
Specification of Execution Management
AUTOSAR AP Release 17-03

Document Title Specification of Execution
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 721

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 17-03

Document Change History
Date Release Changed by Description

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

1 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Table of Contents

1 Introduction and functional overview 5

1.1 What is Execution Management? . 5
1.2 Interaction with AUTOSAR Runtime for Adaptive 5

2 Acronyms and abbreviations 6

3 Related documentation 7

3.1 Input documents . 7
3.2 Related standards and norms . 7
3.3 Related specification . 7

4 Constraints and assumptions 8

4.1 Known limitations . 8
4.2 Applicability to car domains . 8

5 Dependencies to other modules 9

5.1 Platform dependencies . 9
5.2 Other dependencies . 9

6 Requirements tracing 10

7 Functional specification 12

7.1 Technical Overview . 12
7.1.1 Application . 12
7.1.2 Adaptive Application . 12
7.1.3 Executable . 14
7.1.4 Process . 15
7.1.5 Application Manifest . 15
7.1.6 Machine Manifest . 15
7.1.7 Manifest format . 16

7.2 Execution Management Responsibilities 16
7.3 Platform Lifecycle Management . 17
7.4 Application Lifecycle Management . 17

7.4.1 Process States . 17
7.4.2 Startup and shutdown . 18
7.4.3 Startup sequence . 19

7.4.3.1 Application dependency 20
7.5 Handling of Application Manifest . 22

7.5.1 Overview . 22
7.5.2 Application Dependency . 23
7.5.3 Application Arguments . 23
7.5.4 Machine State . 23
7.5.5 Scheduling Policy . 24
7.5.6 Scheduling Priority . 24
7.5.7 Application Binary Name . 25

3 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.6 State Management . 25
7.6.1 Overview . 25
7.6.2 Application State . 25
7.6.3 Machine State . 26

7.6.3.1 Machine State Management 26
7.6.3.2 Startup . 29
7.6.3.3 Shutdown . 29
7.6.3.4 Restart . 30
7.6.3.5 State Change . 31

8 API specification 35

8.1 Type definitions . 35
8.1.1 ApplicationState . 35
8.1.2 StateError . 35

8.2 Class definitions . 35
8.2.1 ApplicationStateClient class 35

8.2.1.1 ApplicationStateClient::ApplicationStateClient 36
8.2.1.2 ApplicationStateClient::~ApplicationStateClient . . . 36
8.2.1.3 ApplicationStateClient::ReportApplicationState . . . 36

8.2.2 MachineStateClient class . 37
8.2.2.1 MachineStateClient::MachineStateClient 37
8.2.2.2 MachineStateClient::~MachineStateClient 37
8.2.2.3 MachineStateClient::Register 37
8.2.2.4 MachineStateClient::GetMachineState 38
8.2.2.5 MachineStateClient::SetMachineState 38

A Not applicable requirements 40

B Mentioned Class Tables 40

4 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

1 Introduction and functional overview

This document is the software specification of the Execution Management func-
tional cluster within the Adaptive Platform.

Execution Management is responsible for all aspects of system execution manage-
ment including platform initialization and startup / shutdown of Applications. Ex-
ecution Management works in conjunction with the Operating System to perform
run-time scheduling of Applications. This document describes how these concepts
are realized within the Adaptive Platform. Furthermore, the Application Program-
ming Interface (API) of the Execution Management is specified.

1.1 What is Execution Management?

Execution Management is responsible for the startup and shutdown of Applica-
tions based on Manifest information. The usage of Execution Management is
limited to the Adaptive Platform however the latter is usually not exclusively used
within a single AUTOSAR System. The vehicle is also equipped with a number of ECUs
developed on the AUTOSAR Classic Platform and the system design for the entire ve-
hicle will therefore have to cover both ECUs built using that as well as the Adaptive
Platform.

1.2 Interaction with AUTOSAR Runtime for Adaptive

The Execution Management is a functional cluster contained in the Adaptive Plat-
form Foundation. The set of programming interfaces to the Adaptive Applica-
tions is called ARA.

Execution Management, in common with other Adaptive Applications is as-
sumed to be a process executed on a POSIX compliant operating system. Execu-
tion Management is responsible for initiating execution of the processes in all the
Functional Clusters, Adaptive AUTOSAR Services, and Adaptive Applications.
The launching order must be given to the Execution Management according to the
specification defined in this document to ensure proper startup of the system.

The Adaptive AUTOSAR Services are provided via the Communication Management
functional cluster of the Adaptive Platform Foundation. In order to use the Adaptive
AUTOSAR Services, the functional clusters in the Foundation must be properly initial-
ized beforehand. Refer to the respective specifications regarding more information on
the Communication Management.

5 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

2 Acronyms and abbreviations

All technical terms used throughout this document – except the ones listed here – can
be found in the official [1, AUTOSAR glossary] or [2, TPS Manifest Specification].

Term Description

Process A process is a loaded instance of an Executable to be executed
on a Machine.

Application Dependency –

Execution Management
The element of the Adaptive Platform responsible for the
ordered startup and shutdown of the Adaptive Platform and
the Applications.

Machine State Management

The element of the Execution Management managing modes
of operation for Adaptive Platform. It allows flexible defini-
tion of functions which are active on the platform at any given
time.

Machine State

The element of the Machine State Management which char-
acterize the current status of the machine. It defines the set of
active Applications for any certain situation. The set of Ma-
chine States is platform specific and it will be deployed in the
Machine Manifest.

Table 2.1: Technical Terms

6 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

3 Related documentation

3.1 Input documents

The main documents that serve as input for the specification of the Execution Man-
agement are:

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[3] Requirements on Execution Management
AUTOSAR_RS_ExecutionManagement

[4] Requirements on Operating System Interface
AUTOSAR_RS_OperatingSystemInterface

[5] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

3.2 Related standards and norms

See chapter 3.1.

3.3 Related specification

See chapter 3.1.

7 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

4 Constraints and assumptions

4.1 Known limitations

This chapter lists known limitations of Execution Management and their relation to
this release of the Adaptive Platform. The intent is to not only provide a specifi-
cation of the current state of Execution Management but also an indication how the
Adaptive Platform will evolve future releases.

The following functionality is mentioned within this document but is not fully specified
in this release:

• Section 7.3 Platform Lifecycle Management, in particular the issues of Platform
monitoring and Application cleanup.

• Figures 7.5 and 7.6 cover Watchdog Management and the ExecutionManage-
ment::ApplicationRestart interface.

• Appendix A details requirements from Execution Management Requirement
Specification that are not elaborated within this specification. The presence
of these requirements in this document ensures that the requirement tracing is
complete and also provides an indication of how Execution Management will
evolve in future releases of the Adaptive Platform.

The functionality described above is subject to modification and will be considered for
inclusion in a future release of this document.

4.2 Applicability to car domains

No restrictions to applicability.

8 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

5 Dependencies to other modules

5.1 Platform dependencies

Operating System Interface

The Execution Management functional cluster is dependent on the Operating Sys-
tem Interface [4]. The OSI is used by Execution Management to control specific
aspects of Application execution. E.g. to set scheduling parameters or to execute
an Application.

5.2 Other dependencies

Currently, no other library dependencies existing.

