1 StateClient::StateClient

Service name: StateClient::StateClient
Syntax: StateClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: Implementation spe-

cific
In case the underlying IPC mechanism fails.

Description: Creates an instance of StateClient which opens the Execution Man-
agements communication channel (e.g. POSIX FIFO) for retrieving or
requesting Machine States and/or Function Group States from/-
to Execution Management.

Table 8.11: StateClient::StateClient

[SWS_EM_02007] StateClient::StateClient API dTable 8.11 describes the interface
StateClient::StateClient.c(RS_EM_00101)

8.2.2.2 StateClient::~StateClient

Service name: StateClient::~StateClient
Syntax: ~StateClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: ~StateClient deletes the StateClient instance.

Table 8.12: StateClient::~StateClient

64 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

[SWS_EM_02008] StateClient::~StateClient API dTable 8.12 describes the interface
StateClient::~StateClient.c(RS_EM_00101)

8.2.2.3 StateClient::GetState

Service name: StateClient::GetState
Syntax: StateReturnType GetState(

std::string functionGroup,
std::string &state
);

Sync/Async: Sync
Parameters (in): functionGroup Name of the Function Group or the string "Ma-

chineState" to retrieve the current Machine S-
tate.

Parameters (inout): None
Parameters (out): state String containing the current Function Group S-

tate of the given Function Group or the current
Machine State of the given string "MachineState"
for the functionGroup argument. Empty string if
return value is different to kSuccess.

Return value: kSuccess Retrieval operation succeeded.
kBusy Execution Management is busy and cannot re-

spond.
kGeneralError GeneralError

Exceptions: None
Description: Retrieve the current State of a Function Group or Machine State

from the Execution Management.

Table 8.13: StateClient::GetState

[SWS_EM_02047] StateClient::GetState API dTable 8.13 describes the interface S-
tateClient::GetState.c(RS_EM_00101)

[SWS_EM_02072] Retrieving Machine State d When the value of the function-
Group argument is "MachineState", the API StateClient::GetState shall return
the current Machine State within the state argument.c(RS_EM_00101)

[SWS_EM_02044] Machine State change in progress d When Execution Man-
agement performs a Machine State change and the requested value of the
parameter functionGroup argument is "MachineState", the API StateClien-
t::GetState shall return kBusy. c(RS_EM_00101)

[SWS_EM_02073] Retrieving Function Group State d When the value of the
functionGroup argument is different from "MachineState", the API StateClien-
t::GetState shall return the current state of the given Function Group within the
state argument.c(RS_EM_00101)

[SWS_EM_02048] Function Group State change in progress d When Execution
Management performs a Function Group State change that is being requested

65 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

with the same Function Group as requested with parameter functionGroup, the
API StateClient::GetState shall return kBusy. c(RS_EM_00101)

[SWS_EM_02049] State change failed dWhen a Function Group State change
or Machine State change failed in the Execution Management, the API State-
Client::GetState shall return kGeneralError. c(RS_EM_00101)

[SWS_EM_02050] State change successful d When the Execution Management
successfully processed the request and is able to return the current Function Group
State or Machine State, the API StateClient::GetState shall return kSuc-
cess. c(RS_EM_00101)

8.2.2.4 StateClient::SetState

Service name: StateClient::SetState
Syntax: StateReturnType SetState(

std::string functionGroup,
std::string state
);

Sync/Async: Sync
Parameters (in): functionGroup Requested Function Group or the string "Ma-

chineState" to request a Machine State.
state State of the Function Group or Machine State

to set.
Parameters (inout): None
Parameters (out): None
Return value: kSuccess Set operation succeeded.

kBusy Execution Management is busy and cannot re-
spond.

kGeneralError GeneralError
Exceptions: None
Description: Requests a new Function Group State or Machine State at the

Execution Management.

