AUTO)SA R Specification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

Document Title Specification of Log and Trace

for Adaptive Platform

Document Owner

AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 853

Document Status

Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-10

Document Change History

Date

Release

Changed by Description

2017-10-27

17-10

AUTOSAR No content changes
Release
Management

2017-03-31

17-03

AUTOSAR Initial release
Release
Management

10of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR
and the companies that have contributed to it shall not be liable for any use of the
work.

The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

Table of Contents

wWw N -

30f 38

Introduction and functional OVEIVIEWcoooveiiiiiiie 4
Acronyms and abbreViatioNScoooeeiiiiiiiiiie e 5
Related doCUMENTALIONcoooeeiiieececeeee 6
3.1 INPUE AOCUMENTS ..ottt 6
3.2 Related SPeCIfiCatioN............coviuuiiiiii e 6
Constraints and aSSUMPLIONScviiiiiiiiiiiiiiiiii ittt 7
ot R I {1 11 = U1 PP 7
4.2 Applicability to car dOMaINScoevviiiiiiiiiiiiiiiiiiiieeee e 7
Dependencies to other Functional CIUSLErScoouviiiiiiiee e, 8
5.1 Platform dependencCiescccccviiiiiiiiiiiiiii e 8
ReEQUIrEMENTS traCiNgcceveiiiiiiiiie e e e e e e e e e e et e e e e e eeeeanes 9
Functional SPecCIfiCatioNcooeeeeie i 10
7.1 NECESSAIY PAraMELEISuiiitiieiiiiie it et e e e e e eeaas 10
7.2 Initialization of the Logging framework............cccoeoi 14
7.3 LOQ MESSAQES ..ovuniiiiiiiiiiie ittt e et e e et e e e eaan 16
A S o])Y/ =T €53 o] o 1 11 Tox 10 1SS URPPSR 19
Y] 01T 1 o7= 11 o] o 20
8.1 TYpPe defiNitiONS......ccoiiiiiiiiiiiiiiii 20
8.2 Function definitioNSccoeviiiiiiiiiiiee 21
8.3 ClasS defiNItiONS.......uuuiiiie e 28

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO SA R Specification of Log and Trace for Adaptive Platform
’ AUTOSAR AP Release 17-10

1 Introduction and functional overview

This specification specifies the functionality of the AUTOSAR Functional Cluster
Logging.

Adaptive Logging provides interfaces for applications to forward logging information
onto the communication bus, the console, or to the file system. Every of the provided
logging information has its own severity level.

For every severity level, a separate method is provided to be used by applications.
(this also includes e.g. ARA::COM)

In addition, utility methods are provided to convert decimal values into the
hexadecimal number system, or into the binary digit system.

To pack the provided logging information into a standardized delivering and
representation format, a protocol is needed. For this purpose, the DLT protocol can
be used which is standardized within the AUTOSAR consortium

The DLT protocol can add additional information like an ECU ID to the provided
logging information. This information can be used by a DLT Logging Client to relate,
sort, or filter the received logging frames.

Detailed information regarding the use cases and the DLT protocol itself are provided
by the [2] PRS DLT protocol Specification.

Adaptive Adpative
Application Application

Logging framework

Logging API
(Functional Cluster Logging)

Logging back-end

Logging CLient
(e.g. DLT Protocol) g9ing

Logging Protocol

Figure 1: Architecture overview

4 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

2 Acronyms and abbreviations

Abbreviation / Description:

Acronym:

DLT protocol Original name of the protocol itself (Diagnostic, Log and Trace)
Logging API The main logging interface towards user applications as a library

Logging back-end

Implementation of the Logging Protocol, e.g. DLT

Logging Client

An external tool which can remotely interact with the logging framework

Logging framework

Implementation of the software solution used for Logging purpose

Log message

Log message, including header(s)

Log severity level

Meta information about the severity of a passed logging information

PoD

Plain old data type supported natively by most platforms. Integers,
floats, chars, etc.

5o0f 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

3 Related documentation

3.1 Input documents

[1] AUTOSAR Requirements on Logging
AUTOSAR_RS Logging

[2] DLT protocol Specification
PRS_DLTProtocol

3.2 Related specification

N/A

6 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

4 Constraints and assumptions

4.1 Limitations

The provided C++ APl is designed to be independent from the underlying Logging
protocol back-end implementation.

4.2 Applicability to car domains

AUTOSAR Adaptive Log and Trace can be used for all car domains.

7 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

5 Dependencies to other Functional Clusters

There are no dependencies to other functional clusters.

5.1 Platform dependencies

This specification is part of the AUTOSAR Adaptive Platform and therefore depends
on it.

