AUTOSAR

Document Title

Specification of Crypto Interface

for Adaptive Platform

Document Owner

AUTOSAR

Document Responsibility AUTOSAR
Document Identification No 883
Document Status Final

Part of AUTOSAR Standard

Adaptive Platform

Part of Standard Release

17-10

Document Change History

Date Release | Changed by Description
AUTOSAR

2017-10-27 | 17-10 Release e Initial release
Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTOSAR

Table of Contents

—

Introduction and functional overview
2 Acronyms and Abbreviations

3 Related documentation

3.1 Inputdocuments
3.2 Related standardsandnorms
3.3 Related specification o L0

4 Constraints and assumptions

41 Limitations
4.2 Applicabilitytocardomains oL

5 Dependencies to other functional clusters
6 Requirements Tracing

7 Functional specification

7.1 Architecturalconcepts
7.2 Integration of Adaptive Application and Crypto Stack
7.2.1 Processisolation.
7.2.2 Hardware isolation
7.3 Supported algorithms oo

8 API specification
8.1 C++languagebindingo

8.1.1 APl Headerfiles
8.1.1.1 CryptoNeed headerfiles
8.1.1.2 Common headerfiles

8.1.2 APl Reference
8.1.2.1 Common APl
8.1.2.2 CryptoNeed APl,

8.2 Client Server Interfaces
A Mentioned Class Tables

B Span

N

(63}

0 NN N OO0 O

13

13
14
14
14
15

17

17
17
18
18
20
20
31
32

45
47

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Adaptive Crypto Stack as part of the functional cluster Security Manage-
ment of the AUTOSAR Adaptive Platform.

The Crypto Stack offers applications a standardized interface to cryptographic oper-
ations. The Crypto Stack realizes the APls and manages actual implementations of
operations, as well as management functionality handling configuration and brokering.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Crypto Stack
module that are not included in the AUTOSAR glossary [1].

Abbreviation / Acronym: Description:

HSM Hardware Security Module
TPM Trusted Platform Module

IPC Inter-Process Communication

AUTOSAR

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_TR_Glossary

[2] Requirements on Security Management for Adaptive Platform
AUTOSAR_RS_SecurityManagement

[3] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

3.2 Related standards and norms

See chapter 3.1.

3.3 Related specification

See chapter 3.1.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality that was available
in the AUTOSAR Classic Platform:

e Secure Counter
There is currently no API available to access secure counter primitives that an
implementation may provide.

The following functionality is required but not worked out currently:

e Asynchronous interface
Currently there is only a synchronous API specification and asynchronous behav-
ior must be implemented by the client.

e Memory management
An asynchronous interface requires a specification for managing memory and
access to memory (e.g. shared state for std: : shared_ptr or std: : future).
Currently this has to be addressed by the client.

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other functional clusters

There are currently no dependencies to other functional clusters.

AUTOSAR

6 Requirements Tracing

The following tables reference the requirements specified in [2] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[RS_CRYPTO_02001] No description [SWS_CRYPTO_01233]
[SWS_CRYPTO_01234]
[SWS_CRYPTO_01235]
[SWS_CRYPTO_01236]
[SWS_CRYPTO_01237]
[SWS_CRYPTO_01238]
[SWS_CRYPTO_01239]
[SWS_CRYPTO_01240]
[SWS_CRYPTO_01241]
[SWS_CRYPTO_01242]
[SWS_CRYPTO_01243]
[RS_CRYPTO_02002] No description [SWS_CRYPTO_01233]
[SWS_CRYPTO_01234]
[SWS_CRYPTO_01235]
[SWS_CRYPTO_01236]
[SWS_CRYPTO_01237]
[SWS_CRYPTO_01238]
[SWS_CRYPTO_01239]
[SWS_CRYPTO_01240]
[SWS_CRYPTO_01241]
[SWS_CRYPTO_01242]
[SWS_CRYPTO_01243]
[RS_CRYPTO_02101] No description [SWS_CRYPTO_01109]
[SWS_CRYPTO_01242]
[SWS_CRYPTO_01244]
[RS_CRYPTO_02102] No description [SWS_CRYPTO_01235]
[SWS_CRYPTO_01238]
[SWS_CRYPTO_01239]
[SWS_CRYPTO_01241]
[SWS_CRYPTO_01242]
[SWS_CRYPTO_01245]
[SWS_CRYPTO_01246]
[RS_CRYPTO_02103] No description [SWS_CRYPTO_01110]
[SWS_CRYPTO_01248]
[SWS_CRYPTO_01249]
[RS_CRYPTO_02104] No description [SWS_CRYPTO_01111]
[SWS_CRYPTO_01250]
[SWS_CRYPTO_01251]
[SWS_CRYPTO_01252]
[RS_CRYPTO_02105] No description [SWS_CRYPTO_01109]
[SWS_CRYPTO_01242]
[SWS_CRYPTO_01246]
[SWS_CRYPTO_01247]

AUTOSAR

Requirement

Description

Satisfied by

[RS_CRYPTO_02201

1 No description

[SWS_CRYPTO_01103]
[SWS_CRYPTO_01104]
[SWS_CRYPTO_01203]
[SWS_CRYPTO_01204]
[SWS_CRYPTO_01205]
[SWS_CRYPTO_01206]
[SWS_CRYPTO_01207]

[RS_CRYPTO_02202

1 No description

[SWS_CRYPTO_01103]
[SWS_CRYPTO_01104]
[SWS_CRYPTO_01203]
[SWS_CRYPTO_01204]
[SWS_CRYPTO_01205]
[SWS_CRYPTO_01206]
[SWS_CRYPTO_01207]

[RS_CRYPTO_02203

1 No description

[SWS_CRYPTO_01104]
[SWS_CRYPTO_01105]
[SWS_CRYPTO_01106]
[SWS_CRYPTO_01217]
[SWS_CRYPTO 01218]
[SWS_CRYPTO 01219]
[SWS_CRYPTO_01220]
[SWS_CRYPTO_01221]
[SWS_CRYPTO_01222]
[SWS_CRYPTO_01223]
[SWS_CRYPTO 01225]
[SWS_CRYPTO_01226]
[SWS_CRYPTO_01227]
[SWS_CRYPTO_01228]

[RS_CRYPTO_02204

1 No description

[SWS_CRYPTO_01104]
[SWS_CRYPTO_01105]
[SWS_CRYPTO_01106]
[SWS_CRYPTO 01217]
[SWS_CRYPTO_01218]
[SWS_CRYPTO 01219]
[SWS_CRYPTO_01220]
[SWS_CRYPTO 01221]
[SWS_CRYPTO _01222]
[SWS_CRYPTO 01223]
[SWS_CRYPTO_01225]
[SWS_CRYPTO_01226]
[SWS_CRYPTO_01227]
[SWS_CRYPTO_01228]

[RS_CRYPTO_02205

1 No description

[SWS_CRYPTO 01107]
[SWS_CRYPTO_01211]
[SWS_CRYPTO 01212]
[SWS_CRYPTO_01213]
[SWS_CRYPTO 01214]
[SWS_CRYPTO 01215]
[SWS_CRYPTO 01216]

[RS_CRYPTO_02206

1 No description

[SWS_CRYPTO_01108]
[SWS_CRYPTO 01229]
[SWS_CRYPTO_01230]
[SWS_CRYPTO_01231]

AUTOSAR

Requirement

Description

Satisfied by

[RS_CRYPTO_02207

1 No description

[SWS_CRYPTO_01103]
[SWS_CRYPTO_01104]
[SWS_CRYPTO_01203]
[SWS_CRYPTO_01204]
[SWS_CRYPTO_01205]
[SWS_CRYPTO_01206]
[SWS_CRYPTO_01207]

[RS_CRYPTO_02301

1 No description

[SWS_CRYPTO_00001]
[SWS_CRYPTO_00002]
[SWS_CRYPTO_01001]
[SWS_CRYPTO_01101]
[SWS_CRYPTO_01102]
[SWS_CRYPTO_01103]
[SWS_CRYPTO_01104]
[SWS_CRYPTO _01105]
[SWS_CRYPTO_01106]
[SWS_CRYPTO_01107]
[SWS_CRYPTO_01108]
[SWS_CRYPTO_01109]
[SWS_CRYPTO 01110]
[SWS_CRYPTO_01111]
[SWS_CRYPTO_01112]
[SWS_CRYPTO_01114]
[SWS_CRYPTO_01201]
[SWS_CRYPTO_01202]
[SWS_CRYPTO_01301]
[SWS_CRYPTO 01302]

