AUTOSAR

Document Title | Specification of Persistency

Document Owner

AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 858

Document Status

Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-03

Document Change History

Date Release | Changed by Description
AUTOSAR

Management

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTOSAR

Table of Contents

—

Introduction and functional overview 4
Related documentation 4
2.1 Input documents & related standards and norms 4
Constraints and assumptions 4
3.1 Limitations e 4
Requirements Tracing 4
API specification 6
5.1 Classdefinitions 6
51.1 KvsTypeclass, 7
5.1.2 KeyValueStorageBaseclass 11
5.1.3 KeyValueStorageclass 13
514 arafstreamclass 13
5.1.5 araifstreamclass L oL 14
5.1.6 araofstreamclass 15
5.1.7 logicerror 16
5.1.8 storage locationnotfound 17
5.1.9 physical storageerror 17

AUTOSAR

1 Introduction and functional overview

This document is the software specification of the Persistency functional cluster within
the Adaptive Platform.

Persistency offers mechanisms to Adaptive Applications to store information in the
non-volatile memory of a machine. The data is available over boot and ignition cycles.

Persistency offers a library-based approach to access the non-volatile memory.

2 Related documentation

2.1 Input documents & related standards and norms
[1] Requirements on Persistency
AUTOSAR_RS_Persistency

[2] General Requirements specific to Adaptive Platform
AUTOSAR_RS General

3 Constraints and assumptions

3.1 Limitations

e Specification is currently very close to a particular implemententation, users can
expect that the level of abstraction will increase

e APIs are not modeled and are expected to be formulated in a more abstract form
in upcoming releases

e The persistency API is not able to handle concurrent access to one persistent
storage location. Data can only be shared between multiple applications in read
only mode where no applications writes to that persistent storage location.

4 Requirements Tracing

The following table references the features specified in [1], [2] and links to the fulfill-
ments of these.

Feature Description Satisfied by

[RS_AP_00115] Standardized scope/namespace definition [SWS_PER_00002]
[RS_AP_00116] Header file name [SWS_PER_00003]
[RS_AP_00117] Class and structure names [SWS_PER_00003]

AUTOSAR

[RS_AP_00118]

Exceptions

[SWS_PER_00060]
[SWS_PER_00061]
[SWS_PER_00062]
[SWS_PER_00066]
[SWS_PER_00069]
[SWS_PER_00070]
[SWS_PER_00071]
[SWS_PER_00072]
[SWS_PER_00073]
[SWS_PER_00074]
[SWS_PER_00075]
[SWS_PER_00076]

[RS_PER_00001]

Adaptive Applications shall be able to store data
on a platform instance persistently over boot and
ignition cycles.

[SWS_PER_00021]
[SWS_PER_00022]
[SWS_PER _00023]
[SWS_PER_00024]
[SWS_PER_00025]
[SWS_PER_00026]
[SWS_PER_00027]
[SWS_PER_00028]
[SWS_PER_00029]
[SWS_PER_00053]
[SWS_PER_00054]
[SWS_PER_00055]
[SWS_PER_00056]
[SWS_PER_00057]
[SWS_PER_00058]

[RS_PER_00002]

Adaptive Applications shall be able to retrieve data
persistently stored on a platform instance.

[SWS_PER_00011]
[SWS_PER_00012]
[SWS_PER_00014]
[SWS_PER_00019]
[SWS_PER_00042]
[SWS_PER_00043]
[SWS_PER_00044]
[SWS_PER_00045]
[SWS_PER_00052]

AUTOSAR

[RS_PER_00003] | Adaptive Applications shall be able to access data | [SWS_PER_00003]
identified by a unique identifier [SWS_PER_00004]
[SWS_PER_00005]
[SWS_PER_00006]
[SWS_PER_00007]
[SWS_PER_00010]
[SWS_PER_00013]
[SWS_PER_00015]
[SWS_PER_00016]
[SWS_PER_00017]
[SWS_PER_00018]
[SWS_PER_00020]
[SWS_PER_00040]
[SWS_PER_00041]
[SWS_PER_00046]
[SWS_PER_00047]
[SWS_PER_00048]
[SWS_PER_00049]
[SWS_PER_00050]
[SWS_PER_00051]
[SWS_PER_00059]
[SWS_PER_00077]
[SWS_PER_00078]
[RS_PER_00004] | Adaptive Applications shall be able to access [SWS_PER_00021]
file-like structures. [SWS_PER_00022]
[SWS_PER_00023]
[SWS_PER_00024]
[SWS_PER_00025]
[SWS_PER_00026]
[SWS_PER_00027]
[SWS_PER_00028]
[SWS_PER_00029]
[SWS_PER_00053]
[SWS_PER_00054]
[SWS_PER_00055]
[SWS_PER_00056]
[SWS_PER_00057]
[SWS_PER_00058]