8 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

6 Requirements tracing

Requirement

Description

Satisfied by

RS_LOG_00001

Initialization and
registration

SWS_LOG_00001, SWS_LOG_00019, SWS_LOG_00040

RS_LOG_00002

Meta information
about Applications

SWS_LOG_00019, SWS_LOG_00040

RS_LOG_00003

Providing Logging

SWS_LOG_00004, SWS_LOG_00005, SWS_LOG_000086,

Information SWS_ LOG_00007, SWS_LOG_00008, SWS_LOG_00009,
SWS LOG_00017, SWS_LOG_00022, SWS_LOG_00023,
SWS LOG_00026, SWS_LOG_00027, SWS_LOG_00028,
SWS LOG_00029, SWS_LOG_00030, SWS_LOG_00032
RS _LOG_00004 | Grouping of SWS_ LOG_00002, SWS_LOG_00020, SWS_LOG_00024,
Logging SWS_LOG_00025, SWS_LOG_00041
Information.
RS_LOG_00005 |Logging SWS _LOG_00018
Information
targets

RS_LOG_00007

Provide raw buffer
content

SWS_LOG_00010, SWS_LOG_00039

RS_LOG_00008

Check the current
severity level

SWS_LOG_00003, SWS_LOG_00031

RS_LOG_00009

Conversion
functions for
hexadecimal and
binary values

SWS_LOG_00011, SWS_LOG_00015, SWS_LOG_00033,
SWS_LOG_00034, SWS_LOG_00035, SWS_LOG_00036,
SWS_LOG_00037, SWS_LOG_00038, SWS_LOG_00050,
SWS_LOG_00051, SWS_LOG_00052, SWS_LOG_00053,
SWS_LOG_00054, SWS_LOG_00055, SWS_LOG_00056,
SWS_LOG_00057, SWS_LOG_00058, SWS_LOG_00059,
SWS_LOG_00060

9 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

7 Functional specification

This functional cluster specifies the usage of the defined C++11 API for logging
purpose. Applications can use these functions to forward logging information to the
bus, or to forward the logging information to the console or to the file system.

To do so, the following functionalities are provided:

1) Methods for initializing the Logging framework (see chapter 7.1)

2) Methods to initiate log messages (see chapter 7.2)

3) Utility methods to convert decimal values into hex- or binary values (see
chapter 7.3)

7.1 Necessary parameters

The concept of identifying the user application:

In order to distinguish the logs from different applications within a system (e.g. an
ECU or even whole vehicle), every application in the system a particular ID and
optionally a description has to be assigned.

The concept of log contexts:

In order to distinguish the logs from different logical groups within an application,
every context within an application a particular ID and optionally a description has to
be assigned.

Every application can have an arbitrary amount of contexts, but at least one — the
default context.

A log context can be seen as a logger instance what is known from other on the
market available logging frameworks. E.g. Android logger etc.

The using application needs to configure the Logging framework once at early startup
with the following information:

- Application ID

- Application description

- The default log level

- The log mode

- The directory path

The using application can request contexts from the Logging framework, by providing
the following information:

- Context ID

- Context description

10 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

7.1.1 Application ID

The Application ID is an identifier which allows to associate generated logging
information with its user application. The Application ID is passed as a string value.
Depending on the Logging framework actual implementation, the length of the
Application ID might be limited. To be able to unambiguously associate the received
logging information to the origin, it is recommended to assign unique Application IDs
within the vehicle or at least within one ECU.

Note:
It is also recommended to assign unique IDs per application process, meaning if the
same application is started multiple times it shall have an own ID per instance.

7.1.2 Application description
Since the length of the Application ID can be quite short, optionally an additional

descriptive text can be provided. This Application description is passed as a string.
The max. length is implementation dependent.

11 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

7.1.3 Default Log Level

The Log Level represents the severity of the log messages. Severity levels are
defined in chapter 7.3.

Each initiated log message is qualified with such a severity level.

The default Log Level is set at initialization per Application ID.

The application log level acts as a reporting filter. Only log messages having a higher
severity level will be processed by the Logging framework, the rest is ignored.

The Default Log Level is the programmatically configured log reporting level for a
certain application.

The application wide log reporting level shall be adjustable during runtime. The
realization is implementation detail of the underlying back-end. E.g. remotely, via a
client (DLT). Same applies for the context reporting level.

Design rationale of providing a programmatically default log reporting level only
application wide vs. having them also more fine granular on context level:

- Simplifying the APl usage as much as needed.

- The more fine granular adjustments will be still possible during runtime.

7.1.4 Log Mode

Depending on the Logging framework implementation, the passed logging
information can be processed in different ways. The destination (the log message
sink) can be the console output, saved into a file on the file system, or sent over the
communication bus. Each of these destinations can be selected in parallel at the
same time.

How and if the Logging API and its underlying protocol back-end supports these
modes, is implementation detail.

7.1.5 File path

In case the file system mode is set as a destination directory path needs to be
provided. The actual file name will be generated by the Logging framework.

7.1.6 Context ID

The Context ID is an identifier, which is used to logically group logging information
within the scope of an user application. The Context ID is passed as a string value.
Depending on the Logging framework actual implementation, the length of the
Context ID might be limited. To be able unambiguously associate the received
logging information, it is recommended to assign unique Context IDs within each
Application.