[RS_CRYPTO_02302

1 No description

[SWS_CRYPTO_01204]
[SWS_CRYPTO_01205]
[SWS_CRYPTO_01206]
[SWS_CRYPTO 01213]
[SWS_CRYPTO_01214]
[SWS_CRYPTO_01215]
[SWS_CRYPTO_01218]
[SWS_CRYPTO 01219]
[SWS_CRYPTO_01220]
[SWS_CRYPTO_01225]
[SWS_CRYPTO_01226]
[SWS_CRYPTO_01227]

[RS_CRYPTO_02401

1 No description

[SWS_CRYPTO_01208]
[SWS_CRYPTO_01209]
[SWS_CRYPTO_01210]
[SWS_CRYPTO_01303]
[SWS_CRYPTO_01304]
[SWS_CRYPTO_01305]
[SWS_CRYPTO_01306]
[SWS_CRYPTO_01307]
[SWS_CRYPTO_01308]
[SWS_CRYPTO_01309]
[SWS_CRYPTO_01310]
[SWS_CRYPTO_01311]

[RS_CRYPTO_02402

1 No description

[SWS_CRYPTO_01232]

[RS_CRYPTO_02403

1 No description

[SWS_CRYPTO_01243]

AUTOSAR

Requirement

Description

Satisfied by

[RS_CRYPTO_02404

1 No description

[SWS_CRYPTO_01236]
[SWS_CRYPTO_01240]
[SWS_CRYPTO_01245]
[SWS_CRYPTO_01246]

AUTOSAR

7 Functional specification

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Security Management (SEC) for AUTOSAR Adaptive
is such a functional cluster and is part of “AUTOSAR Runtime for Adaptive Applica-
tions” - ARA. The functional cluster consists of multiple modules. The Crypto Stack is
a module of this functional cluster that offers interfaces to Adaptive applications. It is
responsible for the construction and supervision of cryptographic primitives.

The Crypto Stack provides the infrastructure to access multiple implementations of
cryptographic algorithms through a standardized interface.

This specification includes the syntax of the API, the relationship of the API to the
model and describes semantics. The specification does not pose constraints on the
internal architecture and implementation of the Crypto Stack.

7.1 Architectural concepts

The Crypto Stack of AUTOSAR Adaptive can be logically divided into the following
parts:

e Language binding
e Drivers
e Crypto Stack management software
There are several types of interfaces available in the context of the Crypto Stack:

e Public Interface
Part of the AUTOSAR Adaptive APl and specified in this document. This is the
standardized ara::sec::crypto API.

e Protected Interface
Used for interaction between functional clusters. This may be a custom API but it
can also re-use the Public Interface.

e Private Interface
Used for interaction within the module. These interfaces are not described in the
specification and are implementation-specific.

For the design of the ARA API the following constraints apply:

e Support the independence of application software components from a specific
platform implementation

e Make the API as lean as possible, no specific use cases are supported which
could also be layered on top of the API

AUTOSAR

e Offer a “comfort layer” to enable the use of C++11/14 features
e Support the integration into safety relevant systems
Therefore the API of the Crypto Stack follows a specific set of design decisions:
e |t uses a pure virtual API to access different algorithms through a unified interface
¢ lts API has zero-copy capabilities delegating memory management to the caller

e A “comfort layer” provides functionality like asynchronous operation and memory
management

7.2 Integration of Adaptive Application and Crypto Stack

The Adaptive Application should not have direct access to keys wihtin its own process.
Therefore the Crypto Stack has to support features for isolating Adaptive Applications
from the Crypto Stack implementation. The following separation mechanisms are en-
visioned:

1. Process isolation
2. Hardware isolation

The two mechanisms will be outlined briefly below.

7.2.1 Process isolation

The integrator of this specification may choose to isolate the cryptographic algo-
rithm implementation from the Adaptive Applications by means of separating
them into two different processes. The Crypto Stack implementation shall provide
ClientServerInterfaces according to the modeled CryptoJobs. The connection
between the two pieces of software is implicitly made by the mapping of CryptoNeed
onto CryptoJob. The communication interface is described by the ClientServer-
Interface. The interface visible to the Adaptive Application developeris spec-
ified in section 8.1.2.1. The actual IPC protocol is specific per platform implementation.

7.2.2 Hardware isolation

The integrator of this specification may choose to isolate the cryptographic algorithm
implementation from the Adaptive Applications by means of separating them
using a hardware mechanism (e.g. HSM, TPM). The Crypto Stack implementation shall
provide CryptoJobs that are implemented in the selected hardware. The connection
between the software and hardware is made by the mapping of CryptoNeed onto
CryptoJobs that can be identifier in the hardware or its driver. The interface visible

AUTOSAR

to the Adaptive Application developer is specified in section 8.1.2.1. The actual
implementation of the driver is specific per platform implementation.

7.3 Supported algorithms

At least the following cryptographic algorithms or primitives should be supported by the
Crypto Stack:

e Random Number Generation
— Deterministic Random Number Generator (DRNG)
— True Random Number Generator (TRNG)

Symmetric Encryption
- AES
« Key Length: 128 and 256 bits
* Modes: CBC, GCM, CCM

Asymmetric Encryption/Decryption and Signature Handling
- RSA
« Key Length: 2048, 3072 and 4096 bits
x Padding: PKCS#1 v2.2
— Curve25519/Ed25519
— NIST curves P256, P384 and P521 / ECDSA
Hash
- SHA-2
x Length: 256, 384 and 512 bits
— SHA-3
« Length: 256, 384 and 512 bits
e MAC
- CMAC
- GMAC
- HMAC

Key Exchange

— Diffie-Hellman

AUTOSAR

— ECDH
The Crypto Stack may support handling the following cryptographic objects:
e Certificate Management
— Handling of X.509 Certificates
— Im/Export in DER format
— Creation of CSRs

AUTOSAR

8 API specification

The API supports a streaming interface and a single call interface. Selected interfaces
therefore provide the following methods:

e Start

e Update
e Finish
® Process

The start method resets the internal states of the algorithm to begin processing
chunks of data. The Update method updates the internal state of the algorithm by pro-
cessing the given chunk of data and, if feasible, returning a transformed data chunk.
The Finish method concludes the operation cycle of the algorithm by returning the
final transformation.

The Process method can be used if all data is available at once and shall be pro-
cessed in a single call. The Process method may internally call Start, Update and
Finish.

8.1 C++ language binding
8.1.1 API Header files

This chapter describes the header files of the ara::sec::crypto API. The input for the
header files are AUTOSAR Adaptive meta model classes within the CryptoNeed de-
scription, as defined in the AUTOSAR Manifest Specification [3].

The following requirements are applicable for all header files.

[SWS_CRYPTO_00001] No memory allocation in header files | The header files
shall not contain code that creates objects on the heap. | (RS_CRYPTO_02301)

[SWS_CRYPTO_00002] Folder structure [The CryptoNeed header files de-
fined by [SWS_CRYPTO_01001] and the Common header file defined by

[SWS_CRYPTO 01101], [SWS_CRYPTO 01103], [SWS_CRYPTO_01104],
[SWS_CRYPTO 01105], [SWS_CRYPTO 01106], [SWS_CRYPTO_01107],
[SWS_CRYPTO 01108], [SWS_CRYPTO 01109], [SWS_CRYPTO_01110],

[SWS_CRYPTO 01111], [SWS_CRYPTO 01112] and [SWS CRYPTO 01113]
shall be located within the folder:

<folder>/

where:
<folder> is the start folder for the ara::sec::crypto header files specific for a project
or platform vendor. |(RS_CRYPTO _02301)

AUTOSAR

8.1.1.1 CryptoNeed header files

The CryptoNeed header files are the central definitions of the ara::sec::crypto API that
are required to perform cryptographic operations.

[SWS_CRYPTO_01001] CryptoNeed header files existence | The Crypto Stack
shall provide one CryptoNeed header file for each CryptoNeed defined in the model-
ing and mapped onto the Adaptive Application’s PortPrototype’s. The file name for
the CryptoNeed header file shall be <name>_cryptoneed.h, where <name> is the
CryptoNeed.shortName converted to lower-case letters. |(RS_CRYPTO_02301)

8.1.1.2 Common header files

The Common header files are central definitions of the ara::sec API that are required
to describe the API of the Crypto Stack.

[SWS_CRYPTO_01101] Existence of Span header file | The Crypto Stack shall pro-
vide the Common header file span . h. The file shall be located in the start folder for the
ara::sec header files specific for a project or platform vendor. |(RS_CRYPTO_02301)

The span defines a container class that has non-owning properties while still offering
the benefits of iterators and size information. The APl is shown in the appendix’ section
B.

[SWS_CRYPTO_01102] An ara::sec::Span header file shall be provided by the im-
plementation | The Crypto Stack shall provide a ara: : sec: : Span implementation in
the Common header file defined in [SWS_CRYPTO_01101]. |(RS_CRYPTO_02301)

The Crypto Stack supports standardized access to selected primitives. The standard-
ized access is ensured by the definition of pure virtual C++ interfaces as part of the
Common header files. The API for these interfaces is shown in section 8.1.2.