5 API specification

5.1 Class definitions

[SWS_PER_00002] | All specified classes within the Persistency specification shall
reside within the C++ namespace ara: :per. |(RS_AP_00115)

AUTOSAR

5.1.1 KvsType class

[SWS_PER_00003] [The KvsType class defined in the kvstype . h header file shall
define a container class for storing different kinds of data inside. The type of the data
itself is defined by the Type-Enumeration member.

class KvsType {
enum class Type : uint8_t {
kNotSupported = 0,
kFloat,
kDouble,
kSInt8,
kSIntlé6,
kSInt32,
kSInte4,
kUInt8,
kUIntlé6,
kUInt32,
kUIntoe4,
kString,
kBinary,
kBoolean,
kObject,
kNotSet
bi
bi

|(RS_PER_00003, RS_AP_00117, RS_AP_00116)

[SWS_PER_00004] | The KvsType class shall provide an enumeration to get the
Status of an access to the KVS.

enum class Status : uint8_t {
kSuccess = 0,
kSuccessDefaultValue,
kNotFound,
kCheckSumError,
kGeneralError

}i

e kSuccess indicates that the value was successfully restored from the KVS-
storage.

e kSuccessDefaultValue indicates that the requested value wasn’t found, but
a default value could be restored.

e kNotFound requested key was not found.

e kCheckSumError the key-value pair was found, but the checksum of it is incor-
rect.

e kGeneralError any other failure.

AUTOSAR

|(RS_PER_00003)

[SWS_PER_00005] | The KvsType class shall provide constructor methods for every
possible datatype in the Type-Enumeration, taking one argument:

e Value: The value that is of type Type to construct a new KvsType object.
For example:

KvsType (bool value);
KvsType (int8_t wvalue);

|(RS_PER_00003)

[SWS_PER_00006] [The KvsType class shall provide a default constructor method,
that creates a "not found"-state object, taking no argument.

KvsType () ;

|(RS_PER_00003)

[SWS_PER_00007] | The KvsType class shall provide a generic constructor method,
for any plain-old-datatype (POD)-type.

KvsType (void* data, std::size_t len);

|(RS_PER_00003)
[SWS_PER_00078] [The KvsType class shall be movable. | (RS_PER _00003)

[SWS_PER_00010] | The kKvsType shall provide a method to get the type of the value
stored in the KVS-Pair.

Type GetType () const noexcept;

|(RS_PER_00003)

[SWS_PER_00011] [The KvsType class shall provide methods to retrieve the Data
of the value stored in the KVS-Pair. The return types shall match the types within the
Type-Enumeration. The name is constructed of "Get<Type>". For integers there is a
simplification. Only GetSInt, GetUInt, GetSInt64 and GetUInt64 shall be implemented.

int32_t GetSInt () const noexcept (false);
uint32_t GetUInt () const noexcept (false);
int64_t GetSInt64 () const noexcept(false);
uint64_t GetUInt64 () const noexcept (false);
float GetFloat () const noexcept (false);

double GetDouble () const noexcept (false);
std::string GetString() const noexcept (false);
bool GetBool () const noexcept (false);

|(RS_PER_00002)

[SWS_PER_00062] | The following functions shall throw the exception of type
ara::per::exceptions::logic_error for example if a wrong "Get<Type>"
function is used to retrieve data from the persistent storage.

AUTOSAR

int32_t GetSInt () const noexcept (false);
uint32_t GetUInt () const noexcept (false);
int64_t GetSInt64 () const noexcept (false);
uint64_t GetUInt64 () const noexcept (false);
float GetFloat () const noexcept (false);

double GetDouble () const noexcept (false);
std::string GetString() const noexcept (false);
bool GetBool () const noexcept (false);

|(RS_AP_00118)

[SWS_PER_00012] [The KvsType class shall provide a method to retrieve the binary
Data of the value stored in the KVS-Pair identified by the kBinary value of the Type-
Enumeration.

void GetBinary(void+ data, std::size_t len) noexcept (false);
Restores the stored value to the given memory address.
e param data: Pointer to the memory, where the data is to be restored
e param len: Length the data