9 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

6 Requirements tracing

The following tables reference the requirements specified in [3] and links to the fulfill-
ment of these. Please note that if column “Satisfied by” is empty for a specific require-
ment this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[RS_EM_00001] The Execution Management

shall load Executable s.
[SWS_EM_01017]

[RS_EM_00002] The Execution Management
shall set-up one process for the
execution of each Executable
instance

[SWS_EM_01014] [SWS_EM_01015]
[SWS_EM_01039] [SWS_EM_01040]
[SWS_EM_01041] [SWS_EM_01042]
[SWS_EM_01043]

[RS_EM_00003] The Execution Management
shall support the checking of the
integrity of Executable s at
startup of Executable .

[SWS_EM_99999]

[RS_EM_00004] The Execution Management
shall support the authentication
and authorization of
Executable s at startup of
Executable

[SWS_EM_99999]

[RS_EM_00005] The Execution Management
shall support the configuration of
OS resource budgets for
Executable and groups of
Executable s

[SWS_EM_99999]

[RS_EM_00006] The Execution Management
shall support the analysis of
available and required OS
resource budgets for
Executable s and groups of
Executable s during
installation and run-time

[SWS_EM_99999]

[RS_EM_00007] The Execution Management
shall support of the allocation of
dedicated resources for the
Executable (e.g GPU)

[SWS_EM_99999]

[RS_EM_00008] The Execution Management
shall support the binding of
Executable threads to a
specified set of processor cores.

[SWS_EM_99999]

[RS_EM_00009] Only Execution Management
shall start Executables

[SWS_EM_01030]

[RS_EM_00010] The Execution Management
shall support multiple
instantiation of Executable s

[SWS_EM_00017] [SWS_EM_01012]
[SWS_EM_01033]

[RS_EM_00011] Execution Management shall
support self-initiated graceful
shutdown of Executable
instances

[SWS_EM_01005]

[RS_EM_00013] Execution Management shall
support configurable recovery
actions

[SWS_EM_99999]

10 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Requirement Description Satisfied by
[RS_EM_00050] The Execution Management

shall do a system-wide
coordination of activities

[SWS_EM_99999]

[RS_EM_00051] The Execution Management
shall provide functions to the
Executable for configuring
external trigger conditions for its
activities

[SWS_EM_99999]

[RS_EM_00052] The Execution Management
shall provide functions to the
Executable for configuring
cyclic triggering of its activities

[SWS_EM_99999]

[RS_EM_00100] The Execution Management
shall support the ordered startup
and shutdown of Executable s

[SWS_EM_01000] [SWS_EM_01050]
[SWS_EM_01051]

[RS_EM_00101] The Execution Management
shall provide Machine State
Management functionality

[SWS_EM_01013] [SWS_EM_01023]
[SWS_EM_01024] [SWS_EM_01025]
[SWS_EM_01026] [SWS_EM_01027]
[SWS_EM_01028] [SWS_EM_01029]
[SWS_EM_01034] [SWS_EM_01035]
[SWS_EM_01036] [SWS_EM_01037]
[SWS_EM_01056] [SWS_EM_01057]
[SWS_EM_01058] [SWS_EM_01059]
[SWS_EM_01060] [SWS_EM_02005]
[SWS_EM_02006] [SWS_EM_02007]
[SWS_EM_02008] [SWS_EM_02009]
[SWS_EM_02014] [SWS_EM_02019]
[SWS_EM_02031]

[RS_EM_00103] Execution Management shall
support application lifecycle
management

[SWS_EM_01002] [SWS_EM_01003]
[SWS_EM_01004] [SWS_EM_01005]
[SWS_EM_01006] [SWS_EM_01052]
[SWS_EM_01053] [SWS_EM_01055]
[SWS_EM_02000] [SWS_EM_02001]
[SWS_EM_02002] [SWS_EM_02003]
[SWS_EM_02030] [SWS_EM_02031]

11 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7 Functional specification

7.1 Technical Overview

This chapter presents a short summary of the relationship between Application,
Executable, and Process, including the configuration information which is assigned
to these items. For a detailed and formal specification see [5].

7.1.1 Application

Applications are developed to resolve a set of coherent functional requirements.
An Application consists of executable software units, additional execution related
items (e.g. data or parameter files), and descriptive information used for integration
end execution (e.g. a formal model description based on the AUTOSAR meta model,
test cases).

Applications can be located on user level above the middleware or can implement
functional clusters of the Adaptive Platform (located on the level of the middle-
ware), see [TPS_MANI_01009] in [2].

Applications might use all mechanisms and APIs provided by the operating system
and other functional clusters of the Adaptive Platform, which in general restricts
portability to other Adaptive Platforms.

All Applications, including Adaptive Applications (see below), are treated the
same by Execution Management.

7.1.2 Adaptive Application

An Adaptive Application is a specific type of Application. The implementa-
tion of an Adaptive Application fully complies with the AUTOSAR specification,
i.e. it is restricted to use APIs standardized by AUTOSAR and needs to follow specific
coding guidelines to allow reallocation between different Adaptive Platforms.

Adaptive Applications are always located above the middleware. To allow porta-
bility and reuse, user level Applications should be Adaptive Applications
whenever technically possible.

Figure 7.1 shows the different types of Applications.

12 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

platform/
machine

user level

fully AUTOSAR
compliant

OS/hardware
specific

implementation

Adaptive
Application

non portable, e.g.
hardware-dependent

user Application

portable
Adaptive

Application

reusable
platform

Application

typical
functional cluster

Application

Figure 7.1: Types of Applications

An Adaptive Application is the result of functional development and is the unit
of delivery for Machine specific configuration and integration. The development of an
Adaptive Application also requires consideration of non-functional (e.g. concern-
ing safety, security, and performance) requirements and constraints. Some contracts
(e.g. concerning used libraries) and Service Interfaces to interact with other Adaptive
Applications need to be agreed on beforehand. For details see [5].

An Adaptive Application might be configurable, i.e. an output of development
can contain a range for configuration settings, which need to be fixed at integration
or calibration time to meet the specific system requirements. As an example, a video
filter can be developed to support different video resolutions. At integration time, the
specific resolution is known and memory resources can be configured.

To allow tool-supported integration (without extensive human intervention) of an Adap-
tive Application, the Service Interfaces, the component model, properties (e.g.
concerning safety or performance), fixed configuration settings and variable config-
uration ranges should be delivered with the Adaptive Application in a machine
readable form, preferably based on the AUTOSAR meta model. This also allows check-
ing whether an additional Adaptive Application can be integrated for a specific
Machine. In general, because one should assume a potentially high number of differ-
ently configured Machines, e.g. due to an individual selection of Adaptive Appli-
cations by the end-user, support for a fully automatic integration process might be
necessary.

13 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.1.3 Executable

An Executable is a software unit which is part of an Application. It has exactly
one entry point (main function), see [SWS_OSI_01300]. An Application can be
implemented in one or more Executables.

The lifecycle of Executables usually consists of:

Process Step Code Output Model Description Output

Development

Portable, target-independent (assum-
ing agreed on contracts and Service
Interfaces are considered) source
code

Standardized description of Appli-
cation design properties and de-
mands (component model, Service
Interfaces, trigger conditions, tim-
ing and monitoring assumptions, re-
sources, safety assumptions etc.),
range for configuration options.

