Interpreting the world on a different plane

Robert Bosch Engineering and Business Solutions
Lean Automotive E/E-Design Using AUTOSAR Methodology

28.09.2016 Imran Abdul Rahiman
Lean Automotive E/E-Design

Outline

Automotive Domain

Changing Paradigm

Methodology Workflows

Open Source Frameworks

Summary
Lean Automotive E/E-Design

Motivation

- Paradigm shift from ECU to System Engineering
- Variability of the configuration
- Exploiting benefits of common language
- Different Business models
- Embedded system complexities (DCU, ADAS, MBSE...)
- Impact on Tooling
Lean Automotive E/E-Design
ECU to System engineering

- Moving Complexity from ECU to System
 - Generation of Complete ECU Configuration from Extended System, "ZeroConfiguration"
 - Provide provision to address OEM/Vendor Extension
- Communication network design (CAN, Flexray, Eth)
- Gateway, Partial Networking
- Extend to support generation of variant rich and resolved data model
Lean Automotive E/E-Design
ECU to System engineering - use cases

- Interface Analysis at System level for the inconsistency
 - Early recognition of Anti-patterns
 - Cluster decisions
- ECU Partitioning
 - Functions to ECUs and Effect Chain
 - Timing requirements
 - Distributable across cores
Lean Automotive E/E-Design

Feature modeling

- Feature modeling
 - Unifying view in multiple view SPL
- Feature Based Impact Analysis
 - Impact of optional/alternative features on interaction diagrams and statecharts...
- Feature dependent state transition
 - Use feature condition as guard on state transition
 - Event [Feature Condition]
 - Feature condition is True if feature Selected
Lean Automotive E/E-Design Workflow support

- Increase the development efficiency by providing seamless workflow
- Each step has pre-post validation to make sure that developer/integrator is not struck at build
- Customizable workflows for user needs, Aligned to AUTOSAR methodology
- Learnings during implementation
Lean Automotive E/E-Design
Open Source Frameworks

- **Extensibility** of the M2 Meta-model allows us to enrich the System template
- One model as reference across the AUTOSAR release, “Gautosar”
- **Model integration** support to hook the other meta-models
- Avoidance of unnecessary migration
- Adaptation to AUTOSAR releases
Lean Automotive E/E-Design

ISOLAR-A

High-level Features of ISOLAR-A

- Support of AUTOSAR and other Standards
 - AUTOSAR R4.x (incl. 4.2.2); auto-migrate R3.x → R4.x
 - Import of DBC (incl. J1939, ISOBUS), FIBEX 4.0, and LDF 2.2 (incl. J2602)
 - Import of ODX 2.0.1

- Use via GUI, Command Line (automation), Scripts (customization), mixed

- Support of iterative developments by model-based Diff/Merge

- Workflows support out-of-the-box

- Interoperable with other tools, in (m)any user environments
 - Builds on Eclipse (4.5 Mars), Artop, Auto-IWG platform, and Java 1.8
 - Support of SVN, Git, Doors, ...
 - Integrates with ISOLAR-EVE supporting Test / Validation use cases

- Avoidance of unnecessary migration efforts and waiting times
 - No project migration needed when using later product versions
 - No need to wait for updated AR import/export filters, or converters
Lean Automotive E/E-Design

Summary

- AUTOSAR System helps the integrator to validate the vehicle configuration upfront

- Feature modelling and Architecture Variability provides the big picture

- Flexible configuration advanced concepts with minimum clicks, Post-Build, Gateways etc

- Using AUTOSAR architecture as base for design new ECU

- Its all about the tool landscape....
THANK YOU