Usage example:

struct MyStructureWithPodData { };
KeyValueStorage db ("databasename. json");

KvsType binary = db.getValue ("my-binary-key");

1

2

3

4 MyStructureWithPodData mystruct;

5

6

7 binary.GetBinary (&mystruct, sizeof (mystruct));

|(RS_PER_00002)

[SWS_PER_00071] | The function GetBinary can throw the exception of type
ara::per::exceptions::logic_error. This happens if one of the following er-
rors occur:

e Given memory is nullptr

e Number of bytes to read is 0

e Number of stored bytes does not match to the given memory
|(RS_AP_00118)

[SWS_PER_00013] | The KvsType class shall provide a method to get the status of
the KVS-Pair. The status shall be checked by the client before trying to use the stored
KVS-pair.

Status GetStatus () const noexcept;;

|(RS_PER_00003)

AUTOSAR

[SWS_PER_00014] | The KvsType class shall provide a method to get the key of the
KVS-Pair.

std::string GetKey () const noexcept;
|(RS_PER _00002)

[SWS_PER_00015] [The KvsType class shall provide a method to set the key of the
KVS-Pair.

void SetKey (const std::string& name) noexcept;

|(RS_PER_00003)

[SWS_PER_00016] | The KvsType class shall provide a method to check if the inter-
nal type is any of the signed integer types (8,16,32,64bit)

bool IsSignedInteger () const noexcept;

|(RS_PER_00003)

[SWS_PER_00017] | The KvsType class shall provide a method to check if the inter-
nal type is any of the unsigned integer types (8,16,32,64bit)

bool IsUnsignedInteger () const noexcept;
|(RS_PER _00003)

[SWS_PER_00018] | The KvsType class shall provide a template method to store an
array of [integer, floating point, or KvsType]. The container must be iterable and the
elements are stored in the iteration order to the KVS internal data structure.

template <class Array> void StoreArray (const Arrayé& array)
noexcept (false);

|(RS_PER_00003)

[SWS_PER_00074] [The function StoreArray can throw the
exception of type ara::per::exceptions::logic_error and
ara::per::exceptions::physical_storage_error. |(RS_AP_00118)

[SWS_PER_00019] | The KvsType class shall provide a method to get an array.
Returns a vector of requested type. Supported types are [integer, floating point and
KVSType]. Restores the items in same order as they were saved with StoreArray.

template <class T> std::vector<T> GetArray () noexcept (false);

|(RS_PER_00002)

[SWS_PER_00075] | The function GetArray can throw the ex-
ception of type ara::per::exceptions::logic_error and
ara::per::exceptions::physical_storage_error. |(RS_AP_00118)

[SWS_PER_00020] | The KvsType class shall provide a method to add an element
to the internal array container.

AUTOSAR

void AddArrayltem(const KvsType& kvs) noexcept (false);

|(RS_PER_00003)

[SWS_PER_00072] | The function AddArrayItem can throw the exception of type
ara::per::exceptions::logic_error. |(RS_AP_00118)

5.1.2 KeyValueStorageBase class

[SWS_PER_00040] | The KeyValueStorageBase class defined in the
keyvaluestorage.h header file shall define an interface to the common key-
value store functions.

class KeyValueStorageBase {
i
|(RS_PER_00003)

[SWS_PER_00041] | The KeyValueStorageBase class shall delete the following
member functions:

KeyValueStorageBase (const KeyValueStorageBase&) = delete;
KeyValueStorageBase& operator=(const KeyValueStorageBase&) = delete;

The class KeyValueStorageBase shall neither be copiable nor assignable. |
(RS_PER_00003)

[SWS_PER_00059] | The KeyValueStorageBase class shall be movable. |
(RS_PER _00003)

[SWS_PER_00077] | The constructor of KeyValueStorageBase class shall be pro-
tected. | (RS_PER_00003)

[SWS_PER_00042] | The KeyValueStorageBase class shall provide a method to
get a list of all keys explicitly set in the dataset. It shall return the list of available keys.
Default values are not considered here.

std::vector<std::string> GetAllKeys () const noexcept (false);
|(RS_PER_00002)

[SWS_PER_00070] [The function GetAllKeys can throw the
exception of type ara::per::exceptions::logic_error and
ara::per::exceptions::physical_storage_error. |(RS_AP_00118)

[SWS_PER_00043] [The KeyValueStorageBase class shall provide a method to
determine whether the key exists in the dataset. It shall return true if the key exists in
the dataset otherwise false.

bool HasKey (const std::string& key) const noexcept;

|(RS_PER_00002)

AUTOSAR

[SWS_PER_00044] | The KeyValueStorageBase class shall provide a method to
get the value assigned to the key. It shall return KvsType object with status as speci-
fied.