[SWS_CRYPTO_01103] A cipher interface header file shall be provided by the im-
plementation [The Crypto Stack shall provide the Common header file cipher .h.
The file shall be located in the start folder for the ara::sec::crypto header files spe-
cific for a project or platform vendor. |(RS_CRYPTO_02301, RS_CRYPTO_02201,
RS_CRYPTO_02202, RS _CRYPTO_02207)

[SWS_CRYPTO 01104] A cipher parameters interface header file shall be
provided by the implementation | The Crypto Stack shall provide the Com-
mon header file cipher_parameters.h. The file shall be located in the
start folder for the ara:sec:crypto header files specific for a project or plat-
form vendor. |(RS_CRYPTO_02301, RS_CRYPTO 02201, RS _CRYPTO_02202,
RS _CRYPTO 02207, RS CRYPTO 02203, RS CRYPTO_02204)

[SWS_CRYPTO_01105] A signer interface header file shall be provided by the im-
plementation [The Crypto Stack shall provide the Common header file signer.h.
The file shall be located in the start folder for the ara::sec::crypto header files spe-

AUTOSAR

cific for a project or platform vendor. |(RS_CRYPTO_02301, RS_CRYPTO_02203,
RS CRYPTO 02204)

[SWS_CRYPTO_01106] A verifier interface header file shall be provided by the
implementation | The Crypto Stack shall provide the Common header file veri-
fier.h. The file shall be located in the start folder for the ara::sec::crypto header files
specific for a project or platform vendor. | (RS_CRYPTO_02301, RS_CRYPTO_02203,
RS _CRYPTO _02204)

[SWS_CRYPTO_01107] A hash interface header file shall be provided by the im-
plementation | The Crypto Stack shall provide the Common header file hash.h. The
file shall be located in the start folder for the ara::sec::crypto header files specific for a
project or platform vendor. |(RS_CRYPTO_02301, RS_CRYPTO_02205)

[SWS_CRYPTO_01108] A random number generation interface header file shall
be provided by the implementation | The Crypto Stack shall provide the Com-
mon header file random.h. The file shall be located in the start folder for
the ara:sec::icrypto header files specific for a project or platform vendor. |
(RS_CRYPTO_02301, RS_CRYPTO_02206)

[SWS_CRYPTO _01109] A key management interface header file shall be pro-
vided by the implementation | The Crypto Stack shall provide the Common
header file key_management.h. The file shall be located in the start folder
for the ara::isec:crypto header files specific for a project or platform vendor. |
(RS_CRYPTO_02301, RS_CRYPTO _ 02105, RS_CRYPTO _02101)

[SWS_CRYPTO _01110] A key derivation interface header file shall be pro-
vided by the implementation | The Crypto Stack shall provide the Common
header file key_derivation.h. The file shall be located in the start folder
for the ara:sec::icrypto header files specific for a project or platform vendor. |
(RS_CRYPTO _ 02301, RS_CRYPTO _02103)

[SWS_CRYPTO_01111] A key exchange interface header file shall be provided
by the implementation | The Crypto Stack shall provide the Common header file
key_exchange.h. The file shall be located in the start folder for the ara::sec::crypto
header files specific for a project or platform vendor. |(RS_CRYPTO 02301,
RS _CRYPTO 02104)

[SWS_CRYPTO_01112] A key interface header file shall be provided by the im-
plementation [The Crypto Stack shall provide the Common header file key .h. The
file shall be located in the start folder for the ara::sec::crypto header files specific for a
project or platform vendor. |(RS_CRYPTO_02301)

[SWS_CRYPTO_01113] A keyed primitive interface header file shall be pro-
vided by the implementation | The Crypto Stack shall provide the Common header
file keyed_primitive.h. The file shall be located in the start folder for the
ara::sec::crypto header files specific for a project or platform vendor. |()

AUTOSAR

[SWS_CRYPTO_01114] Every header file shall include the ara::sec::Span header
file | The Common header files shall include the Common header file defined in
[SWS_CRYPTO_01101]:

1 #include "ara/sec/span.h"

|(RS_CRYPTO_02301)

8.1.2 API Reference
8.1.2.1 Common API

The Common header files have a static interface that is described in the Common API.

8.1.2.1.1 KeyedPrimitive interface

[SWS_CRYPTO_01201] Keyed primitive interface | The Crypto Stack shall provide
a pure virtual interface for KeyedPrimitive located in the header file defined in
[SWS_CRYPTO_01113] in the namespace ara: :sec: :crypto.

1 class KeyedPrimitive

|(RS_CRYPTO_02301)

[SWS_CRYPTO_01202] GetKey method | The Crypto Stack shall provide a method
to retrieve a representation of a key associated with a primitive for the KeyedPrimi-
tive interface.

1 virtual Key consté& GetKey () const = 0;
|(RS_CRYPTO _02301)

The returned Key should not contain raw key data but should be a proxy to query
information about the key or to use it in another primitive.

8.1.2.1.2 Cipher interface

[SWS_CRYPTO_01203] Cipher interface | The Crypto Stack shall provide an inter-
face for Cipher derived from KeyedPrimitive located in the header file defined in
[SWS_CRYPTO_01103] in the namespace ara: :sec: :crypto.

1 class Cipher : public KeyedPrimitive
|(RS_CRYPTO 02201, RS_CRYPTO_02202, RS_CRYPTO_02207)

The Ccipher interface is employed for encrypting and decrypting data. The transfor-
mation may be done by a symmetric or asymmetric algorithm. The Cipher interface

AUTOSAR

supports a single call interface via the Process method or a streaming interface via
the start, Update and Finish methods.

[SWS_CRYPTO_01204] Start method | The Crypto Stack shall provide a method to
start an operation cycle of the cipher. The start methods accepts an optional argument
of the type CipherParameters to initialize the cipher if required.

1 virtual void Start (CipherParameters* parameters) = 0;

|(RS_CRYPTO_02201, RS CRYPTO 02202, RS _CRYPTO 02207,
RS _CRYPTO _02302) [SWS_CRYPTO_01205] Update method | The Crypto
Stack shall provide a method to update an operation cycle of the cipher. The method
allows transforming an arbitrary chunk of data by supplying the untransformed data in
the input variable and the transformed data will be supplied in the output variable.

1 virtual wvoid Update (ara::sec::Span<const uint8_t> input, ara::sec::Span
<uint8_t> output) = 0;

|(RS_CRYPTO 02201, RS _CRYPTO_ 02202, RS _CRYPTO 02207,
RS _CRYPTO_02302)

[SWS_CRYPTO_01206] Finish method [The Crypto Stack shall provide a method to
finish an operation cycle of the cipher. The method closes the operation of the cipher
and may return final bytes from the cipher operation in the variable output.

1 virtual wvoid Finish(ara::sec::Span<uint8_t> output) = 0;

|(RS_CRYPTO 02201, RS _CRYPTO_ 02202, RS _CRYPTO 02207,
RS _CRYPTO _02302)

[SWS_CRYPTO_01207] Process method | The Crypto Stack shall provide a method
to perform an operation cycle of the cipher in a single call. The Process method uses

the same parameters with identical semantics as described for the streaming interface
in [SWS_CRYPTO_01204], [SWS_CRYPTO_01205] and [SWS_CRYPTO_01206].

1 virtual wvoid Process (CipherParameters* parameters, ara::sec::Span<const
uint8_t> input, ara::sec::Span<uint8_t> output) = 0;

|(RS_CRYPTO 02201, RS _CRYPTO 02202, RS_CRYPTO_02207)

8.1.2.1.3 CipherParameters interface

[SWS_CRYPTO_01208] CipherParameters interface [The Crypto Stack shall pro-
vide an interface for CipherParameters located in the header file defined in
[SWS_CRYPTO_01104] in the namespace ara: :sec: :crypto.

1 class CipherParameters

|(RS_CRYPTO_02401)

AUTOSAR

[SWS_CRYPTO_01209] GetFlags method | The Crypto Stack shall provide a method
to query the flags for optimizing the algorithms operation. The returned value may be
used by the implementation to select implementation strategies.

1 virtual AlgorithmFlags GetFlags () const = 0;

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01210] GetNoncelV method | The Crypto Stack shall provide a
method to retrieve a nonce or initialization vector for an algorithm to use.

1 virtual ara::sec::Span<uint8_t> consté& GetNonceIV () const = 0;

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01232] AlgorithmFlags enumeration | The Crypto Stack shall pro-
vide an enumeration of algorithm flags. The following flags shall be supported:

enum class AlgorithmFlags

1
2 {
3 None,
4 Latency,
5 Background
6 };
The AlgorithmFlags values’ semantics are described in table 8.1. |
(RS_CRYPTO_02402)
AlgorithmFlag Explanation
None No optimization preferences.
Latency Optimize for latency.
Background Optimize for processing in the background.

