
Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Document Title Specification of SOME/IP
Transformer

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 660

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 4.4.0

Document Change History
Date Release Changed by Description

2018-10-31 4.4.0
AUTOSAR
Release
Management

• Checking for length of received
dynamic length strings
• Extended Serialization for Data

Structures in SOME/IP with
tag/length/value encoding
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2017-12-08 4.3.1
AUTOSAR
Release
Management

• Bugfixes in serialization of strings
and data with variable size
• Signatures improved
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2016-11-30 4.3.0
AUTOSAR
Release
Management

• Sizes of length fields can be
configured independently from each
other
• Support of union data types
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

1 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

2015-07-31 4.2.2
AUTOSAR
Release
Management

• Size of length fields is configurable
• External trigger events are

communciated as fire-and-forget
methods
• Autonomous error reactions of

SOME/IP transformer
• Minor corrections / clarifications /

editorial changes; For details please
refer to the ChangeDocumentation

2014-10-31 4.2.1
AUTOSAR
Release
Management

Initial Release

2 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Disclaimer

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Table of Contents

1 Introduction and functional overview 6

2 Acronyms and Abbreviations 7

3 Related documentation 8

3.1 Input documents . 8
3.2 Related standards and norms . 9
3.3 Related specification . 9

4 Constraints and assumptions 10

4.1 Limitations . 10
4.2 Applicability to car domains . 10

5 Dependencies to other modules 11

5.1 File structure . 11
5.1.1 Code file structure . 11
5.1.2 Header file structure . 11

6 Requirements Tracing 12

7 Functional specification 17

7.1 Definition of Identifiers . 20
7.2 Specification of the SOME/IP on-wire format 21

7.2.1 Message Length Limitations 21
7.2.2 Endianess . 22
7.2.3 Header . 22

7.2.3.1 Message ID [32 bit] 23
7.2.3.2 Length [32 bit] . 23
7.2.3.3 Request ID [32 bit] 24
7.2.3.4 Protocol Version [8 bit] 24
7.2.3.5 Interface Version [8 bit] 25
7.2.3.6 Message Type [8 bit] 25
7.2.3.7 Return Code [8 bit] 26
7.2.3.8 Payload [variable size] 26

7.2.4 Serialization of Parameters and Data Structures 27
7.2.4.1 Basic Datatypes . 28
7.2.4.2 Structured Datatypes (structs) 29
7.2.4.3 Structured Datatypes and Arguments with Identifier

and optional Members 31
7.2.4.4 Strings . 35
7.2.4.5 Arrays (fixed length) 41
7.2.4.6 Optional Parameters / Optional Elements 43
7.2.4.7 Dynamic Length Arrays / Variable Size Arrays 43
7.2.4.8 Bitfield . 46
7.2.4.9 Union / Variant . 47

4 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.3 Protocol specification . 49
7.3.1 Client/Server Communication 50
7.3.2 Sender/Receiver Communication 52
7.3.3 Unqueued External Trigger Events 53
7.3.4 Error Handling . 54

7.3.4.1 Return Code . 54
7.3.4.2 Communication Errors and Handling of Communica-

tion Errors . 55
7.4 Reserved and special identifiers for SOME/IP and SOME/IP-SD. . . . 57
7.5 Development Errors . 59
7.6 Production Errors . 59
7.7 Extended Production Errors . 59
7.8 Error Notification . 59

8 API specification 60

8.1 Imported types . 60
8.2 Type definitions . 60
8.3 Function definitions . 60

8.3.1 SomeIpXf_<transformerId> 61
8.3.2 SomeIpXf_Inv_<transformerId> 65
8.3.3 SomeIpXf_Init . 71
8.3.4 SomeIpXf_DeInit . 71
8.3.5 SomeIpXf_GetVersionInfo 72

8.4 Callback notifications . 72
8.5 Scheduled functions . 72
8.6 Expected interfaces . 72

9 Sequence diagrams 73

10 Configuration specification 74

A Referenced Meta Classes 75

B Features of SOME/IP not supported by AUTOSAR SOME/IP transformer 96

C Examples 97

C.1 Serialization of a Client/Server Operation 97
C.1.1 Client . 98
C.1.2 Server . 99

5 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

1 Introduction and functional overview

This document specifies the Scalable service-Oriented MiddlewarE over IP
(SOME/IP) Transformer. This is a transformer which linearizes data with the SOME/IP
on-the-wire format and specifies an automotive/embedded mechanism for Clien-
t/Server communication.

The only valid abbreviation is SOME/IP. Other abbreviations (e.g. Some/IP) are wrong
and shall not be used.

The basic motivation to specify "yet another Client/Server and Sender/Receiver mech-
anism" instead of using an existing infrastructure/technology is the goal to have a tech-
nology that:

• Fulfills the hard requirements regarding resource consumption in an embedded
world

• Is compatible through as many use-cases and communication partners as possi-
ble

• Provides the features required by automotive use-cases

• Is scalable from tiny to large platforms

• Can be implemented on different operating system (i.e. AUTOSAR, GENIVI, and
OSEK) and even embedded devices without operating system

6 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
Transformer that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Client-Service-Instance-Entry
The configuration and required data of a service instance another
ECU offers shall be called Client-Service-Instance-Entry at the
ECU using this service (Client).

Field a field represents a status and thus has a valid value at all times
on which getter, setter and notfier act upon.

Finding a service instance to send a SOME/IP-SD message in order to find a needed ser-
vice instance.

Getter a Request/Response call that allows read access to a field.

Method a method, procedure, function, or subroutine that is called/in-
voked

Notifier sends out event message with a new value on change of the
value of the field.

Request a message of the client to the server invoking a method

Response a message of the server to the client transporting results of a
method invocation

SD Service Discovery (see[2])

Service
a logical combination of zero or more methods, zero or more
events, and zero or more fields (empty service is allowed, e.g.
for announcing non-SOME/IP services in SOME/IP-SD)

Service Instance software implementation of the service interface, which can exist
more than once in the vehicle and more than once on an ECU

Service Interface the formal specification of the service including its methods,
events, and fields

Setter a Request/Response call that allows write access to a field.

SOME/IP Scalable service-Oriented MiddlewarE over IP

7 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

3 Related documentation

3.1 Input documents

References

[1] Glossary
AUTOSAR_TR_Glossary

[2] Specification of Service Discovery
AUTOSAR_SWS_ServiceDiscovery

[3] General Specification on Transformers
AUTOSAR_ASWS_TransformerGeneral

[4] Specification of Socket Adaptor
AUTOSAR_SWS_SocketAdaptor

[5] Specification of RTE Software
AUTOSAR_SWS_RTE

[6] Requirements on AUTOSAR Features
AUTOSAR_RS_Features

[7] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[8] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[9] System Template
AUTOSAR_TPS_SystemTemplate

[10] Requirements on Transformer
AUTOSAR_SRS_Transformer

[11] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[12] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[13] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[14] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

8 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

3.2 Related standards and norms

Not applicable.

3.3 Related specification

AUTOSAR provides a General Specification on Transformers [3, ASWS Transformer
General], which is also valid for SOME/IP Transformer.

Thus, the specification SWS Transformer General shall be considered as additional
and required specification for SOME/IP Transformer.

9 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4 Constraints and assumptions

4.1 Limitations

For the SOME/IP Transformer all general transformer limitations (see [3, ASWS Trans-
former General]) apply.

The SOME/IP transformer doesn’t implement the whole SOME/IP protocol:

• a part is implemented by [2, SWS Service Discovery]

• a part is implemented by [4, SWS Socket Adaptor]

• a part is currently not implemented in AUTOSAR. This is documented in Ap-
pendix B

4.2 Applicability to car domains

The SOME/IP Transformer can be used for all domain applications when SOME/IP
Sender/Receiver or Client/Server communication is used.

10 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

5 Dependencies to other modules

The AUTOSAR RTE [5, SWS RTE] has to exist to execute the transformer.

5.1 File structure

5.1.1 Code file structure

The source code file structure is defined in the [3, ASWS Transformer General].

5.1.2 Header file structure

[SWS_SomeIpXf_00136] d The header file SomeIpXf[_<Ie>].h shall be the main
include file for the SOME/IP transformer and include TransformerTypes.h and its
Module Interlink Header file SchM_<bsnp>_[<vi>_<ai>].h.

where
<Ie> is the optional implementation specific file name extension according
[SWS_BSW_00103],
<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],
<vi> is the vendorId of the BSW module and
<ai> is the vendorApiInfix of the BSW module. c(SRS_BSW_00346)

The file TransformerTypes.h contains the general transformer data types.

11 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

6 Requirements Tracing

The following table references the features specified in [6] and links to the fulfillments
of these.

Feature Description Satisfied by
[SRS_BSW_00159] All modules of the

AUTOSAR Basic
Software shall
support a tool based
configuration

[SWS_SomeIpXf_00185]

[SRS_BSW_00337] Classification of
development errors

[SWS_SomeIPxf_00184]

[SRS_BSW_00346] All AUTOSAR Basic
Software Modules
shall provide at least
a basic set of
module files

[SWS_SomeIpXf_00136]

[SRS_BSW_00404] BSW Modules shall
support post-build
configuration

[SWS_SomeIpXf_00183]

[SRS_BSW_00407] Each BSW module
shall provide a
function to read out
the version
information of a
dedicated module
implementation

[SWS_SomeIpXf_00180]
[SWS_SomeIpXf_00181]
[SWS_SomeIpXf_00182]

[SRS_BSW_00411] All AUTOSAR Basic
Software Modules
shall apply a naming
rule for
enabling/disabling
the existence of the
API

[SWS_SomeIpXf_00180]
[SWS_SomeIpXf_00181]
[SWS_SomeIpXf_00182]

[SRS_BSW_00441] Naming convention
for type, macro and
function

[SWS_SomeIpXf_00183]

[SRS_Xfrm_00001] A transformer shall
work on data given
by the Rte

[SWS_SomeIpXf_00264]
[SWS_SomeIpXf_00265]
[SWS_SomeIpXf_00266]

[SRS_Xfrm_00002] A transformer shall
provide fixed
interfaces

[SWS_SomeIpXf_00206]
[SWS_SomeIpXf_00207]
[SWS_SomeIpXf_00208]
[SWS_SomeIpXf_00209]
[SWS_SomeIpXf_00210]
[SWS_SomeIpXf_00211]

[SRS_Xfrm_00004] A transformer shall
support error
handling

[SWS_SomeIpXf_00264]
[SWS_SomeIpXf_00265]
[SWS_SomeIpXf_00266]

12 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SRS_Xfrm_00008] A transformer shall
specify its output
format

[SWS_SomeIpXf_00001]
[SWS_SomeIpXf_00002]
[SWS_SomeIpXf_00005]
[SWS_SomeIpXf_00006]
[SWS_SomeIpXf_00007]
[SWS_SomeIpXf_00009]
[SWS_SomeIpXf_00010]
[SWS_SomeIpXf_00011]
[SWS_SomeIpXf_00013]
[SWS_SomeIpXf_00015]
[SWS_SomeIpXf_00024]
[SWS_SomeIpXf_00025]
[SWS_SomeIpXf_00026]
[SWS_SomeIpXf_00029]
[SWS_SomeIpXf_00030]
[SWS_SomeIpXf_00031]
[SWS_SomeIpXf_00033]
[SWS_SomeIpXf_00130]
[SWS_SomeIpXf_00131]
[SWS_SomeIpXf_00132]
[SWS_SomeIpXf_00133]
[SWS_SomeIpXf_00134]
[SWS_SomeIpXf_00152]
[SWS_SomeIpXf_00154]
[SWS_SomeIpXf_00155]
[SWS_SomeIpXf_00156]
[SWS_SomeIpXf_00160]
[SWS_SomeIpXf_00161]
[SWS_SomeIpXf_00163]
[SWS_SomeIpXf_00164]
[SWS_SomeIpXf_00165]
[SWS_SomeIpXf_00166]
[SWS_SomeIpXf_00168]
[SWS_SomeIpXf_00172]
[SWS_SomeIpXf_00212]
[SWS_SomeIpXf_00213]
[SWS_SomeIpXf_00234]
[SWS_SomeIpXf_00235]
[SWS_SomeIpXf_00236]
[SWS_SomeIpXf_00237]
[SWS_SomeIpXf_00238]

13 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SRS_Xfrm_00101] The SOME/IP
Transformer shall
define the
serialization of
atomic and
structured data
elements into linear
arrays

[SWS_SomeIpXf_00016]
[SWS_SomeIpXf_00017]
[SWS_SomeIpXf_00034]
[SWS_SomeIpXf_00036]
[SWS_SomeIpXf_00037]
[SWS_SomeIpXf_00042]
[SWS_SomeIpXf_00053]
[SWS_SomeIpXf_00054]
[SWS_SomeIpXf_00055]
[SWS_SomeIpXf_00056]
[SWS_SomeIpXf_00057]
[SWS_SomeIpXf_00058]
[SWS_SomeIpXf_00059]
[SWS_SomeIpXf_00060]
[SWS_SomeIpXf_00069]
[SWS_SomeIpXf_00070]
[SWS_SomeIpXf_00072]
[SWS_SomeIpXf_00076]
[SWS_SomeIpXf_00088]
[SWS_SomeIpXf_00098]
[SWS_SomeIpXf_00099]
[SWS_SomeIpXf_00151]
[SWS_SomeIpXf_00169]
[SWS_SomeIpXf_00216]
[SWS_SomeIpXf_00217]
[SWS_SomeIpXf_00218]
[SWS_SomeIpXf_00219]
[SWS_SomeIpXf_00220]
[SWS_SomeIpXf_00221]
[SWS_SomeIpXf_00222]
[SWS_SomeIpXf_00223]
[SWS_SomeIpXf_00224]
[SWS_SomeIpXf_00225]
[SWS_SomeIpXf_00226]
[SWS_SomeIpXf_00227]
[SWS_SomeIpXf_00234]
[SWS_SomeIpXf_00235]
[SWS_SomeIpXf_00236]
[SWS_SomeIpXf_00237]
[SWS_SomeIpXf_00238]
[SWS_SomeIpXf_00239]
[SWS_SomeIpXf_00240]
[SWS_SomeIpXf_00241]
[SWS_SomeIpXf_00242]
[SWS_SomeIpXf_00243]
[SWS_SomeIpXf_00244]
[SWS_SomeIpXf_00245]
[SWS_SomeIpXf_00246]

14 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00247]
[SWS_SomeIpXf_00248]
[SWS_SomeIpXf_00249]
[SWS_SomeIpXf_00250]
[SWS_SomeIpXf_00251]
[SWS_SomeIpXf_00252]
[SWS_SomeIpXf_00253]
[SWS_SomeIpXf_00254]
[SWS_SomeIpXf_00256]
[SWS_SomeIpXf_00257]
[SWS_SomeIpXf_00258]
[SWS_SomeIpXf_00259]
[SWS_SomeIpXf_00260]
[SWS_SomeIpXf_00262]
[SWS_SomeIpXf_00263]

[SRS_Xfrm_00102] The SOME/IP
Transformer shall
define a protocol for
inter-ECU
Client/Server
communication

[SWS_SomeIpXf_00106]
[SWS_SomeIpXf_00107]
[SWS_SomeIpXf_00108]
[SWS_SomeIpXf_00111]
[SWS_SomeIpXf_00112]
[SWS_SomeIpXf_00113]
[SWS_SomeIpXf_00115]
[SWS_SomeIpXf_00120]
[SWS_SomeIpXf_00121]
[SWS_SomeIpXf_00170]
[SWS_SomeIpXf_00176]
[SWS_SomeIpXf_00200]
[SWS_SomeIpXf_00201]
[SWS_SomeIpXf_00202]
[SWS_SomeIpXf_00204]
[SWS_SomeIpXf_00205]

[SRS_Xfrm_00103] The SOME/IP
Transformer shall
support exception
notification of
applications

[SWS_SomeIpXf_00111]

[SRS_Xfrm_00105] The SOME/IP
Transformer shall
support autonomous
error reactions on
the server side for
client/server
communication

[SWS_SomeIpXf_00203]

15 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SRS_Xfrm_00106] The SOME/IP
Transformer shall
support serialization
of extensible data
structs and methods

[SWS_SomeIpXf_00267]
[SWS_SomeIpXf_00268]
[SWS_SomeIpXf_00269]
[SWS_SomeIpXf_00270]
[SWS_SomeIpXf_00271]
[SWS_SomeIpXf_00272]
[SWS_SomeIpXf_00273]
[SWS_SomeIpXf_00274]
[SWS_SomeIpXf_00275]
[SWS_SomeIpXf_00276]
[SWS_SomeIpXf_00277]
[SWS_SomeIpXf_00278]
[SWS_SomeIpXf_00279]
[SWS_SomeIpXf_00280]
[SWS_SomeIpXf_00281]
[SWS_SomeIpXf_00282]
[SWS_SomeIpXf_00283]
[SWS_SomeIpXf_00284]
[SWS_SomeIpXf_00285]
[SWS_SomeIpXf_00286]
[SWS_SomeIpXf_00287]
[SWS_SomeIpXf_00288]
[SWS_SomeIpXf_00289]
[SWS_SomeIpXf_00290]
[SWS_SomeIpXf_00291]
[SWS_SomeIpXf_00292]
[SWS_SomeIpXf_00293]
[SWS_SomeIpXf_00294]

16 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7 Functional specification

ECU 2 ECU 1 Sending Application
SWC

RTE

Com

SOME/IP
Serializer

Receiving Application
SWC

RTE

Com

SOME/IP
Deserializer

Figure 7.1: Overview of SOME/IP Transformer

When a SWC initiates an inter-ECU communication which is configured to be trans-
formed, the SWC hands the data over to the RTE. The RTE executes the configured
transformer chain which contains the SOME/IP Transformer (A transformer chain may
contain also other transformers but this is omitted in this overview for simplicity).