Delivery

Compiled code for delivery into the
integration process step, in case the
source code shall not be revealed to
the integrating organization. Addi-
tional target-specific information (e.g.
type of microprocessor) is required.

Same as above plus additional build
chain information.

Integration

Linked, configured and calibrated bi-
nary for deployment onto the target
Machine. The binary might contain
code which was generated at integra-
tion time.

Application Manifest, see
7.1.5 and [2].

Installation Binary installed on the target Ma-
chine.

Processed Application Mani-
fest, stored in a platform-specific
format which is efficiently readable at
Machine startup.

Execution Process started as instance of the bi-
nary.

The Execution Management uses
contents of the Processed Appli-
cation Manifest to start up and
configure each process individually
depending on the current Machine
State (see chapter 7.6).

Table 7.1: Executable Lifecycle

Executables which belong to the same Adaptive Application might need to be
deployed to different Machines, e.g. to one high performance Machine and one high
safety Machine.

Remark: Throughout this document, on execution level the term Application refers
to one Executable of this Application, i.e. whenever mechanism on the Machine
or contents of the Application Manifest are described, there is no distinction
between Application and Executable, because the Application component
model is flattened into independent Executables after deployment.

14 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.1.4 Process

[SWS_EM_00017] Application Processes d Each Executable instance, i.e. each
process, has its own specific set of startup parameters defined by [TPS_MANI_01012],
[TPS_MANI_01013], [TPS_MANI_01014], [TPS_MANI_01015], [TPS_MANI_01059],
[TPS_MANI_01017] and [TPS_MANI_01041]. c(RS_EM_00010)

Remark: In this release of this document it is assumed, that processes are self-
contained, i.e. that they take care of controlling thread creation and scheduling by call-
ing APIs from within the code. Execution Management only starts and terminates
the processes and while the processes are running, Execution Management only
interacts with the processes by using State Management mechanisms (see 7.6).

7.1.5 Application Manifest

The Application Manifest consists of parts of the Application design informa-
tion which is provided by the application developer in the application description, and
additional machine-specific information which is added at integration time. For details
on the Application Manifest contents see chapter 7.5. A formal specification can
be found in [2] .

An Application Manifest is created at integration time and deployed onto a Ma-
chine together with the Executables it is attached to. It describes in a standardized
way the machine-specific configuration of Process properties (startup parameters, re-
source group assignment, Service Interfaces, priorities etc.).

Each instance of an Executable binary, i.e. each started process, is individually
configurable, with the option to use a different configuration set per Machine State
(see 7.6 and [TPS_MANI_01012]).

For deployment, the configuration information of several instances of the same or differ-
ent Executable binaries can be combined in the same Manifest file, if the instances
are started on the same Machine.

7.1.6 Machine Manifest

The Machine Manifest is also created at integration time for a specific Machine
and is deployed like Application Manifests whenever its contents change. The
Machine Manifest holds all configuration information which cannot be assigned to
a specific Executable, i.e. which is not already covered by an Application Man-
ifest.

The contents of a Machine Manifest includes the configuration of Machine prop-
erties and features (resources, safety, security, services etc.), e.g. available states, re-
source groups, access right groups, scheduler configuration, SOME/IP configuration,
memory segmentation.

15 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.1.7 Manifest format

The Application Manifests and the Machine Manifest can be transformed
into a platform-specific format (called Processed Manifest), which is efficiently read-
able at Machine startup. The format transformation can be done either off board at
integration time or at deployment time, or on the Machine (by SW Configuration Man-
agement) at installation time.

7.2 Execution Management Responsibilities

Execution Management is responsible for all aspects of Adaptive Platform ex-
ecution management and Application execution management including:

1. Platform Lifecycle Management

Execution Management is started as part of the Adaptive Platform
startup phase and is responsible for the initialization of the Adaptive Plat-
form and deployed Applications.

During execution, Execution Management monitors the Adaptive Plat-
form and, when required, the ordered shutdown of the Adaptive Platform.

2. Application Lifecycle Management – the Execution Management is respon-
sible for the ordered startup and shutdown of the deployed Applications.

The Execution Management determines the set of deployed Applications
based on information in the Machine Manifest and Application Mani-
fests and derives an ordering for startup/shutdown based on declared Appli-
cation dependencies. The dependencies are described in the Application
Manifests, see [TPS_MANI_01041].

Depending on the Machine State, deployed Applications are started dur-
ing Adaptive Platform startup or later, however it is not expected that all will
begin active work immediately since many Applications will provide services
to other Applications and therefore wait and “listen” for incoming service re-
quests.

The Execution Management is not responsible for run-time scheduling of Appli-
cations since this is the responsibility of the Operating System. However the Execu-
tion Management is responsible for initialization / configuration of the OS to enable
it to perform the necessary run-time scheduling based on information extracted by the
Execution Management from the Machine Manifest and Application Man-
ifests.

16 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.3 Platform Lifecycle Management

The Execution Management controls the ordered startup and shutdown of the
Adaptive Platform. The Platform Lifecycle Management characterize different
stages of the Adaptive Platform including:

Platform startup – the Execution Management is started as the “init” process by
the Operating System and then takes over responsibility for subsequent initializa-
tion of the Adaptive Platform and deployed Application Executables.

[SWS_EM_01030] Start of Application execution d Execution Manage-
ment shall be solely responsible for initiating execution of Applications. c
(RS_EM_00009)

Note that [SWS_EM_01030] is exclusive; once the Execution Management
is running no other element of Adaptive Platform initiates Application
execution.

Platform monitoring – the Execution Management works in conjunction with the
Watchdog to perform Application monitoring and to “clean-up” should an Ap-
plication terminate unexpectedly. Note: This functionality is not fully specified,
see 4.1.

Platform shutdown – the Execution Management performs the ordered shutdown
of the Adaptive Platform based on the dependencies, with the exception that
already terminated Applications do not represent an error in the order.

7.4 Application Lifecycle Management

7.4.1 Process States

From the execution stand point, Process State characterize the lifecycle of any Ap-
plication Executable. Note that each instance (i.e. process) of an Application
Executable is independent and therefore has its own Process State.

[SWS_EM_01002] Idle Process State d The Idle Process State shall be the Pro-
cess state prior to creation of the Application’s process and resource allocation. c
(RS_EM_00103)

[SWS_EM_01003] Starting Process State d The Starting Process State shall apply
when the Application’s process has been created and resources have been allo-
cated. c(RS_EM_00103)

[SWS_EM_01004] Running Process State d The Running Process State shall ap-
ply to an Application’s process after it has been scheduled and it has reported
Running State to the Execution Management. c(RS_EM_00103)

17 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

[SWS_EM_01005] Terminating Process State d The Terminating Process State
shall apply either after an Application’s process has received the termination in-
dication or after it has decided to terminate. c(RS_EM_00103, RS_EM_00011)

The termination indication uses the ReportApplicationState API (see Sec-
tion 8.2.1.3).

On entering the Terminating Process State the Application’s process performs
persistent storage of the working data, frees all Application’s process internal re-
sources, and exits.