Table 8.1: AlgorithmFlags

8.1.2.1.4 Hash interface

[SWS_CRYPTO_01211] Hash interface | The Crypto Stack shall provide an interface
for Hash located in the header file defined in [SWS_CRYPTO_01107] in the name-
space ara::sec::crypto.

1 class Hash

|(RS_CRYPTO_02205)

[SWS_CRYPTO_01212] GetDigestSize method | The Crypto Stack shall provide a
method to query the size of the produced digest. The size shall be returned in bytes.

1 virtual AlgorithmFlags GetFlags () const = 0;

|(RS_CRYPTO_02205)

AUTOSAR

[SWS_CRYPTO_01213] Start method | The Crypto Stack shall provide a method to
start an operation cycle of the hash.

1 virtual wvoid Start () = 0;

|(RS_CRYPTO_02205, RS_CRYPTO_02302)

[SWS_CRYPTO_01214] Update method | The Crypto Stack shall provide a method
to update an operation cycle of the hash. The method allows transforming an arbitrary
chunk of data by supplying the untransformed data in the input variable.

1 virtual void Update (ara::sec::Span<const uint8_t> input) = 0;

|(RS_CRYPTO_02205, RS _CRYPTO_02302)

[SWS_CRYPTO_01215] Finish method | The Crypto Stack shall provide a method to
finish an operation cycle of the hash. The method closes the operation of the hash and
return the digest in the variable digest.

1 virtual void Finish(ara::sec::Span<uint8_t> digest) = 0;

|(RS_CRYPTO_02205, RS_CRYPTO_02302)

[SWS_CRYPTO_01216] Process method | The Crypto Stack shall provide a method
to perform an operation cycle of the hash in a single call. The Process method uses
the same parameters with identical semantics as described for the streaming interface
in [SWS_CRYPTO_01214] and [SWS_CRYPTO_01215].

1 virtual void Process(ara::sec::Span<const uint8_t> input, ara::sec::
Span<uint8_t> digest) = 0;

|(RS_CRYPTO_02205)

8.1.2.1.5 Signer interface

[SWS_CRYPTO_01217] Signer interface [The Crypto Stack shall provide an inter-
face for signer derived from KeyedPrimitive located in the header file defined in
[SWS_CRYPTO_01105] in the namespace ara: :sec: :crypto.

1 class Signer : public KeyedPrimitive

|(RS_CRYPTO_02203, RS_CRYPTO_02204)

The signer interface is employed for signing data. The signature may be created
using symmetric or asymmetric algorithms. The Signer interface supports a single
call interface via the Process method or a streaming interface via the Start, Update
and Finish methods.

[SWS_CRYPTO_01222] GetTagSize method | The Crypto Stack shall provide a
method to query the size of the produced signature. The size shall be reported in
bytes.

1 virtual std::size_t GetTagSize() const = 0;

AUTOSAR

|(RS_CRYPTO_02203, RS_CRYPTO_02204)

[SWS_CRYPTO_01218] Start method | The Crypto Stack shall provide a method to
start an operation cycle of the signer. The start methods accepts an optional argument
of the type CipherParameters to initialize the signer if required.

1 virtual void Start (CipherParameters* parameters) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204, RS _CRYPTO _02302)
[SWS_CRYPTO_01219] Update method | The Crypto Stack shall provide a
method to update an operation cycle of the signer. The method allows transforming an
arbitrary chunk of data by supplying the untransformed data in the input variable.

1 virtual void Update (ara::sec::Span<const uint8_t> input) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204, RS_CRYPTO_02302)

[SWS_CRYPTO_01220] Finish method | The Crypto Stack shall provide a method to
finish an operation cycle of the signer. The method closes the operation of the signer
and returns the signature bytes in the variable output.

1 virtual wvoid Finish(ara::sec::Span<uint8_t> output) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204, RS_CRYPTO_02302)

[SWS_CRYPTO_01221] Process method | The Crypto Stack shall provide a method
to perform an operation cycle of the cipher in a single call. The Process method uses
the same parameters with identical semantics as described for the streaming interface
in [SWS_CRYPTO_01218], [SWS_CRYPTO_01219] and [SWS_CRYPTO_01220].

1 virtual void Process (CipherParametersx parameters, ara::sec::Span<const
uint8_t> input, ara::sec::Span<uint8_t> output) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204)

8.1.2.1.6 Verifier interface

[SWS_CRYPTO_01223] Verifier interface | The Crypto Stack shall provide an inter-
face for verifier derived from KeyedPrimitive located in the header file defined
in [SWS_CRYPTO_01106] in the namespace ara: :sec: :crypto.

1 class Verifier : public KeyedPrimitive

|(RS_CRYPTO_02203, RS_CRYPTO _02204)

The verifier interface is employed for verifying the authenticity data. The signature
may be created using symmetric or asymmetric algorithms. The verifier interface
supports a single call interface via the Process method or a streaming interface via
the start, Update and Finish methods.

[SWS_CRYPTO_01225] Start method | The Crypto Stack shall provide a method to
start an operation cycle of the verifier. The start methods accepts an optional argument
of the type CipherParameters to initialize the verifier if required.

AUTOSAR

1 virtual void Start (CipherParameters* parameters) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204, RS_CRYPTO _02302)
[SWS_CRYPTO_01226] Update method | The Crypto Stack shall provide a
method to update an operation cycle of the verifier. The method allows transforming
an arbitrary chunk of data by supplying the untransformed data in the input variable.

1 virtual void Update (ara::sec::Span<const uint8_t> input) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO 02204, RS _CRYPTO_02302)

[SWS_CRYPTO_01227] Finish method | The Crypto Stack shall provide a method
to finish an operation cycle of the verifier. The method closes the operation of the ver-
ifier and performs the verification. The original authenticator is given in the variable
authenticator and will be compared against the computed one. The optional ar-
gument length describes the amount of leftmost bits that shall be considered in the
comparison, it is therefore given in bits. If its not present the entire authenticator is
relevant.

If the relevant bits of the given authenticator match the computed authenticator
true is returned, false otherwise.

1 virtual bool Finish(ara::sec::Span<const uint8_t> authenticator, std::
size_t length = 0) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204, RS_CRYPTO_02302)

[SWS_CRYPTO_01228] Process method | The Crypto Stack shall provide a method
to perform an operation cycle of the cipher in a single call. The Process method
uses the same parameters with identical semantics and the same return val-
ues semantics as described for the streaming interface in [SWS_CRYPTO_01225],
[SWS_CRYPTO_01226] and [SWS_CRYPTO_01227].

1 virtual bool Process (CipherParameters* parameters, ara::sec::Span<const
uint8_t> input, ara::sec::Span<const uint8_t> authenticator, std::
size_t length = 0) = 0;

|(RS_CRYPTO_02203, RS_CRYPTO_02204)

8.1.2.1.7 Random number generation interface

[SWS_CRYPTO_01229] Random interface | The Crypto Stack shall provide an in-
terface for Random located in the header file defined in [SWS_CRYPTO_01108] in the
namespace ara: :sec: :crypto.

1 class Random

|(RS_CRYPTO_02206)

[SWS_CRYPTO_01230] Seed method | The Crypto Stack shall provide a method to
add additional random data to increase entropy of the random number generator. The
additional entropy can be provided in the variable input.

AUTOSAR

1 virtual void Seed(ara::sec::Span consté& input);

|(RS_CRYPTO_02206)

[SWS_CRYPTO_01231] Generate method | The Crypto Stack shall provide a method
to generate random data. The random data will be place in the variable output.

1 virtual void Generate(ara::sec::Span<uint8_t> output) = 0;

|(RS_CRYPTO_02206)

8.1.2.1.8 Key interface

[SWS_CRYPTO_01233] Key interface | The Crypto Stack shall provide an interface
for Key located in the header file defined in [SWS_CRYPTO_01112] in the namespace
ara::sec::crypto.

1 class Key

|(RS_CRYPTO_02001, RS_CRYPTO_02002)

[SWS_CRYPTO_01234] Getld method | The Crypto Stack shall provide a method to
query the unique identification of the key.

1 virtual uint32_t GetId() const = 0;

|(RS_CRYPTO_02001, RS_CRYPTO_02002)

[SWS_CRYPTO_01235] GetUsage method | The Crypto Stack shall provide a
method to query the allowed usages of the key. See table 8.2 for more details.

1 virtual KeyUsage GetUsage () const = 0;

|(RS_CRYPTO_02001, RS_CRYPTO_02002, RS_CRYPTO_02102)

[SWS_CRYPTO_01236] GetProtection method | The Crypto Stack shall provide a
method to query the protection flags of the key. See table 8.3 for more details.