The SOME/IP Transformer on the sender side serializes the data of the SWC and
brings them into an linear form. The serialized data are sent via the communication
stack over the bus to the receiver(s). The RTE of the receiver executes the transformer
chain in the reverse order. The SOME/IP transformer of the receiver deserializes the
linear data back into the original data structure. These are handed over to the receiving
SWC.

From the SWC’s point of view it is totally transparent whether data are transformed or
not.

The SOME/IP transformer is a transformer of the class Serializer. It serializes struc-
tured data into a linear form. Therefore it can only be used as the first transformer on
the sending side and the last transformer on the receiving side (in execution order).
Furthermore it provides the transformer errors specified for this transformer class and
supports only out-of-place buffer handling.

17 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

The SOME/IP Transformer has no module specific EcuC because its whole configu-
ration is based on the SOMEIPTransformationDescription and SOMEIPTrans-
formationISignalProps.

Describable

TransformationDescription

«enumeration»
ByteOrderEnum

Attributes
+ mostSignificantByteFirst
+ mostSignificantByteLast
+ opaque

SOMEIPTransformationDescription

+ alignment: PositiveInteger
+ byteOrder: ByteOrderEnum
+ interfaceVersion: PositiveInteger

Describable

«atpVariation»
TransformationISignalProps

+ csErrorReaction: CSTransformerErrorReactionEnum [0..1]

SOMEIPTransformationISignalProps

+ implementsSOMEIPStringHandling: Boolean [0..1]
+ interfaceVersion: PositiveInteger [0..1]
+ isDynamicLengthFieldSize: Boolean [0..1]
+ messageType: SOMEIPMessageTypeEnum [0..1]
+ sessionHandlingSR: SOMEIPTransformerSessionHandlingEnum [0..1]
+ sizeOfArrayLengthFields: PositiveInteger [0..1]
+ sizeOfStructLengthFields: PositiveInteger [0..1]
+ sizeOfUnionLengthFields: PositiveInteger [0..1]

«enumeration»
SOMEIPTransformerSessionHandlingEnum

 sessionHandlingActive
 sessionHandlingInactive

FibexElement

ISignal

+ dataTypePolicy: DataTypePolicyEnum
+ iSignalType: ISignalTypeEnum [0..1]
+ length: Integer

«enumeration»
CSTransformerErrorReactionEnum

 autonomous
 applicationOnly

Identifiable

TransformationTechnology

+ hasInternalState: Boolean [0..1]
+ needsOriginalData: Boolean [0..1]
+ protocol: String
+ transformerClass: TransformerClassEnum
+ version: String

«enumeration»
SOMEIPMessageTypeEnum

Attributes
+ request
+ requestNoReturn
+ notification
+ response

+transformer 1

+transformationDescription 0..1

«atpVariation»

+transformationISignalProps 0..*

Figure 7.2: SOME/IP specific configuration

Class SOMEIPTransformationDescription

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The SOMEIPTransformationDescription is used to specify SOME/IP transformer specific attributes.

Base ARObject , Describable, TransformationDescription

Attribute Type Mul. Kind Note

alignment PositiveInteger 1 attr Specifies the alignment of dynamic data in the serialized
data stream. The alignment shall be specified in Bits.

byteOrder ByteOrderEnum 1 attr Defines which byte order shall be serialized by the
SOME/IP transformer

interfaceVersion PositiveInteger 1 attr The interface version the SOME/IP transformer shall use.

Table 7.1: SOMEIPTransformationDescription

18 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Class «atpVariation» SOMEIPTransformationISignalProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class SOMEIPTransformationISignalProps specifies ISignal specific configuration properties for
SOME/IP transformer attributes.

Base ARObject , Describable, TransformationISignalProps

Attribute Type Mul. Kind Note

implements
SOMEIPString
Handling

Boolean 0..1 attr This attribute indicates whether Strings in the SOME/IP
message shall be processed according to the SOME/IP
specification for Strings. This attribute has been
introduced due to compatibility reasons for AUTOSAR
before R4.3. If this attribute is set to true Strings in the
payload shall be handled according to the SOME/IP
specification on Strings.
If this attribute is set to false (or not set) no special
handling for Strings in the payload shall be performed.

interfaceVersion PositiveInteger 0..1 attr The interface version the SOME/IP transformer shall use.

isDynamic
LengthFieldSize

Boolean 0..1 attr This attribute shall be used to determine the wire type in
the context of using the TLV encoding.

messageType SOMEIPMessageType
Enum

0..1 attr The Message Type which shall be placed into the
SOME/IP header.

session
HandlingSR

SOMEIPTransformer
SessionHandlingEnum

0..1 attr Defines whether the SOME/IP transformer shall use
session handling for Sender/Receiver communication.

sizeOfArray
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of fixed-size arrays
in the SOME/IP message. This attribute is valid for all
available occurrences of fixed-size arrays in the SOME/IP
message. For a more fine granular modeling on the level
of DataPrototypes the DataPrototypeTransformationProps
shall be used.

sizeOfStruct
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of structs in the
SOME/IP message. This attribute is valid for all available
occurrences of structures in the SOME/IP message. For
a more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

sizeOfUnion
LengthFields

PositiveInteger 0..1 attr The size of all length fields (in Bytes) of unions in the
SOME/IP message. This attribute is valid for all available
occurrences of Unions in the SOME/IP message. For a
more fine granular modeling on the level of Data
Prototypes the DataPrototypeTransformationProps shall
be used.

tlvDataId TlvDataIdDefinition * aggr This aggregation represents the collection of tlvDataIds
defined in the enclosing context.

Stereotypes: atpSplitable
Tags: atp.Splitkey=tlvDataId
atp.Status=draft

Table 7.2: SOMEIPTransformationISignalProps

Enumeration ByteOrderEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

5

19 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Enumeration ByteOrderEnum

mostSignificantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or as
Motorola-Format)

Tags: atp.EnumerationValue=0

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Tags: atp.EnumerationValue=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.

Tags: atp.EnumerationValue=2

Table 7.3: ByteOrderEnum

Enumeration SOMEIPMessageTypeEnum

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Depending on the style of the communication different message types shall be set in the header of a
SOME/IP message.

Literal Description

notification A request of a notification expecting no response.

Tags: atp.EnumerationValue=1

request A request expecting a response.

Tags: atp.EnumerationValue=2

requestNoReturn A fire&forget request.

Tags: atp.EnumerationValue=3

response The response message.

Tags: atp.EnumerationValue=4

Table 7.4: SOMEIPMessageTypeEnum

[SWS_SomeIpXf_00151] d The SOME/IP transformer defined in this document shall
be used as a transformer if

• the attribute protocol of the TransformationTechnology is set to SOMEIP

• and the attribute version of the TransformationTechnology is set to 1

• and the attribute transformerClass of the TransformationTechnology is
set to serializer

c(SRS_Xfrm_00101)

7.1 Definition of Identifiers

[SWS_SomeIpXf_00001] d A service shall be identified using the Service-ID. c
(SRS_Xfrm_00008)

[SWS_SomeIpXf_00002] d Service-IDs shall be of type 16 bit length unsigned integer
(uint16). c(SRS_Xfrm_00008)

20 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

The Service-ID of 0xFFFE shall be used to encode non-SOME/IP services. See
[SWS_SomeIpXf_00130].

[SWS_SomeIpXf_00005] d Different services within the same vehicle shall have dif-
ferent Service-IDs. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00006] d A service instance shall be identified using the Service-
Instance-ID. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00007] d Service-Instance-IDs shall be of type 16 bit length un-
signed integer (uint16). c(SRS_Xfrm_00008)

The Service-Instance-IDs of 0x0000 and 0xFFFF shall not be used for a service,
since 0x0000 is reserved and 0xFFFF is used to describe all service instances. See
[SWS_SomeIpXf_00130].

[SWS_SomeIpXf_00009] d Different service instances within the same vehicle shall
have different Service-Instance-IDs.c(SRS_Xfrm_00008)

Note:
This means that two different camera services shall have two different ServiceInstance-
IDs SI-ID-1 and SI-ID-2. For one AUTOSAR system (that designs a vehicle product
line) SI-ID-1 shall be the same for all vehicles. The same is true for SI-ID-2. If consid-
ering another AUTOSAR system (that designs another vehicle product line), different
IDs may be used but it makes sense to use the same IDs among different AUTOSAR
systems for ease in testing and integration.

[SWS_SomeIpXf_00010] d Methods and events shall be identified inside a service
using a 16bit Method-ID, which is called Event-ID for events and notifications. c
(SRS_Xfrm_00008)

[SWS_SomeIpXf_00011] dMethods shall use Method-IDs with the highest bit set to 0,
while the Method-IDs highest bit shall be set to 1 for events and notifications of fields.
c(SRS_Xfrm_00008)

7.2 Specification of the SOME/IP on-wire format

Serialization describes the way data is represented in protocol data units (PDUs) trans-
ported over an automotive in-vehicle network.

7.2.1 Message Length Limitations

The usage of TCP allows for larger streams of data to transport SOME/IP header and
payload. However, current transport protocols for CAN and FlexRay limit messages
to 4095 Bytes. When compatibility to those has to be achieved, SOME/IP messages
including the SOME/IP header shall not exceed 4095 Bytes.

21 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.2 Endianess

[SWS_SomeIpXf_00013] d All headers shall be encoded in network byte order Big
Endian (MostSignificantByteFirst) [RFC 791]. c(SRS_Xfrm_00008)

This means that Length and Type fields shall be always in network byte order.

[SWS_SomeIpXf_00172] d The byte order of the parameters inside the payload
shall be defined by byteOrder of SOMEIPTransformationDescription. c
(SRS_Xfrm_00008)

7.2.3 Header

[SWS_SomeIpXf_00152] d For interoperability reasons the header layout shall be
identical for all implementations of SOME/IP and is shown in the Figure 7.3. The fields
are presented in transmission order; i.e. the fields on the top left are transmitted first.
In the following sections the different header fields and their usage is being described.
c(SRS_Xfrm_00008)

Protocol Version [8 bit] Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

Message ID (Service ID / Method ID) [32 bit]

Payload [variable size]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o

v
e

re
d

 b
y
 L

e
n

g
th

Figure 7.3: SOME/IP Header Format

Figure 7.3 shows the complete SOME/IP header. The SOME/IP transformer only
implements the lower part (all except Message ID and Length).

[SWS_SomeIpXf_00015] d The SOME/IP transformer shall implement all fields of the
header except Message ID and Length. c(SRS_Xfrm_00008)

Rationale:
Message-ID and Length are not covered since this allows the AUTOSAR Socket Adap-
tor header mode to work.

These are added by other modules in the AUTOSAR BSW. Nonetheless they are con-
tained in Figure 7.3 to show the whole on-wire-format.

22 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.3.1 Message ID [32 bit]

The Message ID is a 32 bit identifier that is used to identify the message. The Message
ID has to uniquely identify a method or event of a service.

The assignment of the Message ID is up to the user; however, the Message ID has
to be unique for the whole system (i.e. the vehicle). The Message ID can be best
compared to a CAN ID and should be handled with a comparable process. The next
section 7.2.3.1.1 describes how to structure the Message IDs in order to ease the
organization of Message IDs.

7.2.3.1.1 Structure of the Message ID

In order to structure the different methods, events, and fields, they are clustered into
services. Services have a set of methods, events, and fields as well as a Service ID,
which is only used for this service.

An event shall be part of zero to many eventgroups and an eventgroup shall contain
zero to many events. A field shall be part of zero to many eventgroups and an event-
group can contain zero to many fields.

For inter-ECU Client/Server communication calls we structure the ID in 216 services
with 215 methods:

Service ID [16 bit] 0 [1 bit] Method ID [last 15 bits]

where the 0-Bit is the first bit of the 16 bit Method ID.

With 16 bit Service-ID and a 16 bit Method-ID starting with a 0-Bit (15 bit are still left
in the Method-ID for real values), this allows for up to 65536 services with up to 32768
methods each.

Since events and notifications are transported using Client/Server communication, the
ID space for the events is further structured:

Service ID [16 bit] 1 [1 bit] Event ID [last 15 bits]

where the 1-Bit is the first bit of the 16 bit Method ID.

This means that up to 32768 events or notifications per service are possible.

7.2.3.2 Length [32 bit]

The Length field is 32 bit long and contains the length in Byte of the payload beginning
with the Request ID/Client ID until the end of the SOME/IP-message.

23 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.3.3 Request ID [32 bit]

[SWS_SomeIpXf_00154] d The Request ID field shall be 32 bit long. c(
SRS_Xfrm_00008)

The Request ID shall be the unique identifier for the calling client inside the ECU. Its
values are chosen by the RTE and handed over to the SOME/IP transformer.

[SWS_SomeIpXf_00024] d The Request ID shall be constructed of the Client ID and
Session ID as shown in Table 7.5. c(SRS_Xfrm_00008)

Client ID [16 bits] Session ID [16 bits]

Table 7.5: Construction of Request ID

Both are chosen by RTE and handed over to the transformer as
Rte_Cs_TransactionHandleType.

[SWS_SomeIpXf_00025] d The clientId inside the
Rte_Cs_TransactionHandleType handed over from RTE shall be used for
the value of the Client ID. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00026] d The sequenceCounter inside the
Rte_Cs_TransactionHandleType handed over from RTE shall be used for
the value of the Session ID. c(SRS_Xfrm_00008)

For details of Rte_Cs_TransactionHandleType see [SWS_Rte_08732].

The Request ID allows a client to differentiate multiple calls to the same method. There-
fore, the Request ID has to be unique for a single client and server combination only.
When generating a response message, the server has to copy the Request ID from
the request to the response message. This allows the client to map a response to the
issued request even with more than one request outstanding.

Request IDs may be reused as soon as the response arrived or is not expected to
arrive anymore (timeout).

7.2.3.4 Protocol Version [8 bit]

[SWS_SomeIpXf_00155] d The Protocol Version field shall be 8 bit long. c
(SRS_Xfrm_00008)

[SWS_SomeIpXf_00156] d The Protocol Version field shall contain the SOME/IP pro-
tocol version. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00029] d The Protocol Version shall be set to 0x01. c
(SRS_Xfrm_00008)

24 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.3.5 Interface Version [8 bit]

[SWS_SomeIpXf_00030] d The Interface Version field shall be 8 bit long. c(
SRS_Xfrm_00008)

[SWS_SomeIpXf_00160] d The Interface Version field shall contain the Version of the
Service Interface. c(SRS_Xfrm_00008)

Rationale: This is required to catch mismatches in Service definitions and allows de-
bugging tools to identify the Service Interface used, if version is used.

7.2.3.6 Message Type [8 bit]

[SWS_SomeIpXf_00161] d The Message Type field shall be 8 bit long. c
(SRS_Xfrm_00008)

The Message Type field is used to differentiate different types of messages.

[SWS_SomeIpXf_00031] d The Message Type field shall be filled with one of the val-
ues of Table 7.6. c(SRS_Xfrm_00008)

Number Value Description
0x00 REQUEST A request expecting a response (even

void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification expecting no

response
0x80 RESPONSE The response message
0x81 ERROR The response containing an error

Table 7.6: Message Types

A regular client request (message type 0x00) is answered by a server response (mes-
sage type 0x80), when no error occurred. If errors occur an error message (message
type 0x81) will be sent.

For updating values through notification a callback interface exists (message type
0x02).

It is possible to send a request that does not have a response message (message type
0x01) to use SOME/IP for AUTOSAR Sender/Receiver communication.

The following values are also valid in SOME/IP in general but are not used by the
SOME/IP transformer:

Number Value Description
0x40 REQUEST_ACK Acknowledgment for REQUEST (optional)
0x41 REQUEST_NO_RETURN_ACK Acknowledgment for

REQUEST_NO_RETURN (informational)
0x42 NOTIFICATION_ACK Acknowledgment for NOTIFICATION (in-

formational)

25 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

0xC0 RESPONSE_ACK The Acknowledgment for RESPONSE (in-
formational)

0xC1 ERROR_ACK Acknowledgment for ERROR (informa-
tional)

For all messages an optional acknowledgment (ACK) exists for use with transport pro-
tocols that do not acknowledge a received message.

7.2.3.7 Return Code [8 bit]

[SWS_SomeIpXf_00163] d The Return Code field shall be 8 bit long. c
(SRS_Xfrm_00008)

[SWS_SomeIpXf_00164] d The Return Code field shall be used to signal whether a
request has been successfully processed. c(SRS_Xfrm_00008)

For simplification of the header layout, every message transports the field Return Code.

The Return Codes are specified in detail in [SWS_SomeIpXf_00115].

[SWS_SomeIpXf_00033] d Messages of Type REQUEST, REQUEST_NO_RETURN,
and Notification have to set the Return Code to 0x00 (E_OK). c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00168] d The allowed Return Codes for specific message types are
specified in Table 7.7. c(SRS_Xfrm_00008)

Message Type Allowed Return Codes
REQUEST N/A, set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A, set to 0x00 (E_OK)
NOTIFICATION N/A, set to 0x00 (E_OK)
RESPONSE See Return Codes in [SWS_SomeIpXf_00115].

Table 7.7: Return Codes

7.2.3.8 Payload [variable size]

[SWS_SomeIpXf_00165] d The Payload field shall have variable size. c
(SRS_Xfrm_00008)

[SWS_SomeIpXf_00166] d The Payload field shall contain the transported data. c
(SRS_Xfrm_00008)

The serialization of the data will be specified in the following section.

26 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.4 Serialization of Parameters and Data Structures

[SWS_SomeIpXf_00034] d The serialization shall be based on the Sender-
ReceiverInterface or ClientServerInterface of the data. c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00169] d To allow migration the deserialization shall ignore param-
eters attached to the end of previously known parameter list. c(SRS_Xfrm_00101)

This means: Parameters that were not defined in the ClientServerInterface or
SenderReceiverInterface used to generate or parameterize the deserialization
code at the end of the serialized data will be ignored by the deserialization.