Table 8.14: StateClient::SetState

[SWS_EM_02054] StateClient::SetState API dTable 8.14 describes the interface S-
tateClient::SetState.c(RS_EM_00101)

[SWS_EM_02074] Setting Machine State d When the value of the functionGroup
argument is "MachineState", the API StateClient::SetState shall set the Ma-
chine State to the value given by the state argument.c(RS_EM_00101)

[SWS_EM_02051] Machine State change in progress d When Execution Man-
agement performs a Machine State change and the requested value of the
parameter functionGroup argument is "MachineState", the API StateClien-
t::SetState shall return kBusy. c(RS_EM_00101)

[SWS_EM_02075] Setting Function Group State d When the value of the func-
tionGroup argument is different from "MachineState", the API StateClien-

66 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

t::SetState shall set the state of the given Function Group to the value given
by the state argument.c(RS_EM_00101)

[SWS_EM_02055] Function Group State change in progress d When Execution
Management performs Function Group State change that is being requested
with the same Function Group as requested with parameter functionGroup, the
API StateClient::SetState shall return kBusy. c(RS_EM_00101)

[SWS_EM_02056] State change failed d The API StateClient::SetState shall
return kGeneralError when other or unspecified errors occur. c(RS_EM_00101)

[SWS_EM_02057] State change successful dWhen Execution Management suc-
ceeds with the Function Group State or Machine State change request, the
API StateClient::SetState shall return kSuccess. c(RS_EM_00101)

67 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

8.2.3 RecoveryActionClient class

The RecoveryActionClient class provides the functionality for the Platform
Health Management to restart a Process or to force a switch to a specific Machine
State / Function Group State.

The Platform Health Management responsible for managing and controlling the
Recovery Actions, has to instantiate this class.

Note on Platform internal APIs: The APIs RecoveryActionClien-
t::RestartProcess and RecoveryActionClient::OverrideState are
platform internal APIs not exposed to user-level applications. Therefore they are
shown as examples how an implementation could look like. It shall not be necessary
that a functional cluster implementation has to implement it exactly as defined in this
specification.

8.2.3.1 RecoveryActionClient::RecoveryActionClient

Service name: RecoveryActionClient::RecoveryActionClient
Syntax: RecoveryActionClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: Implementation spe-

cific
In case the underlying IPC mechanism fails.

Description: Creates an instance of RecoveryActionClient which opens the Execu-
tion Managements communication channel (e.g. POSIX FIFO) to a
restart a Process or to force a switch to a specific Machine State /
Function Group State.

Table 8.15: RecoveryActionClient::RecoveryActionClient

8.2.3.2 RecoveryActionClient::~RecoveryActionClient

Service name: RecoveryActionClient::~RecoveryActionClient
Syntax: ~RecoveryActionClient();
Sync/Async: Sync
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: ~RecoveryActionClient deletes the RecoveryActionClient instance.

Table 8.16: RecoveryActionClient::~RecoveryActionClient

68 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

8.2.3.3 RecoveryActionClient::RestartProcess

Service name: RecoveryActionClient::RestartProcess
Syntax: RecoveryActionReturnType RestartProcess(

pid_t processId
);

Sync/Async: Sync
Parameters (in): processId ID of the Process that shall be restarted.
Parameters (inout): None
Parameters (out): None
Return value: kSuccess Retrieval operation succeeded.

kGeneralError GeneralError
Exceptions: None
Description: Interface for the Platform Health Management to request a Pro-

cess restart.

Table 8.17: RecoveryActionClient::RestartProcess

8.2.3.4 RecoveryActionClient::OverrideState

Service name: RecoveryActionClient::OverrideState
Syntax: RecoveryActionReturnType OverrideState(

std::string functionGroup,
std::string state
);

Sync/Async: Sync
Parameters (in): functionGroup Requested Function Group.

state State of the Function Group to set.
Parameters (inout): None
Parameters (out): None
Return value: kSuccess Retrieval operation succeeded.

kGeneralError GeneralError
Exceptions: None
Description: Interface for the Platform Health Management to override a Ma-

chine State or a Function Group State. Please note that a ter-
mination request that may be required to be send to an application,
should be delayed until this application report Running State.

Table 8.18: RecoveryActionClient::OverrideState

69 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

9 Service Interfaces

This chapter lists all provided and required service interfaces of the Execution Man-
agement.