1 virtual KeyProtection GetProtection() const = 0;

|(RS_CRYPTO_02001, RS_CRYPTO_02002, RS_CRYPTO_02404)

[SWS_CRYPTO_01237] GetSize method | The Crypto Stack shall provide a method
to query the size of the key. The size shall be returned in bits.

1 virtual std::size_t GetSize() const = 0;

|(RS_CRYPTO_02001, RS_CRYPTO_02002)

[SWS_CRYPTO_01238] GetType method | The Crypto Stack shall provide a method
to query the type of the key. See table 8.4 for more details.

1 virtual KeyType GetType() const = 0;

AUTOSAR

|(RS_CRYPTO_02001, RS_CRYPTO_02002, RS_CRYPTO_02102)

[SWS_CRYPTO_01239] KeyUsage enumeration | The Crypto Stack shall provide an
enumeration of key usage flags. The following flags shall be supported:

1
2
3
4
5
6
7
8
9

#define CKI_BIT (n) (1 << (n))

enum class KeyUsage : uint32_t

{
Encrypt
Decrypt =
Sign =
Verify =
Exchange =
Derive =
Provision =
Migration =

}i

CKI_BIT
CKI_BIT
CKI_BIT
CKI_BIT
CKI_BIT
CKI_BIT
CKI_BIT

) 14
) 4
) 14
) 14
) 14
) 14
) 4
CKI_BIT(8)

(1
(2
(3
(4
(5
(6
(7
(8

The KeyUsage values’ semantics are described in table 8.2. |(RS_CRYPTO_02001,
RS CRYPTO 02002, RS CRYPTO 02102)

KeyUsage Explanation

Encrypt The key may be used for encryption.

Decrypt The key may be used for decryption.

Sign The key may be used for signing.

Verify The key may be used for verification.

Exchange The key may be used for key exchange.

Derive The key may be used as a base key for deriving
other keys.

Provision The key may be used for unwrapping keys during
key provisioning.

Migration The key may be used for exporting keys for migra-
tion.

Table 8.2: AlgorithmFlags

[SWS_CRYPTO_01240] KeyProtection enumeration | The Crypto Stack shall pro-
vide an enumeration of key protection flags. The following flags shall be supported:

1
2
3
4
5
6
7
8
9

(RS_

#idefine CKI_BIT(n) (1 << (n))

enum class KeyProtection : uint8_t

{

External = CKI_BIT(1),
Exportable = CKI_BIT(2),
Importable = CKI_BIT(3),
Unprotected = CKI_BIT (4)
bi
KeyProtection values’ semantics are described in table 8.3. |

CRYPTO 02001, RS_CRYPTO 02002, RS_CRYPTO_02404)

| KeyProtection | Explanation \

AUTOSAR

[SWS_CRYPTO_01241] KeyType enumeration | The Crypto Stack shall provide an

External The key may be stored externally (e.g. outside of
the HSM).

Exportable The key may be exported.

Importable The key may be imported.

Unprotected The key may be handled without protection (i.e.
plaintext).

Table 8.3: KeyProtection

enumeration of key type flags. The following flags shall be supported:

1
2
3
4
5
6
7
8
9

The KeyType values’ semantics are described in table 8.4. |(RS_CRYPTO_02001,

enum class KeyType

{

}i

Symmetric,
RSA,

DH,
Ecc_NISTp256,
Ecc_NISTp384,
Ecc_NISTpb521,
Ecc_Ed25519,
Ecc_X25519,
Ecc_Ed448,
Ecc_X448

: uint8_t

RS _CRYPTO_02002, RS_CRYPTO_02102)

KeyType Explanation

Symmetric The key is usable for symmetric algorithms.
RSA The key is usable for RSA operations.

DH The key is usable for key exchange.

Ecc_NISTp256

The key is usable for elliptic curve cryptography.

Ecc_NISTp384

The key is usable for elliptic curve cryptography.

Ecc_NISTp521

The key is usable for elliptic curve cryptography.

Ecc_Ed25519

The key is usable for elliptic curve cryptography.

Ecc_X25519 The key is usable for elliptic curve cryptography.
Ecc_Ed448 The key is usable for elliptic curve cryptography.
Ecc_X448 The key is usable for elliptic curve cryptography.

Table 8.4: KeyType

8.1.2.1.9 KeyManagement interface

[SWS_CRYPTO_01242] KeyManagement interface | The Crypto Stack shall pro-
vide an interface for KeyManagement located in the header file defined in

[SWS_CRYPTO_01109] in the namespace ara: :sec: :crypto.

1

class KeyManagement

AUTOSAR

|(RS_CRYPTO_02001, RS _CRYPTO_02002, RS_CRYPTO_ 02101,
RS_CRYPTO_ 02102, RS_CRYPTO_02105)

[SWS_CRYPTO_01243] GetKey method | The Crypto Stack shall provide a method
to query a Key interface by its identifier.

1 virtual Key const& GetKey (uint32_t id) = 0;

|(RS_CRYPTO_02403, RS_CRYPTO_02001, RS_CRYPTO_02002)

[SWS_CRYPTO_01244] Generate method | The Crypto Stack shall provide a method
to generate data into a key. The key to generate data into is identified by the parameter
targetKey. Optionally a random number generator to be used can be specified in the
parameter random.

1 virtual void Generate (Key consté& targetKey, Randomx random = nullptr) =
0;

|(RS_CRYPTO _02101)

[SWS_CRYPTO_01245] Verify method | The Crypto Stack shall provide a method to
verify the validity of raw key data for a specific key. The key to verify the data for is
identified by the parameter key. The data to be used for verification is supplied in the
parameter data.

1 virtual bool Verify (Key const& key, ara::sec::Span const& data) const =
0;

|(RS_CRYPTO_02102, RS_CRYPTO_02404)

[SWS_CRYPTO_01246] Import method | The Crypto Stack shall provide a method to
import a key. The key to import the data for is identified by the parameter targetKey.
The key to use for decrypting the protected key data is identified by the parameter
provisioningKey. The protected data is supplied in the parameter data.

1 virtual void Import (Key consté& targetKey, Key const& provisioningKey,
ara::sec::Span consté& data);

|(RS_CRYPTO_02102, RS_CRYPTO_02404, RS_CRYPTO_02105)

[SWS_CRYPTO_01247] Export method | The Crypto Stack shall provide a method to
export a key. The key to export the data from is identified by the parameter sourceKey.
The key to use for ecnrypting the protected key data is identified by the parameter
migrationKey. The protected data is supplied in the output parameter data.

1 virtual wvoid Export (Key consté& sourceKey, Key const& migrationKey, ara
::sec::Span& data);

|(RS_CRYPTO_02105)

AUTOSAR

8.1.2.1.10 KeyDeriviation interface

[SWS_CRYPTO_01248] KeyDeriviation interface | The Crypto Stack shall pro-
vide an interface for KeyDeriviation located in the header file defined in [
SWS_CRYPTO_01110] in the namespace ara: :sec: :crypto.

1 class KeyDeriviation

|(RS_CRYPTO_02103)

[SWS_CRYPTO_01249] Derive method | The Crypto Stack shall provide a method
to derive key material from a base key. The base key is identified by the parameter
baseKey. The target key is identified by the parameter targetKey. The label to be
used for derivation is supplied in the parameter 1abel. An optional context of arbitrary
data may be supplied in the parameter context.

1 virtual void Derive (Key consté& baseKey, Key const& targetKey, ara::sec
::Span& label, ara::sec::Spanx context = nullptr) = 0;

|(RS_CRYPTO_02103)

8.1.2.1.11 KeyExchange interface

[SWS_CRYPTO_01250] KeyExchange interface | The Crypto Stack shall provide an
interface for KeyExchange derived from KeyedPrimitive located in the header file
defined in [SWS_CRYPTO_01111] in the namespace ara: :sec: :crypto.

1 class KeyExchange : KeyedPrimitive

|(RS_CRYPTO_02104)

[SWS_CRYPTO_01251] GetPublicValue method | The Crypto Stack shall provide a
method to get a public value that must be sent to the other party for exchanging keys.
The public value is provided in the parameter pubvalue.

1 virtual void GetPublicValue (ara::sec::Span<uint8_t> pubValue) = 0;

|(RS_CRYPTO_02104)

[SWS_CRYPTO_01252] Exchange method | The Crypto Stack shall provide a
method to execute the key exchange operation. The public value of the client is pro-
vided in the parameter ourPubVval. The public value of the other party is provided in
the parameter theirPubval. The computed shared key data will be supplied in the
key identified by the parameter sharedKey.

1 virtual wvoid Exchange (ara::sec::Span const& ourPubVal, ara::sec::Span
const& theirPubVal, Key consté& sharedKey) = 0;

|(RS_CRYPTO_02104)

[SWS_CRYPTO_01312] Primitive Factory [The Crypto Stack shall provide a factory
class for each primitive class to create the actual crypto primitives.