12 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

Note:

Spend special attention to library components, which are meant to be used by
applications and therefore are running within the application's process scope. Logs
done out of those libraries will end-up inside the scope of the parent application. In
order to distinguish the internal library logs from the application logs or from other
library logs within same process, each library might need to reserve own Context IDs
system wide — at least when it's going to be used by more than one application.

7.1.7 Context description
Since the length of the Context ID can be quite short, optionally an additional

descriptive text can be provided. This Context description is passed as a string.
The maximum length of the Context description is implementation dependent.

13 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

7.2 Initialization of the Logging framework

Before logging information can be processed, the Logging framework needs to be
initialized, and the using application need to be registered. To do so, information
needs to be provided to the Logging framework like the Application ID and the log
mode.

The Application ID is used to identify and to associate the provided logging
information, whereas the log mode defines where the logging information is routed to.
Possible destinations are the console, the file system, or the communication bus.
These three destinations can also be used in combination at the same time.

Next to the registration of the applications at the Logging framework, also the so-
called “contexts” need to be registered. These contexts are used to logically cluster
logging information.

In addition to registration of the applications and the contexts, applications can verify
the current active severity (also known as log level). To spare CPU load and memory
consumption, this information can be used by the applications to avoid the generation
of logging information, which will be filtered out by the Logging framework later on

anyway.

[SWS_LOG_00001] [

All messages logged before the initialization of the Logging framework is done shall
be stored inside a ring-buffer with a limited size. That means, oldest entries are lost if
the buffer exceeds. The size of the buffer is implementation detail.

| (RS_LOG_00010)

[SWS_LOG_00002] [

In case of any errors occurring inside the Logging framework or underlying system, it
is intended to not bother the applications and silently discard the function calls. For
this purpose, the relevant interfaces (see chapter 8) do not specify return values nor
they throw exceptions.

| (RS_LOG_00010)

[SWS_LOG_00003] [

Before log messages can be processed, the InitLogging () function needs to be
called. This function initializes the Logging framework for the application with the
given properties.

| (RS_LOG_00001)

[SWS_LOG_00004] [
By calling InitLogging (), the following parameters need to be provided:
- Application ID
- Application description
- The default log level
- The log mode
- The directory path (opt. in case of LogMode::kFile)
| (RS_LOG_00001, RS_LOG_00002)

14 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

Note:
Depending on the Logging framework implementation not all of the features might be
supported, hence not all of the properties will be used.

[SWS_LOG_00005] [

Before log message can be processed, at least one logger context has to be
available. Calling function CreateLogger () will create a logger context instance
internally inside the Logging framework and returned as reference to the using
application. This strong ownership relationship of contexts to the Logging framework
ensure correct housekeeping of the involved resources. The design rationale behind
i, once a context was registered against the protocol back-end, its lifetime must be
ensured until the end of application's process. | (RS_LOG_00004)

[SWS_LOG_00006] |

By calling CreateLogger (), the following parameters need to be provided:
- The context ID
- The context description

| (RS_LOG_00004)

Note:
This information might be used by the used Logging framework.

[SWS_LOG_00007] [

Applications may want to check the actual configured reporting log level of certain
logger contexts before doing log data preparation that is runtime intensive. To check
if a desired log level is configured, the function IsLogEnabled () shall be called.
Doing this avoids the CPU and memory consuming preparation of logging
information, which will be filtered by the Logging framework later on anyway. |
(RS_LOG_00008)

15 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

7.3 Log Messages

The Adaptive Logging framework offers stream based API for message creation that
already supports all primitive data types (PoDs).

Design rationale for having insert stream based API vs. function-like solutions:

- Convenient usage for developers

- De-facto standard way of concatenating args in C++ or in other words,
passing data to objects

- Enables easy way of having a multi-line message builder

Performance remark:

C++ stream operators translates to normal function calls after compilation, it's just
another syntax, there is no difference compared to functions having a variadic
argument pack. Actually compilers does expand them in the same way.

To initiate log messages to the Logging framework, C++ interfaces are provided.
For every severity (also known as log level), a separate function call is foreseen.

The following severities are defined:

- Off (no logging)

- Fatal (Fatal error)

- Error (Error with impact to correct functionality)

- Warn (Warning if correct behavior cannot be ensured)
- Info (High level information)

- Debug (Detailed information for programmers)

- Verbose (Verbose debug message)

Note:
Off is not applicable for log message. This level can be used to set reporting level for
the Logging framework either programmatically in InitLogging() or during runtime.

Design rationale:
For having separate functions per log level vs. passing log level as parameter to a
generic function:

- Convenient usage of the API, less to type, clearer reading

- Technically no difference, just a shortcut

Each to be processed log message is represented as a stream object which is an
instances of the LogStream class.

By calling one of the Log*() functions, a temporary unnamed LogStream object will
be created with a scoped life time, that lasts until the end of the statement.