[SWS_SomeIpXf_00259] d After the serialized data of a variable data length Dat-
aPrototype a padding for alignment purposes shall be added for the configured
alignment (see [SWS_SomeIpXf_00260] and [SWS_SomeIpXf_00262]) if the variable
data length DataPrototype is not the last element in the serialized data stream. This
requirement does not apply for the serialization of extensible structs and methods (see
chapter 7.2.4.3) c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00260] d If SOMEIPTransformationProps.alignment is set
for a variable data length data element, the value of SOMEIPTransformation-
Props.alignment defines the alignment. This requirement does not apply for
the serialization of extensible structs and methods (see chapter 7.2.4.3). c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00262] d If SOMEIPTransformationProps.alignment is not set
for a variable data length data element, the value of SOMEIPTransformation-
Description.alignment defines the alignment. This requirement does not ap-
ply for the serialization of extensible structs and methods (see chapter 7.2.4.3). c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00263] d After serialized fixed data length data elements, the
SOME/IP transformer shall never add automatically a padding for alignment. c
(SRS_Xfrm_00101)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the ImplementationDataType.

[SWS_SomeIpXf_00037] d Alignment shall always be calculated from start of
SOME/IP message. c(SRS_Xfrm_00101)

This attribute defines the memory alignment. The SOME/IP Transformer does not try
to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

27 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00016] d If more data than expected are handed over to the
SOME/IP transformer during deserialization of data, the unexpected data shall be dis-
carded. The known fraction shall be considered. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00017] d If less data than expected are handed over to the SOME/IP
transformer during deserialization of data, the following shall happen:

• if for the corresponding ISignal an initial value is specified (in serialized form)
use the value to fill the missing elements at the end of the serialized stream.

• if no initial value is available abort deserialization with
E_SER_MALFORMED_MESSAGE.

c(SRS_Xfrm_00101)

Missing data can only be recognized by comparing the length of received serialized
data with the expected length of the data. [SWS_SomeIpXf_00017] enables extensions
of data by adding elements to the end and achieve backward compatibility of an ECU
with older boardnet layouts that are missing those data.

In the following the serialization of different parameters is specified.

7.2.4.1 Basic Datatypes

[SWS_SomeIpXf_00036] d The SwBaseTypes defined in [7] and according to
[TPS_STDT_00067] placed in the package /AUTOSAR_Platform/BaseTypes (e.g.,
/AUTOSAR_Platform/BaseTypes/uint32) whihc shall be supported for serializa-
tion are listed in Table 7.8. c(SRS_Xfrm_00101)

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16
uint32 unsigned Integer 32
uint64 unsigned Integer 64
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
sint64 signed Integer 64
float32 floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
float64 floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

Table 7.8: SwBaseTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of SOMEIP-
TransformationDescription. See chapter 7.2.2.

28 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.4.2 Structured Datatypes (structs)

[SWS_SomeIpXf_00042] d A struct shall be serialized in order of depth-first traversal.
c(SRS_Xfrm_00101)

The transformer doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP implementation shall not automatically add such padding.

So if for example a struct includes a uint8 and a uint32, they are just written sequentially
into the buffer. This means that there is no padding between the uint8 and the first byte
of the uint32; therefore, the uint32 might not be aligned. So the system designer has
to consider to add padding elements to the data type to achieve the required alignment
or set it globally.

Warning about unaligned structs or similar shall not be done in the implementation but
only in the tool chain used to generate the implementation.

Messages of legacy busses like CAN and FlexRay are usually not aligned. Warnings
can be turned off or be ignored in such cases.

The SOME/IP transformer does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_SomeIpXf_00216] d If attribute sizeOfStructLengthFields of SOMEIP-
TransformationISignalProps is set to a value greater 0, a length field shall be
inserted in front of every serialized struct. c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00216] also applies to nested structs which means that additionally
every nested struct has its own length field. Furthermore, in an array of structs where
all structs have the same length, the length field is inserted in front of every struct inside
the array.

[SWS_SomeIpXf_00252] d If attribute sizeOfStructLengthField of SOMEIP-
TransformationProps is set to a value greater 0, a length field shall be inserted
in front of the serialized struct for which the SOMEIPTransformationProps is de-
fined. (See [TPS_SYST_02121]) c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00252] applies if the length fields of the struct and all nested structs
contained within the root struct are configured to different values for the lengths of the
length fields via SOMEIPTransformationProps.

[SWS_SomeIpXf_00217] d The data type of the length field of the struct and all
nested structs within the struct shall be the same and shall be determined by the value
of SOMEIPTransformationISignalProps.sizeOfStructLengthFields of the
serialized ISignal:

29 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

• uint8 if sizeOfStructLengthFields equals 1

• uint16 if sizeOfStructLengthFields equals 2

• uint32 if sizeOfStructLengthFields equals 4

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00253] d If SOMEIPTransformationProps.sizeOf-
StructLengthField is present for a struct the data type for the length field
of the struct shall be determined by the value of SOMEIPTransformation-
Props.sizeOfStructLengthField:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

• Otherwise [SWS_SomeIpXf_00217] applies.

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00218] d The serializing SOME/IP transformer shall write the size
(in bytes) of the serialized struct (without the size of the length field) into the length field
of the struct. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00219] d If the length is greater than the expected length of a struct
(as specified in the data type definition) a deserializing SOME/IP transformer shall only
interpret the expected data and skip the unexpected. c(SRS_Xfrm_00101)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 7.4: Serialization of Structs without Length Fields (Example)

30 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint16 lf1

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

uint32 a

uint16 lf2

uint16 lf3

Figure 7.5: Serialization of Structs with Length Fields (Example)

7.2.4.3 Structured Datatypes and Arguments with Identifier and optional Mem-
bers

Please note that the content of this chapter has draft character

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can
skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Software Component Template using an Implementa-
tionDataType of category STRUCTURE and members are represented by Imple-
mentationDataTypeElements. Method arguments are represented by Argument-
DataPrototypes. Refer to [8] for more details.

The assignment of Data IDs is modeled in the System Template in the context of
SOMEIPTransformationISignalProps. Refer to [9] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members. To
serialize data with optional members, the transformer has to know which optional mem-
bers are available or not. This is stored in a bitfield which is contained inside the Im-
plementationDataType. This availabilityBitfield is realized as array of uint8.

Whether an optional member is actually present in the struct or not, must be deter-
mined during runtime.

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

31 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00267]{DRAFT} d The length of a tag shall be two bytes. c
(SRS_Xfrm_00106)

[SWS_SomeIpXf_00268]{DRAFT} d The tag shall consist of

• reserved (Bit 7 of the first byte)

• wire type (Bit 6-4 of the first byte)

• Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

Refer to Figure 7.6 for the layout of the tag. Bit 7 is the high-
est significant bit of a byte, bit 0 is the lowest significant bit of a byte.

Wire Type
Data ID (Higher

Sig. Part)
Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byte n Byte n + 1 Byte n + 2 ...

7 0 7 0 7/15/31 0

re
s
e
rv

e
d

Figure 7.6: SOME/IP Struct Tag Layout

c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00269]{DRAFT} d The lower significant part of the Data ID of the
member shall be encoded in bits 7-0 of the second byte of the tag. The higher signifi-
cant part of the Data ID of the member shall be encoded in bits 3-0 of the first byte. c
(SRS_Xfrm_00106)

Example: The Data ID of the member is 1266 (dec). Then bits 3-0 of the first byte are
set to 0x4. The second byte is set to 0xF2.

[SWS_SomeIpXf_00270]{DRAFT} d The wire type shall determine the type of the
following data of the member. The value shall be assigned as shown in Table 7.9. c
(SRS_Xfrm_00106)

Wire Type Value
0 8 Bit Data Base data type
1 16 Bit Data Base data type
2 32 Bit Data Base data type
3 64 Bit Data Base data type
4 Complex Data Type: Array, Struct, String, Union with length

field size 1 byte (configured in data definition)
5 Complex Data Type: Array, Struct, String, Union with length

field size 1 byte (ignore static definition)
6 Complex Data Type: Array, Struct, String, Union with length

field size 2 byte (ignore static definition)
7 Complex Data Type: Array, Struct, String, Union with length

field size 4 byte (ignore static definition)

Table 7.9: Message Types

Note: Wire type 4 ensures the compatibility with the current approach where the size
of length fields is statically configured. This approach has the drawback that changing

32 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

the size of the length field during evolution of interfaces is always incompatible. Thus,
wire types 5, 6 and 7 allow to encode the size of the used length field in the transferred
byte stream.

[SWS_SomeIpXf_00271]{DRAFT} d If SOMEIPTransformationISignal-
Props.isDynamicLengthFieldSize is set to false or is not defined, the transformer
shall use wire type 4 for serializing complex types and shall use the fixed size length
fields. The size of the length fields is defined in SOMEIPTransformationISig-
nalProps.sizeOfArrayLengthFields, sizeOfStructLengthFields and
sizeOfUnionLengthFields. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00272]{DRAFT} d SOMEIPTransformationISignalProps.is-
DynamicLengthFieldSize is set to true, the transformer shall use wire types 5,6,7
for serializing complex types and shall chose the size of the length field according to
this wire type. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00273]{DRAFT} d A deserializer shall always be able to handle the
wire types 4, 5, 6 and 7 independent of the setting of SOMEIPTransformationISig-
nalProps.isDynamicLengthFieldSize c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00274]{DRAFT} d If a Data ID is defined for an ArgumentDat-
aPrototype or ImplementationDataTypeElement by means of SOMEIPTrans-
formationISignalProps.tlvDataId.id, a tag shall be inserted in the serialized
byte stream. c(SRS_Xfrm_00106)

Note: regarding existence of Data IDs, refer to [9].

[SWS_SomeIpXf_00275]{DRAFT} d If the datatype of the serialized member / argu-
ment is a basic datatype (wire types 0-3) and a Data ID is configured, the tag shall be
inserted directly in front of the member/argument. No length field shall be inserted into
the serialized stream. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00276]{DRAFT} d If the datatype of the serialized member/argu-
ment is not a basic datatype (wire type 4-7) and a Data ID is configured, the tag shall
be inserted in front of the length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00277]{DRAFT} d If the datatype of the serialized member/argu-
ment is not a basic datatype and a Data ID is configured, a length field shall always be
inserted in front of the member/argument. c(SRS_Xfrm_00106)

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_SomeIpXf_00278]{DRAFT} d The length field shall always contain the length
up to the next tag of the struct, but does not include the tag size and length field size
itself. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00279]{DRAFT} d If the member itself is of type struct, there shall
be exactly one length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00280]{DRAFT} d If the member itself is of type dynamic length
string, there shall be exactly one length field. c(SRS_Xfrm_00106)

33 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00281]{DRAFT} d If the member itself is of type fixed length string,
there shall be exactly one length field corresponding to dynamic length strings. c
(SRS_Xfrm_00106)

Note: When serialized without tag, fixed length strings do not have a length field. For
the serialization with tag, a length field is also required for fixed length strings in the
same way as for dynamic length strings.

[SWS_SomeIpXf_00282]{DRAFT} d If the member itself is of type dynamic length
array, there shall be exactly one length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00283]{DRAFT} d If the member itself is of type fixed length array,
there shall be exactly one length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00284]{DRAFT} d If the member itself is of type union, there shall
be exactly one length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00285]{DRAFT} d For the serialization of extensible structs and
methods the length field shall cover the size of the type field, data and padding bytes if
the member itself is of type union. c(SRS_Xfrm_00106)

Note: For the serialization without tags, the length field of unions does not cover the
type field (see [SWS_SomeIpXf_00226]). For the serialization with tags, it is required
that the complete content of the serialized union is covered by the length field.

[SWS_SomeIpXf_00286]{DRAFT} d A member of a non-extensible (standard) struct
which is of type extensible struct, shall be serialized according to the requirements for
extensible structs. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00287]{DRAFT} d A member of an extensible struct which is of type
non-extensible (standard) struct, shall be serialized according to the requirements for
standard structs. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00288]{DRAFT} d For the serialization of extensible structs and
methods no alignment shall be applied. c(SRS_Xfrm_00106)

Rationale: When alignment greater 8 bits is used, the serializer may add padding bytes
after variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[SWS_SomeIpXf_00289]{DRAFT} d If the attribute isStructWithOptionalEle-
ment of the ImplementationDataType representing the extensible struct is set to
true, the transformer shall ignore the first ImplementationDataTypeElement and shall
not serialize or deserialize it. c(SRS_Xfrm_00106)

Rationale: the first ImplementationDataTypeElement represents the availability
bitfield which is not transferred on the wire.

[SWS_SomeIpXf_00290]{DRAFT} d The transformer shall only serialize an optional
member of a struct if the corresponding bit in the availability bitfield is set as follows:

(availabilityBitfield[(pos/8)] & (1<<(pos mod 8))) != 0

34 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00291]{DRAFT} d If an optional member is available in the seri-
alized byte stream, the transformer shall set the corresponding bit in the availability
bitfield as follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] | (1<<(pos mod 8))

c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00292]{DRAFT} d If an optional member is not available in the se-
rialized byte stream, the transformer shall clear the corresponding bit in the availability
bitfield as follows:

availabilityBitfield[(pos/8)] = availabilityBitfield[(pos/8)] & ~(1<<(pos mod 8))

c(SRS_Xfrm_00106)

In the requirements [SWS_SomeIpXf_00288], [SWS_SomeIpXf_00289] and
[SWS_SomeIpXf_00290] pos is the position of the optional Implementation-
DataTypeElement among all optional ImplementationDataTypeElements
within the ImplementationDataType starting with pos = 0.

Note: Non-optional ImplementationDataTypeElements do not count since they
do not need a bit in the availabilityBitfield. So the bit position within the availability-
Bitfield is determined by the order of the optional ImplementationDataTypeEle-
ments. Examples:

• 1st optional ImplementationDataTypeElement (pos=0):

(availabilityBitfield[0] & 0x01) != 0

• 8th optional ImplementationDataTypeElement (pos=7):

(availabilityBitfield[0] & 0x80) != 0

• 9th optional ImplementationDataTypeElement (pos=8):

(availabilityBitfield[1] & 0x01) != 0

[SWS_SomeIpXf_00293]{DRAFT} d If the transformer reads an unknown Data ID
(i.e. not contained in its data definition), it shall skip the unknown member/argument
by using the information of the wire type and length field. c(SRS_Xfrm_00106)

[SWS_SomeIpXf_00294]{DRAFT} d If the transformer cannot find a required (i.e.
non-optional) member defined in its data definition in the serialized byte stream, the
deserialization shall be aborted with E_SER_MALFORMED_MESSAGE. For examples,
please refer to [10]. c(SRS_Xfrm_00106)

7.2.4.4 Strings

[SWS_SomeIpXf_00053] d Strings shall be encoded using Unicode and terminated
with a

35 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

"\textbackslash0"-character

for both fixed-length and dynamic-length strings. Unused space shall be filled using
"\0". c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00054] d Different Unicode encoding shall be supported including
UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length of
bytes per character, the maximum length in bytes is up to three times the length of
characters in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length
of the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character can be up to 6
bytes and an UTF-16 character can be up to 4 bytes. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00055] d UTF-16LE and UTF-16BE strings shall be zero terminated
with a

"\textbackslash0"-character

. This means they shall end with (at least) two 0x00 Bytes. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00056] d UTF-16LE and UTF-16BE strings shall have an even
length. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00057] d For UTF-16LE and UTF-16BE strings having an odd length
the last byte shall be silently removed by the receiving SOME/IP transformer. c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00248] d In case of UTF-16LE and UTF-16BE strings having an
odd length, after removal of the last byte, the two bytes before shall be 0x00 bytes
(termination) for a string to be valid. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00058] d All strings shall always start with a Byte Order Mark (BOM).
The BOM shall be included in fixed-length-strings as well as dynamic-length strings. c
(SRS_Xfrm_00101)

For the specification of BOM, see [11] and [12]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_SomeIpXf_00239] d The String specific serialization will only be triggered if an
Unicode String is detected and implementsSOMEIPStringHandling is true. c
(SRS_Xfrm_00101)

For the details of the recognition and serialization of fixed- and dynamic-length strings
see chapter 7.2.4.4.1 and chapter 7.2.4.4.2.

[SWS_SomeIpXf_00059] d The receiving SOME/IP transformer implementation shall
check the BOM and handle a missing BOM or a malformed BOM as an error. c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00060] d The BOM shall be added by the SOME/IP sending trans-
former implementation. c(SRS_Xfrm_00101)

36 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.4.4.1 Strings (fixed length)

The length of the string (this includes the "\0") in Bytes is specified in the data type
definition.

[SWS_SomeIpXf_00240] Recognition of UTF-8 Fixed Length Strings d An UTF-8
Fixed Length String shall be detected if an ApplicationPrimitiveDataType and
an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType refers to a BaseType with baseTypeDefi-
nition.baseTypeEncoding equal to UTF-8

• ImplementationDataType

– with category ARRAY

– that contains exactly one ImplementationDataTypeElement that boils
down to a uint8 ImplementationDataType:

∗ ImplementationDataTypeElement.arraySize is set to a value

∗ ImplementationDataTypeElement.arraySizeSemantics is set
to fixedSize

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00241] Recognition of UTF-16 Fixed Length Strings d An UTF-16
Fixed Length String shall be detected if an ApplicationPrimitiveDataType and
an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType refers to a BaseType with baseTypeDefi-
nition.baseTypeEncoding equal to UTF-16

• ImplementationDataType

– with category ARRAY

– that contains exactly one ImplementationDataTypeElement that boils
down to a uint16 ImplementationDataType:

∗ ImplementationDataTypeElement.arraySize is set to a value

∗ ImplementationDataTypeElement.arraySizeSemantics is set
to fixedSize

37 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00244] Serialization of fixed length strings d Serialization of fixed
length strings shall consist of the following steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E_SER_GENERIC_ERROR error shall be issued.