AUTOSAR

class HashFactory {

public:
//this could also be defined with vendor specific deleter
using HashPtr = std::unique_ptr<Hash>;

HashPtr CreateHash (const std::string& hashId);
}

N o o A WwoN =

10

8.1.2.2 CryptoNeed API

The CryptoNeed description is the input for the generation of the CryptoNeed header
files content. The CryptoNeed header files contain classes representing the Cryp-
toNeed and ClientServerInterface referenced in the role requiredInter—
face. The interface of the class is defined by the ClientServerInterface which
in turn is influenced by the associated CryptoNeed.

[SWS_CRYPTO_01301] CryptoNeed class | The Crypto Stack shall provide the def-
inition of a C++ class named <name>CryptoNeed in the CryptoNeed header file de-
fined by [SWS_CRYPTO_01001], where name is the CryptoNeed.shortName.

1 class <CryptoNeed.shortName>CryptoNeed {
2

3}

|(RS_CRYPTO_02301)

[SWS_CRYPTO_01302] CryptoNeed class base type | The CryptoNeed class de-
fined in [SWS_CRYPTO_01201] shall have different base types with regard to the value
in CryptoNeed.primitiveFamily.

1 #include "ara/sec/crypto/<name>.h"

2

3 class <CryptoNeed.shortName>CryptoNeed : public <baseType> {
4

5

}

The <baseType>s to be used are listed in Table 8.5. |(RS_CRYPTO _02301)

primitiveFamily value <baseType> Value <name> value
ASYMMETRIC_ENCRYPT Cipher cipher.h
ASYMMETRIC_DECRYPT Cipher cipher.h
SYMMETRIC_ENCRYPT Cipher cipher.h
SYMMETRIC_DECRYPT Cipher cipher.h
AEAD_ENCRYPT Cipher cipher.h
AEAD_DECRYPT Cipher cipher.h
SIGNATURE_GENERATE Signer signer.h
SIGNATURE_VERIFY Verifier verifier.h
MAC_GENERATE Signer signer.h
MAC_VERIFY Verifier verifier.h
HASH Hash hash.h

AUTOSAR

RANDOM Random random.h
KEY_DERIVE KeyDerivation key_derivation.h
KEY_EXCHANGE KeyExchange key_exchange.h
KEY_MANAGEMENT KeyManagement key_management.h

Table 8.5: CryptoNeed.primitiveFamily supported for interfaces

The concrete CryptoNeed class may be created by the Adaptive Platform’s
“ARA: : CRYPTO” implementation (e.g. a factory or factory method). This implementa-
tion is responsible for creating the correct binding for a software or hardware isolation

mechanism (see section 7.2).

8.2 Client Server Interfaces

This chapter lists the ClientServerInterfaces that are used to access the cryp-

tographic implementation from an Adaptive Application.

[SWS_CRYPTO_01303] Port and ClientServerinterface for CryptoNeeds typed as
a Cipher [If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the base
type Cipher its RPortPrototype shall reference a ClientServerInterface de-

signed as follows:

Name Cipher_{CryptoNeed.name}_{PrimitiveFamiliy}
Kind RequiredPort | Interface | ClientServerinterface
Description Requires operations to encipher or decipher data.
Variation Defined by the name of the CryptoNeed and the primitive family.
Table 8.6: Port - Cipher_{CryptoNeed.name}_{PrimitiveFamiliy}
Name Start
Description Starts a streaming context of the cipher.
Parameter parameters
Description The parameters for initializing the cipher’s operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation
Direction IN
Table 8.7: ClientServerinterface Cipher - Method: Start
Name Update
Description Updates the streaming context of the cipher and hence transforms a chunk of data.
Parameter input
Description The input data to be transformed by the cipher.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation
Direction IN

AUTOSAR

Parameter output
Description The data that has been transformed by the cipher.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation -
Direction ouT

Table 8.8: ClientServerinterface Cipher - Method: Update

Name Finish
Description Finishes a streaming context of the cipher and retrieves the remaining data.
Parameter output
Description The data that has been transformed by the cipher.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT

Table 8.9: ClientServerinterface Cipher - Method: Finish

Name Process
Description Single call interface to transform (encipher, decipher) data.
Parameter parameters
Description The parameters for initializing the cipher’s operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation .
Direction IN
Parameter input
Description The input data to be transformed by the cipher.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation ”
Direction IN
Parameter output
Description The data that has been transformed by the cipher.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT

Table 8.10: ClientServerinterface Cipher - Method: Process

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01304] Port and ClientServerinterface for CryptoNeeds typed as
a Signer | If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the base
type Signer its RPortPrototype shall reference a ClientServerInterface de-
signed as follows:

Name Signer_{CryptoNeed.name}_{PrimitiveFamiliy}

Kind RequiredPort Interface ClientServerinterface

Description Requires operations to sign data.

AUTOSAR

Variation | Defined by the name of the CryptoNeed and the primitive family.
Table 8.11: Port - Signer_{CryptoNeed.name}_{PrimitiveFamiliy}
Name GetTagSize
Description Gets the size of the tag produced by the signer.
Parameter tagSize
Description The size of the produced tag in bytes.
Type uint32
Variation ”
Direction ouT
Table 8.12: ClientServerinterface Signer - Method: GetTagSize
Name Start
Description Starts a streaming context of the signer.
Parameter parameters
Description The parameters for initializing the signer’s operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation .
Direction IN
Table 8.13: ClientServerinterface Signer - Method: Start
Name Update
Description Updates the streaming context of the signer and hence transforms a chunk of data.
Parameter input
Description The input data to be processed by the signer.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation ”
Direction IN
Table 8.14: ClientServerinterface Signer - Method: Update
Name Finish
Description Finishes a streaming context of the signer and retrieves the digital signature/authentication tag.
Parameter output
Description The digital signature/authentication tag.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation °
Direction ouT
Table 8.15: ClientServerinterface Signer - Method: Finish
Name Process
Description Single call interface to sign data.

AUTOSAR

Parameter parameters
Description The parameters for initializing the signers’s operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation .
Direction IN
Parameter input
Description The input data to be processed by the signer.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN
Parameter output
Description The digital signature/authentication tag.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT

Table 8.16: ClientServerinterface Signer - Method: Process

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01305] Port and ClientServerinterface for CryptoNeeds typed as
a Verifier | If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the base
type Verifier its RPortPrototype shall reference a ClientServerInterface
designed as follows:

Name Verifier_{CryptoNeed.name}_{PrimitiveFamiliy}

Kind RequiredPort | Interface | ClientServerInterface
Description Requires operations to verify data.

Variation Defined by the name of the CryptoNeed and the primitive family.

Table 8.17: Port - Verifier_{CryptoNeed.name}_ {PrimitiveFamiliy}

Name Start
Description Starts a streaming context of the verifier.
Parameter parameters
Description The parameters for initializing the verifier’s operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation -
Direction IN

Table 8.18: ClientServerinterface Verifier - Method: Start

Name Update

Description Updates the streaming context of the verifier and hence transforms a chunk of data.

AUTOSAR

Parameter input
Description The input data to be processed by the verifier.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation °
Direction IN
Table 8.19: ClientServerinterface Verifier - Method: Update
Name Finish
Description Finishes a streaming context of the verifier and performs the verification of the digital
signature/authentication tag.
Parameter authenticator
Description The digital signature/authentication tag to verify against.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN
Parameter length
Description The length in bits of the digital signature/authentication tag to verify the leftmost
against.
Type uint32
Variation -
Direction IN
Parameter result
Description The result of the comparison.
Type boolean
Variation ”
Direction ouT
Table 8.20: ClientServerinterface Verifier - Method: Finish
Name Process
Description Single call interface to verify data.
Parameter parameters
Description The parameters for initializing the verifier's operation cycle.
Type CipherParameters: Contains information on preferred algorithm strategy and
additional inizialization parameters.
Variation .
Direction IN
Parameter authenticator
Description The digital signature/authentication tag to verify against.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN
Parameter length
Description The length in bits of the digital signature/authentication tag to verify the leftmost
against.
Type uint32
Variation °
Direction IN

AUTOSAR

Parameter result
Description The result of the comparison.
Type boolean
Variation
Direction ouT

|(RS_CRYPTO_02401)

Table 8.21: ClientServerinterface Verifier - Method: Process

[SWS_CRYPTO_01306] Port and ClientServerinterface for CryptoNeeds typed as
a Random | If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the base

type Random its RPortPrototype shall reference a ClientServerInterface de-
signed as follows:

Name Random_{CryptoNeed.name}_{PrimitiveFamiliy}
Kind RequiredPort | Interface | ClientServerinterface
Description Requires operations to generate random data.
Variation Defined by the name of the CryptoNeed and the primitive family.
Table 8.22: Port - Random_{CryptoNeed.name}_{PrimitiveFamiliy}
Name Seed
Description Provide additional seed.
Parameter seed
Description The buffer to hold seed data.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation ”
Direction IN
Table 8.23: ClientServerinterface Random - Method: Seed
Name Generate
Description Generate random data.
Parameter output
Description The generate random data.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction out

|(RS_CRYPTO_02401)

Table 8.24: ClientServerinterface Random - Method: Generate

[SWS_CRYPTO_01307] Port and ClientServerinterface for CryptoNeeds typed as
a Hash [If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the base type
Hash its RPortPrototype shall reference a ClientServerInterface designed

as follows:

AUTOSAR

Name Hash_{CryptoNeed.name}_{PrimitiveFamiliy}
Kind RequiredPort | Interface | ClientServerinterface
Description Requires operations to generate hashes.
Variation Defined by the name of the CryptoNeed and the primitive family.
Table 8.25: Port - Hash_{CryptoNeed.name}_{PrimitiveFamiliy}
Name Start
Description Starts a streaming context of the hash.
Table 8.26: ClientServerinterface Hash - Method: Start
Name Update
Description Updates the streaming context of the hash and hence transforms a chunk of data.
Parameter input
Description The input data to be transformed by the hash.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation ”
Direction IN
Table 8.27: ClientServerinterface Hash - Method: Update
Name Finish
Description Finishes a streaming context of the hash and retrieves the digest.
Parameter digest
Description The digest of the data.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT
Table 8.28: ClientServerinterface Hash - Method: Finish
Name Process
Description Single call operation for hashing.
Parameter input
Description The input data to be transformed by the hash.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN
Parameter digest
Description The digest of the data.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT

Table 8.29: ClientServerinterface Hash - Method: Process

|(RS_CRYPTO_02401)

AUTOSAR

[SWS_CRYPTO_01308] Port and ClientServerinterface for CryptoNeeds typed as
a KeyDerivation | If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the
base type KeyDerivation its RPortPrototype shall reference aCclientServer-
Interface designed as follows:

Name KeyDerivation_{CryptoNeed.name}_{PrimitiveFamiliy}

Kind RequiredPort | Interface | ClientServerInterface
Description Requires operations to derive a key.

Variation Defined by the name of the CryptoNeed and the primitive family.

Table 8.30: Port - KeyDerivation_{CryptoNeed.name}_{PrimitiveFamiliy}

Name Derive
Description Perform a key derivation.
Parameter baseKey
Description The key to derive from.
Type uint32
Variation .
Direction IN
Parameter targetKey
Description The key to be derived.
Type uint32
Variation .
Direction IN
Parameter label
Description The label to use for the derivation.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation -
Direction IN
Parameter context
Description The context for the derivation.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN

Table 8.31: ClientServerinterface KeyDerivation - Method: Derive

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01309] Port and ClientServerinterface for CryptoNeeds typed as
a KeyExchange | If the CryptoNeed class defined in [SWS_CRYPTO_01302] has the
base type KeyExchange its RPortPrototype shall reference a ClientServerIn-
terface designed as follows:

Name KeyExchange_{CryptoNeed.name}_{PrimitiveFamiliy}

Kind RequiredPort | Interface | ClientServerinterface
Description Requires operations to exchange a shared key.

Variation Defined by the name of the CryptoNeed and the primitive family.

Table 8.32: Port - KeyExchange_{CryptoNeed.name}_{PrimitiveFamiliy}

AUTOSAR

Name GetPublicValue
Description Retrieve a public value to be sent to the other party.
Parameter pubValue
Description Our public value to be sent to the other party.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction ouT

Table 8.33: ClientServerinterface KeyExchange - Method: GetPublicValue

Name Exchange
Description Perform a key exchange.
Parameter ourPubVal
Description Our public value sent to the other party.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation .
Direction IN
Parameter theirPubVal
Description The public value received from by the other party.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation ”
Direction IN
Parameter sharedKey
Description The key handle into which to store the computed shared secret key.
Type uint32
Variation -
Direction IN

Table 8.34: ClientServerinterface KeyExchange - Method: Exchange

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01310] Port and ClientServerinterface for CryptoNeeds typed
as a KeyManagement | If the CryptoNeed class defined in [SWS_CRYPTO_01302]
has the base type KeyManagement its RPortPrototype shall reference a
ClientServerInterface designed as follows:

Name KeyManagement
Kind RequiredPort | Interface | ClientServerinterface
Description Requires operations to manage key.

Table 8.35: Port - KeyManagement

Name GetKey

Description Retrieve a key handle for the given identification.

AUTOSAR

Parameter keyld
Description Key identification which is unique within the stack.
Type uint32
Variation .
Direction IN
Parameter key
Description The key handle.
Type uint32
Variation ”
Direction ouT

Table 8.36: ClientServerinterface KeyManagement - Method: GetKey

Name Generate
Description Generate key data.
Parameter targetKey
Description The key handle to generate the key into.
Type uint32
Variation ”
Direction IN
Parameter random
Description The random number generator to use for generating the key data.
Type uint32
Variation ”
Direction IN

Table 8.37: ClientServerinterface KeyManagement - Method: Generate

Name Verify
Description Verify the given key data.
Parameter key
Description The key handle to check the data against.
Type uint32
Variation ”
Direction IN
Parameter data
Description The data to check.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation -
Direction IN
Parameter result
Description The result of the check.
Type boolean
Variation °
Direction ouT

Table 8.38: ClientServerinterface KeyManagement - Method: Verify

AUTOSAR

Name Import
Description Import some protected key data into the key store.
Parameter targetKey
Description The key handle to import the data into.
Type uint32
Variation .
Direction IN
Parameter provisioningKey
Description The key handle to use when decrypting the data to import.
Type uint32
Variation .
Direction IN
Parameter data
Description The data to import.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation
Direction IN
Table 8.39: ClientServerinterface KeyManagement - Method: Import
Name Export
Description Export key data from the key handle.
Parameter sourceKey
Description The key handle to export data from.
Type uint32
Variation ”
Direction IN
Parameter migrationKey
Description The key handle to use when protecting the data to export.
Type uint32
Variation ”
Direction IN
Parameter data
Description The exported key data.
Type Span: Contains arbitrary data of an arbitrary but fixed length.
Variation
Direction ouT

Table 8.40: ClientServerinterface KeyManagement - Method: Export

|(RS_CRYPTO_02401)

[SWS_CRYPTO_01311] ClientServerinterface for Keys | The interfaces described
in 8.1.2.1 which are derived from the KeyedPrimitive ([SWS_CRYPTO_01201])
and the interface KeyManagement ([SWS_CRYPTO_01242]) can return a Key han-
dle. This handle cannot be modeled as a RPortPrototype to be used by the Adaptive
Application. Still operations invoked on the returned Key shall behave as if they were

modeled referencing a ClientServerInterface designed as follows:

AUTOSAR

Name Getld
Description Get the identifier associated with this key.
Parameter keyld
Description Key identification which is unique within the stack.
Type uint32
Variation .
Direction ouT
Table 8.41: ClientServerinterface Key - Method: Getid
Name GetType
Description Return the type of the key.
Parameter type
Description The key htype.
Type uint32
Variation .
Direction IN
Table 8.42: ClientServerinterface Key - Method: GetType
Name GetSize
Description Return the key size in bits.
Parameter size
Description The key size in bits.
Type uint32
Variation .
Direction ouT
Table 8.43: ClientServerinterface Key - Method: GetSize
Name GetUsage
Description Return information on what this key may be used for.
Parameter usage
Description The key’s usage information.
Type uint32
Variation .
Direction out
Table 8.44: ClientServerinterface Key - Method: GetUsage
Name GetProtection
Description Return information on what the restrictions for handling the key are.
Parameter protection
Description The key protection flags.
Type uint32
Variation .
Direction ouT

Table 8.45: ClientServerinterface Key - Method: GetProtection

AUTOSAR

|(RS_CRYPTO_02401)

AUTOSAR

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta model semantics.

Class ClientServerinterface
Package M2::AUTOSARTemplates::SWComponentTemplate::Portinterface
Note A client/server interface declares a number of operations that can be invoked on a

server by a client.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, AtpClassifier, AtpType,
CollectableElement, Identifiable, MultilanguageReferrable, PackageableElement, Port
Interface, Referrable

Attribute Type Mul. | Kind | Note
operation ClientServerOp 1..* | aggr | ClientServerOperation(s) of this
eration ClientServerinterface.

Stereotypes: atpVariation

Tags: vh.latestBindingTime=blueprintDerivation
Time

possibleErr | ApplicationError aggr | Application errors that are defined as part of this
or interface.