[SWS_EM_01006] Terminated Process State d The Terminated Process State shall
apply after the Application’s process has been terminated and the process re-
sources have been freed. For that, Execution Management shall observe the exit
status of all Applications processes, with the POSIX waitpid() command. From
the resource allocation stand point, Terminated state is similar to the Idle state as
there is no process running and no resources are allocated anymore. From the execu-
tion stand point, Terminated state is different from the Idle state since it tells that the
Application’s process has already been executed and terminated. This is relevant
for one shot Applications processes which are supposed to run only once. Once
they have reached their Terminated state, they shall stay in that state and never go
back in any other state. E.g. System Initialization Application’s process is supposed
to run only once before any other application execution. c(RS_EM_00103)

Figure 7.2: Process Lifecycle

7.4.2 Startup and shutdown

[SWS_EM_01050] Start dependent Application Executables d The Execution
Management shall respect Application Dependencys and start any Applica-
tion Executables in this list first. In case no dependency is specified between two
Application Executables, they should be started in parallel. c(RS_EM_00100)

[SWS_EM_01051] Shutdown Application Executables d The Execution
Management shall respect Application Dependencys and shutdown dependent
Application Executables before the Application Executable that was ini-
tially requested to be shutdown. c(RS_EM_00100)

[SWS_EM_01012] Application Argument Passing d The Execution Management
shall provide argument passing for a Process containing one ore more ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig.

18 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

At the initiation of startup of a Process, the aggregated StartupOptions of
the StartupConfig referenced by the ModeDependentStartupConfig shall be
passed to the call of the exec-family based POSIX interface to start the Process by
the Operating System, with the following behavior:

• for arg_0, the name of the Application Executable shall be passed

• for each aggregated StartupOption, starting with n = 1:

– for a StartupOption with StartupOption.optionKind = commandLi-
neSimpleForm: arg_n = StartupOption.optionArgument

– for a StartupOption with StartupOption.optionKind = commandLi-
neShortForm:

∗ When multiplicity of StartupOption.optionArgument = 1:

arg_n = ’-’ + StartupOption.optionName + ’ ’ + StartupOp-
tion.optionArgument

∗ otherwise:

arg_n = ’-’ + StartupOption.optionName

– for a StartupOption with StartupOption.optionKind = command-
LineLongForm:

∗ When multiplicity of StartupOption.optionArgument = 1:

arg_n = ’--’ + StartupOption.optionName + ’=’ + StartupOp-
tion.optionArgument

∗ otherwise:

arg_n = ’--’ + StartupOption.optionName

– n = n+ 1

c(RS_EM_00010)

7.4.3 Startup sequence

When the Machine is started the OS will be initialized first and then Execution Man-
agement is launched as one of the OS’s initial processes1. Other functional clus-
ters and platform-level Applications of the Adaptive Platform Foundation are then
launched by Execution Management. After the Adaptive Platform Foundation is up
and running, Execution Management continues to launch Adaptive Applica-
tions.

[SWS_EM_01000] Startup order d The startup order of the platform-level Applica-
tions and also the Adaptive Applications are determined by the Execution

1Typically the init process

19 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Management, based on Machine Manifest and Application Manifest infor-
mation. c(RS_EM_00100) Please see Section 7.5.1.

Figure 7.3 shows the overall startup sequence.

OS boot

OS starts the Execution Management

The Execution Management reads the processed manifests

and determines the application startup order based on the

dependency description.

Processes of Application Executables are instantiated

based on the startup order.

Other Adaptive Platform Foundation modules are also

started as they are Applications described with

Manifests

Figure 7.3: Startup sequence

7.4.3.1 Application dependency

The Execution Management provides support to the Adaptive Platform for or-
dered startup and shutdown of Applications. This ensures that Applications
are started before dependent Applications use the services that they provide and,
likewise, that Applications are shutdown only when their provided services are no
longer required. At development or integration time, the service dependencies need
to be mapped to dependencies between the Executable instances which provide
or require these services. These dependencies, see [TPS_MANI_01041], are config-
ured in the Application Manifests, which is created at integration time based on
information provided by the Application developer.

In real life, specifying a simple dependency to an Application might not be sufficient
to ensure that the depending service is actually provided. Since some Applications
shall reach a certain Application State to be able to offer their services to other Ap-
plications, the dependency information shall also refer to Application State of the
Application specified as dependency. With that in mind, the dependency informa-
tion may be represented as a pair like: <Application>.<ApplicationState>.
For more details regarding the Application States refer to Section 7.6.2.

The following dependency use-cases have been identified:

20 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

• In case Application B has a simple dependency on Application A, the
Running Application State of Application A is specified in the dependency
section of Application’s B Application Manifest.

• In case Application B depends on One-Shot Application A, the Terminated
Application State of Application A is specified in the dependency section of
Application’s B Application Manifest.

Version information within the Application Manifest is required since a consum-
ing Executable and its required services might not be compatible with all versions of
the producing Executable and its provided services. An example for the definition
of the version information attached to several Executables could be found in Listing
7.1.

Listing 7.1: Example for Executable versions
<AR-PACKAGE>

<SHORT-NAME>Executables</SHORT-NAME>
<ELEMENTS>

<EXECUTABLE>
<SHORT-NAME>RadarSensorVR</SHORT-NAME>
<VERSION>1.0.3</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>RadarSensorVL</SHORT-NAME>
<VERSION>1.0.4</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>Diag</SHORT-NAME>
<VERSION>1.0.0</VERSION>

</EXECUTABLE>
<EXECUTABLE>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<VERSION>1.0.2</VERSION>

</EXECUTABLE>
</ELEMENTS>

</AR-PACKAGE>

An example for the definition of the Executable dependency information could be
found in Listing 7.2

Listing 7.2: Example for Executable dependency
<PROCESS>

<SHORT-NAME>SensorFusion</SHORT-NAME>
<EXECUTABLE-REF DEST="EXECUTABLE">/Executables/SensorFusion</EXECUTABLE-

REF>
<MODE-DEPENDENT-STARTUP-CONFIGS>

<MODE-DEPENDENT-STARTUP-CONFIG>
<EXECUTION-DEPENDENCYS>

<EXECUTION-DEPENDENCY>
<APPLICATION-MODE-IREF>

<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-
DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVR/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

21 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/RadarSensorVL/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>
<EXECUTION-DEPENDENCY>

<APPLICATION-MODE-IREF>
<CONTEXT-MODE-DECLARATION-GROUP-PROTOTYPE-REF DEST="MODE-

DECLARATION-GROUP-PROTOTYPE">/Processes/Diag/
ApplicationStateMachine</CONTEXT-MODE-DECLARATION-GROUP-
PROTOTYPE-REF>

<TARGET-MODE-DECLARATION-REF DEST="MODE-DECLARATION">/
ModeDeclarationGroups/ApplicationStateMachine/Running</
TARGET-MODE-DECLARATION-REF>

</APPLICATION-MODE-IREF>
</EXECUTION-DEPENDENCY>

</EXECUTION-DEPENDENCYS>
<STARTUP-CONFIG-REF DEST="STARTUP-CONFIG">/StartupConfigSets/

StartupConfigSet_AA/SensorFusion_Startup</STARTUP-CONFIG-REF>
</MODE-DEPENDENT-STARTUP-CONFIG>

</MODE-DEPENDENT-STARTUP-CONFIGS>
</PROCESS>

7.5 Handling of Application Manifest

7.5.1 Overview

The Application Manifest is created at integration time by the system integra-
tor. It contains information provided by the Application developer, which has been
adapted to the Machine-specific environment, and additional attributes and other
model elements.