2. Appending BOM at the beginning of the output buffer, if BOM is not already avail-
able in the first three (UTF-8) or two (UTF-16) bytes of the to be serialized array
containing the string. If the BOM is already present, simply copy the BOM into
the output buffer.

3. Copying the string data (the number of bytes according to the string’s fixed
length) from the array into the output buffer, optionally performing a conver-
sion between UTF-16LE and UTF-16BE between ECU and network byte order
if BaseTypeDirectDefinition.byteOrder and SOMEIPTransformation-
Description.byteOrder have different values

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00246] Deserialization of fixed length strings d Deserialization of
fixed length strings shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

2. Check whether BOM has the same value as SOMEIPTransformationDe-
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

3. Remove the BOM

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

6. Copy the string data (the number of bytes according to the string’s fixed
length) from the input buffer into the array, optionally performing a conver-
sion between UTF-16LE and UTF-16BE between network and ECU byte order
if BaseTypeDirectDefinition.byteOrder and SOMEIPTransformation-
Description.byteOrder have different values.

c(SRS_Xfrm_00101)

7.2.4.4.2 Strings (dynamic length)

Strings with dynamic length can be realized in an AUTOSAR system as an array with
dynamic length that transports the single characters.

38 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00242] Recognition of UTF-8 Variable Length Strings d An
UTF-8 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType refers to a BaseType with baseTypeDefi-
nition.baseTypeEncoding equal to UTF-8

• ImplementationDataType
The ImplementationDataType shall be defined according to
[TPS_SWCT_01650] as a STRUCTURE that contains exactly two Im-
plementationDataTypeElements and shall follow the rules defined by
[constr_1318]:

– one ImplementationDataTypeElement represents the Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationDataType

– one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint8 ImplementationDataType

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00243] Recognition of UTF-16 Variable Length Strings d An
UTF-16 Fixed Length String shall be detected if an ApplicationPrimitive-
DataType and an ImplementationDataType with the following pattern are used:

• ApplicationPrimitiveDataType

– with category equal to STRING

– ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType refers to a BaseType with baseTypeDefi-
nition.baseTypeEncoding equal to UTF-16

• ImplementationDataType
The ImplementationDataType shall be defined according to
[TPS_SWCT_01650] as a STRUCTURE that contains exactly two Im-
plementationDataTypeElements and shall follow the rules defined by
[constr_1318]:

– one ImplementationDataTypeElement represents the Size Indica-
tor and has the category equal to TYPE_REFERENCE which points to a
uint8, uint16 or uint32 ImplementationDataType

39 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

– one ImplementationDataTypeElement has the category equal to
ARRAY and contains exactly one ImplementationDataTypeElement
that boils down to a uint16 ImplementationDataType

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00245] Serialization of dynamic length strings d Serialization of
dynamic length strings shall consist of the followign steps:

1. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a E_SER_GENERIC_ERROR error shall be issued.

2. Add the Length Field - The value of the length field shall be computed by multi-
plying the number of elements given by the size indicator with the size in bytes of
each element (i.e., 1 for UTF-8 and 2 for UTF-16) increased by the size in bytes
needed the BOM. The data type of the length field shall be determined from
the size indicator ImplementationDataTypeElement that points to a uint8,
uint16 or uint32.

3. Appending BOM at the beginning, if BOM is not already available in the first 3
(UTF-8) or 2 (UTF-16) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer

4. Copying the string data (copy the the number of bytes according to the string’s
size indicator and the size of bytes of each element) from the array into the out-
put buffer, optionally performing a conversion between UTF-16LE and UTF-16BE
between ECU and network byte order BaseTypeDirectDefinition.byte-
Order and SOMEIPTransformationDescription.byteOrder have differ-
ent values

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00247] Deserialization of dynamic length strings d Deserializa-
tion of dynamic length strings shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, a MALFORMED_MESSAGE error
shall be issued

2. Check whether BOM has the same value as SOMEIPTransformationDe-
scription.byteOrder. If not, a MALFORMED_MESSAGE error shall be issued

3. Remove the BOM and reduce the value of the length field accordingly

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length (according to the reduced value of the length field)

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, a MALFORMED_MESSAGE error shall be issued

6. Check whether the length of the received dynamic length string is less or
equal than the specified maximum length of the string (ApplicationPrimitive-
DataType.swTextProps.swMaxTextSize or arraySize of ImplementationDataType-

40 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Element of category ARRAY). If not, a MALFORMED_MESSAGE error shall be is-
sued.

7. Copy the string data (copy the number of bytes according to the string’s re-
duced value of the length field) from the input buffer into the array, optionally
performing a conversion between (UTF-16LE) and (UTF-16BE) between net-
work and ECU byte order if BaseTypeDirectDefinition.byteOrder and SOMEIP-
TransformationDescription.byteOrder have different values, optionally perform-
ing a conversion between (UTF-16LE) and (UTF-16BE) between ECU and bus
if BaseTypeDirectDefinition.byteOrder and SOMEIPTransformation-
Description.byteOrder have different values

c(SRS_Xfrm_00101)

7.2.4.5 Arrays (fixed length)

[SWS_SomeIpXf_00069] d The length of fixed length arrays is defined by the datatype
definition. c(SRS_Xfrm_00101)

They can be seen as repeated elements. In chapter 7.2.4.7 dynamic length arrays are
shown, which can be also used. Fixed length arrays are easier for use in very small
devices. Dynamic length arrays might need more resources on the ECU using them.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of arrays. The length field
of an array describes the number of bytes of the array. This allows extensible arrays
which allow better migration of interfaces.

[SWS_SomeIpXf_00220] d If attribute sizeOfArrayLengthFields of SOMEIP-
TransformationISignalProps is set to a value greater 0, a length field shall be
inserted in front of every serialized array. c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00220] also applies to nested arrays which means that additionally
every nested fixed-size array has its own length field.

[SWS_SomeIpXf_00256] d If attribute sizeOfArrayLengthField of SOMEIP-
TransformationProps is set to a value greater 0, a length field shall be inserted
in front of the serialized array for which the SOMEIPTransformationProps is de-
fined. (See [TPS_SYST_02121]) c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00256] applies if the length fields of the array and all nested ar-
rays contained are configured to different values for the lengths of the length fields
via SOMEIPTransformationProps

[SWS_SomeIpXf_00257] d If SOMEIPTransformationProps.sizeOfAr-
rayLengthField is present for a static size array the data type for the length
field of the array shall be determined by the value of SOMEIPTransformation-
Props.sizeOfArrayLengthField:

41 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

• Otherwise [SWS_SomeIpXf_00221] applies.

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00221] d The data type of the length field for an array shall be
determined by the value of SOMEIPTransformationISignalProps.sizeOfAr-
rayLengthFields of the serialized ISignal:

• uint8 if sizeOfArrayLengthFields equals 1

• uint16 if sizeOfArrayLengthFields equals 2

• uint32 if sizeOfArrayLengthFields equals 4

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00222] d The serializing SOME/IP transformer shall write the size
(in bytes) of the serialized array (without the size of the length field) into the length field
of the array. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00223] d If the length is greater than the expected length of an array
(as specified in the data type definition) a deserializing SOME/IP transformer shall only
interpret the expected data and skip the unexpected. c(SRS_Xfrm_00101)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

7.2.4.5.1 One-dimensional

The one-dimensional arrays with fixed length n carry exactly n elements of the same
type. The layout is shown in Figure 7.7.

[SWS_SomeIpXf_00070] d A one-dimensional array with fixed length shall be serial-
ized by concatenating the array elements in order. c(SRS_Xfrm_00101)

Static Array a[n]

Element_1 Element_2 Element_3 Element_n

…
element size e [byte]

n * e

Figure 7.7: One-dimensional array (fixed length)

42 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.4.5.2 Multidimensional

[SWS_SomeIpXf_00072] d The serialization of multidimensional arrays shall happen
in row-major order(in-memory layout of multidimensional arrays in the C programming
language) c(SRS_Xfrm_00101)

Static Array a[n][m]

Element_1 Element_2 Element_n

…
e

n * (m * e)

E1,1 E1,2 … E1,m

m * e

Figure 7.8: Multidimensional array (fixed length)

Consult AUTOSAR SWS RTE chapter 5.3.4.4 for Arrays.

7.2.4.6 Optional Parameters / Optional Elements

Optional Elements can be encoded as array with 0 to 1 elements. For the serialization
of arrays with dynamic length see Chapter 7.2.4.7.

7.2.4.7 Dynamic Length Arrays / Variable Size Arrays

Variable size arrays are implemented in AUTOSAR as structs with two members

• a size indicator which is an integer and holds the number of valid elements in the
array

• the array with variable size

In SOME/IP variable size arrays are implemented in a similar manner. Only the size
indicator is replaced by a length indicator.

• a length indicator which is an integer and holds the length (in bytes) of the follow-
ing variable size array

• the array which contains the valid elements of the variable size array

In AUTOSAR also so called "old-world" variable-size array data types exist which
don’t have a size indicator. These are not supported by data transformation in gen-
eral and hence also not supported by the SOME/IP transformer. For details, refer

43 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

to [constr_1387] ([9, System Template]), [TPS_SWCT_01644], [TPS_SWCT_01645],
[TPS_SWCT_01642] and [TPS_SWCT_01643].

[SWS_SomeIpXf_00076] d A variable size array embedded in a structure which also
contains a size indicator shall be serialized as the concatenation of the following ele-
ments:

• the length indicator which holds the length (in bytes) of the following variable size
array

• the array which contains the valid elements of the variable size array

where

• the data type of the length field shall be determined as specified in
[SWS_SomeIpXf_00234]

• the array shall be serialized like a static size array but does only contain the valid
elements. The number of elements to serializer shall be taken from the size
indicator.

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00234] d A variable size array is represented in AUTOSAR by an
ImplementationDataType with the category STRUCTURE and two sub-elements
(namely payload and size indicator). The data type of the length fields for the SOME/IP
message for an variable size array shall be determined from the data type of the size
indicator.

In case of nested variable size arrays, AUTOSAR allows to use profiles to specify size
indicators which apply to more than one variable size array nested within the same
ImplementationDataType. Depending on the specific profile (dynamicArray-
SizeProfile), the data type of the of the length fields inside the SOME/IP message
shall be determined differently:

• VSA_LINEAR
The data type of the SOME/IP length field shall be determined from the single
existing size indicator data type.

• VSA_SQUARE
All data type of the SOME/IP length fields shall be determined from the single
existing size indicator data type.

• VSA_RECTANGULAR
The data type of the SOME/IP length field for each dimension (nesting level) shall
be determined from the size indicator data type for this respective dimension
(nesting level).

• VSA_FULLY_FLEXIBLE
The data type of the SOME/IP length field for each variable size array shall be
determined from the size indicator data type of the corresponding variable size
array.

44 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

c(SRS_Xfrm_00101, SRS_Xfrm_00008)

This means only the first m elements of the variable size array are serialized where m is
the value of the size indicator.

The layout of dynamic arrays is shown in 7.9 and Figure 7.10 where L_1 and L_2
denote the length in bytes.

Element_1

…

element size e

n [byte]

Length n

8,16 or 32 bit

Element_2 Element_3 Element_n

Figure 7.9: One-dimensional array (dynamic length) (Example)

In the one-dimensional array one length field is used, which carries the size in bytes of
the valid elements in the array.

[SWS_SomeIpXf_00235] d If the value of dynamicArraySizeProfile equals
VSA_LINEAR, the value of the length field of the serialized variable size array shall
be calculated based on the value of the size indicator of the AUTOSAR data type. c
(SRS_Xfrm_00101, SRS_Xfrm_00008)

The number of static length elements can be easily calculated by dividing the array
length n by the Byte size of an element.

In the case of dynamical length elements the number of elements cannot be calculated
but the elements must be parsed sequentially.

Element_a[1][j…k_1]

L_1 [byte]

Length n

8,16 or 32 bit

E1,1 E1,2 E1,k_1 …
L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 …
L_2 …

L_2 [byte]

n [byte]

Figure 7.10: Multidimensional array (dynamic length) (Example)

In case of multidimensional variable size arrays, each variable size array needs to
have its own length field, independent of the way how the variable size array is de-
signed in the AUTOSAR data type (i.e. independent from the value of dynamicAr-
raySizeProfile) as specified in [SWS_SomeIpXf_00234]. Hence it is supported to
have different length columns and different length rows in the same dimension. See
k_1 and k_2 in Figure 7.10.

45 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00236] d If the value of dynamicArraySizeProfile of a multi-
dimensional variable size array equals VSA_SQUARE, the value of all length fields of
the nested serialized variable size arrays that belong to this multi-dimensional variable
size arrays shall be calculated based on the value of the single size indicator of the
AUTOSAR data type. c(SRS_Xfrm_00101, SRS_Xfrm_00008)

In case of VSA_SQUARE, the AUTOSAR data type only has one size indicator. The
value of this size indicator will be used as base for the calculation for the value of all
length fields of such a multi-dimensional variable size array.

[SWS_SomeIpXf_00237] d If the value of dynamicArraySizeProfile of a multi-
dimensional variable size array equals VSA_RECTANGULAR, the values of all length
fields of the nested serialized variable size arrays of the same nesting level (i.e. the
same dimension) that belong to this multi-dimensional variable size array shall be cal-
culated based on the values of the size indicators of the AUTOSAR data type for this
respective nesting level. c(SRS_Xfrm_00101, SRS_Xfrm_00008)

In case of VSA_RECTANGULAR, the AUTOSAR data type has exactly one size indicator
for each dimension of the the multi-dimensional variable size array. For all variable size
arrays in one dimension, the value of the according size indicator of this dimension will
be used as base for the calculation of the values of all length fields of this dimension.

[SWS_SomeIpXf_00238] d If the value of dynamicArraySizeProfile of a multi-
dimensional variable size array equals VSA_FULLY_FLEXIBLE, the values of all length
fields of the nested serialized variable size arrays that belong to this multi-dimensional
variable size arrays shall be calculated based on the value of the size indicator of
the corresponding variable size array that is contained in the AUTOSAR data type. c
(SRS_Xfrm_00101, SRS_Xfrm_00008)

In case of VSA_FULLY_FLEXIBLE, in the AUTOSAR data type the outer variable size
array and each nested variable size arrays has its own size indicator. For the calculation
of the values of the length fields both of the outer and all nested variable size arrays
the according values of the size indicators of the AUTOSAR data type will be used as
base.

The RTE provides a buffer where serialization result will be written into by the SOME/IP
transformer which is large enough to keep the length field and a fully filled dynamic
array.

7.2.4.8 Bitfield

[SWS_SomeIpXf_00300] d Bitfields shall be transported as basic datatypes
uint8/uint16/uint32. c()

46 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.2.4.9 Union / Variant

A union (also called variant) is a parameter that can contain different types of elements.
For example, if one defines a union of type uint8 and type uint16, the union shall carry
an element of uint8 or uint16.

The union serialization will only be triggered if the pattern defined in
[SWS_SomeIpXf_00249] applies.

[SWS_SomeIpXf_00249] d A union shall be detected if an Implementation-
DataType with the following pattern (named wrapped union data type) is used: Im-
plementationDataType with category STRUCTURE that contains exactly two Im-
plementationDataTypeElements:

• memberSelector: ImplementationDataTypeElement which represents the
type field that boils down to a uint8, uint16 or uint32 Implementation-
DataType

• payload: ImplementationDataTypeElement of category UNION which rep-
resents the actual union

c(SRS_Xfrm_00101)

When using different types of elements the alignment of subsequent parameters may
be distorted. To resolve this, padding might be needed.

[SWS_SomeIpXf_00088] d The default serialization layout of unions in SOME/IP is
shown in Table 7.10. c(SRS_Xfrm_00101)

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

Table 7.10: Default serialization layout of unions

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions. The length
field of a union describes the number of bytes in the union.

This allows the deserializer to quickly calculate the position where the data after the
union begin in the serialized data stream. This gets necessary if the union con-
tains data which are larger than expected, for example if a struct was extended with
appended new members and only the first "old" members are deserialized by the
SOME/IP transformer.

[SWS_SomeIpXf_00224] d If attribute sizeOfUnionLengthFields of SOMEIP-
TransformationISignalProps is set to a value greater 0, a length field shall be
inserted in front of every serialized union. c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00224] also applies to nested unions which means that additionally
every nested union has its own length field.

47 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00254] d If attribute sizeOfUnionLengthField of SOMEIP-
TransformationProps is set to a value greater 0, a length field shall be inserted
in front of the serialized union for which the SOMEIPTransformationProps is de-
fined. (See [TPS_SYST_02121]). c(SRS_Xfrm_00101)

Note:
[SWS_SomeIpXf_00254] applies if the length fields of the union and all nested unions
contained within the root union are configured to different values for the lengths of the
length fields via SOMEIPTransformationProps.

[SWS_SomeIpXf_00225] d The data type of the length field of the union and all nested
unions within the union shall be determined by the value of SOMEIPTransforma-
tionISignalProps.sizeOfUnionLengthFields of the serialized ISignal:

• uint8 if sizeOfUnionLengthFields equals 1

• uint16 if sizeOfUnionLengthFields equals 2

• uint32 if sizeOfUnionLengthFields equals 4

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00258] d If SOMEIPTransformationProps.sizeOfUnion-
LengthField is present for a union the data type of the length field for the union
shall be determined by the value of SOMEIPTransformationProps.sizeOfU-
nionLengthField:

• uint8 if sizeOfUnionLengthFields equals 1

• uint16 if sizeOfUnionLengthFields equals 2

• uint32 if sizeOfUnionLengthFields equals 4

• Otherwise [SWS_SomeIpXf_00225] applies.

c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00226] d The serializing SOME/IP transformer shall write the size
(in bytes) of the serialized union (including padding bytes but without the size of the
length field and type field) into the length field of the union. This requirement does not
apply for the serialization of extensible structs and methods (see chapter 7.2.4.3). c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00227] d If the length is greater than the expected length of a union
(as specified in the data type definition) a deserializing SOME/IP transformer shall only
interpret the expected data and skip the unexpected. c(SRS_Xfrm_00101)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP transformer can use the supplied length information.