16 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

Design rationale for having temporary stream objects vs. some global-buffer-based
log solution (e.g. std::cout):

- Required destructor semantic to express end-of-statement

- End-of-statement expression is required to gain scoped resource access

- Guaranteed scoped access if required to ensure thread safety which enables
to log out messages concurrently and have them processed in one piece

- Convenient usage for developer due to the fact that he does not need to care
for resource-life-cycle (the stream object goes automatically out-of-scope)

Performance remark:

- Costs of constructor/destructor depends on their content and is
implementation detail of the Logging framework

- Costs of trivial constructor/destructor (e.g. empty ones) is cheap, actually
instantiating an object in C++ equals of instantiating a structin C

- Logger class API is designed to create a stack object of LogStream and
passes them back via RVO (return-value-optimization is C++11 ISO standard),
which results in a no-cost operation for the transition of a LogStream object
after a Log*() function call

Store LogStream objects in a variable:

It is also possible to use the API in an alternative way by storing a LogStream object
locally in some named variable. The difference to the temporary object is that it won't
go out of scope already at the end of the statement, but stays valid and re-usable as
long as the variable exists. Hence, it can be feed with data distributed over multiple
lines of code. To get the message buffer processed by the Logging framework, the
Flush() method needs to be called, otherwise the buffer will be processed when the
object dies — when the variable goes out of scope, at the end of the function block.

Performance remark:

Due to the fact that no longer a LogStream object is created per message, but rather
could be re-used for multiple messages, the costs for this object creation is paid only
once — per log level. How much this really influences the actual performance if
depending on the Logging framework implementation. However the main goal of this
alternative usage of the API is to get the multi-line builder functionality.

Note:

It is highly advised NOT to hold global LogStream objects in multi-threaded
applications, because then the developers need to take care for concurrent resource
access as it is no longer ensured by the Logging API.

17 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
i AUTOSAR AP Release 17-10

Usage examples:

// unnamed temporary LogStream object will process the arguments and dies
after ";"
LogInfo () << "some log information" << 123;

// locally stored LogStream object will process the arguments until either
Flush ()

// 1s called or it goes out of scope from the block is was created
LogStream logInfo = LogInfo();

logInfo << "some log information" << 123;

logInfo << "some other information";

logInfo.Flush{();

logInfo << "a new message.." << 456;

Exception safety:
All Log*() interfaces are designed to guarantee no-throw behavior. Actually this
applies for the whole Logging API.

[SWS_LOG_00008] [

To initiate a log message with the Log level Fatal, the APl LogFatal () shall be
called. This API returns LogStream object that has to be used by passing arguments
via the insert stream operator “<<”.| (RS_LOG_00003)

[SWS_LOG_00009] [

To initiate a log message with the Log level Error, the APl LogError () shall be
called. This API returns LogStream object that has to be used by passing arguments
via the insert stream operator “<<”.|

(RS_LOG_00003)

[SWS_LOG_00010] [

To initiate a log message with the Log level Warning, the API LogWarning () shall
be called. This API returns LogStream object that has to be used by passing
arguments via the insert stream operator “<<”.|

(RS_LOG_00003)

[SWS_LOG_00011] [

To initiate a log message with the Log level Info, the APl LogInfo () shall be
called. This API returns LogStream object that has to be used by passing arguments
via the insert stream operator “<<”.|

(RS_LOG_00003)

[SWS_LOG_00012] [

To initiate a log message with the Log level Debug, the API Logbebug () shall be
called. This API returns LogStream object that has to be used by passing arguments
via the insert stream operator “<<”.|

(RS_LOG_00003)

18 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

[SWS_LOG_00013] |

To initiate a log message with the Log level verbose, the API LogVerbose () shall
be called. This API returns LogStream object that has to be used by passing
arguments via the insert stream operator “<<”.|

(RS_LOG_00003)

[SWS_LOG_00014] [
To log raw data by providing a buffer, the APl RawBuffer () shall be called. |
(RS_LOG_00007)

7.4 Conversion functions

Sometimes it makes sense to represent integer numbers in hexadecimal- or binary
format instead of decimal format.

For this purpose, the following functions are defined to convert provided decimal
numbers into the hexadecimal or binary system.

[SWS_LOG_00015] [

In case a decimal number is converted into the hexadecimal or binary system, it shall
be converted into the two’s complement representation, whereas the most significant
bit shall be set to ‘1’ for negative numbers, and shall be set to ‘0’ for positive
numbers. | (RS_LOG_00009, RS _LOG_00010)

[SWS_LOG_00016] [
To convert an integer decimal number into a hexadecimal format, the function
HexFormat () shall be called. | (RS_LOG_00009)

[SWS_LOG_00017] [
To convert an integer decimal number into a binary format, the APl BinFormat ()
shall be called. | (RS_LOG_00010)