KvsType GetValue (const std::string& key) const noexcept;
|(RS_PER_00002)

[SWS_PER_00045] [The KeyValueStorageBase class shall provide a method to
get the default value associated with the key.

KvsType GetDefaultValue (const std::string& key) const noexcept;
|(RS_PER_00002)

[SWS_PER_00046] | The KeyValueStorageBase class shall provide a method to
assign the value to the key. Even if the value is equal to the default value (see getDe-
faultValue), it will still be explicitly stored it in the dataset.

void SetValue (const std::string& key, const KvsType& value)
noexcept (false);

|(RS_PER_00003)

[SWS_PER_00066] | The function sSetvalue can throw the ex-
ception of type ara::per::exceptions::logic_error and
ara::per::exceptions::physical_storage_error. |(RS_AP_00118)

[SWS_PER_00047] | The KeyValueStorageBase class shall provide a method that
removes the key and associated value.

void RemoveKey (const std::stringé& key) noexcept;
|(RS_PER_00003)

[SWS_PER_00048] | The KeyValueStorageBase class shall provide a method that
removes all keys and associated values.

void RemoveAllKeys () noexcept;
|(RS_PER_00003)

[SWS_PER_00049] | The KeyValueStorageBase class shall provide a method to
trigger flushing of key-value pairs to the physical storage.

void SyncToStorage () const noexcept (false);
|(RS_PER_00003)

[SWS_PER _00069] | The function SyncToStorage can throw the
exception of type ara::per::exceptions::logic_error and
ara::per::exceptions::physical_storage_error. |(RS_AP_00118)

[SWS_PER_00050] | The KeyValueStorageBase class shall provide a destructor
to trigger flushing of key-value pairs to the physical storage.

AUTOSAR

virtual ~KeyValueStorageBase () noexcept;

|(RS_PER_00003)

5.1.3 KeyValueStorage class

[SWS_PER_00051] | The KeyValueStorage class defined in the
keyvaluestorage.h header file shall define an interface to the common key-
value store functions.

class KeyValueStorage final : public KeyValueStorageBase {
}i
|(RS_PER_00003)

[SWS_PER_00052] | The KeyValueStorage class shall provide a constructor to
open a database identified by a unique name.

KeyValueStorage (const std::string& database) noexcept (false);

|(RS_PER_00002)

[SWS_PER_00073] | The constructor KeyvalueStorage shall throw the ex-
ception of type ara::per::exceptions::storage_location_not_found Iif
the given location for the persistent storage is not valid. The exception
ara::per::exceptions: :physical_storage_error shall be thrown if any er-
ror during reading or parsing of the persistent storage occurs. |(RS_AP_00118)

5.1.4 arafstream class

[SWS_PER_00021] [The Persistency cluster shall provide a class for plain file
access fulfilling the PSE51 requirements of not creating or deleting new files. This
class shall be called arafstream and shall be defined in the arafstream.h header
and shall be derived from std::fstream class.

class arafstream : public std::fstream
{

bi

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00053] [The arafstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present, the failbit flag of the stream
is set.

AUTOSAR

explicit arafstream (const charx filename,
ios_base: :openmode mode =
ios_base::in | ios_base::out) noexcept;

|(RS_PER_00001, RS_PER _00004)

[SWS_PER_00054] | The arafstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present the exception handling shall
be the same as in the underlying standard library of the programming language.

explicit arafstream (const std::string& filename,
ios_base: :openmode mode =
ios_base::in | ios_base::out) noexcept;

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00022] [The arafstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const charx filename,
ios_base: :openmode mode =
ios_base::in | i1os_base::out) noexcept (false);

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00023] [The arafstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const std::string& filename,
ios_base: :openmode mode =
ios_base::in | ios_base::out) noexcept (false);

|(RS_PER_00001, RS_PER_00004)

5.1.5 araifstream class

[SWS_PER_00024] [The pPersistency cluster shall provide a class for plain file
access fulfilling the PSE51 requirements of not creating or deleting new files. This class
shall be called araifstreamand shall be defined inthe araifstream.h header and
shall be derived from std::ifstream class.