An Application Manifest includes all information needed for deployment and in-
stallation of Application Executables onto an Adaptive Platform and execu-
tion of its instances (i.e. processes). The Execution Management is responsible for
parsing the content of the Application Manifests to perform integrity checks over
the available data, to determine Machine State and startup dependencies, and to
configure the Operating System accordingly at startup of the Executable instances.

22 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

For more information regarding the Application Manifest specification please
see [2].

To perform its necessary actions, the Execution Management imposes a number of
requirements on the content of the Application Manifest. This section serves as
a reference for those requirements.

7.5.2 Application Dependency

The required dependency information is provided by the Application developer. It
is adapted to the specific Machine environment at integration time and made available
in the Application Manifest.

The Execution Management parses the information and uses it to build the
startup sequence to ensure that the required antecedent Executable instances have
reached a certain Application State before starting a dependent Executable in-
stance.

7.5.3 Application Arguments

The set of static arguments required by an Application Executable can either be
provided by the Application developer or specified at integration time. The integra-
tor then makes the arguments available in the Application Manifest for use by
Execution Management when starting the Application Executable’s process.

7.5.4 Machine State

[SWS_EM_01013] Machine State d The Execution Management shall support the
execution of specific instances of Application Executables depending on the cur-
rent Machine State, based on information provided in the Application Mani-
fests. c(RS_EM_00101)

Each instance of an Application Executable is assigned to one or several startup
configurations (StartupConfig), which each can define the startup behaviour in one
or several Machine States. For details see [2]. By parsing this information from
the Application Manifests, Execution Management can determine which pro-
cesses need to be launched if a specific Machine State is entered, and which
startup parameters are valid.

[SWS_EM_01033] Application start-up configuration d To enable an Applica-
tion Executable to be launched in multiple Machine States, Execution Man-
agement shall be able to configure the Application start-up on every Machine
State change based on information provided in the Application Manifest. c
(RS_EM_00010)

23 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.5.5 Scheduling Policy

[SWS_EM_01014] Scheduling policy d Execution Management shall support the
configuration of the scheduling policy when lauching an instance of an Application
Executable, based on information provided by the Application Manifest. c(
RS_EM_00002)

For the detailed definitions of these policies, refer to The Open Group Base Specifica-
tions Issue 7, IEEE Std 1003.1, 2013 Edition. Note, SCHED_OTHER shall be treated as
non-realtime scheduling policy, and actual behavior of the policy is implementation spe-
cific. It must not be assumed that the scheduling behavior is compatible between differ-
ent Adaptive Platform implementations, except that it is a non-realtime scheduling
policy in a given implementation.

• [SWS_EM_01041] Scheduling FIFO d The Execution Management shall be
able to configure FIFO scheduling using policy SCHED_FIFO. c(RS_EM_00002)

• [SWS_EM_01042] Scheduling Round-Robin d The Execution Management
shall be able to configure round-robin scheduling using policy SCHED_RR. c
(RS_EM_00002)

• [SWS_EM_01043] Scheduling Other d The Execution Management shall
be able to configure non real-time scheduling using policy SCHED_OTHER. c
(RS_EM_00002)

7.5.6 Scheduling Priority

[SWS_EM_01015] Scheduling priority d Execution Management shall support the
configuration of a scheduling priority when lauching an instance of an Application
Executable, based on information provided by the Application Manifest. c
(RS_EM_00002)

The available priority range and actual meaning of the scheduling priority depends on
the selected scheduling policy.

[SWS_EM_01039] Scheduling priority range for SCHED_FIFO and SCHED_RR d For
SCHED_FIFO ([SWS_EM_01041]) and SCHED_RR ([SWS_EM_01042]), an integer be-
tween 1 (lowest priority) and 32 (highest priority) shall be used. c(RS_EM_00002)

[SWS_EM_01040] Scheduling priority range for SCHED_OTHER d For the non real-
time policy SCHED_OTHER ([SWS_EM_01043]) the scheduling priority shall always be
zero. c(RS_EM_00002)

24 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.5.7 Application Binary Name

[SWS_EM_01017] Application Binary Name d The Execution Management shall
obtain the name of the Application Executable from the Application Mani-
fest. c(RS_EM_00001)

7.6 State Management

7.6.1 Overview

Machine State Management provides a mechanism to define the state of the oper-
ation for an Adaptive Platform. The Application Manifest allows definition
in which Machine State the Application Executables have to run (see [2]).
Machine State Management grants full control over the set of Applications to
be executed and ensures that Applications are only executed (and hence resources
allocated) when actually needed.

Two different states are relevant for Execution Management:

• Application State

• Machine State

They are introduced within this chapter.

7.6.2 Application State

The Application State characterizes the lifecycle of any instance of an Application
Executable. The states are defined by the ApplicationState enumeration (see
Section 8.1.1).

Figure 7.4: Adaptive Application States

[SWS_EM_01052] Application State Initializing d When launched by Execu-
tion Management, an Application shall set its state to Initializing (repre-
sented by the kInitializing enumeration) prior to commencing its initialization pro-
cedure where Application data initialization happens. c(RS_EM_00103)

25 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

[SWS_EM_01053] Application State Running d Once the initialization is complete,
the Application shall switch to the Running state (represented by the kRunning
enumeration value). c(RS_EM_00103)

Note: An Application is expected to perform its main functionality within the code
section of the Running state.

[SWS_EM_01055] Application State Termination d

• The switch from the Running state to Terminating shall be initiated by the
POSIX Signal SIGTERM or by any Application internal functionality causing
this state change.

• On Reception of that Signal, the Application shall switch to the Terminating
state, represented by the kTerminating enumeration value.

• During the Terminating state, Application shall free internally used re-
sources.

• When the Terminating state finishes, the Application shall exit.

c(RS_EM_00103)

[SWS_EM_02031] Application State Reporting d An Application shall
report its state to the Execution Management, using the Application-
StateClient::ReportApplicationState() interface. c(RS_EM_00101,
RS_EM_00103)

7.6.3 Machine State

Machine State defines the current set of running Applications. It is significantly
influenced by vehicle-wide events and modes.

Each Application declares in its Application Manifest in which Machine
States it has to be active.

There are several mandatory machine states specified in this document that have to be
present on each machine. Additional Machine States can be defined on a machine
specific basis and are therefore not standardized.

7.6.3.1 Machine State Management

Machine State Management is the ability to control the Machine State during
the runtime of an Adaptive AUTOSAR ECU. Machine State Management is ma-
chine specific and AUTOSAR decided against specifying functionality like the Classic
Platform’s BswM for the Adaptive Platform.

Therefore, Machine State Management can be implemented in two different ways:

26 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

• Integrated in the Execution Management

• As separate Machine State Management Application

7.6.3.1.1 Integrated in the Execution Management

When integrated, to request Machine State change, all Applications interested
in doing so, are using the MachineStateClient API (see Section 8.2.2) to commu-
nicate, based on IPC mechanisms, with the Execution Management.

An overview of the first Use-Case with the interaction of the Execution Management
and Applications is shown in Figrue 7.5.

Figure 7.5: Machine State Management within Execution Management

The integrated approach has the disadvantage that the Execution Management is
increasing in complexity as the algorithm and vendor specific knowledge is needed to
implement it. Therefore a separation is also possible.