19 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

8 API specification

8.1 Type definitions

8.1.1 LogLevel

[SWS_LOG _00018] [
Name: LogLevel
Type: uint8_t
Range: kOff 0 | No logging.
kFatal 1 | Fatal error.
kError 2 | Error with impact to correct functionality.
kWarn 3 | Warning if correct behavior cannot be ensured.
kInfo 4 | Informational, high level understanding.
kDebug 5 | Detailed information for programmers.
kVerbose 6 | Extra-verbose debug messages.
Syntax: enum class LogLevel uint8 t {
kOff,
kFatal,
kError,
kWarn,
kInfo,
kDebug,
kVerbose
}i
Header file: | logcommon.hpp
Description: | List of possible severity levels.

| (RS_LOG_00003)

8.1.2 LogMode

[SWS_LOG_00019] [
Name: LogMode
Type: uint8_t
Range: kRemote 0x01 | Sent remotely.
kFile 0x02 | Save to file.
kConsole 0x04 | Forward to console.
Syntax: enum class LogMode uint8 t {
kRemote,
kFile,
kConole
}i
Header file: | logcommon.hpp
Description: | Log mode. Flags, used to configure the sink for log messages.
Note: In order to combine flags, at least the OR and AND operators needs to be
provided for this type.

| (RS_LOG_00005)

20 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.2 Function definitions

8.2.1 InitLogging

[SWS_LOG_00020] [

Service name: InitLogging

Syntax: void InitLogging (
std::string appld,
std::string appDescription,
LogLevel appDefloglevel,
LogMode logMode,
std::string directoryPath

) noexcept;

Parameters (in): appld The ID of the Application
appDescription Description of the Application
appDefLoglLevel The application's default log level
logMode The log mode(s) to be used
directoryPath The directory path for the file log mode

Parameters (inout): None

Parameters (out): None

Return value: None

Exceptions: None

Description: Initializes the logging framework for the application with given

properties. In case that in logMode the kFile flag is set, the directory
path needs to be provided as the. The actual file name will be
generated by the Logging framework.

Note: The call to InitLogging shall be done as early as possible inside
the program runnable (e.g. the main() function or some init function).

Usage:
int main(int argc, char* argv([])

{
InitLogging("ABCD", "This is the application known as ABCD",
LogLevel::kVerbose, LogMode::kRemote);

}

| (RS_LOG_00001, RS_LOG_00002)

8.2.2 CreatelLogger

[SWS LOG 00021] |

Service name: CreatelLogger

Syntax: Logger& Createlogger (std::string ctxId, std::string
ctxDescription) noexcept;

Parameters (in): ctxld The context ID
ctxDescription The description of the provided context ID

Parameters (inout): None

Parameters (out): None

Return value: Reference to the internal managed instance of a Logger object.
Ownership stays within the Logging framework.

Exceptions: None

Description: Creates a Logger object, holding the context which is registered in the
Logging framework.

| (RS_LOG_00004)

21 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1Logger.xhtml

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.2.3 HexFormat (uint8)

[SWS LOG 00022] conversion of a uint8 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex8 HexFormat (
uint8 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex8 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format.

| (RS_LOG_00009)

8.2.4 HexFormat (int8)

[SWS LOG 00023] conversion of an int8 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex8 HexFormat (
int8 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex8 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format. Negatives are
represented in 2's complement.

| (RS_LOG_00009)

8.2.5 HexFormat (uint16)

[SWS LOG 00024] conversion of a unitl6 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex16 HexFormat (
uintlé_t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex16 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format.

| (RS_LOG_00009)

22 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.2.6 HexFormat (int16)

[SWS LOG 00025] conversion of an intl6 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex16 HexFormat (
intlé_t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex16 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format. Negatives are
represented in 2's complement.

| (RS_LOG_00009)

8.2.7 HexFormat (uint32)

[SWS LOG 00026] conversion of a uint32 into a hexadecimal value |

Service name: HexFormat
Syntax: LogHex32 HexFormat (
uint32 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex32 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format.

| (RS_LOG_00009)

8.2.8 HexFormat (int32)

[SWS LOG 00027] conversion of an int32 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex32 HexFormat (
int32 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex32 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format. Negatives are
represented in 2's complement.

| (RS_LOG_00009)

23 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.2.9 HexFormat (uint64)

[SWS LOG 00028] conversion of a uint64 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex64 HexFormat (
uint64 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex64 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format.

| (RS_LOG_00009)

8.2.10 HexFormat (int64)

[SWS LOG 00029] conversion of an int64 into a hexadecimal value |

Service name:

HexFormat

Syntax: LogHex64 HexFormat (
int64 t value
) noexcept;
Parameters (in): value Decimal number to be converted into
hexadecimal number system
Parameters (inout): None
Parameters (out): None

Return value:

LogHex64 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in hexadecimal format. Negatives are
represented in 2's complement.

| (RS_LOG_00009)

8.2.11 BinFormat (uint8)

[SWS LOG 00030] conversion of a uint8 into a binary value |

Service name:

BinFormat

Syntax: LogBin8 BinFormat (
uint8 t value
) noexcept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None

Return value:

LogBin8 type that has a built-in stream handler.