The length of the type field shall be 32, 16, 8 or 0 bits.

The type field describes the type of the element.

48 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00250] d The data type of the type field of the union shall be
determined from the ImplementationDataType of the first Implementation-
DataTypeElement (memberSelector) in the wrapped union data type defined in
[SWS_SomeIpXf_00249]. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00098] d Possible values of the type field are defined by the data
type specification of the union. The types are encoded as in the data type in ascending
order starting with 1. The 0 is reserved for the NULL type - i.e. an empty union. c
(SRS_Xfrm_00101)

[SWS_SomeIpXf_00251] d The value of the type field shall be set to the value defined
by the first ImplementationDataTypeElement (memberSelector) in the wrapped
union data type defined in [SWS_SomeIpXf_00249]. c(SRS_Xfrm_00101)

[SWS_SomeIpXf_00099] d The element is serialized depending on the type in the type
field. This also defines the length of the data. All bytes behind the data that are covered
by the length, are padding. The deserializer shall skip the padding bytes by calculating
the required number according to the formula given in [SWS_SomeIpXf_00088]. c
(SRS_Xfrm_00101)

By using a struct in the data type definition, different padding layouts can be achieved.

7.2.4.9.1 Example: Union of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The union shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

7.3 Protocol specification

This chapter describes the protocol of SOME/IP for Client/Server and Sender/Receiver
communication.

49 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.3.1 Client/Server Communication

[SWS_SomeIpXf_00106] d For the SOME/IP request message, the SOME/IP trans-
former on the client-ECU has to do the following for payload and header:

• Construct the payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type to Request (i.e. 0x00)

• Set the Return Code to 0x00

c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00120] d To construct the payload all arguments of the
ClientServerOperation which have direction IN or INOUT shall be serialized
according to the order of the ArgumentDataPrototypes within the ClientServer-
Operation. c(SRS_Xfrm_00102)

This can be seen graphically in Figure 7.11.

SomeIpXf_<XfId> (

 *transactionHandle,

 *buffer,

 *bufferLength,

 IN/INOUT argument1,

 …,

 IN/INOUT argumentN

)

SOME/IP
Header

argument1

…

argumentN P
a
y
lo

a
d

Figure 7.11: Example for serialization of a Client/Server Request

[SWS_SomeIpXf_00200] d If csErrorReaction of TransformationISignal-
Props is set to autonomous and the returnValue parameter handed over
from RTE is greater or equal to 0x80, the SOME/IP transformer for a response
of a client/server communication shall generate an error message according to
[SWS_SomeIpXf_00201], else it shall generate a normal response according to
[SWS_SomeIpXf_00107]. c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00107] d The SOME/IP transformer on the server-ECU builds its
header for the server response based on the header of the client’s request and does in
addition:

• Construct the payload

50 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

• Set the Message Type to RESPONSE (i.e. 0x80)

• If the ClientServerOperation has at least one possibleError defined,
place the return value of the executed ClientServerOperation into the Re-
turn Code field (see chapter 7.2.3.7) and add 0x1F to adapt the number ranges
in case the original return value was different from 0x00.

c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00121] d To construct the payload all arguments of the
ClientServerOperation which have direction INOUT or OUT shall be serial-
ized in the following order:
The ArgumentDataPrototypes with a direction of INOUT or OUT shall be serialized
according to the order of the ArgumentDataPrototypes within the ClientServer-
Operation. c(SRS_Xfrm_00102)

This can be seen graphically in Figure 7.12.

SomeIpXf_<XfId> (

 *transactionHandle,

 *buffer,

 *bufferLength,

 returnValue,

 INOUT/OUT argument1,

 …,

 INOUT/OUT argumentN

)

SOME/IP
Header

argument1

…

argumentN P
a
y
lo

a
d

Figure 7.12: Example for serialization of a Client/Server Response

[SWS_SomeIpXf_00201] d The SOME/IP transformer on the server-ECU builds its
header for an autonomous error response based on the header of the client’s request
and does in addition:

• Construct no payload (the payload shall be empty)

• Set the Message Type to RESPONSE (i.e. 0x80)

• Adapt the return value by subtracting 0x80 from the parameter returnValue
(calculation: adaptedReturnV alue = returnV alue− 0x80)

• Place the adaptedReturnValue into the Return Code field (see 7.2.3.7).

c(SRS_Xfrm_00102)

This leads to an output of the SOME/IP transformer which is exactly as long as the
SOME/IP header.

Note:
Error messages can only be sent as a response for client/server requests, not for
Sender/Receiver communication or error messages.

51 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00202] d A SOME/IP transformer on the server-ECU that builds
an autonomous error response shall return with a return value equal to E_OK (See
[SWS_SomeIpXf_00141]). c(SRS_Xfrm_00102)

If the SOME/IP transformer would return with a return code different from E_OK this
would issue a hard error that prevents the RTE from sending the autonomous error
response.

7.3.2 Sender/Receiver Communication

Session Handling ID counter is used to set the correct Request ID in the SOME/IP
header in case of Sender/Receiver communication where session handling is acti-
vated.

[SWS_SomeIpXf_00212] d One Session Handling ID counter (16 Bit) has to
be maintained per transformer function for Sender/Receiver communication (see
[SWS_SomeIpXf_00138]) if sessionHandlingSR is set to sessionHandlingAc-
tive. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00213] d All Session Handling ID counters shall be initialized with
0x0001. c(SRS_Xfrm_00008)

[SWS_SomeIpXf_00108] d The SOME/IP transformer on the sender side of trans-
formed Sender/Receiver communication shall construct header and payload in the fol-
lowing way:

• Construct the payload

• Set the Request ID

– to 0x00 if sessionHandlingSR of SOMEIPTransformationISignal-
Props is not set to sessionHandlingActive

– the current value of the Session Handling ID counter otherwise

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type according to messageType of SOMEIPTransforma-
tionISignalProps:

– NOTIFICATION (0x02) shall be used in the header if attribute mes-
sageType is set to notification

– REQUEST_NO_RETURN (0x01) shall be used in the header if attribute mes-
sageType is set to requestNoReturn

• Set the Return Code to 0x00

52 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

c(SRS_Xfrm_00102)

In [SWS_SomeIpXf_00108] it is specified when session handling is considered for
messages which are sent. The SOME/IP transformer never checks the session ID on
receiver side because the default behaviour of SOME/IP is for sender/receiver commu-
nication to ignore session IDs on receiver side.

[SWS_SomeIpXf_00176] d The payload of a message for Sender/Receiver com-
munication shall consists of the serialized data element that is transported. c
(SRS_Xfrm_00102)

Error handling and return codes have to be implemented by the application when
needed.

7.3.3 Unqueued External Trigger Events

Unqueued external trigger events are used to trigger RPCs without any IN, INOUT or
OUT arguments. They are realized by SOME/IP as fire-and-forget methods without
arguments.

[SWS_SomeIpXf_00204] d The SOME/IP transformer on the trigger source side of
transformed external trigger events shall construct header in the following way:

• Set the Request ID

– to 0x00 if sessionHandlingSR of SOMEIPTransformationISignal-
Props is not set to sessionHandlingActive

– the current value of the Session Handling ID counter otherwise

• Set the Protocol Version according [SWS_SomeIpXf_00029]

• Set the Interface Version. If interfaceVersion of SOMEIPTransforma-
tionISignalProps is set, this shall be used. Otherwise interfaceVersion
of SOMEIPTransformationDescription shall be used.

• Set the Message Type to REQUEST_NO_RETURN (i.e. 0x01)

• Set the Return Code to 0x00

c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00205] d The payload of a message for unqueued external trigger
event communication shall be empty. c(SRS_Xfrm_00102)

Error handling and return codes have to be implemented by the application when
needed.

53 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.3.4 Error Handling

The error handling will be done solely in the application. SOME/IP only transports the
errors.

Two different mechanisms for error transportation are supported: Return Code and
Error Message

[SWS_SomeIpXf_00111] d The SOME/IP transformer shall use the Return Code error
handling. c(SRS_Xfrm_00102, SRS_Xfrm_00103)

Exceptions are specified in SOME/IP but not yet supported by this version of the
SOME/IP transformer.

This can be used to handle all different application errors that might occur in the server.
In addition, problems with the communication medium or intermediate components
(e.g. switches) may occur, which have to be handled e.g. by means of reliable trans-
port.

All messages have a return code field to carry the return code. However, only re-
sponses (Message Types 0x80 and 0x81) use this field to carry a return code to the
request (Message Type 0x00) they answer. All other messages set this field to 0x00
(see Chapter 7.2.3.6). For more detailed errors the layout of the Error Message (Mes-
sage Type 0x81) can carry specific fields for error handling, e.g. an Exception String.
Error Messages are sent instead of Response Messages.

7.3.4.1 Return Code

[SWS_SomeIpXf_00112] d The Error Handling via Return Code shall be based on the
Std_ReturnType. c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00113] d The Return Codes shall only be used for Client/Server
communication c(SRS_Xfrm_00102)

[SWS_SomeIpXf_00170] d In case of Client/Server communication the Return Code
shall transport the ApplicationErrors of the executed ClientServerOperation
if no SOME/IP error occurred. c(SRS_Xfrm_00102)

This means: If a SOME/IP error occurred, this error is contained in the Return Code. If
no SOME/IP error occurred, the Return Code contains the error (or success) code of
the executed server runnable.

If an error occurs in case of client/server communication the server can be configured
to create an autonomous error reaction which will be sent back to the client. In that
response, the SOME/IP header fields RequestId and Interface Version shall
be equal to the values in the header of the request message.

This is realized by [SWS_SomeIpXf_00201] which fills the header fields accordingly:
RequestId is handed over from RTE and InterfaceVersion is consistent to the

54 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

request as the configuration of the SOME/IP transformer only allows the same inter-
faceVersion for request and response.

[SWS_SomeIpXf_00115] d The Return Codes of Table 7.11 are currently defined and
shall be implemented as described: c(SRS_Xfrm_00102)

ID Name Description
0x00 E_OK No error occurred
0x01 E_NOT_OK An unspecified error occurred
0x02 SOMEIPXF_E_UNKNOWN_

SERVICE
The requested Service ID is unknown.

0x03 SOMEIPXF_E_UNKNOWN_
METHOD

The requested Method ID is unknown. Service ID is
known.

0x04 SOMEIPXF_E_NOT_READY Service ID and Method ID are known. Application
not running.

0x05 SOMEIPXF_E_NOT_
REACHABLE

System running the service is not reachable (inter-
nal error code only).

0x06 SOMEIPXF_E_TIMEOUT A timeout occurred (internal error code only).
0x07 SOMEIPXF_E_WRONG_

PROTOCOL_
VERSION

Version of SOME/IP protocol not supported

0x08 SOMEIPXF_E_WRONG_
INTERFACE_
VERSION

Interface version mismatch

0x09 SOMEIPXF_E_
MALFORMED_MESSAGE

Deserialization error, so that payload cannot be de-
serialized.

0x0a SOMEIPXF_E_
WRONG_MESSAGE_TYPE

An unexpected message type was received (e.g.
REQUEST_NO_RETURN for a method defined as
REQUEST.)

0x0b -
0x1f

RESERVED Reserved for generic SOME/IP errors. These errors
will be specified in future versions of this document.

0x20 -
0x5e

- Specific ApplicationErrors of
ClientServerOperations. These errors are the
application errors specified by the ClientServer-
Interface.
As the range of ApplicationErrors of the
ClientServerInterface is 0x01-0x3F, the
value of an ApplicationError has to be adapted
for transport over SOME/IP by adding 0x1F.

Table 7.11: Return Codes

7.3.4.2 Communication Errors and Handling of Communication Errors

When considering the transport of Client/Server messages different reliability seman-
tics exist:

• Maybe — the message might reach the communication partner

• At least once — the message reaches the communication partner at least once

• Exactly once — the message reaches the communication partner exactly once

55 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

When using these terms in regard to client/server communication the term applies to
both messages (i.e. call and response or error).

While different implementations may implement different approaches, SOME/IP trans-
former currently achieves "maybe" reliability when using the UDP binding and "exactly
once" reliability when using the TCP binding by a suitable configuration of the Ethernet
modules. Further error handling is left to the application.

For "maybe" reliability, only a single timeout is needed, when using client/server com-
munication in combination with UDP as transport protocol. Figure 7.13 shows the
state machines for "maybe" reliability. The client’s SOME/IP implementation has to
wait for the response for a specified timeout. If the timeout occurs SOME/IP shall
signal SOMEIPXF_E_TIMEOUT to the client application.

Client

Server

WaitingForResponse

processing

Error:

SOMEIPXF_E_TIMEOUT

/Send Response

Response Timeout

/Send

Request

Response

Received

Request Received

Figure 7.13: State Machines for Reliability "Maybe"

For "exactly once" reliability the TCP binding may be used, since TCP was defined to
allow for reliable communication.

Additional mechanisms to reach higher reliability may be implemented in the applica-
tion or in a SOME/IP implementation. Keep in mind that the communication does not
have to implement these features. Chapter 7.3.4.2.1 describes such optional reliability
mechanisms.

7.3.4.2.1 Application based Error Handling

The application can easily implement "at least once" reliability by using idempotent
operations (i.e. operation that can be executed multiple times without side effects)

56 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

and using a simple timeout mechanism. Figure 7.14 shows the state machines for
"at least once" reliability using implicit acknowledgements. When the client sends out
the request it starts a timer with the timeout specified for the specific method. If no
response is received before the timer expires (round transition at the top), the client
will retry the operation. A Typical number of retries would be 2, so that 3 requests are
sent.

The number of retries, the timeout values, and the timeout behavior (constant or expo-
nential back off) are outside of the SOME/IP specification.

Client

Server

WaitingForResponse

processing

Error:

SOMEIPXF_E_TIMEOUT

No Response Received

/TimeoutCounter++

TimeoutCounter == n,

(No Response received)

/Send Response

Response

Received

Request Received

/Send Request,

set TimeoutCounter = 0

Figure 7.14: State Machines for Reliability "At least once" (idempotent operations)

7.4 Reserved and special identifiers for SOME/IP and SOME/IP-
SD.

In this chapter an overview of reserved and special identifiers are shown.

[SWS_SomeIpXf_00130] d Reserved and special Service-IDs are defined in Ta-
ble 7.12. c(SRS_Xfrm_00008)

Service-ID Description
0x0000 Reserved
0xFF00 - 0xFF1F Reserved for Testing at OEM
0xFF20 - 0xFF3F Reserved for Testing at Tier-1
0xFF40 - 0xFF5F 0xFF5F Reserved for ECU Internal Communication (Tier-1

proprietary)

57 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

0xFFFE Reserved for announcing non-SOME/IP service instances.
0xFFFF SOME/IP and SOME/IP-SD special service.

Table 7.12: Reserved and special Service-IDs

[SWS_SomeIpXf_00131] d Reserved and special Instance-IDs are defined in Ta-
ble 7.13. c(SRS_Xfrm_00008)

Instance-ID Description
0x0000 Reserved
0xFFFF All Instances

Table 7.13: Reserved and special Instance-IDs

[SWS_SomeIpXf_00132] d Reserved and special Method-IDs/Event-IDs are defined
in Table 7.14. c(SRS_Xfrm_00008)

Method-ID Description
0x0000 Reserved
0x7FFF Reserved
0x8000 Reserved
0xFFFF Reserved

Table 7.14: Reserved and special Method-IDs/Event-IDs

[SWS_SomeIpXf_00133] d Method-IDs and Event-IDs of Service 0xFFFF are defined
in Table 7.15. c(SRS_Xfrm_00008)

Method-ID/Event-
ID

Description

0x0000 SOME/IP Magic Cookie Messages
0x8000 SOME/IP Magic Cookie Messages
0x8100 SOME/IP-SD messages (events)

Table 7.15: Method-IDs and Event-IDs of Service 0xFFFF

[SWS_SomeIpXf_00134] d Besides "otherserv" other names are supported by the
configuration option. Table 7.16 gives an overview of the reserved names c
(SRS_Xfrm_00008)

Name Description
hostname Used to name a host or ECU.
instancename Used to name an instance of a service.
servicename Used to name a service.
otherserv Used for non-SOME/IP Services.

Table 7.16: Reserved names of configuration options

58 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

7.5 Development Errors

[SWS_SomeIPxf_00184] d The SOME/IP transformer shall support the Development
Erros of Table 7.17. c(SRS_BSW_00337)

Type of error Related error code Value
Error code if any other API service, except
GetVersionInfo is called before the
transformer module was initialized with Init
or after a call to DeInit

SOMEIPXF_E_UNINIT 0x01

Error code if an invalid configuration set was
selected

SOMEIPXF_E_INIT_FAILED 0x02

API service called with wrong parameter SOMEIPXF_E_PARAM 0x03
API service called with invalid pointer SOMEIPXF_E_PARAM_POINTER 0x04

Table 7.17: Development Error

7.6 Production Errors

No production errors are specified for transformers.

7.7 Extended Production Errors

All Extended Production Errors valid for SOME/IP Transformer are specified in [3,
ASWS Transformer General].

7.8 Error Notification

Defined in [13, SWS BSW General].

59 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

8 API specification

8.1 Imported types

There are no imported types from other modules beyond those specified in [3, ASWS
Transformer General].

In the Module Interlink Headers file which is imported by the SOME/IP Transformer, all
ImplementationDataTypes known to the RTE are included. Using this mechanism,
the SOME/IP Transformer knows all data types of data which shall be transformed.

8.2 Type definitions

[SWS_SomeIpXf_00183] d

Name: SomeIpXf_ConfigType

Type: Structure

Element: implementation
specific

–

Description: This is the type of the data structure containing the initialization data for the
transformer.