Table A.1: ClientServerinterface

Class Cryptodob
Package M2::AUTOSARTemplates::AdaptivePlatform::Deployment::Crypto
Note This meta-class represents the ability to model a crypto job. The latter in turn

represents a call to a specific routine that implements a crypto function and that uses
a specific key and refers to a specific primitive as a formal representation of the
crypto algorithm.

Tags: atp.Status=draft
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. | Kind | Note

cryptoKey | CryptoKeySlot 0..1 ref | This represents the key slots to which the
referencing crypto job applies.

Tags: atp.Status=draft

primitive CryptoPrimitive 1 aggr | This aggregation defines the crypto primitive
applicable for the enclosing crypto job.

Tags: atp.Status=draft

Table A.2: CryptoJob

AUTOSAR

Class CryptoNeed
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::Portinterface
Note This meta-class represents a statement regarding the applicable crypto use case.
Tags: atp.Status=draft; atp.recommendedPackage=CryptoNeeds
Base ARElement, ARObject, AtpBlueprint, AtpBlueprintable, CollectableElement,
Identifiable, MultilanguageReferrable, PackageableElement, Referrable
Attribute Type Mul. | Kind | Note
primitiveFa | String 1 attr | This attribute represents the ability to specify the
mily algorithm family of the crypto need.
Tags: atp.Status=draft
Table A.3: CryptoNeed
Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.
The aggregation of PortPrototypes is subject to variability with the purpose to support
the conditional existence of ports.
Base ARObiject, AtpBlueprintable, AtpFeature, AtpPrototype, Identifiable, Multilanguage
Referrable, Referrable
Attribute Type Mul. | Kind | Note
clientServe | ClientServerAnn * aggr | Annotation of this PortPrototype with respect to
rAnnotatio | otation client/server communication.
n
delegated DelegatedPortA | 0..1 | aggr | Annotations on this delegated port.
PortAnnota | nnotation
tion
ioHwADbstr | loHwAbstraction * aggr | Annotations on this 10 Hardware Abstraction port.
actionServ | ServerAnnotatio
erAnnotati | n
on
modePortA | ModePortAnnot * aggr | Annotations on this mode port.
nnotation ation
nvDataPort | NvDataPortAnn * aggr | Annotations on this non voilatile data port.
Annotation | otation
parameter | ParameterPortA * aggr | Annotations on this parameter port.
PortAnnota | nnotation
tion
portPrototy | PortPrototypePr | 0..1 | aggr | This attribute allows for the definition of further
peProps ops qualification of the semantics of a PortPrototype.
Tags: atp.Status=draft
senderRec | SenderReceiver * aggr | Collection of annotations of this ports
eiverAnnot | Annotation sender/receiver communication.
ation
triggerPort | TriggerPortAnn * aggr | Annotations on this trigger port.
Annotation | otation

Table A.4: PortPrototype

AUTOSAR

Class RPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Component port requiring a certain port interface.
Base ARObject, AbstractRequiredPortPrototype, AtpBlueprintable, AtpFeature, Atp
Prototype, Identifiable, MultilanguageReferrable, PortPrototype, Referrable
Attribute Type Mul. | Kind | Note
requiredint | Portinterface 1 tref | The interface that this port requires, i.e. the port
erface depends on another port providing the specified
interface.
Stereotypes: isOfType
Table A.5: RPortPrototype
Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to
namespace borders).
Base ARObject
Attribute Type Mul. | Kind | Note
shortName | Identifier 1 attr | This specifies an identifying shortName for the

object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.

Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100

shortName | ShortNameFrag aggr | This specifies how the Referrable.shortName is
Fragment ment composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table A.6: Referrable

B Span

This section shall elaborate the concept of the span introduced in
[SWS_CRYPTO_01102]. The listing below illustrates the interface of the span.

class span {
public:
~span () = default;

1
2
3
4
5 // internal types (further types omitted for easy readability)
6 using pointer = element_typex;

7 using reference = element_types&;

8

9 // range access

10 Va2

11 * Retrieves the first \p count elements from the span.

AUTOSAR

12 *
13 * \param[in] count The number of elements to have in the subspan.
14 * \return A subspan of \p count elements from the beginning.
15 */
16 constexpr span<element_type, dynamic_extent> first (index_type count)
const;
17 J Ak
18 *# Retrieves the last \p count elements from the span.
19
20 * \param[in] count The number of elements to have in the subspan.
21 * \return A subspan of \p count elements from the end.
22 */
23 constexpr span<element_type, dynamic_extent> last (index_type count)
const;
24
25 J *k
26 * Retrieves a view on the span beginning from \p offset and
containing \p count elemnents.
27
28 * \param[in] offset The index of the first element to be in the
returned subspan.
29 * \param[in] count The number of elements to have in the subspan.
30 * \return A subspan of \p count elements from the element at \p
offset.
31 */
32 constexpr span<element_type, dynamic_extent> subspan (index_type
offset, index_type count = dynamic_extent) const;
33
34 // size information
35 J Ak
36 * Return the number of elements in the span
37 *
38 * \return The number of elements.
39 */
40 constexpr index_type length() const;
41 VE R
42 * Return the number of elements in the span
43 *
44 * \return The number of elements.
45 */
46 constexpr index_type size () const;
47 /**
48 * Return the number of bytes in the span.
49 *
50 * \return The number of bytes.
51 */
52 constexpr index_type length_bytes () const;
53 VER:
54 * Return the number of bytes in the span.
55 *
56 * \return The number of bytes.
57 */
58 constexpr index_type size_bytes () const;
59
60 VESs

61 * Query 1if there are elements in the span.

AUTOSAR

62 *

63 * \return False if there are elements in the span, true otherwise.

64 */

65 constexpr bool empty () const;

66

67 // element access

68 VESs

69 * Access the element at \p idx.

70 *

71 * \param[in] idx The index where the element is located.

72 * \return A reference to the element located an \p idx.

73 */

74 constexpr reference at (index_type idx) const;

75 J Ak

76 * Access the element at \p idx.

77 *

78 * \param[in] idx The index where the element is located.

79 * \return A reference to the element located an \p idx.

80 */

81 constexpr reference operator[] (index_type idx) const;

82

83 // data access

84 J Ak

85 * Access the data of the span directly.

86 *

87 * \return A pointer to the data managed by the span.

88 */

89 constexpr pointer data() const;

90

91 // iterators

92 J rk

93 * Obtain an iterator pointing to the first element in the span.

94 *

95 * \return An iterator pointing to the first element in the span.

% */

97 iterator begin () const;

%8 VER:

99 * Obtain an iterator pointing to the position after the last element
in the span.

100 *

101 * \return An iterator pointing to the position after the last
element in the span.

102 */

103 iterator end() const;

104

105 VAR

106 * Obtain a constant iterator pointing to the first element in the
span.

107 *

108 * \return A constant iterator pointing to the first element in the
span.

109 */

110 const_iterator cbegin() const;

111 /**

112 * Obtain a constant iterator pointing to the position after the last

element in the span.

AUTOSAR

113
114

115
116
117
118
119

120
121
122
123
124
125

126
127
128
129
130
131
132

133
134
135
136
137
138

139
140
141
142
143

*

* \return A constant iterator pointing to the position after the
last element 1in the span.

*/

const_iterator cend() const;

J Ak
* Obtain a reverse iterator pointing to the first element in the
reversed span (i.e. the last element in the non-reversed span).
*
* \return A reverse iterator.
*/
reverse_iterator rbegin() const;
J Ak
* Obtain a reverse iterator pointing to the position after the last
element in the reversed span (i.e. before the fist element 1in
the non-reversed span).
*
* \return A reverse iterator.
*/

reverse_iterator rend() const;

J Ak
* Obtain a constant reverse iterator pointing to the first element
in the reversed span (i.e. the last element in the non-reversed
span) .
*
* \return A constant reverse iterator.
*/
const_reverse_iterator crbegin() const;
Jxk
* Obtain a constant reverse iterator pointing to the position after
the last element in the reversed span (i.e. before the fist
element in the non-reversed span).
*
* \return A constant reverse iterator.
*/

const_reverse_iterator crend() const;

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	6 Requirements Tracing
	7 Functional specification
	7.1 Architectural concepts
	7.2 Integration of Adaptive Application and Crypto Stack
	7.2.1 Process isolation
	7.2.2 Hardware isolation

	7.3 Supported algorithms

	8 API specification
	8.1 C++ language binding
	8.1.1 API Header files
	8.1.1.1 CryptoNeed header files
	8.1.1.2 Common header files

	8.1.2 API Reference
	8.1.2.1 Common API
	8.1.2.2 CryptoNeed API

	8.2 Client Server Interfaces

	A Mentioned Class Tables
	B Span