Exceptions:

None

Description:

Logs decimal numbers in binary format.

| (RS_LOG_00010)

24 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUTO)SA R Specification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.2.12 BinFormat (int8)

[SWS LOG 00031] conversion of an int8 into a binary value |

Service name:

BinFormat

Syntax: LogBin8 BinFormat (
int8 t value
) nogxcept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin8 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format. Negatives are represented in

2's complement.

| (RS_LOG_00010)

8.2.13 BinFormat (uint16)

[SWS LOG _00032] conversion of a uintl6 into a binary value |

Service name:

BinFormat

Syntax: LogBinl6 BinFormat (
uintl6 t value
) noexgept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin16 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format.

| (RS_LOG_00010)

8.2.14 BinFormat (int16)

[SWS LOG 00033] conversion of an intl6 into a binary value |

Service name:

BinFormat

Syntax: LogBinl6 BinFormat (
intl6e t value
) noe;cept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin16 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format. Negatives are represented in

2's complement.

| (RS_LOG_00010)

25 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

8.2.15 BinFormat (uint32)

[SWS LOG 00034] conversion of a uint32 into a binary value |

Service name:

BinFormat

Syntax: LogBin32 BinFormat (
uint32 t value
) noexgept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin32 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format.

| (RS_LOG_00010)

8.2.16 BinFormat (int32)

[SWS LOG 00035] conversion of an int32 into a binary value |

Service name:

BinFormat

Syntax: LogBin32 BinFormat (
int32 t value
) noexcept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin32 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format. Negatives are represented in

2's complement.

| (RS_LOG_00010)

8.2.17 BinFormat (uint64)

[SWS LOG 00036] conversion of a uint64 into a binary value |

Service name:

BinFormat

Syntax: LogBin64 BinFormat (
uint64 t value
) noexgept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin64 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format.

| (RS_LOG_00010)

26 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

8.2.18 BinFormat (int64)

[SWS LOG 00037] conversion of an int64 into a binary value |

Service name:

BinFormat

Syntax: LogBin64 BinFormat (
int64 t value
) noegcept;
Parameters (in): value Decimal number to be converted into a binary
value
Parameters (inout): None
Parameters (out): None
Return value: LogBin64 type that has a built-in stream handler.
Exceptions: None
Description: Logs decimal numbers in binary format. Negatives are represented in

2's complement.

| (RS_LOG_00010)

8.2.19 RawBuffer

[SWS_LOG_00038] |

Service name:

RawBuffer

Syntax:

template <typename T>
LogRawBuffer RawBuffer (
const T& value

) noexcept;
Parameters (in): value |
Parameters (inout): None
Parameters (out): None

Return value:

LogRawBuffer type that has a built-in stream handler

Exceptions:

None

Description:

Logs raw binary data by providing a buffer

| (RS_LOG_00007)

27 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.3 Class definitions

8.3.1 Class LogStream

The Class LogStream represents a log message, allowing for insert stream operators
to be used for appending data.

Note:

Normally, using applications would not use this class directly, but use one of the log
methods provided in the main logging API instead. Those methods automatically
setup a temporary object of this class with the given log severity level. The only
reason to get in touch with this class directly is, if developers want to hold a
LogStream object longer than the default one-statement scope. This is useful in order
to create log messages that are distributed over multiple code lines. See Flush()
method for further information.

Once this temporary object gets out of scope, its destructor is taking care that the
message buffer is ready to be processed in the Logging framework.

8.3.1.1 Extending the Logging API to understand custom types

LogStream supports all of the PoDs natively. However, it can be easily extended
for new complex types by providing a stream operator that makes use of already
supported types.

Example:

struct MyCustomType {
int8 t foo;
std::string bar;
}i
LogStreamé& operator<<(LogStreamé& out, const MyCustomType& value) {
return (out << value.foo << value.bar);

}

LogDebug () << MyCustomType{42, "The answer is"};

28 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
i AUTOSAR AP Release 17-10

8.3.1.2 LogStream::Flush

[SWS_LOG_00039] [

Service name: LogStream::Flush

Syntax: void Flush ();

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: None

Exceptions: None

Description: Sends out the current log buffer and initiates a new message stream.

| (RS_LOG_00003)

Note:

Calling Flush() is only necessary if the LogStream object is going to be re-used
within the same scope. Otherwise, if the object goes out of scope (e.g. end of
function block), than flush operation will be anyway done internally by the destructor.