Available
via:

SomeIpXf.h

Table 8.1: SomeIpXf_ConfigType

c(SRS_BSW_00404, SRS_BSW_00441)

8.3 Function definitions

The SOME/IP transformer provides the specific interfaces generally required by [3,
ASWS Transformer General].

[SWS_SomeIpXf_00150] d The SOME/IP Transformer shall only provide functions for
transformers where the TransformationTechnology is referenced as the first ref-
erence in the list of ordered references transformer from a DataTransformation
to a TransformationTechnology. c()

That means, only the first transformer in a transformer chain can be a SOME/IP Trans-
former because serializer transformer are in general only allowed to be the first trans-
former in a chain.

60 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

8.3.1 SomeIpXf_<transformerId>

[SWS_SomeIpXf_00138] d

Service name: SomeIpXf_<transformerId>
Syntax: uint8 SomeIpXf_<transformerId>(

uint8* buffer,
uint32* bufferLength,
<paramtype> dataElement
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): dataElement Data element which shall be transformed
Parameters (inout): None
Parameters (out): buffer Buffer allocated by the RTE, where the transformed

data has to be stored by the transformer
bufferLength Used length of the buffer

Return value: uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred

Description: This function transforms a Sender/Receiver communication using the
serialization of SOME/IP. It takes the data element as input and outputs
a uint8 array containing the serialized data.

The length of the serialized data shall be calculated by the trans-
former during runtime and returned in the OUT-parameter bufferLength.
It may be smaller than the maximum buffer size used by the RTE for
buffer allocation.

Available via: SomeIpXf.h

Table 8.2: SomeIpXf_transformerId1

c()

[SWS_SomeIpXf_00228] d In function SomeIpXf_<transformerId> defined in
[SWS_SomeIpXf_00138]

• paramtype is derived from type according to the parameter passing rules
rules defined by the [14, SRS BSW General] (see [SRS_BSW_00484],
[SRS_BSW_00485], and [SRS_BSW_00486]) and [13, SWS BSW General] (see
[SWS_BSW_00186] and [SWS_BSW_00187]).

• type shall be the data type of the data element after all data conversion activities
of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General])

c()

This function specified in [SWS_SomeIpXf_00138] exists for each transformed
Sender/Receiver communication which uses the SOME/IP serialization.

61 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00139] d The function SomeIpXf_<transformerId> specified in
[SWS_SomeIpXf_00138] shall exist for the first reference in the list of ordered refer-
ences transformer from a DataTransformation to a TransformationTech-
nology if the DataTransformation is referenced by an ISignal in the role data-
Transformation where the ISignal references a SystemSignal which is refer-
enced by SenderReceiverToSignalMapping. c()

[SWS_SomeIpXf_00140] d The function SomeIpXf_<transformerId> specified
in [SWS_SomeIpXf_00138] shall serialize primitive or complex data elements of
Sender/Receiver communication into a linear byte array representation using the
SOME/IP serialization. c()

[SWS_SomeIpXf_00214] d After serialization of the data, the function
SomeIpXf_<transformerId> specified in [SWS_SomeIpXf_00138] shall in-
crement the Session Handling ID counter assigned to <transformerId> if
sessionHandlingSR is set to sessionHandlingActive. c()

[SWS_SomeIpXf_00215] d When the Session Handling ID counter assigned to
<transformerId> is 0xFFFF and gets incremented, it shall roll-over to 0x0001 (in-
stead of 0x0000) if sessionHandlingSR is set to sessionHandlingActive. c()
[SWS_SomeIpXf_00141] d

Service name: SomeIpXf_<transformerId>
Syntax: uint8 SomeIpXf_<transformerId>(

const Rte_Cs_TransactionHandleType* TransactionHan-
dle,
uint8* buffer,
uint32* bufferLength,
[Std_ReturnType returnValue,]
<paramtype> data_1, ...
<paramtype> data_n
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): TransactionHandle Transaction handle according to [SWS_Rte_08732]

(clientId and
sequenceCounter) needed to differentiate between
multiple requests.

returnValue Return value from server side for transmission to the
calling client. This argument is only available for se-
rializers of the response of a Client/Server commu-
nication if - the ClientServerOperation has at least
one PossibleError defined or - autonomous error re-
action is activated

data_1 Client/Server operation argument which shall be
transformed (in the same order as in the corre-
sponding interface)

... ...
data_n Client/Server operation argument which shall be

transformed (in the same order as in the corre-
sponding interface)

62 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Parameters (inout): None
Parameters (out): buffer Buffer allocated by the RTE, where the transformed

data has to be stored by the transformer
bufferLength Used length of the buffer

Return value: uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred

Description: This function transforms a Client/Server communication using the serial-
ization of SOME/IP. It takes the operation arguments and optionally the
return value as input and outputs a uint8 array containing the serialized
data.

The length of the serialized data shall be calculated by the trans-
former during runtime and returned in the OUT-parameter bufferLength.
It may be smaller than the maximum buffer size used by the RTE for
buffer allocation.

Available via: SomeIpXf.h

Table 8.3: SomeIpXf_transformerId2

c()

[SWS_SomeIpXf_00229] d In function SomeIpXf_<transformerId> defined in
[SWS_SomeIpXf_00141]

• paramtype is derived from type according to the parameter passing rules
rules defined by the [14, SRS BSW General] (see [SRS_BSW_00484],
[SRS_BSW_00485], and [SRS_BSW_00486]) and [13, SWS BSW General] (see
[SWS_BSW_00186] and [SWS_BSW_00187]).

• type shall be the data type of the data element after all data conversion activities
of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

c()

This function specified in [SWS_SomeIpXf_00141] exists for the server and each client
of each transformed Client/Server communication which uses the SOME/IP serializa-
tion.

It exists on both the Client and the Server but the arguments are different.

On the client it serializes the request of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnValue doesn’t exist.

On the server it serializes the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the INOUT and OUT arguments of the
ClientServerOperation. The argument returnValue exists here if at least one

63 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

PossibleError is defined for the ClientServerOperation because the return
code of the operation has to be transmitted.

[SWS_SomeIpXf_00142] d The function SomeIpXf_<transformerId> specified
in [SWS_SomeIpXf_00141] shall exist for the first reference in the list of ordered
references transformer from a DataTransformation to a Transformation-
Technology if the DataTransformation is referenced by an ISignal in the
role dataTransformation where the ISignal references a SystemSignal which
is referenced by ClientServerToSignalMapping in the callSignal or re-
turnSignal. c()

Due to [SWS_SomeIpXf_00142], the API of [SWS_SomeIpXf_00141] exists both on
client and server.

[SWS_SomeIpXf_00143] d The function SomeIpXf_<transformerId>
[_<symbolSuffix>] specified in [SWS_SomeIpXf_00141] shall serialize all primi-
tive or complex operation arguments and the return value (if executed on server side) of
Client/Server communication into a linear byte array representation using the SOME/IP
serialization. c()

[SWS_SomeIpXf_00203] d The function SomeIpXf_<transformerId>
[_<symbolSuffix>] specified in [SWS_SomeIpXf_00141] shall ignore all argu-
ments data_1, ..., data_n if the return code is greater or equal to 0x80 because
they are not filled with meaningful values. c(SRS_Xfrm_00105)

[SWS_SomeIpXf_00206] d

Service name: SomeIpXf_<transformerId>
Syntax: uint8 SomeIpXf_<transformerId>(

uint8* buffer,
uint32* bufferLength
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): buffer Buffer allocated by the RTE, where the transformed

data has to be stored by the transformer
bufferLength Used length of the buffer

Return value: uint8 0x00 (E_OK): Serialization successful
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred

Description: This function transforms an external trigger event using the serialization
of SOME/IP. It takes trigger as input and outputs a uint8 array.

The length of the transformed data shall be calculated by the transformer
during runtime and returned in the OUT parameter bufferLength. It may
be smaller than the maximum buffer size used by the RTE for buffer
allocation.

Available via: SomeIpXf.h

Table 8.4: SomeIpXf_transformerId3

64 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

c(SRS_Xfrm_00002)

[SWS_SomeIpXf_00230] d In function SomeIpXf_<transformerId> defined in
[SWS_SomeIpXf_00206]

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

c()

This function specified in [SWS_SomeIpXf_00206] exists on the trigger source side for
each transformed external trigger event which uses SOME/IP transformation.

[SWS_SomeIpXf_00207] d The function SomeIpXf_<transformerId> specified
in [SWS_SomeIpXf_00206] shall exist for the first referenced Transformation-
Technology in the ordered transformerChain of a DataTransformation if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by a
TriggerToSignalMapping. c(SRS_Xfrm_00002)

[SWS_SomeIpXf_00208] d The function SomeIpXf_<transformerId> specified in
[SWS_SomeIpXf_00206] shall serialize an external trigger event into a linear byte array
representation using the SOME/IP serialization. c(SRS_Xfrm_00002)

As an external trigger event consists of an ISignal with length equal to zero, the
serialized SOME/IP message only contains a header but no payload.

8.3.2 SomeIpXf_Inv_<transformerId>

[SWS_SomeIpXf_00144] d

Service name: SomeIpXf_Inv_<transformerId>
Syntax: uint8 SomeIpXf_Inv_<transformerId>(

const uint8* buffer,
uint32 bufferLength,
<type>* dataElement
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): buffer Buffer allocated by the RTE, where the still serial-

ized data are stored by the Rte
bufferLength Used length of the buffer

Parameters (inout): None
Parameters (out): dataElement Data element which is the result of the transforma-

tion and contains the deserialized data element

65 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Return value: uint8 0x00 (E_OK): Deserialization successful
0x01 (E_NO_DATA): No data available which can be
deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION):
The version of the receiving transformer didn’t
match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION):
Interface version of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): The re-
ceived message is malformed. The transformer is
not able to produce an output.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The
received message type was not expected.

Description: This function deserializes a Sender/Receiver communication using the
deserialization of SOME/IP. It takes the uint8 array containing the seri-
alized data as input and outputs the original data element which will be
passed to the RTE.

Available via: SomeIpXf.h

Table 8.5: SomeIpXf_Inv_transformerId1

c()

[SWS_SomeIpXf_00231] d In function SomeIpXf_Inv_<transformerId> defined
in [SWS_SomeIpXf_00144]

• type shall be the data type of the data element before all data conversion activi-
ties of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

c()

This function specified in [SWS_SomeIpXf_00144] exists for each transformed
Sender/Receiver communication which uses the SOME/IP serialization.

[SWS_SomeIpXf_00146] d The function SomeIpXf_Inv_<transformerId> spec-
ified in [SWS_SomeIpXf_00144] shall exist for the first reference in the list of ordered
references transformer from a DataTransformation to a Transformation-
Technology if the DataTransformation is referenced by an ISignal in the role
dataTransformation where the ISignal references a SystemSignal which is
referenced by SenderReceiverToSignalMapping. c()

[SWS_SomeIpXf_00147] d The function SomeIpXf_Inv_<transformerId> spec-
ified in [SWS_SomeIpXf_00144] shall deserialize a linear byte array to primitive or
complex data elements of Sender/Receiver communication using the SOME/IP dese-
rialization. c()

66 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

[SWS_SomeIpXf_00264] d If SomeIpXf_Inv_<transformerId> speci-
fied in [SWS_SomeIpXf_00144] is called with buffer equal to NULL_PTR
and bufferLength equal to 0, the output buffer buffer shall not be changed
and SomeIpXf_Inv_<transformerId> shall return with E_NO_DATA. c
(SRS_Xfrm_00001, SRS_Xfrm_00004)

[SWS_SomeIpXf_00145] d

Service name: SomeIpXf_Inv_<transformerId>
Syntax: uint8 SomeIpXf_Inv_<transformerId>(

Rte_Cs_TransactionHandleType* TransactionHandle,
const uint8* buffer,
uint32 bufferLength,
[Std_ReturnType* returnValue,]
[<paramtype> data_1,] ...
[<paramtype> data_n]
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): buffer Buffer allocated by the RTE, where the still serial-

ized data are stored by the Rte
bufferLength Used length of the buffer

Parameters (inout): None
Parameters (out): TransactionHandle Transaction handle according to [SWS_Rte_08732]

(clientId and
sequenceCounter) needed to differentiate between
multiple requests.

returnValue Return value from server side for transmission to the
calling client. This argument is only available for se-
rializers of the response of a Client/Server commu-
nication if - the ClientServerOperation has at least
one PossibleError defined or - autonomous error re-
action is activated

data_1 Client/Server operation argument which shall be
transformed (in the same order as in the corre-
sponding interface)

... ...
data_n Client/Server operation argument which shall be

transformed (in the same order as in the corre-
sponding interface)

67 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Return value: uint8 0x00 (E_OK): Deserialization successful
0x01 (E_NO_DATA): No data available which can be
deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION):
The version of the receiving transformer didn’t
match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION):
Interface version of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): The re-
ceived message is malformed. The transformer is
not able to produce an output.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The
received message type was not expected.

Description: This function deserializes a Client/Server communication using the de-
serialization of SOME/IP. It takes the uint8 array containing the serialized
data as input and outputs the return value of the server runnable and
the operation arguments which have to be passed from the server to the
client.

Available via: SomeIpXf.h

Table 8.6: SomeIpXf_Inv_transformerId2

c()

[SWS_SomeIpXf_00232] d In function SomeIpXf_Inv_<transformerId> defined
in [SWS_SomeIpXf_00145]

• paramtype is derived from type according to the parameter passing rules
rules defined by the [14, SRS BSW General] (see [SRS_BSW_00484],
[SRS_BSW_00485], and [SRS_BSW_00486]) and [13, SWS BSW General] (see
[SWS_BSW_00186] and [SWS_BSW_00187]).

• type shall be the data type of the data element before all data conversion activi-
ties of the RTE

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

c()

This function specified in [SWS_SomeIpXf_00145] exists for the server and each client
of each transformed Client/Server communication which uses the SOME/IP serializa-
tion.

It exists on both the Client and the Server but the arguments are different.

On the server it deserializes the request of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the IN and INOUT arguments of the
ClientServerOperation. The argument returnValue doesn’t exist.

68 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

On the client it deserializes the response of the Client/Server call. There, the data_1,
..., data_n arguments of the API correpsond to the INOUT and OUT arguments of the
ClientServerOperation. The argument returnValue exists here if at least one
PossibleError is defined for the ClientServerOperation because the return
code of the operation has to be transmitted

[SWS_SomeIpXf_00148] d

The function SomeIpXf_Inv_<transformerId> specified in
[SWS_SomeIpXf_00145] shall exist for the first reference in the list of ordered
references transformer from a DataTransformation to a Transformation-
Technology if the DataTransformation is referenced by an ISignal in the
role dataTransformation where the ISignal references a SystemSignal
which is referenced by ClientServerToSignalMapping in the callSignal or
returnSignal. c()

Due to [SWS_SomeIpXf_00148], the API of [SWS_SomeIpXf_00145] exists both on
client and server.

[SWS_SomeIpXf_00149] d The function SomeIpXf_Inv_<transformerId> spec-
ified in [SWS_SomeIpXf_00145] shall deserialize a linear byte array which contains
primitive or complex operation arguments and the return value (if executed on client
side) of Client/Server communication using the SOME/IP deserialization. c()

[SWS_SomeIpXf_00265] d If SomeIpXf_Inv_<transformerId> speci-
fied in [SWS_SomeIpXf_00145] is called with buffer equal to NULL_PTR
and bufferLength equal to 0, the output buffer buffer shall not be changed
and SomeIpXf_Inv_<transformerId> shall return with E_NO_DATA. c
(SRS_Xfrm_00001, SRS_Xfrm_00004)

[SWS_SomeIpXf_00209] d

Service name: SomeIpXf_Inv_<transformerId>
Syntax: uint8 SomeIpXf_Inv_<transformerId>(

const uint8* buffer,
uint32 bufferLength
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): buffer Buffer allocated by the RTE, where the still serial-

ized data are stored by the Rte
bufferLength Used length of the buffer

Parameters (inout): None
Parameters (out): None

69 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Return value: uint8 0x00 (E_OK): Deserialization successful
0x01 (E_NO_DATA): No data available which can be
deserialized
0x81 (E_SER_GENERIC_ERROR): A generic error
occurred
0x87 (E_SER_WRONG_PROTOCOL_VERSION):
The version of the receiving transformer didn’t
match the sending transformer.
0x88 (E_SER_WRONG_INTERFACE_VERSION):
Interface version of serialized data is not supported.
0x89 (E_SER_MALFORMED_MESSAGE): The re-
ceived message is malformed. The transformer is
not able to produce an output.
0x8a (E_SER_WRONG_MESSAGE_TYPE): The
received message type was not expected.

Description: This function deserializes an external trigger event using the deserializa-
tion of SOME/IP.

Available via: SomeIpXf.h

Table 8.7: SomeIpXf_Inv_transformerId3

c(SRS_Xfrm_00002)

[SWS_SomeIpXf_00233] d In function SomeIpXf_Inv_<transformerId> defined
in [SWS_SomeIpXf_00209]

• transformerId shall be the name pattern for the transformer specified in
[SWS_Xfrm_00062] ([3, ASWS Transformer General]).

c()

This function specified in [SWS_SomeIpXf_00209] exists on the trigger sink side for
each transformed external trigger event which uses SOME/IP transformation.