7.6.3.1.2 Separate Machine State Management Application

For this use-case, the Execution Management only provides operative mechanisms
and interfaces to control the actual set of running Applications. The decision of
state changes is fully given to the Application, that uses the MachineStateClient
API and is then known as the Machine State Management Application.

[SWS_EM_01056] Machine State Management Application d It is recommended to
have one Application within the Adaptive Platform that uses the MachineS-

27 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

tateClient API, and is responsible for the Machine State Management through-
out using this API. c(RS_EM_00101)

For this use-case, the MachineStateClient API doesn’t contain any restrictions of
Machine State change requests. This functionality has to be provided by the Ma-
chine State Management Application. The Machine State Management is
here the central point where all Applications refer to, for retrieving the current and
requesting new Machine States.

[SWS_EM_01057] Machine State Change arbitration d The Machine State Man-
agement Application shall arbitrate all Machine State change requests and re-
quest the arbitrated change at the Execution Management via the MachineState-
Client::SetMachineState() API. c(RS_EM_00101)

[SWS_EM_01027] Rejection of Client Requests d The Execution Management
shall reject requests from any MachineStateClient::Register if there is al-
ready a MachineStateClient connected to the Execution Management. c
(RS_EM_00101)

An overview of the second Use-Case with the interaction of the Machine State
Management Application, the Execution Management and Applications is
shown in Figrue 7.6.

Figure 7.6: Machine State Management Application

The ara::com interfaces between Applications and the Machine State Man-
agement for requesting and retrieving Machine State is not specified and is there-
fore machine specific.

28 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.6.3.2 Startup

[SWS_EM_01023] Machine State Startup d The Startup Machine State
shall be the first state to be active after the startup of Execution Management Ap-
plication. Therefore, a ModeDeclaration for the Startup has to be defined in
the Machine Manifest. c(RS_EM_00101)

[SWS_EM_01037] Machine State Startup behavior d The following behavior ap-
ply for the Startup Machine State:

• All platform-level Applications shall be started, based on the refer-
ence from the Application’s Processes to the ModeDependentStartup-
Config in the role Process.modeDependentStartupConfig with the in-
stanceRef to the ModeDeclaration in the role ModeDependentStartupCon-
fig.modeDeclaration that belongs to the Startup Machine State.

• For startup of Applications, the startup requirements of section 7.4 apply.

• Execution Management shall wait for all started Applications until their
Application State Running is reported.

• If that is the case, Execution Management shall notify the MachineState-
Client that the Startup Machine State is ready to be changed.

• Execution Management shall not change the Machine State by itself until
a new state is requested via the MachineStateClient API.

c(RS_EM_00101)

7.6.3.3 Shutdown

[SWS_EM_01024] Machine State Shutdown d The Shutdown Machine State
shall be active after the Shutdown Machine State is requested via the MachineS-
tateClient API. Therefore, a ModeDeclaration for the Shutdown has to be de-
fined in the Machine Manifest. c(RS_EM_00101)

[SWS_EM_01036] Machine State Shutdown behavior d The following behavior
apply for the Shutdown Machine State:

• All Applications, including the platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Applications, the shutdown requirements of section 7.4 ap-
ply.

• When Process State of all Applications is Idle or Terminated, all Ap-
plications shall be started, based on the reference from the Application’s
Processes to the ModeDependentStartupConfig in the role Process.mod-
eDependentStartupConfig with the instanceRef to the ModeDeclaration

29 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

in the role ModeDependentStartupConfig.modeDeclaration that belongs
to the Shutdown Machine State.

c(RS_EM_00101)

[SWS_EM_01058] Shutdown of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartup-
Config.modeDeclaration that belongs to the Shutdown Machine State. This
Application shall contain the actual mechanism(s) to initiate shutdown of the Oper-
ating System. c(RS_EM_00101)

7.6.3.4 Restart

[SWS_EM_01025] Machine State Restart d The Restart Machine State
shall be active after the Restart Machine State is requested via the MachineS-
tateClient API. Therefore, a ModeDeclaration for the Restart has to be de-
fined in the Machine Manifest. c(RS_EM_00101)

[SWS_EM_01035] Machine State Restart behavior d The following behavior ap-
plies for the Restart Machine State:

• All Applications, including the platform-level Applications, that have a
Process State different than Idle or Terminated shall be shutdown.

• For shutdown of Applications, the shutdown requirements of Section 7.4 ap-
ply.

• When Process State of all Applications is Idle or Terminated, all Ap-
plications shall be started, based on the reference from the Application’s
Processes to the ModeDependentStartupConfig in the role Process.mod-
eDependentStartupConfig with the instanceRef to the ModeDeclaration
in the role ModeDependentStartupConfig.modeDeclaration that belongs
to the Restart Machine State.

c(RS_EM_00101)

[SWS_EM_01059] Restart of the Operating System d There shall be at least
one Application consisting of at least one Process that has a ModeDepen-
dentStartupConfig in the role Process.modeDependentStartupConfig with
the instanceRef to the ModeDeclaration in the role ModeDependentStartup-
Config.modeDeclaration that belongs to the Restart Machine State. This
Application shall contain the actual mechanism(s) to initiate restart of the Operat-
ing System. c(RS_EM_00101)

30 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

7.6.3.5 State Change

[SWS_EM_01026] Machine State change d A request of a Machine
State change at the Execution Management via the ApplicationState-
Client::SetMachineState() API shall lead to a state transition and hereof a
state change to the requested Machine State in the Execution Management. c(
RS_EM_00101)

[SWS_EM_01060] Machine State change behavior d The following behavior ap-
plies for the transition of a current Machine State (referred to as CurrentState) to a
requested Machine State (referred to as RequestedState):

1. For each Application: For each Executable of that Application, that has

[

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the CurrentState

and

• no existing aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the RequestedState

and

• a Process State different than [Idle or Terminated]

] or [

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to the ModeDeclaration in
the role ModeDependentStartupConfig.modeDeclaration that be-
longs to the CurrentState

and

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the RequestedState

and

31 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

• different aggregated StartupOptions in the role StartupConfig.star-
tupOption, referenced by the ModeDependentStartupConfigs in the
role ModeDependentStartupConfig.startupConfig

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.modeDeclaration that belongs to the Cur-
rentState

and

– and with an instanceRef to the ModeDeclaration in the role Mod-
eDependentStartupConfig.modeDeclaration that belongs to the
RequestedState.

],

the Executable shall be shutdown. For shutdown the requirements of section
7.4 apply.

2. Wait until Process State of all affected Processes is Idle or Terminated.

3. For each Application: For each Executable of that Application, that has

[

• no existing aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the CurrentState

and

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the RequestedState

and

• a Process State that is [Idle or Terminated]

] or [

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to the ModeDeclaration in
the role ModeDependentStartupConfig.modeDeclaration that be-
longs to the CurrentState

and

32 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

• exactly one aggregation from the Executable’s Process containing
a ModeDependentStartupConfig in the role Process.modeDepen-
dentStartupConfig with an instanceRef to a ModeDeclaration in the
role ModeDependentStartupConfig.modeDeclaration that belongs
to the RequestedState

and

• different aggregated StartupOptions in the role StartupConfig.star-
tupOption, referenced by the ModeDependentStartupConfigs in the
role ModeDependentStartupConfig.startupConfig

– with an instanceRef to the ModeDeclaration in the role ModeDepen-
dentStartupConfig.modeDeclaration that belongs to the Cur-
rentState

and

– and with an instanceRef to the ModeDeclaration in the role Mod-
eDependentStartupConfig.modeDeclaration that belongs to the
RequestedState.