29 of 38 Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/group__logstream.xhtml%23ga5f1381ad08898c84202c3a7b3eb8e035
file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.3.1.3 Build-in operators for natively supported types:

[SWS_LOG_00040] [

Service name: bool handler

Syntax: LogStreamé& operator<<(bool value) noexcept
Parameters (in): bool value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_00041] [

Service name:

uint8_t handler

Syntax:

LogStreamé& operator<<(uint8 t value) noexcept

Parameters (in):

uint8_t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS LOG _00042] |

Service name:

uintl6_t handler

Syntax:

LogStream& operator<<(uintl6 t value) noexcept

Parameters (in):

uintl6 tvalue

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_00043] [

Service name:

uint32_t handler

Syntax:

LogStream& operator<<(uint32 t value) noexcept

Parameters (in):

uint32_t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

30 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

[SWS_LOG_00044] [

Service name:

uinté4_t handler

Syntax:

LogStream& operator<<(uint64 t value) noexcept

Parameters (in):

uint64 t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_00045] [

Service name:

int8_t handler

Syntax: LogStreamé& operator<<(int8 t value) noexcept
Parameters (in): int8 _t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_00046] [

Service name:

intl6_t handler

Syntax:

LogStream& operator<<(intlé6 t value) noexcept

Parameters (in):

intl6 tvalue

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_00047] [

Service name:

int32_t handler

Syntax:

LogStream& operator<<(int32 t value) noexcept

Parameters (in):

int32_t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)
[SWS_LOG_00048] [

Service name:

int64_t handler

Syntax:

LogStream& operator<<(int64 t value) noexcept

Parameters (in):

int64_t value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

310f 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

[SWS_LOG_00049] [

Service name:

float handler

Syntax: LogStreamé& operator<<(float value) noexcept
Parameters (in): float value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_0050] [

Service name:

double handler

Syntax: LogStreamé& operator<<(double value) noexcept
Parameters (in): double value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG_0051] [

Service name:

null-terminated char string handler

Syntax: LogStream& operator<<(const char* const value)
noexcept

Parameters (in): char* value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

[SWS_LOG _0052] [

Service name:

intl6_t handler

Syntax:

LogStreamé& operator<<(intl6 t value) noexcept

Parameters (in):

intl6 tvalue

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00003)

320f 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
i AUTOSAR AP Release 17-10

8.3.1.4 Build-in operators for conversion types:

[SWS_LOG_0053] [

Service name:

LogHex handler

Syntax:

LogStream& operator<<(const LogHex8& value)

noexcept

Parameters (in):

Reference to LogHex8 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS_LOG_0054] [

Service name:

LogHex16 handler

Syntax:

LogStream& operator<<(const LogHexl6& wvalue)
noexcept

Parameters (in):

Reference to LogHex16 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS_LOG_0055] [

Service name:

LogHex32 handler

Syntax:

LogStream& operator<<(const LogHex32& value)
noexcept

Parameters (in):

Reference to LogHex32 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS_LOG_0056] [

Service name:

LogHex64 handler

Syntax:

LogStream& operator<<(const LogHex64& value)
noexcept

Parameters (in):

Reference to LogHex64 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

33 0f 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform

[SWS_LOG_0057] [

AUTOSAR AP Release 17-10

Service name: LogBin8 handler

Syntax: LogStream& operator<<(const LogBin8& value) noexcept

Parameters (in): Reference to LogBin8 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS LOG 0058] [

Service name: LogBin16 handler

Syntax: LogStream& operator<<(const LogBinlé6& wvalue)
noexcept

Parameters (in): Reference to LogBinl6 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS LOG 0059] |

Service name: LogBin32 handler

Syntax: LogStream& operator<<(const LogBin32s value) noexcept

Parameters (in): Reference to LogBin32 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

[SWS LOG 0060] |

Service name: LogBin64 handler

Syntax: LogStream& operator<<(const LogBin64s value) noexcept

Parameters (in):

Reference to LogBin64 value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends given value to the internal message buffer.

| (RS_LOG_00009)

34 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.3.1.5 Build-in operators for extra types:

[SWS_LOG_0061] [

Service name:

LogRawBuffer handler

Syntax:

LogStreamé& operator<<(const LogRawBufferé& value)
noexcept

Parameters (in):

Reference to LogRawBuffer value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object
Exceptions: None

Description: Appends plain binary data into message buffer.

| (RS_LOG_00007)

[SWS_LOG_0062] [

Service name:

std::string handler

Syntax:

LogStream& operator<<(const std::string& value)
noexcept

Parameters (in):

Reference to std: :string value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object
Exceptions: None

Description: Appends STL string to message buffer.

| (RS_LOG_00003)

[SWS_LOG_0063] [

Service name:

LogLevel handler

Syntax:

LogStream& operator<<(LoglLevel value) noexcept

Parameters (in):

Reference to LogLevel value

Parameters (inout): None

Parameters (out): None

Return value: Reference to a LogStream object

Exceptions: None

Description: Appends LogLevel enum parameter as text into message.

| (RS_LOG_00003)

350f 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

AUT O S A R Srecification of Log and Trace for Adaptive Platform
) AUTOSAR AP Release 17-10

8.3.2 Class Logger

The Class Logger represents a LT logger context. LT defines so called contexts
which can be seen as logger instances within one application or process scope.

A context will be automatically registered against the LT back-end during creation

phase, as well as automatically deregistered during process shutdown phase. So the

end user does not care for the objects life time. To ensure such housekeeping
functionality, a strong ownership of the logger instances needs to be ensured

towards the Logging framework. That means, using applications are not supposed to

call the Logger constructor by themselves.

