Ravi Akella, Software Researcher
Akihito Iwai, Director

Silicon Valley Innovation Center
DENSO International America, Inc.

Integrating an actor based connected car platform with Adaptive AUTOSAR
Future mobility service systems

- Connected to swarms of smart things
- Integral part of system of systems
- Fully autonomous
- Shared ownership, zero-casualty safety, reliability, and ...?
Challenges for future mobility systems

- Integration of automotive with heterogeneous subsystems and complex societal dynamics
- Highly networked, time coordinated interactions with highest degrees of assurance and safety
- Increasing complexity of V2X systems demand distributed computing with massive data

Architectures that allow development, deployment and maintainability of services
- Open Interfaces
- Adaptive
- Real-time
- Dynamic

Source: US DOT
Need for a shift in computing paradigm

- Automotive and roadside gateways (Fog) can host and compose services
- A unifying platform is required to seamlessly interconnect in-vehicle servers with the fog, cloud, and IOT.
Accessor: An actor based paradigm

- Accessor provides access to device or service by exposing only the interface
- Service implementation is abstracted
- Sequence of requests for a service (a stream) triggers a sequence of responses
- Composable with other actors
- Application execution controlled by accessor model of computation

This is the essence of accessors, a design pattern that embraces concurrency, asynchrony, and atomicity.
A novel candidate: Accessor platform

- Directly connects to **heterogeneous** things and services **within** and outside the vehicle

- **Scalable** and **dynamic** services can be developed and deployed using flow based design.

- **Dynamic Composability** of accessors facilitate service adaptability based on context/environment

- Allows **distributed computing** with fog or cloud for time-critical, data and processor-intensive applications

Collaborators

Project URL: https://www.icyphy.org/accessors/
Model based design environment for service modeling

- Newer services can be built using the service components of the accessor library
- In built timing guarantees made possible from a few decades of work in Models of Computation (MoCs)
- Code generation for target hardware
- Accessors for different devices/service to be developed.
A Telematics application using Accessors

- Different services relying on OBD data utilize data pushed to the cloud.
- Services lie outside the scope of the vehicle.

- OBD accessor is used to create such services that rely on vehicular data
- Same application can run in a vehicle gateway or user`s mobile phone – interoperability!
A case for integrating Accessor with Adaptive AUTOSAR*

*This is an early stage R&D feasibility study only
A case for integrating Accessor with Adaptive AUTOSAR*

- Model based tools to design and rapidly develop diverse services with application level time guarantees
- Reuse IT standards as much as possible at the application level
- Development of ARA applications will become easier, apart from extending the scope beyond infotainment
- Adaptive AUTOSAR architecture allows us to interconnect both platforms
Current work

- Accessor platform (in both node.js and Java) can itself run as an adaptive application or as a stand alone non-AUTOSAR application

- Make sample ARA services available in the accessor library

- Accessor-level services utilize time and execution management APIs to achieve deterministic temporal semantics
Some more current work

- Developing SOME/IP accessor (subscriber and notifier) to interface accessor applications with adaptive autosar applications

- An accessor application to switch between and detect new cameras utilizes SOME/IP accessor

- Mechanisms to utilize ARA APIs should be developed by extending SOME/IP accessor interface design

Downloads specific camera service from Road side unit
Conclusion

- We share our early stage work on a new connected car platform that could supplement Adaptive AUTOSAR goals.

- Accessor platform
 - Uniform device/service interfaces with underlying module implementations for heterogeneous environments
 - Extends the scope of services residing within the vehicle to edge and cloud
 - Greatly reduced development time in a model based environment with code generation for target hardware
 - Dynamic and adaptive services that can run untrusted code from remote services (eg. City infrastructure)
Thank you for your attention!

Ravi Akella, Ph.D.

Silicon Valley Innovation Center
DENSO International America, Inc.
101 Metro Dr., Suite 760, San Jose, CA, 95110, USA.
(669) 999-4018
ravi_akella@denso-diam.com