[SWS_SomeIpXf_00210] d The function SomeIpXf_Inv_<transformerId> speci-
fied in [SWS_SomeIpXf_00209] shall exist for the first referenced Transformation-
Technology in the ordered transformerChain of a DataTransformation if the
DataTransformation is referenced by an ISignal in the role dataTransfor-
mation where the ISignal references a SystemSignal which is referenced by a
TriggerToSignalMapping. c(SRS_Xfrm_00002)

[SWS_SomeIpXf_00211] d The function SomeIpXf_Inv_<transformerId> spec-
ified in [SWS_SomeIpXf_00209] shall deserialize a linear byte array to an external
trigger event using the SOME/IP deserialization. c(SRS_Xfrm_00002)

[SWS_SomeIpXf_00266] d If SomeIpXf_Inv_<transformerId> speci-
fied in [SWS_SomeIpXf_00209] is called with buffer equal to NULL_PTR
and bufferLength equal to 0, the output buffer buffer shall not be changed
and SomeIpXf_Inv_<transformerId> shall return with E_NO_DATA. c
(SRS_Xfrm_00001, SRS_Xfrm_00004)

70 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

As an external trigger event consists of an ISignal with length equal to zero, the
serialized SOME/IP message only contains a header but no payload.

8.3.3 SomeIpXf_Init

[SWS_SomeIpXf_00181] d

Service name: SomeIpXf_Init
Syntax: void SomeIpXf_Init(

const SomeIpXf_ConfigType* config
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): config Pointer to the transformer’s configuration data.
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This service initializes the transformer for the further processing.
Available via: SomeIpXf.h

Table 8.8: SomeIpXf_Init

c(SRS_BSW_00407, SRS_BSW_00411)

8.3.4 SomeIpXf_DeInit

[SWS_SomeIpXf_00182] d

Service name: SomeIpXf_DeInit
Syntax: void SomeIpXf_DeInit(

void
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): None
Return value: None
Description: This service deinitializes the transformer.
Available via: SomeIpXf.h

Table 8.9: SomeIpXf_DeInit

c(SRS_BSW_00407, SRS_BSW_00411)

71 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

8.3.5 SomeIpXf_GetVersionInfo

[SWS_SomeIpXf_00180] d

Service name: SomeIpXf_GetVersionInfo
Syntax: void SomeIpXf_GetVersionInfo(

Std_VersionInfoType* VersionInfo
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (inout): None
Parameters (out): VersionInfo Pointer to where to store the version information of

this module.
Return value: None
Description: This service returns the version information of the called transformer

module.
Available via: SomeIpXf.h

Table 8.10: SomeIpXf_GetVersionInfo

c(SRS_BSW_00407, SRS_BSW_00411)

8.4 Callback notifications

There are no callback notifications.

8.5 Scheduled functions

SOME/IP Transformer has no scheduled functions

8.6 Expected interfaces

There are no expected interfaces.

72 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

9 Sequence diagrams

There are no sequence diagrams applicable to SOME/IP Transformer.

73 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

10 Configuration specification

There is no module specific configuration available to the SOME/IP Transformer. The
EcuC defined in [3, ASWS Transformer General] shall be used.

[SWS_SomeIpXf_00185] d The apiServicePrefix of the SOME/IP transformer’s
EcuC shall be set to SomeIpXf. c(SRS_BSW_00159)

74 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

A Referenced Meta Classes

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document but which are not contained
directly in the scope of describing specific meta-model semantics.

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table A.1: ApplicationArrayDataType

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

errorCode Integer 1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table A.2: ApplicationError

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.3: ApplicationPrimitiveDataType

75 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

direction ArgumentDirection
Enum

1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table A.4: ArgumentDataPrototype

Enumeration ArraySizeSemanticsEnum

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note This type controls how the information about the number of elements in an ApplicationArrayDataType
is to be interpreted.

Literal Description

fixedSize This means that the ApplicationArrayDataType will always have a fixed number of elements.

Tags: atp.EnumerationValue=0

variableSize This implies that the actual number of elements in the ApplicationArrayDataType might vary at
run-time. The value of arraySize represents the maximum number of elements in the array.

Tags: atp.EnumerationValue=1

Table A.5: ArraySizeSemanticsEnum

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for ECU software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table A.6: AutosarDataType

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependant base type.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses SwBaseType

5

76 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class BaseType (abstract)

Attribute Type Mul. Kind Note

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table A.7: BaseType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mul. Kind Note

baseType
Encoding

BaseTypeEncoding
String

1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags: xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags: xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags: xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with

shortName: "MyUnsignedInt"
nativeDeclaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

5
5

77 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class BaseTypeDirectDefinition

4
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags: xml.sequenceOffset=120

Table A.8: BaseTypeDirectDefinition

Class ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A client/server interface declares a number of operations that can be invoked on a server by a client.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

operation ClientServerOperation 1..* aggr ClientServerOperation(s) of this ClientServerInterface.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * aggr Application errors that are defined as part of this interface.

Table A.9: ClientServerInterface

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

argument (or-
dered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

possibleError ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table A.10: ClientServerOperation

Class ClientServerToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note This element maps the ClientServerOperation to call- and return-SystemSignals.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

callSignal SystemSignal 1 ref Reference to the callSignal to which the IN and INOUT
ArgumentDataPrototypes are mapped.

clientServer
Operation

ClientServerOperation 1 iref Reference to a ClientServerOperation, which is mapped
to a call SystemSignal and a return SystemSignal.

returnSignal SystemSignal 0..1 ref Reference to the returnSignal to which the OUT and
INOUT ArgumentDataPrototypes are mapped.

Tags: atp.Status=shallBecomeMandatory

Table A.11: ClientServerToSignalMapping

78 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.

Table A.12: DataPrototype

Class DataTransformation
Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A DataTransformation represents a transformer chain. It is an ordered list of transformers.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

data
Transformation
Kind

DataTransformationKind
Enum

0..1 attr This attribute controls the kind of DataTransformation to
be applied.

executeDespite
Data
Unavailability

Boolean 1 attr Specifies whether the transformer chain is executed even
if no input data are available.

transformer
Chain (ordered)

Transformation
Technology

1..* ref This attribute represents the definition of a chain of
transformers that are supposed to be executed according
to the order of being referenced from DataTransformation.

Table A.13: DataTransformation

Enumeration DataTransformationErrorHandlingEnum

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note This enumeration defines different ways how a RunnableEntity shall handle transformer errors.

Literal Description

noTransformerError
Handling

A runnable does not handle transformer errors.

Tags: atp.EnumerationValue=0

transformerError
Handling

The runnable implements the handling of transformer errors.

Tags: atp.EnumerationValue=1

Table A.14: DataTransformationErrorHandlingEnum

Class EcucModuleDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate

Note Used as the top-level element for configuration definition for Software Modules, including BSW and RTE
as well as ECU Infrastructure.

Tags: atp.recommendedPackage=EcucModuleDefs

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpDefinition, CollectableElement , Ecuc
DefinitionElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

5

79 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class EcucModuleDef
apiServicePrefix CIdentifier 0..1 attr For CDD modules this attribute holds the apiService

Prefix.

The shortName of the module definition of a Complex
Driver is always "Cdd". Therefore for CDD modules the
module apiServicePrefix is described with this attribute.

container EcucContainerDef 1..* aggr Aggregates the top-level container definitions of this
specific module definition.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=11

postBuildVariant
Support

Boolean 0..1 attr Indicates if a module supports different post-build variants
(previously known as post-build selectable configuration
sets). TRUE means yes, FALSE means no.

refinedModule
Def

EcucModuleDef 0..1 ref Optional reference from the Vendor Specific Module
Definition to the Standardized Module Definition it refines.
In case this EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION
this reference shall not be provided. In case this Ecuc
ModuleDef has the category
VENDOR_SPECIFIC_MODULE_DEFINITION this
reference is mandatory.

Stereotypes: atpUriDef

supported
ConfigVariant

EcucConfiguration
VariantEnum

* attr Specifies which ConfigurationVariants are supported by
this software module.
This attribute is optional if the EcucModuleDef has the
category STANDARDIZED_MODULE_DEFINITION. If
the category attribute of the EcucModuleDef is set to
VENDOR_SPECIFIC_MODULE_DEFINITION then this
attribute is mandatory.

Table A.15: EcucModuleDef

Class ISignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same System Signal is
sent in different SignalIPdus to multiple receivers.

To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same System Signal is to
be mapped into several SignalIPdus there is one ISignal needed for each ISignalToIPduMapping.

ISignals describe the Interface between the Precompile configured RTE and the potentially Postbuild
configured Com Stack (see ECUC Parameter Mapping).

In case of the SystemSignalGroup an ISignal must be created for each SystemSignal contained in the
SystemSignalGroup.

Tags: atp.recommendedPackage=ISignals

Base ARObject , CollectableElement , FibexElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

5

80 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class ISignal

data
Transformation

DataTransformation 0..1 ref Optional reference to a DataTransformation which
represents the transformer chain that is used to transform
the data that shall be placed inside this ISignal.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=dataTransformation, variation
Point.shortLabel
vh.latestBindingTime=codeGenerationTime

dataTypePolicy DataTypePolicyEnum 1 attr With the aggregation of SwDataDefProps an ISignal
specifies how it is represented on the network. This
representation follows a particular policy. Note that this
causes some redundancy which is intended and can be
used to support flexible development methodology as well
as subsequent integrity checks.

If the policy "networkRepresentationFromComSpec" is
chosen the network representation from the ComSpec
that is aggregated by the PortPrototype shall be used.
If the "override" policy is chosen the requirements
specified in the PortInterface and in the ComSpec are not
fulfilled by the networkRepresentationProps.
In case the System Description doesn’t use a complete
Software Component Description (VFB View) the "legacy"
policy can be chosen.

iSignalProps ISignalProps 0..1 aggr Additional optional ISignal properties that may be stored
in different files.

Stereotypes: atpSplitable
Tags: atp.Splitkey=iSignalProps

iSignalType ISignalTypeEnum 0..1 attr This attribute defines whether this iSignal is an array that
results in a UINT8_N / UINT8_DYN ComSignalType in the
COM configuration or a primitive type.

initValue ValueSpecification 0..1 aggr Optional definition of a ISignal’s initValue in case the
System Description doesn’t use a complete Software
Component Description (VFB View). This supports the
inclusion of legacy system signals.

This value can be used to configure the Signal’s "Init
Value".

If a full DataMapping exist for the SystemSignal this
information may be available from a configured Sender
ComSpec and ReceiverComSpec.
In this case the initvalues in SenderComSpec and/or
ReceiverComSpec override this optional value
specification. Further restrictions apply from the RTE
specification.

length Integer 1 attr Size of the signal in bits. The size needs to be derived
from the mapped VariableDataPrototype according to the
mapping of primitive DataTypes to BaseTypes as used in
the RTE.
Indicates maximum size for dynamic length signals.

The ISignal length of zero bits is allowed.

network
Representation
Props

SwDataDefProps 0..1 aggr Specification of the actual network representation. The
usage of SwDataDefProps for this purpose is restricted to
the attributes compuMethod and baseType. The optional
baseType attributes "memAllignment" and "byteOrder"
shall not be used.

5
5

81 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class ISignal

4
The attribute "dataTypePolicy" in the SystemTemplate
element defines whether this network representation shall
be ignored and the information shall be taken over from
the network representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in the
network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB View)
this element is used to configure "ComSignalDataInvalid
Value" and the Data Semantics.

systemSignal SystemSignal 1 ref Reference to the System Signal that is supposed to be
transmitted in the ISignal.

timeout
Substitution
Value

ValueSpecification 0..1 aggr Defines and enables the ComTimeoutSubstituition for this
ISignal.

transformation
ISignalProps

TransformationISignal
Props

* aggr A transformer chain consists of an ordered list of
transformers. The ISignal specific configuration
properties for each transformer are defined in the
TransformationISignalProps class. The transformer
configuration properties that are common for all ISignals
are described in the TransformationTechnology class.

Table A.16: ISignal

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractEvent , AbstractImplementationDataTypeElement , AbstractServiceInstance,
ApplicationEndpoint, ApplicationError, ApplicationPartitionToEcuPartitionMapping, AsynchronousServer
CallResultPoint, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpFeature, AutosarOperationArgument
Instance, AutosarVariableInstance, BswInternalTriggeringPoint, BswModuleDependency, BuildAction
Entity , BuildActionEnvironment, CanTpAddress, CanTpChannel, CanTpNode, Chapter, ClassContent
Conditional, ClientIdDefinition, ClientServerOperation, Code, CollectableElement , ComManagement
Mapping, CommConnectorPort , CommunicationConnector , CommunicationController , Compiler,
ConsistencyNeeds, ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , Crypto
ServiceMapping, DataPrototypeGroup, DataTransformation, DependencyOnArtifact, DiagEvent
DebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticDataElement, DiagnosticFunctionInhibit
Source, DiagnosticMasterToSlaveEventMapping, DiagnosticRoutineSubfunction, DoIpLogicAddress, EC
UMapping, EOCExecutableEntityRefAbstract , EcuPartition, EcucContainerValue, EcucDefinition
Element , EcucDestinationUriDef, EcucEnumerationLiteralDef, EcucQuery, EcucValidationCondition, End
ToEndProtection, ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeatureMap
Assertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeatureRestriction,
FMFeatureSelection, FlatInstanceDescriptor, FlexrayArTpNode, FlexrayTpConnectionControl, FlexrayTp
Node, FlexrayTpPduPool, FrameTriggering, GeneralParameter, GlobalTimeGateway, GlobalTimeMaster ,
GlobalTimeSlave, HeapUsage, HwAttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPv6Ext
HeaderFilterList, ISignalToIPduMapping, ISignalTriggering, IdentCaption, InternalTriggeringPoint, J1939
SharedAddressCluster, J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker,
MacMulticastGroup, McDataInstance, MemorySection, ModeDeclaration, ModeDeclarationMapping,
ModeSwitchPoint, NetworkEndpoint, NmCluster , NmEcu, NmNode, NvBlockDescriptor, Packageable

5
5

82 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class Identifiable (abstract)

4
Element , ParameterAccess, PduToFrameMapping, PduTriggering, PerInstanceMemory, Physical
Channel , PortGroup, PortInterfaceMapping, PossibleErrorReaction, ResourceConsumption, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass,
SecureCommunicationAuthenticationProps, SecureCommunicationFreshnessProps, ServerCallPoint ,
ServiceNeeds, SocketAddress, SomeipTpChannel, SpecElementReference, StackUsage, Structured
Req, SwGenericAxisParamType, SwServiceArg, SwcServiceDependency, SwcToApplicationPartition
Mapping, SwcToEcuMapping, SwcToImplMapping, SystemMapping, TcpOptionFilterList, Timing
Condition, TimingConstraint , TimingDescription, TimingExtensionResource, TimingModeInstance, Tls
CryptoCipherSuite, Topic1, TpAddress, TraceableText, TracedFailure, TransformationProps,
TransformationTechnology, Trigger, VariableAccess, VariationPointProxy, ViewMap, VlanConfig, Wait
Point

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags: xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models.
The form of the UUID (Universally Unique Identifier) is
taken from a standard defined by the Open Group (was
Open Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and by
many companies for DCE, which is based on CORBA.
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed.
If the id namespace is omitted, DCE is assumed.

5
5

83 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class Identifiable (abstract)

4
An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table A.17: Identifiable

Class Implementation (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Description of an implementation a single software component or module.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Subclasses BswImplementation, SwcImplementation

Attribute Type Mul. Kind Note

buildAction
Manifest

BuildActionManifest 0..1 ref A manifest specifying the intended build
actions for the software delivered with this
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

codeDescriptor Code 1..* aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this implementation has
been released

generated
Artifact

DependencyOnArtifact * aggr Relates to an artifact that will be generated during the
integration of this Implementation by an associated
generator tool. Note that this is an optional information
since it might not always be in the scope of a single
module or component to provide this information.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor) required for
this implementation.

linker Linker * aggr Specifies the linker for which this implementation has
been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data belonging to
this implementation. The aggregtion is «atpSplitable»
because in case of an already exisiting BSW
Implementation model, this description will be added later
in the process, namely at code generation time.

Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programming
Language

Programminglanguage
Enum

1 attr Programming language the implementation was created
in.

requiredArtifact DependencyOnArtifact * aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in the
implementations. Different algorithms in the

5
5

84 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class Implementation (abstract)

4
implementation might cause different dependencies, e.g.
the number of used libraries.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

required
GeneratorTool

DependencyOnArtifact * aggr Relates this Implementation to a generator tool in order to
generate additional artifacts during integration.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

resource
Consumption

ResourceConsumption 1 aggr All static and dynamic resources for each implementation
are described within the ResourceConsumption class.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

swVersion RevisionLabelString 1 attr Software version of this implementation. The numbering
contains three levels (like major, minor, patch), its values
are vendor specific.

swcBsw
Mapping

SwcBswMapping 0..1 ref This allows a mapping between an SWC and a BSW
behavior to be attached to an implementation description
(for AUTOSAR Service, ECU Abstraction and Complex
Driver Components). It is up to the methodology to define
whether this reference has to be set for the Swc- or Bsw
Implementtion or for both.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table A.18: Implementation

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

Tags: atp.Status=draft

5

85 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class ImplementationDataType

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.19: ImplementationDataType

Class ImplementationDataTypeElement

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.

This element either consists of further subElements or it is further defined via its swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such a local declaration:

• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

Tags: atp.Status=draft

5

86 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class ImplementationDataTypeElement

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table A.20: ImplementationDataTypeElement

Class InternalBehavior (abstract)

Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior

Note Common base class (abstract) for the internal behavior of both software components and basic software
modules/clusters.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Subclasses BswInternalBehavior, SwcInternalBehavior

Attribute Type Mul. Kind Note

constant
Memory

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) implemented by this Internal
Behavior.

The shortName of ParameterDataPrototype has to be
equal to the ”C’ identifier of the described constant.

The characteristic value(s) might be shared between
SwComponentPrototypes of the same SwComponent
Type.