8.3.2.1 Logger::LogFatal

[SWS_LOG_00064] [

Service name:

Logger::LogFatal

Syntax: LogStream LogFatal () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Fatal

Exceptions: None

Description: Creates a LogStream object of Fatal severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

8.3.2.2 Logger::LogError

[SWS_LOG_00065] [

Service name:

Logger::LogError

Syntax: LogStream LogError () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Error

Exceptions: None

Description: Creates a LogStream object of Error severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

8.3.2.3 Logger::LogWarn

[SWS_LOG_00066] |

Service name:

Logger::LogWarn

Syntax: LogStream LogWarn () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Warn

Exceptions: None

Description: Creates a LogStream object of Warn severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

36 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml
file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml
file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml

AUTO)SA R Specification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

8.3.2.4 Logger::Loglnfo

[SWS LOG_00067] [

Service name:

Logger::Loglnfo

Syntax: LogStream LogInfo () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Info

Exceptions: None

Description: Creates a LogStream object of Info severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

8.3.2.5 Logger::LogDebug

[SWS _LOG_00068] [

Service name:

Logger::LogDebug

Syntax:

LogStream LogDebug () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Debug

Exceptions: None

Description: Creates a LogStream object of Debug severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

8.3.2.6 Logger::LogVerbose

[SWS_LOG_00069] [

Service name:

Logger::LogVerbose

Syntax:

LogStream LogVerbose () noexcept;

Parameters (in): None

Parameters (inout): None

Parameters (out): None

Return value: LogStream object of log level Verbose

Exceptions: None

Description: Creates a LogStream object of Verbose severity that has to be used by

passing arguments via the input stream operator "<<".

| (RS_LOG_00003)

37 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace

- AUTOSAR confidential -

file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml
file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml
file:///C:/ManfredZajicek/BMW/AdaptivePlatform/Logging/logging/doc/html/classbmw_1_1paads_1_1fs_1_1libs_1_1logging_1_1LogStream.xhtml

AUT O S A R Srecification of Log and Trace for Adaptive Platform

AUTOSAR AP Release 17-10

8.3.2.7 Logger::IsLogEnabled

[SWS_LOG_00070] [

Service name:

Logger::IsLogEnabled

Syntax: bool IsLogEnabled (
LogLevel logLevel
) noexcept;
Parameters (in): logLevel
Parameters (inout): None
Parameters (out): None

Return value:

True if desired log level satisfies the configured reporting level,
otherwise False.

Exceptions:

None

Description:

The Application can check if the current configured log will pass
desired log level.

| (RS_LOG_00008)

38 of 38

Document ID 853: AUTOSAR_SWS_AdaptiveLogAndTrace
- AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other Functional Clusters
	5.1 Platform dependencies

	6 Requirements tracing
	7 Functional specification
	7.1 Necessary parameters
	7.1.1 Application ID
	7.1.2 Application description
	7.1.3 Default Log Level
	7.1.4 Log Mode
	7.1.5 File path
	7.1.6 Context ID
	7.1.7 Context description

	7.2 Initialization of the Logging framework
	7.3 Log Messages
	7.4 Conversion functions

	8 API specification
	8.1 Type definitions
	8.1.1 LogLevel
	8.1.2 LogMode

	8.2 Function definitions
	8.2.1 InitLogging
	8.2.2 CreateLogger
	8.2.3 HexFormat (uint8)
	8.2.4 HexFormat (int8)
	8.2.5 HexFormat (uint16)
	8.2.6 HexFormat (int16)
	8.2.7 HexFormat (uint32)
	8.2.8 HexFormat (int32)
	8.2.9 HexFormat (uint64)
	8.2.10 HexFormat (int64)
	8.2.11 BinFormat (uint8)
	8.2.12 BinFormat (int8)
	8.2.13 BinFormat (uint16)
	8.2.14 BinFormat (int16)
	8.2.15 BinFormat (uint32)
	8.2.16 BinFormat (int32)
	8.2.17 BinFormat (uint64)
	8.2.18 BinFormat (int64)
	8.2.19 RawBuffer

	8.3 Class definitions
	8.3.1 Class LogStream
	8.3.1.1 Extending the Logging API to understand custom types
	8.3.1.2 LogStream::Flush
	8.3.1.3 Build-in operators for natively supported types:
	8.3.1.4 Build-in operators for conversion types:
	8.3.1.5 Build-in operators for extra types:
	8.3.2 Class Logger
	8.3.2.1 Logger::LogFatal
	8.3.2.2 Logger::LogError
	8.3.2.3 Logger::LogWarn
	8.3.2.4 Logger::LogInfo
	8.3.2.5 Logger::LogDebug
	8.3.2.6 Logger::LogVerbose
	8.3.2.7 Logger::IsLogEnabled