],

the Executable shall be started. For startup the requirements of section 7.4
apply.

4. Wait until Process State of all affected Processes is Running.

5. When Machine State change is originated by the MachineStateClient
API, a confirmation of the change shall be sent to the ApplicationState-
Client.

c(RS_EM_00101)

[SWS_EM_01028] GetMachineState API d The Execution Management shall
provide the interface MachineStateClient::GetMachineState() to retrieve the
current Machine State. c(RS_EM_00101)

[SWS_EM_01029] SetMachineState API d The Execution Management shall
provide the interface MachineStateClient::SetMachineState() to request a
change to a new Machine State. c(RS_EM_00101)

[SWS_EM_01034] Deny SetMachineState API Request d The Execution Man-
agement shall deny Machine State change requests, that are received before con-
firmation of the previous Machine State change. If a request is denied, Execution
Management shall return an error code to the requester (see 8.1.2). c(RS_EM_00101)

33 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Figure 7.7: Adaptive Platform - Lifecycle

34 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

8 API specification

8.1 Type definitions

8.1.1 ApplicationState

Name: [SWS_EM_02000] dApplicationStatec(RS_EM_00103)
Type: Scoped Enumeration of uint8_t
Range: kInitializing 0 --

kRunning 1 --
kShuttingdown 2 --

Syntax: enum class ApplicationState : uint8_t {
kInitializing,
kRunning,
kShuttingdown
};

Header file: application_state_client.hpp
Description: Defines the states of an Application (see 7.6.2).

Table 8.1: ApplicationState

8.1.2 StateError

Name: [SWS_EM_02005] dStateErrorc(RS_EM_00101)
Type: Scoped Enumeration of uint8_t
Range: kSuccess 0 --

kInvalidState 1 --
kInvalidRequest 2 --
kTimeout 3 --

Syntax: enum class StateError : uint8_t {
kSuccess,
kInvalidState,
kInvalidRequest
kTimeout
};

Header file: state_error.hpp
Description: Defines the error codes for Machine State operations.

Table 8.2: StateError

8.2 Class definitions

8.2.1 ApplicationStateClient class

The Application State API provides the functionality for an Application to report its
state to the Execution Management.

[SWS_EM_02001] d The ApplicationStateClient class shall be defined in the
application_state_client.hpp header file. c(RS_EM_00103)

35 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

8.2.1.1 ApplicationStateClient::ApplicationStateClient

Service name: [SWS_EM_02030] dApplicationStateClient Constructorc(RS_EM_00103)
Syntax: ApplicationStateClient();
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: OpenPipeException In case the underlying POSIX FIFO open() opera-

tion fails.
Description: Creates an instance of ApplicationStateClient which opens the Execu-

tion Management’s communication channel (e.g. POSIX FIFO avail-
able under: "/usr/run/execution-manager/appstate-server-fifo") for re-
porting the application state. Each Application shall create an in-
stance of this class to report its state.

Table 8.3: ApplicationStateClient Constructor

8.2.1.2 ApplicationStateClient::~ApplicationStateClient

Service name: [SWS_EM_02002] dApplicationStateClient Destructorc(RS_EM_00103)
Syntax: ~ApplicationStateClient();
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: ~ApplicationStateClient deletes the ApplicationStateClient instance.

Table 8.4: ApplicationStateClient Destructor

8.2.1.3 ApplicationStateClient::ReportApplicationState

Service name: [SWS_EM_02003] dApplicationStateClient::ReportApplicationStatec
(RS_EM_00103)

Syntax: void ReportApplicationState(
ApplicationState state
);

Parameters (in): state Value of the Applications state
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: Interface for an Application to report the state to Execution Man-

agement. It sends the state value via underlying IPC mechanism (e.g.
POSIX FIFO) to the Execution Management.

Table 8.5: ApplicationStateClient::ReportApplicationState

36 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

8.2.2 MachineStateClient class

The MachineStateClient class provides the functionality for an Application to
request a Machine State switch or to retrieve the current Machine State to/from
Execution Management.

The Application responsible for managing and controlling the states, Machine
State Management has to instantiate this class. The Execution Management al-
lows only one client to be registered (See [SWS_EM_01027]).

[SWS_EM_02006] d The MachineStateClient class shall be defined in the
machine_state_client.hpp header file. c(RS_EM_00101)

8.2.2.1 MachineStateClient::MachineStateClient

Service name: [SWS_EM_02007] dMachineStateClient Constructorc(RS_EM_00101)
Syntax: MachineStateClient(

std::string path
);

Parameters (in): path Path to the platform-wide known communication
channel.

Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: OpenPipeException In case the underlying POSIX FIFO open() opera-

tion fails.
Description: Creates an instance of MachineStateClient which opens the Execution

Management’s communication channel (e.g. POSIX FIFO available un-
der: "/usr/run/execution-manager/machinestate-server-fifo") for retriev-
ing or requesting Machine States from/to Execution Management.

Table 8.6: MachineStateClient Constructor

8.2.2.2 MachineStateClient::~MachineStateClient

Service name: [SWS_EM_02008] dMachineStateClient Destructorc(RS_EM_00101)
Syntax: ~MachineStateClient();
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Exceptions: None
Description: ~MachineStateClient deletes the MachineStateClient instance.

Table 8.7: MachineStateClient Destructor

8.2.2.3 MachineStateClient::Register

Service name: [SWS_EM_02009] dMachineStateClient::Registerc(RS_EM_00101)

37 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Syntax: StateError Register(
std::string app_name,
uint32_t timeout
);

Parameters (in): app_name Name of the Application to be registered to Ex-
ecution Management

timeout Time to wait in milliseconds to get the confirmation
of registration from Execution Management.

Parameters (inout): None
Parameters (out): None
Return value: kSuccess Registration to Execution Management suc-

ceeded and confirmed.
kTimeout No registration confirmation received from Execu-

tion Management.
Exceptions: None
Description: Register the MachineStateClient to the Execution Management. That

is done by the Machine State Manager Application.

Table 8.8: MachineStateClient::Register

8.2.2.4 MachineStateClient::GetMachineState

Service name: [SWS_EM_02014] dMachineStateClient::GetMachineStatec
(RS_EM_00101)

Syntax: StateError GetMachineState(
uint32_t timeout,
std::string &state
);

Parameters (in): timeout Time to wait in milliseconds to get the required in-
formation back from Execution Management.

Parameters (inout): None
Parameters (out): state String containing the current Machine State.

Empty string if return value is kTimeout.
Return value: kSuccess Retrieval operation succeeded.

kTimeout No answer received from Execution Manage-
ment.

Exceptions: None
Description: Retrieve the current Machine State from the Execution Manage-

ment. It sends a request over the corresponding IPC channel (e.g POSIX
FIFO) of Execution Management.