The aggregation of constantMemory is subject to
variability with the purpose to support variability in the
software component or module implementations.
Typically different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

constantValue
Mapping

ConstantSpecification
MappingSet

* ref Reference to the ConstanSpecificationMapping to be
applied for the particular InternalBehavior

Stereotypes: atpSplitable
Tags: atp.Splitkey=constantValueMapping

dataType
Mapping

DataTypeMappingSet * ref Reference to the DataTypeMapping to be applied for the
particular InternalBehavior

Stereotypes: atpSplitable
Tags: atp.Splitkey=dataTypeMapping

exclusiveArea ExclusiveArea * aggr This specifies an ExclusiveArea for this InternalBehavior.
The exclusiveArea is local to the component resp.
module.
The aggregation of ExclusiveAreas is subject to variability.
Note: the number of ExclusiveAreas might vary due to the

5
5

87 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class InternalBehavior (abstract)

4
conditional existence of RunnableEntities or BswModule
Entities.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

exclusiveArea
NestingOrder

ExclusiveAreaNesting
Order

* aggr This represents the set of ExclusiveAreaNestingOrder
owned by the InternalBehavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

staticMemory VariableDataPrototype * aggr Describes a read and writeable static memory object
representing measurerment variables implemented by
this software component.
The term "static" is used in the meaning of
"non-temporary" and does not necessarily specify a linker
encapsulation. This kind of memory is only supported if
supportsMultipleInstantiation is FALSE.

The shortName of the VariableDataPrototype has to be
equal with the ”C’ identifier of the described variable.

The aggregation of staticMemory is subject to variability
with the purpose to support variability in the software
component’s implementations.

Typically different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

Table A.21: InternalBehavior

Class PortAPIOption

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note Options how to generate the signatures of calls for an AtomicSwComponentType in order to
communicate over a PortPrototype (for calls into a RunnableEntity as well as for calls from a Runnable
Entity to the PortPrototype).

Base ARObject

Attribute Type Mul. Kind Note

enableTake
Address

Boolean 1 attr If set to true, the software-component is able to use the
API reference for deriving a pointer to an object.

errorHandling DataTransformation
ErrorHandlingEnum

0..1 attr This specifies whether a RunnableEntity accessing a Port
Prototype that is referenced by this PortAPIOption shall
specifically handle transformer errors or not.

indirectAPI Boolean 1 attr If set to true this attribute specifies an "indirect API" to be
generated for the associated port which means that the
software-component is able to access the actions on a
port via a pointer to an object representing a port. This
allows e.g. iterating over ports in a loop. This option has
no effect for PPortPrototypes of client/server interfaces.

port PortPrototype 1 ref The option is valid for generated functions related to
communication over this port

portArg
Value (ordered)

PortDefinedArgument
Value

* aggr An argument value defined by this port.

5

88 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class PortAPIOption

supported
Feature

SwcSupportedFeature * aggr This collection specifies which features are supported by
the RunnableEntitys which access a PortPrototype that it
referenced by this PortAPIOption.

Table A.22: PortAPIOption

Class PortDefinedArgumentValue

Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPIOptions

Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the ClientServerOperations
provided by a given PortPrototype. Note that this is restricted to PPortPrototypes of a ClientServer
Interface.

Base ARObject

Attribute Type Mul. Kind Note

value ValueSpecification 1 aggr Specifies the actual value.

valueType ImplementationData
Type

1 tref The implementation type of this argument value. It should
not be composite type or a pointer.

Stereotypes: isOfType

Table A.23: PortDefinedArgumentValue

Class SOMEIPTransformationProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class SOMEIPTransformationProps specifies SOME/IP specific configuration properties.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TransformationProps

Attribute Type Mul. Kind Note

alignment PositiveInteger 0..1 attr Specifies the alignment of dynamic data in the serialized
data stream. The alignment is specified in Bits.

sizeOfArray
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of a static size Array in the
SOME/IP message.

sizeOfStruct
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of a Structure in the
SOME/IP message.

sizeOfUnion
LengthField

PositiveInteger 0..1 attr This attribute describes the size of the length field (in
Bytes) that will be put in front of a Union in the SOME/IP
message.

Table A.24: SOMEIPTransformationProps

Enumeration SOMEIPTransformerSessionHandlingEnum

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note Enables or disable session handling for SOME/IP transformer

Literal Description

sessionHandling
Active

The SOME/IP Transformer shall use session handling

Tags: atp.EnumerationValue=0

sessionHandling
Inactive

The SOME/IP Transformer doesn’t use session handling

Tags: atp.EnumerationValue=1

Table A.25: SOMEIPTransformerSessionHandlingEnum

89 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Class SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note A sender/receiver interface declares a number of data elements to be sent and received.

Tags: atp.recommendedPackage=PortInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
DataInterface, Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1..* aggr The data elements of this SenderReceiverInterface.

invalidation
Policy

InvalidationPolicy * aggr InvalidationPolicy for a particular dataElement

Table A.26: SenderReceiverInterface

Class SenderReceiverToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note Mapping of a sender receiver communication data element to a signal.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

dataElement VariableDataPrototype 1 iref Reference to the data element.

systemSignal SystemSignal 1 ref Reference to the system signal used to carry the data
element.

Table A.27: SenderReceiverToSignalMapping

Class SwBaseType

Package M2::MSR::AsamHdo::BaseTypes

Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, BaseType, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.28: SwBaseType

Class «atpVariation» SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

5
5

90 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw

AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mul. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags: xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags: xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

5
5

91 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

4
• the data type of an array or record element within

an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags: xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags: xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.

Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags: xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags: xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags: xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240

5

92 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags: xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
Size
Mult (ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

5

93 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class «atpVariation» SwDataDefProps

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table A.29: SwDataDefProps

Class SwTextProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Attribute Type Mul. Kind Note

arraySize
Semantics

ArraySizeSemantics
Enum

1 attr This attribute controls the semantics of the arraysize for
the array representing the string in an Implementation
DataType.

It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype, even
for variable length strings as required e.g. for Support of
SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of ApplicationData
Type.

Tags: xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.

The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.

The usage of the fill character depends on the arraySize
Semantics.

Tags: xml.sequenceOffset=40

swMaxTextSize Integer 1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table A.30: SwTextProps

94 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Class SystemSignal

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note The system signal represents the communication system’s view of data exchanged between SW
components which reside on different ECUs. The system signals allow to represent this communication
in a flattened structure, with exactly one system signal defined for each data element prototype sent and
received by connected SW component instances.

Tags: atp.recommendedPackage=SystemSignals

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

dynamicLength Boolean 1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal is
specified in the configuration (attribute length in ISignal
element).

physicalProps SwDataDefProps 0..1 aggr Specification of the physical representation.

Table A.31: SystemSignal

Class «atpVariation» TransformationISignalProps (abstract)

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note TransformationISignalProps holds all the attributes for the different TransformationTechnologies that are
ISignal specific.

Tags: vh.latestBindingTime=postBuild

Base ARObject , Describable

Subclasses EndToEndTransformationISignalProps, SOMEIPTransformationISignalProps, UserDefinedTransformation
ISignalProps

Attribute Type Mul. Kind Note

csErrorReaction CSTransformerError
ReactionEnum

0..1 attr Defines whether the transformer chain of client/server
communication coordinates an autonomous error reaction
together with the RTE or whether any error reaction is the
responsibility of the application.

dataPrototype
Transformation
Props

DataPrototype
TransformationProps

* aggr Fine granular modeling of TransfromationProps on the
level of DataPrototypes.

transformer Transformation
Technology

1 ref Reference to the TransformationTechnology description
that contains transformer specific and ISignal
independent configuration properties.

Table A.32: TransformationISignalProps

Class TransformationTechnology

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note A TransformationTechnology is a transformer inside a transformer chain.

Tags: xml.namePlural=TRANSFORMATION-TECHNOLOGIES

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

bufferProperties BufferProperties 1 aggr Aggregation of the mandatory BufferProperties.

hasInternal
State

Boolean 0..1 attr This attribute defines whether the Transformer has an
internal state or not.

needsOriginal
Data

Boolean 0..1 attr Specifies whether this transformer gets access to the
SWC’s original data.

5

95 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

4
Class TransformationTechnology

protocol String 1 attr Specifies the protocol that is implemented by this
transformer.

transformation
Description

Transformation
Description

0..1 aggr A transformer can be configured with transformer specific
parameters which are represented by the Transformer
Description.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild

transformer
Class

TransformerClassEnum 1 attr Specifies to which transformer class this transformer
belongs.

version String 1 attr Version of the implemented protocol.

Table A.33: TransformationTechnology

Class TriggerToSignalMapping

Package M2::AUTOSARTemplates::SystemTemplate::DataMapping

Note This meta-class represents the ability to map a trigger to a SystemSignal of size 0. The Trigger does not
transport any other information than its existence, therefore the limitation in terms of signal length.

Base ARObject , DataMapping

Attribute Type Mul. Kind Note

systemSignal SystemSignal 1 ref This is the SystemSignal taken to transport the Trigger
over the network.

Tags: xml.sequenceOffset=20

trigger Trigger 1 iref This represents the Trigger that shall be used to trigger
RunnableEntities deployed to a remote ECU.

Tags: xml.sequenceOffset=10

Table A.34: TriggerToSignalMapping

B Features of SOME/IP not supported by AUTOSAR
SOME/IP transformer

The following features of SOME/IP are currently not supported by the SOME/IP trans-
former:

• Exceptions and exception-specific error data structures

• Tunneling of SOME/IP messages through CAN and Flexray leads to SOME/IP
messages without parts of the header inserted by [4, SWS Socket Adaptor]

• Queued Fire&Forget methods without parameters are not supported by
AUTOSAR at all. (Unqueued Fire&Forget methods without parameters and
queued Fire&Forget methods with parameters are supported)

• The SOME/IP transformer doesn’t check whether variable size arrays contain a
minimal number of elements (reason: this is supported by SOME/IP protocol but
not by AUTOSAR)

96 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

C Examples

This appendix contains examples which are suitable to help understanding details of
the SOME/IP Transformer.

C.1 Serialization of a Client/Server Operation

As the serialization of inter-ECU Client/Server communication is the most complex
scenario, this example will show the resulting APIs which exist in RTE and Transformer
both on the Client and the Server as well an overview of the resulting serialized data
on the network.

The example deals with two SWCs which are distributed to two ECUs which are con-
nected over some kind of network. The SOME/IP Transformer shall be used to se-
rialize the inter-ECU communication. The client calls a ClientServerOperation
which is provided by the server. For the server, there are two PortDefinedAr-
gumentValues defined which are applied to the runnable which implements the
ClientServerOperation. These PortDefinedArgumentValues are only visible
within the InternalBehavior of the server. They are not visible to the outside world
(ClientServerInterface) - neither to the client nor in the data on the network.

The following tables define the example ClientServerInterface used here.

Name SomeCSInterface
Comment A ClientServerInterface which contains anything needed to show

serialization of ClientServerOperations by SOME/IP Transformer.
IsService false
Variation –
Possible Errors 0 E_OK

1 E_DATA_INCONSISTENT
2 E_UNKNOWN_ERROR

Table C.1: ClientServerInterface SomeCSInterface

Operations

Name SomeCSOperation
Comments The ClientServerOperation which is used to demonstrate how the SOME/IP

serialization for Client/Sever communication works
Variation –
Parameters inputParam1

Comment A parameter which is handed over from the
Client to the Server

Type uint8
Variation –
Direction IN
inputParam2

97 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

Comment A parameter which is handed over from the
Client to the Server

Type uint16
Variation –
Direction IN
biDirectionalParam
Comment A parameter which is handed over from the

Client to the Server, modified by the Server
and handed back to the Client

Type someStruct
Variation –
Direction INOUT
outputParam1
Comment A parameter which is handed over from the

Server to the Client
Type uint16
Variation –
Direction OUT
outputParam2
Comment A parameter which is handed over from the

Server to the Client
Type uint32
Variation –
Direction OUT

Possible Errors E_OK Operation successful
E_DATA_
INCONSISTENT

Data are inconsistent

E_UNKNOWN_ERROR An unknown error occured

Table C.2: Operation SomeCSOperation

C.1.1 Client

On the client side, the following RTE-API is generated according to [SWS_Rte_01102]
based on the ClientServerInterface which is specified above and the attribute
errorHandling of PortAPIOption:

Std_ReturnType Rte_Call_ClientPort_SomeCSOperation
(uint8 inputParam1,
uint16 inputParam2,
someStruct *biDirectionalParam,
uint16 *outputParam1,
uint32 *outputParam2,
Rte_TransformerError *transformerError)

For this signature the attribute errorHandling of PortAPIOption is set to trans-
formerErrorHandling. If it would be set to noTransformerErrorHandling, the
parameter Rte_TransformerError *transformerError would not be included
in the signature above.

98 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

The signature above reflects an synchronous server call. For an asynchronous server
call all OUT parameters would be missing for Rte_Call but an Rte_Result would
be necessary instead. The examples for signatures and parameters shown here can
be transferred analogously to Rte_Result.

This is the API used in the runnable of the client to call the remote server operation.

The RTE executes for the serialization of the request the SOME/IP Transformer with
the following API which is specified in [SWS_SomeIpXf_00141]:

uint8 SomeIpXf_CSOpSerializer
(const Rte_Cs_TransactionHandleType *TransactionHandle,
uint8 *buffer,
uint16 *bufferLength,
uint8 inputParam1,
uint16 inputParam2,
someStruct biDirectionalParam)

This function will serialize the TransactionHandle and all IN/INOUT parameters for
the request into the following format:

SOME/IP Header
input
Param1

inputParam2 biDirectionalParam

Figure C.1: Example for serialized data of the Client/Server Request

The SOME/IP Header contains the TransactionHandle (see [SWS_SomeIpXf_00025]
and [SWS_SomeIpXf_00026]).

To deserialize the response that is received by the client after execu-
tion of the ClientServerOperation on the server the API (according to
[SWS_SomeIpXf_00145]) is used:

uint8 SomeIpXf_Inv_CSOpSerializer
(Rte_Cs_TransactionHandleType *TransactionHandle,
const uint8 *buffer,
uint16 bufferLength,
Std_ReturnType *returnValue,
someStruct *biDirectionalParam,
uint16 *outputParam1,
uint32 *outputParam2)

C.1.2 Server

On the server side the ClientServerOperation is implemented by a runnable with
the following signature which now contains the PortDefinedArgumentValues (see
[SWS_Rte_01166]):

Std_ReturnType SomeCSOperation
(uint8 portDefArg1,

99 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

Specification of SOME/IP Transformer
AUTOSAR CP Release 4.4.0

uint8 portDefArg2,
uint8 inputParam1,
uint16 inputParam2,
someStruct *biDirectionalParam,
uint16 *outputParam1,
uint32 *outputParam2)

For the deserialization of the received request, the SOME/IP Transformer on the server
side, provides according to [SWS_SomeIpXf_00141] this C-API:

uint8 SomeIpXf_Inv_CSOpSerializer
(Rte_Cs_TransactionHandleType *TransactionHandle,
const uint8 *buffer,
uint16 bufferLength,
uint8 *inputParam1,
uint16 *inputParam2,
someStruct *biDirectionalParam)

The function for serialization of the response is specified by [SWS_SomeIpXf_00145]:

uint8 SomeIpXf_CSOpSerializer
(const Rte_Cs_TransactionHandleType *TransactionHandle,
uint8 *buffer,
uint16 *bufferLength,
Std_ReturnType returnValue,
someStruct biDirectionalParam,
uint16 outputParam1,
uint32 outputParam2)

This function will serialize the TransactionHandle, the returnValue and all IN-
OUT/OUT parameters for the response into the following format:

SOME/IP Header biDirectionalParam outputParam1 outputParam2

Figure C.2: Example for serialized data of the Client/Server Response

The SOME/IP Header contains the TransactionHandle and returnValue (see
[SWS_SomeIpXf_00025], [SWS_SomeIpXf_00026] and [SWS_SomeIpXf_00115]).

100 of 100
— AUTOSAR CONFIDENTIAL —

Document ID 660: AUTOSAR_SOMEIPTransformer

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 Definition of Identifiers
	7.2 Specification of the SOME/IP on-wire format
	7.2.1 Message Length Limitations
	7.2.2 Endianess
	7.2.3 Header
	7.2.3.1 Message ID [32 bit]
	7.2.3.2 Length [32 bit]
	7.2.3.3 Request ID [32 bit]
	7.2.3.4 Protocol Version [8 bit]
	7.2.3.5 Interface Version [8 bit]
	7.2.3.6 Message Type [8 bit]
	7.2.3.7 Return Code [8 bit]
	7.2.3.8 Payload [variable size]

	7.2.4 Serialization of Parameters and Data Structures
	7.2.4.1 Basic Datatypes
	7.2.4.2 Structured Datatypes (structs)
	7.2.4.3 Structured Datatypes and Arguments with Identifier and optional Members
	7.2.4.4 Strings
	7.2.4.5 Arrays (fixed length)
	7.2.4.6 Optional Parameters / Optional Elements
	7.2.4.7 Dynamic Length Arrays / Variable Size Arrays
	7.2.4.8 Bitfield
	7.2.4.9 Union / Variant

	7.3 Protocol specification
	7.3.1 Client/Server Communication
	7.3.2 Sender/Receiver Communication
	7.3.3 Unqueued External Trigger Events
	7.3.4 Error Handling
	7.3.4.1 Return Code
	7.3.4.2 Communication Errors and Handling of Communication Errors

	7.4 Reserved and special identifiers for SOME/IP and SOME/IP-SD.
	7.5 Development Errors
	7.6 Production Errors
	7.7 Extended Production Errors
	7.8 Error Notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 SomeIpXf_<transformerId>
	8.3.2 SomeIpXf_Inv_<transformerId>
	8.3.3 SomeIpXf_Init
	8.3.4 SomeIpXf_DeInit
	8.3.5 SomeIpXf_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected interfaces

	9 Sequence diagrams
	10 Configuration specification
	A Referenced Meta Classes
	B Features of SOME/IP not supported by AUTOSAR SOME/IP transformer
	C Examples
	C.1 Serialization of a Client/Server Operation
	C.1.1 Client
	C.1.2 Server