9.1 Service Type definitions

9.1.1 State_StatusType

Name State_StatusType

Kind Struct
Description This data structure contains the Function Group State or Machine

State information.
Name Type Description
FunctionGroup std::string Name of the

Function Group or
the string
"MachineState" in
case of a Machine
State.

Members

State std::string String containing the
current Function
Group State of the
given Function
Group or the current
Machine State.

9.2 State Management Interface

9.2.1 Methods

Name RequestState

Description Requests a new Function Group State or Machine State.
Description Requested Function

Group or the string
"MachineState" to
request a Machine
State.

Type std::string

Parameters FunctionGroup

Direction IN

70 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Description New requested state of
the Function Group
or Machine State.

Type std::string

State

Direction IN

Name GetState

Description Retrieves the current state of a Function Group or Machine State.
Description Name of the Function

Group or the string
"MachineState" to
retrieve the current
Machine State.

Type std::string

Parameters FunctionGroup

Direction IN
Description String containing the

current Function
Group State of the
given Function Group
or the current Machine
State.

Type std::string

State

Direction OUT

9.2.2 Events

This service interface provides a notification event triggered by a state change.

Name StateChangeEvent

Description Notification about Function Group State or Machine State
changes. This event is triggered whenever a Function Group
State or Machine State change happens.

Type State_StatusType

71 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

A Not applicable requirements

[SWS_EM_NA] d These requirements are not applicable as they are not within the
scope of the 2017-10 release. c(RS_EM_00003, RS_EM_00004, RS_EM_00005,
RS_EM_00006, RS_EM_00007, RS_EM_00050, RS_EM_00051, RS_EM_00052,
RS_EM_00053)

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration CommandLineOptionKindEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This enum defines the different styles how the command line option appear in the

command line.

Tags: atp.Status=draft
Literal Description
command
LineLong
Form

Long form of command line option.

Example:

--version=1.0
--help

Tags: atp.EnumerationValue=1
command
LineShort
Form

Short form of command line option.

Example:

-v 1.0
-h

Tags: atp.EnumerationValue=0
command
LineSimple
Form

In this case the command line option does not have any formal structure. Just the
value is passed to the program.

Tags: atp.EnumerationValue=2

Table B.1: CommandLineOptionKindEnum

72 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined

in the meta-model.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable,

MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for

generating the source code representation of this
ModeDeclaration.

Table B.2: ModeDeclaration

Class ModeDependentStartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class defines the startup configuration for the process depending on a

collection of machine states.

Tags: atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
executionD
ependency

ExecutionDepe
ndency

* aggr This attribute defines that all processes that are
referenced via the ExecutionDependency shall be
launched and shall reach a certain
ApplicationState before the referencing process is
started.

Tags: atp.Status=draft
functionGr
oup

ModeDeclaratio
n

* iref This represent the applicable functionGroup.

Tags: atp.Status=draft
machineM
ode

ModeDeclaratio
n

* iref This represent the applicable machineMode.

Tags: atp.Status=draft
startupCon
fig

StartupConfig 1 ref Reference to a reusable startup configuration with
startup parameters.

Tags: atp.Status=draft

Table B.3: ModeDependentStartupConfig

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class provides information required to execute the referenced executable.

Tags: atp.Status=draft; atp.recommendedPackage=Processes
Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, Multilanguage

Referrable, PackageableElement, Referrable
Attribute Type Mul. Kind Note

73 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

application
ModeMach
ine

ModeDeclaratio
nGroupPrototyp
e

0..1 aggr Set of ApplicationStates (Modes) that are defined
for the process.

Tags: atp.Status=draft
executable Executable 0..1 ref Reference to executable that is executed in the

process.

Stereotypes: atpUriDef
Tags: atp.Status=draft

modeDepe
ndentStart
upConfig

ModeDependen
tStartupConfig

* aggr Applicable startup configurations.

Tags: atp.Status=draft

Table B.4: Process

Class StartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class represents a reusable startup configuration for processes..

Tags: atp.Status=draft
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
resourceGr
oup

ResourceGroup 1 ref Reference to applicable resource groups.