Table 8.9: MachineStateClient::GetMachineState

8.2.2.5 MachineStateClient::SetMachineState

Service name: [SWS_EM_02019] dMachineStateClient::SetMachineStatec
(RS_EM_00101)

Syntax: StateError SetMachineState(
std::string state,
uint32_t timeout
);

Parameters (in): state String containing the requested Machine State.

38 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

timeout Time to wait in milliseconds to get Machine State
change confirmation back form Execution Man-
agement.

Parameters (inout): None
Parameters (out): None
Return value: kSuccess Machine State change operation succeeded.

kTimeout No confirmation received from Execution Man-
agement.

kInvalidState Invalid state provided.
kInvalidRequest Request cannot be fulfilled as it was received before

confirmation of the previous change.
Exceptions: None
Description: Requests a new Machine State at the Execution Management via

the corresponding IPC channel (e.g POSIX FIFO) of Execution Man-
agement for changing the current Machine State. The method re-
turns after Machine State change is confirmed, or on timeout.

Table 8.10: MachineStateClient::SetMachineState

39 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

A Not applicable requirements

[SWS_EM_99999] d These requirements are not applicable as they are not within the
scope of the 2017-03 release. c(RS_EM_00003, RS_EM_00004, RS_EM_00005,
RS_EM_00006, RS_EM_00007, RS_EM_00008, RS_EM_00013, RS_EM_00050,
RS_EM_00051, RS_EM_00052)

B Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Enumeration CommandLineOptionKindEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::Process
Note This enum defines the different styles how the command line option appear in the

command line.

Tags: atp.Status=draft
Literal Description
command
LineLong
Form

Long form of command line option.

Tags: atp.EnumerationValue=1
command
LineShort
Form

Short form of command line option.

Tags: atp.EnumerationValue=0
command
LineSimple
Form

In this case the command line option does not have any formal structure. Just the
value is passed to the program.

Tags: atp.EnumerationValue=2

Table B.1: CommandLineOptionKindEnum

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined

in the meta-model.
Base ARObject, AtpClassifier, AtpFeature, AtpStructureElement, Identifiable,

MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for

generating the source code representation of this
ModeDeclaration.

Table B.2: ModeDeclaration

40 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Class ModeDependentStartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Process
Note This meta-class defines the startup configuration for the process depending on a

collection of machine states.

Tags: atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
executionD
ependency

ExecutionDepe
ndency

* aggr This attribute defines that all processes that are
referenced via the ExecutionDependency shall be
launched and shall reach a certain
ApplicationState before the referencing process is
started.

Tags: atp.Status=draft
machineM
ode

ModeDeclaratio
n

* iref This represent the applicable modeDeclaration.

Tags: atp.Status=draft
startupCon
fig

StartupConfig 1 ref Reference to a reusable startup configuration with
startup parameters.

Tags: atp.Status=draft

Table B.3: ModeDependentStartupConfig

Class Process
Package M2::AUTOSARTemplates::AdaptivePlatform::Process
Note This meta-class provides information required to execute the referenced executable.

Tags: atp.Status=draft; atp.recommendedPackage=Processes
Base ARElement, ARObject, AtpClassifier, CollectableElement, Identifiable, Multilanguage

Referrable, PackageableElement, Referrable
Attribute Type Mul. Kind Note
application
ModeMach
ine

ModeDeclaratio
nGroupPrototyp
e

0..1 aggr Set of ApplicationStates (Modes) that are defined
for the process.

Tags: atp.Status=draft
executable Executable 0..1 ref Reference to executable that is executed in the

process.

Stereotypes: atpUriDef
Tags: atp.Status=draft

modeDepe
ndentStart
upConfig

ModeDependen
tStartupConfig

* aggr Applicable startup configurations.

Tags: atp.Status=draft

Table B.4: Process

41 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

Specification of Execution Management
AUTOSAR AP Release 17-03

Class StartupConfig
Package M2::AUTOSARTemplates::AdaptivePlatform::Process
Note This meta-class represents a reusable startup configuration for processes..

Tags: atp.Status=draft
Base ARObject, Identifiable, MultilanguageReferrable, Referrable
Attribute Type Mul. Kind Note
resourceGr
oup

ResourceGroup * ref Reference to applicable resource groups.

Tags: atp.Status=draft
scheduling
Policy

SchedulingPolic
yKindEnum

0..1 attr This attribute represents the ability to define the
scheduling policy.

scheduling
Priority

Integer 0..1 attr This is the scheduling priority requested by the
application itself.

startupOpti
on

StartupOption * aggr Applicable startup options

Tags: atp.Status=draft

Table B.5: StartupConfig

Class StartupOption
Package M2::AUTOSARTemplates::AdaptivePlatform::Process
Note This meta-class represents a single startup option consisting of option name and an

optional argument.

Tags: atp.Status=draft
Base ARObject
Attribute Type Mul. Kind Note
optionArgu
ment

String 0..1 attr This attribute defines option value.

optionKind CommandLineO
ptionKindEnum

1 attr This attribute specifies the style how the command
line options appear in the command line.

optionNam
e

String 0..1 attr This attribute defines option name.

Table B.6: StartupOption

42 of 42
— AUTOSAR CONFIDENTIAL —

Document ID 721: AUTOSAR_SWS_ExecutionManagement

	1 Introduction and functional overview
	1.1 What is Execution Management?
	1.2 Interaction with AUTOSAR Runtime for Adaptive

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Known limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Platform dependencies
	5.2 Other dependencies

	6 Requirements tracing
	7 Functional specification
	7.1 Technical Overview
	7.1.1 Application
	7.1.2 Adaptive Application
	7.1.3 Executable
	7.1.4 Process
	7.1.5 Application Manifest
	7.1.6 Machine Manifest
	7.1.7 Manifest format

	7.2 Execution Management Responsibilities
	7.3 Platform Lifecycle Management
	7.4 Application Lifecycle Management
	7.4.1 Process States
	7.4.2 Startup and shutdown
	7.4.3 Startup sequence
	7.4.3.1 Application dependency

	7.5 Handling of Application Manifest
	7.5.1 Overview
	7.5.2 Application Dependency
	7.5.3 Application Arguments
	7.5.4 Machine State
	7.5.5 Scheduling Policy
	7.5.6 Scheduling Priority
	7.5.7 Application Binary Name

	7.6 State Management
	7.6.1 Overview
	7.6.2 Application State
	7.6.3 Machine State
	7.6.3.1 Machine State Management
	7.6.3.2 Startup
	7.6.3.3 Shutdown
	7.6.3.4 Restart
	7.6.3.5 State Change

	8 API specification
	8.1 Type definitions
	8.1.1 ApplicationState
	8.1.2 StateError

	8.2 Class definitions
	8.2.1 ApplicationStateClient class
	8.2.1.1 ApplicationStateClient::ApplicationStateClient
	8.2.1.2 ApplicationStateClient::~ApplicationStateClient
	8.2.1.3 ApplicationStateClient::ReportApplicationState

	8.2.2 MachineStateClient class
	8.2.2.1 MachineStateClient::MachineStateClient
	8.2.2.2 MachineStateClient::~MachineStateClient
	8.2.2.3 MachineStateClient::Register
	8.2.2.4 MachineStateClient::GetMachineState
	8.2.2.5 MachineStateClient::SetMachineState

	A Not applicable requirements
	B Mentioned Class Tables