class araifstream : public std::ifstream {
bi
|(RS_PER_00001, RS_PER_00004)

AUTOSAR

[SWS_PER_00055] [The araifstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present the exception handling shall
be the same as in the underlying standard library of the programming language.

explicit araifstream (const charx filename,
ios_base: :openmode mode = ios_base::in)
noexcept;

|(RS_PER_00001, RS_PER _00004)

[SWS_PER_00056] | The araifstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present the exception handling shall
be the same as in the underlying standard library of the programming language.

explicit araifstream (const std::string& filename,
ios_base: :openmode mode = ios_base::in)
noexcept;

|(RS_PER_00001, RS_PER _00004)

[SWS_PER_00025] | The araifstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const charx filename,
ios_base: :openmode mode = ios_base::in) noexcept (false);

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00026] | The araifstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const std::string& filename,
ios_base: :openmode mode = ios_lbase::in) noexcept (false);

|(RS_PER_00001, RS_PER _00004)

5.1.6 araofstream class

[SWS_PER_00027] | The Persistency cluster shall provide a class for plain file
access fulfilling the PSE51 requirements of not creating or deleting new files. This class
shall be called araofstream and shall be defined in the araocfstream.h header and
shall be derived from std::ofstream class.

AUTOSAR

class araofstream : public std::ofstream {
bi
|(RS_PER_00001, RS_PER _00004)

[SWS_PER_00057] | The araofstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present the exception handling shall
be the same as in the underlying standard library of the programming language.

explicit araofstream (const charx filename,
ios_base: :openmode mode = ios_base: :out)
noexcept;

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00058] [The araofstream class shall provide a constructor to open a
file identified by a unique name. The call of this constructor must not create a new file
if the accessed file does not exist. If the file is not present the exception handling shall
be the same as in the underlying standard library of the programming language.

explicit araofstream (const std::string& filename,
ios_base: :openmode mode = ios_base::out)
noexcept;

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00028] | The araofstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const charx filename,
ios_base: :openmode mode = ios_lbase::out) noexcept (false);

|(RS_PER_00001, RS_PER_00004)

[SWS_PER_00029] [The araofstream class shall provide a method open. The call
of this method must not create a new file if the accessed file does not exist. If the file
is not present the exception handling shall be the same as in the underlying standard
library of the programming language.

void open (const std::string& filename,
ios_base::openmode mode = ios_base::out) noexcept (false);

|(RS_PER_00001, RS_PER_00004)

5.1.7 logic error

[SWS_PER_00076] | The ara::per::exceptions::logic_error class shall
provide an exception which can be thrown by functions defined within the ara::per

AUTOSAR

package. This exception is raised when logical errors occur during runtime. For ex-
ample requesting an Integer if a String is stored in the persistent storage. The class
shall be defined in file perexceptions.h.

The ara::per::exceptions::logic_error class shall provide a constructor
method with a String that gives more information for the exception reason.

logic_error (const std::string& message);

|(RS_AP_00118)

5.1.8 storage location not found

[SWS_PER_00060] [The ara: :per: :exceptions::storage_location_not_found
class shall provide an exception which will be thrown if the requested storage, typically

a file, but depending on the implementation, could also be a service, is not found. The
class shall be defined in file perexceptions.h.

The ara: :per::exceptions::storage_location_not_found class shall pro-
vide a constructor method with a String that gives more information for the exception
reason.

storage_location_not_found(const std::string& message);

|(RS_AP_00118)

5.1.9 physical storage error

[SWS_PER_00061] [The ara: :per::exceptions: :physical_storage_error
class shall provide an exception which is thrown if a severe error which might happen
during the operation, such as out of memory or writing/reading to the storage return
an error. The class shall be defined in file perexceptions.h.

The ara: :per::exceptions::physical_storage_error class shall provide a
constructor method with a String that gives more information for the exception reason.

physical_storage_error (const std::string& message);

|(RS_AP_00118)

	1 Introduction and functional overview
	2 Related documentation
	2.1 Input documents & related standards and norms

	3 Constraints and assumptions
	3.1 Limitations

	4 Requirements Tracing
	5 API specification
	5.1 Class definitions
	5.1.1 KvsType class
	5.1.2 KeyValueStorageBase class
	5.1.3 KeyValueStorage class
	5.1.4 arafstream class
	5.1.5 araifstream class
	5.1.6 araofstream class
	5.1.7 logic error
	5.1.8 storage location not found
	5.1.9 physical storage error