Tags: atp.Status=draft
scheduling
Policy

SchedulingPolic
yKindEnum

0..1 attr This attribute represents the ability to define the
scheduling policy for the initial thread of the
application.

scheduling
Priority

Integer 0..1 attr This is the scheduling priority requested by the
application itself.

startupOpti
on

StartupOption * aggr Applicable startup options

Tags: atp.Status=draft

Table B.5: StartupConfig

Class StartupOption
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Process
Note This meta-class represents a single startup option consisting of option name and an

optional argument.

Tags: atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
optionArgu
ment

String 0..1 attr This attribute defines option value.

optionKind CommandLineO
ptionKindEnum

1 attr This attribute specifies the style how the command
line options appear in the command line.

74 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-10

optionNam
e

String 0..1 attr This attribute defines option name.

Table B.6: StartupOption

75 of 75
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

	1 Introduction and functional overview
	1.1 What is Execution Management?
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Platform dependencies
	5.2 Other dependencies

	6 Requirements tracing
	7 Functional specification
	7.1 Technical Overview
	7.1.1 Application
	7.1.2 Adaptive Application
	7.1.3 Executable
	7.1.4 Process
	7.1.5 Application Manifest
	7.1.6 Machine Manifest
	7.1.7 Manifest format

	7.2 Execution Management Responsibilities
	7.3 Platform Lifecycle Management
	7.4 Application Lifecycle Management
	7.4.1 Process States
	7.4.2 Startup and shutdown
	7.4.3 Startup sequence
	7.4.3.1 Application dependency

	7.5 State Management
	7.5.1 Overview
	7.5.2 Application State
	7.5.3 Machine State
	7.5.3.1 Startup
	7.5.3.2 Shutdown
	7.5.3.3 Restart

	7.5.4 Function Group State
	7.5.5 State Management Architecture
	7.5.5.1 State Manager
	7.5.5.2 State Interaction

	7.5.6 State Change

	7.6 Application Recovery Actions
	7.6.1 Overview
	7.6.2 Recovery Actions Interfaces
	7.6.3 Integrated in the Execution Management

	7.7 Resources and Deterministic Execution
	7.7.1 Introduction
	7.7.1.1 Resource Configuration
	7.7.1.2 Resource Monitoring
	7.7.1.3 Deterministic Execution

	7.7.2 Resource configuration and monitoring
	7.7.2.1 CPU usage
	7.7.2.2 Memory Budget and Monitoring

	7.8 Deterministic Redundant Execution
	7.8.1 Redundant Execution Overview
	7.8.2 Redundant Execution Example
	7.8.3 Redundant Execution Details

	7.9 Handling of Application Manifest
	7.9.1 Overview
	7.9.2 Application Dependency
	7.9.3 Application Arguments
	7.9.4 Machine State and Function Group State
	7.9.5 Scheduling Policy
	7.9.6 Scheduling Priority
	7.9.7 Application Binary Name

	8 API specification
	8.1 Type definitions
	8.1.1 ApplicationState
	8.1.2 ApplicationReturnType
	8.1.3 StateReturnType
	8.1.4 RecoveryActionReturnType
	8.1.5 ResetCause

	8.2 Class definitions
	8.2.1 ApplicationClient class
	8.2.1.1 ApplicationClient::ApplicationClient
	8.2.1.2 ApplicationClient::~ApplicationClient
	8.2.1.3 ApplicationClient::ReportApplicationState
	8.2.1.4 ApplicationClient::SetLastResetCause
	8.2.1.5 ApplicationClient::GetLastResetCause

	8.2.2 StateClient class
	8.2.2.1 StateClient::StateClient
	8.2.2.2 StateClient::~StateClient
	8.2.2.3 StateClient::GetState
	8.2.2.4 StateClient::SetState

	8.2.3 RecoveryActionClient class
	8.2.3.1 RecoveryActionClient::RecoveryActionClient
	8.2.3.2 RecoveryActionClient::~RecoveryActionClient
	8.2.3.3 RecoveryActionClient::RestartProcess
	8.2.3.4 RecoveryActionClient::OverrideState

	9 Service Interfaces
	9.1 Service Type definitions
	9.1.1 State_StatusType

	9.2 State Management Interface
	9.2.1 Methods
	9.2.2 Events

	A Not applicable requirements
	B Mentioned Class Tables

